501
|
Abstract
A major challenge in biology is to understand how genetic information is interpreted to direct the formation of specialized tissues within a multicellular organism. During differentiation, changes in chromatin structure and nuclear organization establish heritable patterns of gene expression in response to signals. Epigenetic states can be broadly divided into three categories: euchromatin, constitutive heterochromatin and facultative hetereochromatin. Although the static epigenetic profiles of expressed and silent loci are relatively well characterized, less is known about the transition between active and repressed states. Furthermore, it is important to expand on localized models of chromatin structure at specific genetic addresses to examine the entire nucleus. Changes in nuclear organization, replication timing and global chromatin modifications should be integrated when attempting to describe the epigenetic signature of a given cell type. It is also crucial to examine the temporal aspect of these changes. In this context, the capacity for cellular differentiation reflects both the repertoire of available transcription factors and the accessibility of cis-regulatory elements, which is governed by chromatin structure. Understanding this interplay between epigenetics and transcription will help us to understand differentiation pathways and, ultimately, to manipulate or reverse them.
Collapse
Affiliation(s)
- Katharine L Arney
- Lymphocyte Development, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
502
|
Malkova A, Naylor ML, Yamaguchi M, Ira G, Haber JE. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion. Mol Cell Biol 2005; 25:933-44. [PMID: 15657422 PMCID: PMC544012 DOI: 10.1128/mcb.25.3.933-944.2005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.
Collapse
Affiliation(s)
- Anna Malkova
- Rosenstiel Center, Brandeis University, 415 South St., Mail Stop 029, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
503
|
Hiraga SI, Hagihara-Hayashi A, Ohya T, Sugino A. DNA polymerases α, δ, and ɛ localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells 2005; 10:297-309. [PMID: 15773893 DOI: 10.1111/j.1365-2443.2005.00843.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early in eukaryotic cell cycle, a pre-RC is assembled at each replication origin with ORC, Cdc6, Cdt1 and Mcm2-7 proteins to license the origin for use in the subsequent S phase. Licensed origin must then be activated by S-Cdk and Ddk. At the onset of S phase, RPA is loaded on to the ARS in a reaction stimulated by S-Cdk and Ddk, followed by Cdc45-dependent loading of pol alpha, -delta, and -epsilon. This study examines cell cycle-dependent localization of pol alpha, -delta and -epsilon in Saccharomyces cerevisiae using immuno-histochemical and chromatin immuno-precipitation methods. The results show that pol alpha, -delta, or -epsilon localizes on chromatin as punctate foci at all stages of the cell cycle. However, some foci overlap with or are adjacent to foci pulse-labeled with bromodeoxyuridine during S phase, indicating these are replicating foci. DNA microarray analysis localized pol alpha, -delta, and -epsilon to early firing ARSs on yeast chromosome III and VI at the beginning of S phase. These data collectively suggest that bidirectional replication occurs at specific foci in yeast chromosomes and that pol alpha, -delta, and -epsilon localize and function together at multiple replication forks during S phase.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
504
|
Breier AM, Weier HUG, Cozzarelli NR. Independence of replisomes in Escherichia coli chromosomal replication. Proc Natl Acad Sci U S A 2005; 102:3942-7. [PMID: 15738384 PMCID: PMC552787 DOI: 10.1073/pnas.0500812102] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
505
|
Pearson CG, Yeh E, Gardner M, Odde D, Salmon ED, Bloom K. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr Biol 2005; 14:1962-7. [PMID: 15530400 DOI: 10.1016/j.cub.2004.09.086] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
With a single microtubule attachment, budding-yeast kinetochores provide an excellent system for understanding the coordinated linkage to dynamic microtubule plus ends for chromosome oscillation and positioning. Fluorescent tagging of kinetochore proteins indicates that, on average, all centromeres are clustered, distinctly separated from their sisters, and positioned equidistant from their respective spindle poles during metaphase. However, individual fluorescent chromosome markers near the centromere transiently reassociate with their sisters and oscillate from one spindle half to the other. To reconcile the apparent disparity between the average centromere position and individual centromere proximal markers, we utilized fluorescence recovery after photobleaching to measure stability of the histone-H3 variant Cse4p/CENP-A. Newly synthesized Cse4p replaces old protein during DNA replication. Once assembled, Cse4-GFP is a physically stable component of centromeres during mitosis. This allowed us to follow centromere dynamics within each spindle half. Kinetochores remain stably attached to dynamic microtubules and exhibit a low incidence of switching orientation or position between the spindle halves. Switching of sister chromatid attachment may be contemporaneous with Cse4p exchange and early kinetochore assembly during S phase; this would promote mixing of chromosome attachment to each spindle pole. Once biorientation is attained, centromeres rarely make excursions beyond their proximal half spindle.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall Call Box #3280, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
506
|
Takata H, Tanaka Y, Matsuura A. Late S Phase-Specific Recruitment of Mre11 Complex Triggers Hierarchical Assembly of Telomere Replication Proteins in Saccharomyces cerevisiae. Mol Cell 2005; 17:573-83. [PMID: 15721260 DOI: 10.1016/j.molcel.2005.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/28/2004] [Accepted: 01/20/2005] [Indexed: 11/30/2022]
Abstract
In Saccharomyces cerevisiae, telomere replication occurs in late S phase and is accompanied by dynamic remodeling of its protein components. Here, we show that MRX (Mre11-Rad50-Xrs2), an evolutionarily conserved protein complex involved in DNA double-strand break (DSB) repair, is recruited to the telomeres in late S phase. MRX is required for the late S phase-specific recruitment of ATR-like kinase Mec1 to the telomeres. Mec1, in turn, contributes to the assembly of the telomerase regulators Cdc13 and Est1 at the telomere ends. Our results provide a model for the hierarchical assembly of telomere-replication proteins in late S phase; this involves triggering by the loading of MRX onto the chromosome termini. The recruitment of DNA repair-related proteins to the telomeres at particular times in the cell cycle suggests that the normal terminus of a chromosome is recognized as a DSB during the course of replication.
Collapse
Affiliation(s)
- Hideki Takata
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | | | | |
Collapse
|
507
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
508
|
Gibson DG, Aparicio JG, Hu F, Aparicio OM. Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae. Mol Cell Biol 2005; 24:10208-22. [PMID: 15542831 PMCID: PMC529053 DOI: 10.1128/mcb.24.23.10208-10222.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinase (CDK) is required for the initiation of chromosomal DNA replication in eukaryotes. In Saccharomyces cerevisiae, the Clb5 and Clb6 cyclins activate Cdk1 and drive replication origin firing. Deletion of CLB5 reduces initiation of DNA synthesis from late-firing origins. We have examined whether checkpoints are activated by loss of Clb5 function and whether checkpoints are responsible for the DNA replication defects associated with loss of Clb5 function. We present evidence for activation of Rad53 and Ddc2 functions with characteristics suggesting the presence of DNA damage. Deficient late origin firing in clb5Delta cells is not due to checkpoint regulation, but instead, directly reflects the decreased abundance of S-phase CDK, as Clb6 activates late origins when its dosage is increased. Moreover, the viability of clb5Delta cells depends on Rad53. Activation of Rad53 by either Mrc1 or Rad9 contributes to the survival of clb5Delta cells, suggesting that both DNA replication and damage pathways are responsive to the decreased origin usage. These results suggest that reduced origin usage leads to stress or DNA damage at replication forks, necessitating the function of Rad53 in fork stabilization. Consistent with the notion that decreased S-CDK function creates stress at replication forks, deletion of RRM3 helicase, which facilitates replisome progression, greatly diminished the growth of clb5Delta cells. Together, our findings indicate that deregulation of S-CDK function has the potential to exacerbate genomic instability by reducing replication origin usage.
Collapse
Affiliation(s)
- Daniel G Gibson
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | |
Collapse
|
509
|
Dai J, Chuang RY, Kelly TJ. DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 2004; 102:337-42. [PMID: 15623550 PMCID: PMC539312 DOI: 10.1073/pnas.0408811102] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Origins of DNA replication in Schizosaccharomyces pombe lack a specific consensus sequence analogous to the Saccharomyces cerevisiae autonomously replicating sequence (ARS) consensus, raising the question of how they are recognized by the replication machinery. Because all well characterized S. pombe origins are located in intergenic regions, we analyzed the sequence properties and biological activity of such regions. The AT content of intergenes is very high ( approximately 70%), and runs of A's or T's occur with a significantly greater frequency than expected. Additionally, the two DNA strands in intergenes display compositional asymmetry that strongly correlates with the direction of transcription of flanking genes. Importantly, the sequence properties of known S. pombe origins of DNA replication are similar to those of intergenes in general. In functional studies, we assayed the in vivo origin activity of 26 intergenes in a 68-kb region of S. pombe chromosome 2. We also assayed the origin activity of sets of randomly chosen intergenes with the same length or AT content. Our data demonstrate that at least half of intergenes have potential origin activity and that the relative ability of an intergene to function as an origin is governed primarily by AT content and length. We propose a stochastic model for initiation of DNA replication in the fission yeast. In this model, the number of AT tracts in a given sequence is the major determinant of its probability of binding SpORC and serving as a replication origin. A similar model may explain some features of origins of DNA replication in metazoans.
Collapse
Affiliation(s)
- Jianli Dai
- Department of Molecular Biology and Genetics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
510
|
Ghosh D. Nonparametric methods for analyzing replication origins in genomewide data. Funct Integr Genomics 2004; 5:28-31. [PMID: 15599787 DOI: 10.1007/s10142-004-0122-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 08/13/2004] [Accepted: 08/16/2004] [Indexed: 11/25/2022]
Abstract
Due to the advent of high-throughput genomic technology, it has become possible to monitor cellular activities on a genomewide basis. With these new methods, scientists can begin to address important biological questions. One such question involves the identification of replication origins, which are regions in the chromosomes where DNA replication is initiated. One hypothesis is that their locations are nonrandom throughout the genome. In this article, we analyze data from a recent yeast study in which candidate replication origins were profiled using cDNA microarrays to test this hypothesis. We find no evidence for such clustering.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Biostatistics, School of Public Health, University of Michigan, 1420 Washington Heights, Room M4057, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
511
|
Ricke RM, Bielinsky AK. Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 2004; 16:173-85. [PMID: 15494305 DOI: 10.1016/j.molcel.2004.09.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/02/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022]
Abstract
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
512
|
Abstract
Eukaryotic genomes are distributed on linear chromosomes that are grouped together in the nucleus, an organelle separated from the cytoplasm by a characteristic double membrane studded with large proteinaceous pores. The chromatin within chromosomes has an as yet poorly characterized higher-order structure, but in addition to this, chromosomes and specific subchromosomal domains are nonrandomly positioned in nuclei. This review examines functional implications of the long-range organization of the genome in interphase nuclei. A rigorous test of the physiological importance of nuclear architecture is achieved by introducing mutations that compromise both structure and function. Focussing on such genetic approaches, we address general concepts of interphase nuclear order, the role of the nuclear envelope (NE) and lamins, and finally the importance of spatial organization for DNA replication and heritable gene expression.
Collapse
Affiliation(s)
- Angela Taddei
- University of Geneva, Department of Molecular Biology, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
513
|
Yu X, Gabriel A. Reciprocal translocations in Saccharomyces cerevisiae formed by nonhomologous end joining. Genetics 2004; 166:741-51. [PMID: 15020464 PMCID: PMC1470746 DOI: 10.1534/genetics.166.2.741] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the subsequent chromosomal rearrangements among surviving cells. Under these conditions, reciprocal translocations via nonhomologous end joining (NHEJ) occur at frequencies of approximately 2-7 x 10(-5)/cell exposed to the DSBs. Yku80p is a component of the cell's NHEJ machinery. In its absence, reciprocal translocations still occur, but the junctions are associated with deletions and extended overlapping sequences. After induction of a single DSB, translocations and inversions are recovered in wild-type and rad52 strains. In these rearrangements, a nonrandom assortment of sites have fused to the DSB, and their junctions show typical signs of NHEJ. The sites tend to be between open reading frames or within Ty1 LTRs. In some cases the translocation partner is formed by a break at a cryptic HO recognition site. Our results demonstrate that NHEJ-mediated reciprocal translocations can form in S. cerevisiae as a consequence of DSB repair.
Collapse
Affiliation(s)
- Xin Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
514
|
Antequera F. Genomic specification and epigenetic regulation of eukaryotic DNA replication origins. EMBO J 2004; 23:4365-70. [PMID: 15510221 PMCID: PMC526466 DOI: 10.1038/sj.emboj.7600450] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/24/2004] [Indexed: 11/09/2022] Open
Abstract
Identification of DNA replication origins (ORIs) at a genome-wide level in eukaryotes has proved to be difficult due to the high degree of degeneracy of their sequences. Recent structural and functional approaches, however, have circumvented this limitation and have provided reliable predictions of their genomic distribution in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and they have also significantly increased the number of characterized ORIs in animals. This article reviews recent evidence on how ORIs are specified and maintained in these systems and on their regulation and sensitivity to epigenetic signals. It also discusses the possible additional involvement of ORIs in processes other than DNA replication.
Collapse
Affiliation(s)
- Francisco Antequera
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain. Tel.: +34 923 121778; Fax: +34 923 224876; E-mail:
| |
Collapse
|
515
|
Chang VK, Donato JJ, Chan CS, Tye BK. Mcm1 promotes replication initiation by binding specific elements at replication origins. Mol Cell Biol 2004; 24:6514-24. [PMID: 15226450 PMCID: PMC434236 DOI: 10.1128/mcb.24.14.6514-6524.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.
Collapse
Affiliation(s)
- Victoria K Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
516
|
Boyer J, Badis G, Fairhead C, Talla E, Hantraye F, Fabre E, Fischer G, Hennequin C, Koszul R, Lafontaine I, Ozier-Kalogeropoulos O, Ricchetti M, Richard GF, Thierry A, Dujon B. Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae. Genome Biol 2004; 5:R72. [PMID: 15345056 PMCID: PMC522879 DOI: 10.1186/gb-2004-5-9-r72] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 03/24/2023] Open
Abstract
We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes (of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.
Collapse
Affiliation(s)
- Jeanne Boyer
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Gwenaël Badis
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Unité de Génétique des Interactions Macromoléculaires (URA2171 CNRS), Department of Structure and Dynamics of Genomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris-Cedex 15, France
| | - Cécile Fairhead
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Emmanuel Talla
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- CNRS-Laboratoire de Chimie Bactérienne, 31 Chemin Joseph Aiguier, 13402 Marseille-Cedex 20, France
| | - Florence Hantraye
- Unité de Génétique des Interactions Macromoléculaires (URA2171 CNRS), Department of Structure and Dynamics of Genomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris-Cedex 15, France
| | - Emmanuelle Fabre
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Gilles Fischer
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Christophe Hennequin
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Laboratoire de Parasitologie, Faculté de Médecine St-Antoine, 27 rue de Chaligny, 75012 Paris, France
| | - Romain Koszul
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Ingrid Lafontaine
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | | | - Miria Ricchetti
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
- Unité de Génétique et Biochimie du Développement, Institut Pasteur, 25 rue du Dr Roux 75724 Paris-Cedex 15, France
| | - Guy-Franck Richard
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Agnès Thierry
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| | - Bernard Dujon
- Unité de Génétique Moléculaire des Levures (URA2171 CNRS and UFR 927 Université Pierre et Marie Curie)
| |
Collapse
|
517
|
Zou Y, Gryaznov SM, Shay JW, Wright WE, Cornforth MN. Asynchronous replication timing of telomeres at opposite arms of mammalian chromosomes. Proc Natl Acad Sci U S A 2004; 101:12928-33. [PMID: 15322275 PMCID: PMC516496 DOI: 10.1073/pnas.0404106101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 01/13/2023] Open
Abstract
Telomeres are defining structural elements of all linear chromosomes, yet information concerning the timing of their replication in higher eukaryotes is surprisingly limited. We developed an approach that allowed a study of telomere replication patterns of specific mammalian chromosomes. In the Indian muntjac (Muntiacus muntjac), replication timing between respective telomeres of homologous chromosomes was highly coordinated, but no such synchrony was evident for p- and q-arm telomeres of the same chromosome. This finding contrasts with the coordinated timing of both ends of each chromosome in yeast. Also in contrast to yeast, where replication of all telomeres is confined to late S phase, we found specific telomeres in Indian muntjac chromosomes that replicated early in S and other telomeres that replicated later. Finally, replication timing of some but not all telomeres was influenced by telomere length. Knowledge of telomere replication timing represents a first step toward understanding the relationship between telomere replication and telomerase action. The approach, which we call replicative detargeting fluorescence in situ hybridization, is widely applicable to different species and genetic loci.
Collapse
Affiliation(s)
- Ying Zou
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
518
|
Kao HI, Bambara RA. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit Rev Biochem Mol Biol 2004; 38:433-52. [PMID: 14693726 DOI: 10.1080/10409230390259382] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An initiator RNA (iRNA) is required to prime cellular DNA synthesis. The structure of double-stranded DNA allows the synthesis of one strand to be continuous but the other must be generated discontinuously. Frequent priming of the discontinuous strand results in the formation of many small segments, designated Okazaki fragments. These short pieces need to be processed and joined to form an intact DNA strand. Our knowledge of the mechanism of iRNA removal is still evolving. Early reconstituted systems suggesting that the removal of iRNA requires sequential action of RNase H and flap endonuclease 1 (FEN1) led to the RNase H/FEN1 model. However, genetic analyses implied that Dna2p, an essential helicase/nuclease, is required. Subsequent biochemical studies suggested sequential action of RPA, Dna2p, and FEN1 for iRNA removal, leading to the second model, the Dna2p/RPA/FEN1 model. Studies of strand-displacement synthesis by polymerase delta indicated that in a reconstituted system, FEN1 could act as soon as short flaps are created, giving rise to a third model, the FEN1-only model. Each of the three pathways is supported by different genetic and biochemical results. Properties of the major protein components in this process will be discussed, and the validity of each model as a true representation of Okazaki fragment processing will be critically evaluated in this review.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
519
|
Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A. Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell 2004; 14:515-22. [PMID: 15149600 DOI: 10.1016/s1097-2765(04)00262-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 03/08/2004] [Accepted: 03/29/2004] [Indexed: 11/19/2022]
Abstract
The phosphoinositide (PI)-3-kinase-related kinase (PIKK) family proteins Tel1p and Mec1p have been implicated in the telomere integrity of Saccharomyces cerevisiae. However, the mechanism of PIKK-mediated telomere length control remains unclear. Here, we show that Tel1p and Mec1p are recruited to the telomeres at specific times in the cell cycle in a mutually exclusive manner. In particular, Mec1p interacts with the telomeres during late S phase and is associated preferentially with shortened telomeres. We propose a model in which telomere integrity is maintained by the reciprocal association of PIKKs, and Mec1p acts as a sensor for structural abnormalities in the telomeres. Our study suggests a mechanistic similarity between telomere length regulation and DNA double-strand break repair, both of which are achieved by the direct association of PIKKs.
Collapse
Affiliation(s)
- Hideki Takata
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | | | | | | | | |
Collapse
|
520
|
Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:4769-80. [PMID: 15143171 PMCID: PMC416400 DOI: 10.1128/mcb.24.11.4769-4780.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication of eukaryotic genomes follows a temporally staged program, in which late origin firing often occurs within domains of altered chromatin structure(s) and silenced genes. Histone deacetylation functions in gene silencing in some late-replicating regions, prompting an investigation of the role of histone deacetylation in replication timing control in Saccharomyces cerevisiae. Deletion of the histone deacetylase Rpd3 or its interacting partner Sin3 caused early activation of late origins at internal chromosomal loci but did not alter the initiation timing of early origins or a late-firing, telomere-proximal origin. By delaying initiation relative to the earliest origins, Rpd3 enables regulation of late origins by the intra-S replication checkpoint. RPD3 deletion suppresses the slow S phase of clb5Delta cells by enabling late origins to fire earlier, suggesting that Rpd3 modulates the initiation timing of many origins throughout the genome. Examination of factors such as Ume6 that function together with Rpd3 in transcriptional repression indicates that Rpd3 regulates origin initiation timing independently of its role in transcriptional repression. This supports growing evidence that for much of the S. cerevisiae genome transcription and replication timing are not linked.
Collapse
Affiliation(s)
- Jennifer G Aparicio
- Department of Biological Sciences, University of Southern California, 835 W. 37th St., SHS172, Los Angeles, CA 90089-1340, USA.
| | | | | | | |
Collapse
|
521
|
Makovets S, Herskowitz I, Blackburn EH. Anatomy and dynamics of DNA replication fork movement in yeast telomeric regions. Mol Cell Biol 2004; 24:4019-31. [PMID: 15082794 PMCID: PMC387773 DOI: 10.1128/mcb.24.9.4019-4031.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication initiation and replication fork movement in the subtelomeric and telomeric DNA of native Y' telomeres of yeast were analyzed using two-dimensional gel electrophoresis techniques. Replication origins (ARSs) at internal Y' elements were found to fire in early-mid-S phase, while ARSs at the terminal Y' elements were confirmed to fire late. An unfired Y' ARS, an inserted foreign (bacterial) sequence, and, as previously reported, telomeric DNA each were shown to impose a replication fork pause, and pausing is relieved by the Rrm3p helicase. The pause at telomeric sequence TG(1-3) repeats was stronger at the terminal tract than at the internal TG(1-3) sequences located between tandem Y' elements. We show that the telomeric replication fork pause associated with the terminal TG(1-3) tracts begins approximately 100 bp upstream of the telomeric repeat tract sequence. Telomeric pause strength was dependent upon telomere length per se and did not require the presence of a variety of factors implicated in telomere metabolism and/or known to cause telomere shortening. The telomeric replication fork pause was specific to yeast telomeric sequence and was independent of the Sir and Rif proteins, major known components of yeast telomeric heterochromatin.
Collapse
Affiliation(s)
- Svetlana Makovets
- University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, California 94143-2200,USA
| | | | | |
Collapse
|
522
|
Hurst LD, Pál C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004; 5:299-310. [PMID: 15131653 DOI: 10.1038/nrg1319] [Citation(s) in RCA: 524] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Laurence D Hurst
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | |
Collapse
|
523
|
Pappas DL, Frisch R, Weinreich M. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev 2004; 18:769-81. [PMID: 15082529 PMCID: PMC387417 DOI: 10.1101/gad.1173204] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The establishment of DNA synthesis during the S phase is a multistep process that occurs in several stages beginning in late mitosis. The first step is the formation of a large prereplicative complex (pre-RC) at individual replication origins and occurs during exit from mitosis and entry into G1 phase. To better understand the genetic requirements for pre-RC formation, we selected chromosomal suppressors of a temperature-sensitive cdc6-4 mutant defective for pre-RC assembly. Loss-of-function mutations in the chromatin-modifying genes SIR2, and to a lesser extent in SIR3 and SIR4, suppressed the cdc6-4 temperature-sensitive lethality. This suppression was independent of the well-known silencing roles for the SIR proteins at the HM loci, at telomeres, or at the rDNA locus. A deletion of SIR2 uniquely rescued both the DNA synthesis defect of the cdc6-4 mutant and its severe plasmid instability phenotype for many origins. A SIR2 deletion suppressed additional initiation mutants affecting pre-RC assembly but not mutants that act subsequently. These findings suggest that Sir2p negatively regulates the initiation of DNA replication through a novel mechanism and reveal another connection between proteins that initiate DNA synthesis and those that establish silent heterochromatin in budding yeast.
Collapse
Affiliation(s)
- Donald L Pappas
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | |
Collapse
|
524
|
Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol 2004; 24:4138-50. [PMID: 15121836 PMCID: PMC400449 DOI: 10.1128/mcb.24.10.4138-4150.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/12/2003] [Accepted: 02/19/2004] [Indexed: 01/01/2023] Open
Abstract
A small DNA fragment containing the high-frequency initiation region (IR) ori-beta from the hamster dihydrofolate reductase locus functions as an independent replicator in ectopic locations in both hamster and human cells. Conversely, a fragment of the human lamin B2 locus containing the previously mapped IR serves as an independent replicator at ectopic chromosomal sites in hamster cells. At least four defined sequence elements are specifically required for full activity of ectopic ori-beta in hamster cells. These include an AT-rich element, a 4-bp sequence located within the mapped IR, a region of intrinsically bent DNA located between these two elements, and a RIP60 protein binding site adjacent to the bent region. The ori-beta AT-rich element is critical for initiation activity in human, as well as hamster, cells and can be functionally substituted for by an AT-rich region from the human lamin B2 IR that differs in nucleotide sequence and length. Taken together, the results demonstrate that two mammalian replicators can be activated at ectopic sites in chromosomes of another mammal and lead us to speculate that they may share functionally related elements.
Collapse
Affiliation(s)
- Amy L Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
525
|
Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R. Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 2004; 101:7046-51. [PMID: 15107501 PMCID: PMC406463 DOI: 10.1073/pnas.0400656101] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome replication origins were mapped in vivo in the two hyperthermophilic archaea, Sulfolobus acidocaldarius and Sulfolobus solfataricus, by using microarray-based marker frequency analysis. Bidirectional replication was found to be initiated in near synchrony from three separate sites in both organisms. Two of the three replication origins in each species were located in the vicinity of a cdc6/orc1 replication initiation gene, whereas no known replication-associated gene could be identified near the third origin in either organism. In contrast to initiation, replication termination occurred asynchronously, such that certain replication forks continued to progress for >40 min after the others had terminated. In each species, all replication forks advanced at similar DNA polymerization rates; this was found to be an order of magnitude below that displayed by Escherichia coli and thus closer to eukaryotic elongation rates. In S. acidocaldarius, a region containing short regularly spaced repeats was found to hybridize aberrantly, as compared to the rest of the chromosome, raising the possibility of a centromere-like function.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
526
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
527
|
Biamonti G, Paixão S, Montecucco A, Peverali FA, Riva S, Falaschi A. Is DNA sequence sufficient to specify DNA replication origins in metazoan cells? Chromosome Res 2004; 11:403-12. [PMID: 12971717 DOI: 10.1023/a:1024910307162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA replication occupies a central position in the cell cycle and, therefore, in the development and life of multicellular organisms. During the last 10 years, our comprehension of this important process has considerably improved. Although the mechanisms that coordinate DNA replication with the other moments of the cell cycle are not yet fully understood, it is known that they mainly operate through DNA replication origins and the protein complexes bound to them. In eukaryotes, the packaging status of chromatin seems to be part of the mechanism that controls whether or not and when during the S-phase a particular origin will be activated. Intriguingly, the protein complexes bound to DNA replication origins appear to be directly involved in controlling chromatin packaging. In this manner they can also affect gene expression. In this review we focus on DNA replication origins in metazoan cells and on the relationship between these elements and the structural and functional organization of the genome.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
528
|
Ohki R, Ishikawa F. Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 2004; 32:1627-37. [PMID: 15007108 PMCID: PMC390322 DOI: 10.1093/nar/gkh309] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertebrate telomeres consist of tandem repeats of T2AG3 and associated proteins including the telomeric DNA-binding proteins, TRF1 and TRF2. It has been proposed that telomeres assume two interswitchable states, the open state that is accessible to various trans-acting factors and the closed state that excludes those factors. TRF1 and TRF2 are believed to promote the formation of the closed state. However, little is known about how those two states influence DNA replication. We analyzed the effects of TRF1 and TRF2 on telomeric replication both in vitro and in vivo. By exploiting the in vitro replication system of linear SV40 DNA, we found that telomeric repeats are a poor replication template. Moreover, the addition of recombinant TRF1 and TRF2 significantly stalled the replication fork progression at telomeric repeats. When TRF1 was overexpressed in HeLa cells, cells with 4N DNA content were accumulated. Furthermore, cytological analyses revealed that the replication focus overlapped with telomere signals at a significantly higher frequency in TRF1-overexpressing cells than in control cells. The results suggest that TRF1 and TRF2 exert inhibitory effects on replication fork progression.
Collapse
Affiliation(s)
- Rieko Ohki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
529
|
Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 2004; 5:R22. [PMID: 15059255 PMCID: PMC395781 DOI: 10.1186/gb-2004-5-4-r22] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/02/2004] [Accepted: 02/04/2004] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible. RESULTS We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26 characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich region. The predictions identified the exact location of the ACS. A total of 84 of the top 100 Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct. We compared the predictions to corresponding sequences in related Saccharomyces species and found that the ACSs of experimentally supported predictions show significant conservation. CONCLUSIONS The high accuracy of the predictions indicates that we have defined near-sufficient conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized generality in yeast replication origins and significant discriminatory power in the algorithm.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Sourav Chatterji
- Department of Computer Science, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cellular Biology, Barker Hall, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
530
|
Weinreich M, Palacios DeBeer MA, Fox CA. The activities of eukaryotic replication origins in chromatin. ACTA ACUST UNITED AC 2004; 1677:142-57. [PMID: 15020055 DOI: 10.1016/j.bbaexp.2003.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 11/17/2003] [Indexed: 12/26/2022]
Abstract
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| | | | | |
Collapse
|
531
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
532
|
Saha S, Shan Y, Mesner LD, Hamlin JL. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev 2004; 18:397-410. [PMID: 14977920 PMCID: PMC359394 DOI: 10.1101/gad.1171404] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/09/2004] [Indexed: 11/25/2022]
Abstract
The dihydrofolate reductase (DHFR) and 2BE2121 genes in the Chinese hamster are convergently transcribed in late G1 and ea ly S phase, and bracket an early-firing origin of replication that consists of a 55-kb zone of potential initiation sites. To test whether transcription through the DHFR gene is required to activate this origin in early S phase, we examined the two-dimension (2D) gel patterns of replication intermediates from several variants in which parts or all of the DHFR promote had been deleted. In those variants in which transcription was undetectable, initiation in the intergenic space was markedly suppressed (but not eliminated) in early S phase. Further more, replication of the locus required virtually the entire S period, as opposed to the usual 3-4 h. However, restoration of transcription with either the wild-type Chinese hamster promote or a Drosophila-based construct restored origin activity to the wild-type pattern. Surprisingly, 2D gel analysis of promote less variants revealed that initiation occurs at a low level in ea ly S phase not only in the intergenic region, but also in the body of the DHFR gene. The latter phenomenon has never been observed in the wild-type locus. These studies suggest that transcription through the gene normally increases the efficiency of origin firing in early S phase, but also suppresses initiation in the body of the gene, thus helping to define the boundaries of the downstream origin.
Collapse
Affiliation(s)
- Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
533
|
Abstract
In this issue, Robinson and coworkers provide new insights into the mechanisms of initiation of chromosome replication in Archea. This and other studies, focused on model organisms, will certainly help to understand how the replication process has evolved in Eukaryotes.
Collapse
Affiliation(s)
- Giordano Liberi
- Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20141 Milano, Italy
| | | |
Collapse
|
534
|
Yu X, Gabriel A. Reciprocal Translocations in Saccharomyces cerevisiae Formed by Nonhomologous End Joining. Genetics 2004. [DOI: 10.1093/genetics/166.2.741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Reciprocal translocations are common in cancer cells, but their creation is poorly understood. We have developed an assay system in Saccharomyces cerevisiae to study reciprocal translocation formation in the absence of homology. We induce two specific double-strand breaks (DSBs) simultaneously on separate chromosomes with HO endonuclease and analyze the subsequent chromosomal rearrangements among surviving cells. Under these conditions, reciprocal translocations via nonhomologous end joining (NHEJ) occur at frequencies of ∼2-7 × 10-5/cell exposed to the DSBs. Yku80p is a component of the cell’s NHEJ machinery. In its absence, reciprocal translocations still occur, but the junctions are associated with deletions and extended overlapping sequences. After induction of a single DSB, translocations and inversions are recovered in wild-type and rad52 strains. In these rearrangements, a nonrandom assortment of sites have fused to the DSB, and their junctions show typical signs of NHEJ. The sites tend to be between open reading frames or within Ty1 LTRs. In some cases the translocation partner is formed by a break at a cryptic HO recognition site. Our results demonstrate that NHEJ-mediated reciprocal translocations can form in S. cerevisiae as a consequence of DSB repair.
Collapse
Affiliation(s)
| | - Abram Gabriel
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
535
|
Iida T, Araki H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:217-27. [PMID: 14673157 PMCID: PMC303358 DOI: 10.1128/mcb.24.1.217-227.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relocation of euchromatic genes near the heterochromatin region often results in mosaic gene silencing. In Saccharomyces cerevisiae, cells with the genes inserted at telomeric heterochromatin-like regions show a phenotypic variegation known as the telomere-position effect, and the epigenetic states are stably passed on to following generations. Here we show that the epigenetic states of the telomere gene are not stably inherited in cells either bearing a mutation in a catalytic subunit (Pol2) of replicative DNA polymerase epsilon (Pol epsilon) or lacking one of the nonessential and histone fold motif-containing subunits of Pol epsilon, Dpb3 and Dpb4. We also report a novel and putative chromatin-remodeling complex, ISW2/yCHRAC, that contains Isw2, Itc1, Dpb3-like subunit (Dls1), and Dpb4. Using the single-cell method developed in this study, we demonstrate that without Pol epsilon and ISW2/yCHRAC, the epigenetic states of the telomere are frequently switched. Furthermore, we reveal that Pol epsilon and ISW2/yCHRAC function independently: Pol epsilon operates for the stable inheritance of a silent state, while ISW2/yCHRAC works for that of an expressed state. We therefore propose that inheritance of specific epigenetic states of a telomere requires at least two counteracting regulators.
Collapse
Affiliation(s)
- Tetsushi Iida
- Division of Microbial Genetics, National Institute of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
536
|
Koszul R, Caburet S, Dujon B, Fischer G. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 2004; 23:234-43. [PMID: 14685272 PMCID: PMC1271662 DOI: 10.1038/sj.emboj.7600024] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 11/03/2003] [Indexed: 11/10/2022] Open
Abstract
There is growing evidence that duplications have played a major role in eucaryotic genome evolution. Sequencing data revealed the presence of large duplicated regions in the genomes of many eucaryotic organisms, and comparative studies have suggested that duplication of large DNA segments has been a continuing process during evolution. However, little experimental data have been produced regarding this issue. Using a gene dosage assay for growth recovery in Saccharomyces cerevisiae, we demonstrate that a majority of the revertant strains (58%) resulted from the spontaneous duplication of large DNA segments, either intra- or interchromosomally, ranging from 41 to 655 kb in size. These events result in the concomitant duplication of dozens of genes and in some cases in the formation of chimeric open reading frames at the junction of the duplicated blocks. The types of sequences at the breakpoints as well as their superposition with the replication map suggest that spontaneous large segmental duplications result from replication accidents. Aneuploidization events or suppressor mutations that do not involve large-scale rearrangements accounted for the rest of the reversion events (in 26 and 16% of the strains, respectively).
Collapse
Affiliation(s)
- Romain Koszul
- Unité de Génétique Moléculaire des Levures, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| | - Sandrine Caburet
- Unité de Stabilité des Génomes, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| | - Bernard Dujon
- Unité de Génétique Moléculaire des Levures, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| | - Gilles Fischer
- Unité de Génétique Moléculaire des Levures, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| |
Collapse
|
537
|
Abstract
Proteins involved in DNA replication are conserved from yeast to mammals, suggesting that the mechanism was established at an early stage of eukaryotic evolution. In spite of this common origin, recent findings have revealed surprising variations in how replication initiation is controlled, implying that a conserved mechanism has not necessarily resulted in regulatory conservation.
Collapse
Affiliation(s)
- Stephen E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
538
|
Brylawski BP, Cohen SM, Horne H, Irani N, Cordeiro-Stone M, Kaufman DG. Transitions in replication timing in a 340 kb region of human chromosomal R-Band 1p36.1. J Cell Biochem 2004; 92:755-69. [PMID: 15211573 DOI: 10.1002/jcb.20101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA replication is initiated within a few chromosomal bands as normal human fibroblasts enter the S phase. In the present study, we determined the timing of replication of sequences along a 340 kb region in one of these bands, 1p36.13, an R band on chromosome 1. Within this region, we identified a segment of DNA (approximately 140 kb) that is replicated in the first hour of the S phase and is flanked by segments replicated 1-2 h later. Using a quantitative PCR-based assay to measure sequence abundance in size-fractionated (900-1,700 nt) nascent DNA, we mapped two functional origins of replication separated by 54 kb and firing 1 h apart. One origin was found to be functional during the first hour of S and was located within a CpG island associated with a predicted gene of unknown function (Genscan NT_004610.2). The second origin was activated in the second hour of S and was mapped to a CpG island near the promoter of the aldehyde dehydrogenase 4A1 (ALDH4A1) gene. At the opposite end of the early replicating segment, a more gradual change in replication timing was observed within the span of approximately 100 kb. These data suggest that DNA replication in adjacent segments of band 1p36.13 is organized differently, perhaps in terms of replicon number and length, or rate of fork progression. In the transition areas that mark the boundaries between different temporal domains, the replication forks initiated in the early replicated region are likely to pause or delay progression before replication of the 340 kb contig is completed.
Collapse
Affiliation(s)
- Bruna P Brylawski
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | | | | | |
Collapse
|
539
|
Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae Helicase Rrm3p Facilitates Replication Past Nonhistone Protein-DNA Complexes. Mol Cell 2003; 12:1525-36. [PMID: 14690605 DOI: 10.1016/s1097-2765(03)00456-8] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Saccharomyces cerevisiae RRM3 gene encodes a 5' to 3' DNA helicase. While replication of most of the yeast genome was not dependent upon Rrm3p, in its absence, replication forks paused and often broke at an estimated 1400 discrete sites, including tRNA genes, centromeres, inactive replication origins, and transcriptional silencers. These replication defects were associated with activation of the intra-S phase checkpoint. Activation of the checkpoint was critical for viability of rrm3Delta cells, especially at low temperatures. Each site whose replication was affected by Rrm3p is assembled into a nonnucleosomal protein-DNA complex. At tRNA genes and the silent mating type loci, disruption of these complexes eliminated dependence upon Rrm3p. These data indicate that the Rrm3p DNA helicase helps replication forks traverse protein-DNA complexes, naturally occurring impediments that are encountered in each S phase.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
540
|
Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter NP. Replication timing of the human genome. Hum Mol Genet 2003; 13:191-202. [PMID: 14645202 DOI: 10.1093/hmg/ddh016] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a directly quantitative method utilizing genomic clone DNA microarrays to assess the replication timing of sequences during the S phase of the cell cycle. The genomic resolution of the replication timing measurements is limited only by the genomic clone size and density. We demonstrate the power of this approach by constructing a genome-wide map of replication timing in human lymphoblastoid cells using an array with clones spaced at 1 Mb intervals and a high-resolution replication timing map of 22q with an array utilizing overlapping sequencing tile path clones. We show a positive correlation, both genome-wide and at a high resolution, between replication timing and a range of genome parameters including GC content, gene density and transcriptional activity.
Collapse
Affiliation(s)
- Kathryn Woodfine
- The Welcome Trust Sanger Institute, Welcome Genome Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
541
|
Conde J. Twofold symmetries in nucleotide distribution in large domains of Saccharomyces cerevisiae Chromosome I. Mol Genet Genomics 2003; 270:287-95. [PMID: 14600830 DOI: 10.1007/s00438-003-0871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2003] [Accepted: 05/27/2003] [Indexed: 11/26/2022]
Abstract
Single stranded chains of biological DNA show a widespread occurrence of parity for complementary nucleotides, i.e., A=T, G=C. This has been referred to as A-T, G-C symmetry. A distinction must be made between this, which this paper calls mirror symmetry, and twofold symmetry, where complementary nucleotide parity occurs between two segments, of the same length and equidistant from a symmetry center, along a single-stranded DNA chain. I have analysed the sequence of Chromosome I of Saccharomyces cerevisiae for the occurrence of complementary nucleotide symmetry. Open reading frame (ORF) sequences made up 63% of the total chromosome length and most of them were asymmetric for both A-T and G-C. The sign of A-T asymmetry was correlated with transcriptional orientation (A>T for sense and A<T for antisense ORFs), whereas G-C asymmetry was not. However, long single-stranded segments of Chromosome I were A-T mirror symmetric because they contained similar frequencies of ORFs in both transcriptional orientations. The same results were obtained with the AA-TT pair of complementary dinucleotides. Profiling of AA-TT symmetry along Chromosome I showed this chromosome to be organized as a succession of five domains that were twofold symmetric for AA-TT, placed between two subtelomeric regions without clear symmetry properties. This pattern was destroyed when ORF sequences were randomly repositioned along the chromosome. Based on the above findings, an architectural model is proposed for Chromosome I, in which the twofold symmetric domains, from 30 to 50 kb long, correspond to chromosome loops.
Collapse
|
542
|
Koç A, Wheeler LJ, Mathews CK, Merrill GF. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 2003; 279:223-30. [PMID: 14573610 DOI: 10.1074/jbc.m303952200] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between dNTP levels and DNA synthesis was investigated using alpha factor-synchronized yeast treated with the ribonucleotide reductase inhibitor hydroxyurea (HU). Although HU blocked DNA synthesis and prevented the dNTP pool expansion that normally occurs at G1/S, it did not exhaust the levels of any of the four dNTPs, which dropped to about 80% of G1 levels. When dbf4 yeast that are ts for replication initiation were allowed to preaccumulate dNTPs at 37 degrees C before being released to 25 degrees C in the presence of HU, they synthesized 0.3 genome equivalents of DNA and then arrested as dNTPs approached sub-G1 levels. Accumulation of dNTPs at G1/S was not a prerequisite for replication initiation, since dbf4 cells incubated in HU at 25 degrees C were able to replicate when subsequently switched to 37 degrees C in the absence of HU. The replication arrest mechanism was not dependent on the Mec1/Rad53 pathway, since checkpoint-deficient rad53 cells also failed to exhaust basal dNTPs when incubated in HU. The persistence of basal dNTP levels in HU-arrested cells and partial bypass of the arrest in cells that had preaccumulated dNTPs suggest that cells have a mechanism for arresting DNA chain elongation when dNTP levels are not maintained above a critical threshold.
Collapse
Affiliation(s)
- Ahmet Koç
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA
| | | | | | | |
Collapse
|
543
|
Segurado M, de Luis A, Antequera F. Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 2003; 4:1048-53. [PMID: 14566325 PMCID: PMC1326378 DOI: 10.1038/sj.embor.embor7400008] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 09/10/2003] [Accepted: 09/12/2003] [Indexed: 11/09/2022] Open
Abstract
Genome-wide analysis of replication dynamics requires the previous identification of DNA replication origins (ORIs). However, variability among the ORIs makes it difficult to predict their distribution across the genome on the basis of their sequence. We report here that ORIs in Schizosaccharomyces pombe coincide with discrete chromosomal A+T-rich islands of up to 1 kb long that are characterized by a distinctive A+T content that clearly differentiates them from the rest of the genome. Genome-wide analysis has enabled us to identify 384 of these regions, which predicts the position of most ORIs in the genome, as shown by functional replication analyses. A+T-rich islands occur at the mating locus, centromeres and subtelomeric regions at a density that is approximately fourfold higher than elsewhere in the genome, which suggests a link between the origin recognition complex (ORC) and transcriptional silencing in these regions. The absence of consensus elements in A+T-rich islands implies that different sequences can target the ORC to different ORIs.
Collapse
Affiliation(s)
- Mónica Segurado
- Instituto de Microbiología
Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental,
Campus Miguel de Unamuno, 37007 Salamanca,
Spain
| | - Alberto de Luis
- Instituto de Microbiología
Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental,
Campus Miguel de Unamuno, 37007 Salamanca,
Spain
| | - Francisco Antequera
- Instituto de Microbiología
Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental,
Campus Miguel de Unamuno, 37007 Salamanca,
Spain
- Tel: +34 923 121778; Fax: +34 923 224876;
| |
Collapse
|
544
|
Segurado M, de Luis A, Antequera F. Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 2003. [PMID: 14566325 DOI: 10.1038/sj.embor.7400008] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genome-wide analysis of replication dynamics requires the previous identification of DNA replication origins (ORIs). However, variability among the ORIs makes it difficult to predict their distribution across the genome on the basis of their sequence. We report here that ORIs in Schizosaccharomyces pombe coincide with discrete chromosomal A+T-rich islands of up to 1 kb long that are characterized by a distinctive A+T content that clearly differentiates them from the rest of the genome. Genome-wide analysis has enabled us to identify 384 of these regions, which predicts the position of most ORIs in the genome, as shown by functional replication analyses. A+T-rich islands occur at the mating locus, centromeres and subtelomeric regions at a density that is approximately fourfold higher than elsewhere in the genome, which suggests a link between the origin recognition complex (ORC) and transcriptional silencing in these regions. The absence of consensus elements in A+T-rich islands implies that different sequences can target the ORC to different ORIs.
Collapse
Affiliation(s)
- Mónica Segurado
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
545
|
Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J 2003; 22:4325-36. [PMID: 12912929 PMCID: PMC175781 DOI: 10.1093/emboj/cdg391] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases alpha and epsilon are stabilized for 40-60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM-related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single-stranded DNA that allows RP-A and Mec1 to promote DNA polymerase association.
Collapse
Affiliation(s)
- Jennifer A Cobb
- University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
546
|
Palacios DeBeer MA, Muller U, Fox CA. Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev 2003; 17:1817-22. [PMID: 12897051 PMCID: PMC196224 DOI: 10.1101/gad.1096703] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The origin recognition complex (ORC) marks chromosomal positions as replication origins and is essential for replication initiation. At a few loci, the ORC functions in heterochromatin formation. We show that the ORC's two roles at the heterochromatic HMRa locus in Saccharomyces cerevisiae were regulated by differences in the ORC's interaction with its target site. At HMRa, a strong ORC-DNA interaction inhibited and delayed replication initiation but promoted heterochromatin formation, whereas a weak ORC-DNA interaction allowed for increased and earlier replication initiation but reduced heterochromatin formation. Therefore, the ORC's interaction with its target site could modulate ORC activity within a heterochromatin domain in vivo.
Collapse
|
547
|
Dziak R, Leishman D, Radovic M, Tye BK, Yankulov K. Evidence for a role of MCM (mini-chromosome maintenance)5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem 2003; 278:27372-81. [PMID: 12750362 DOI: 10.1074/jbc.m301110200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM (mini-chromosome maintenance) genes have a well established role in the initiation of DNA replication and in the elongation of replication forks in Saccharomyces cerevisiae. In this study we demonstrate elevated expression of sub-telomeric and Ty retrotransposon-proximal genes in two mcm5 strains. This pattern of up-regulated genes resembles the genome-wide association of MCM proteins to chromatin that was reported earlier. We link the altered gene expression in mcm5 strains to a reversal of telomere position effect (TPE) and to remodeling of sub-telomeric and Ty chromatin. We also show a suppression of the Ts phenotype of a mcm5 strain by the high copy expression of the TRA1 component of the chromatin-remodeling SAGA/ADA (SPT-ADA-GCN5 acetylase/ADAptor). We propose that MCM proteins mediate the establishment of silent chromatin domains around telomeres and Ty retrotransposons.
Collapse
Affiliation(s)
- Renata Dziak
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
548
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 627] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
549
|
Fisher D, Méchali M. Vertebrate HoxB gene expression requires DNA replication. EMBO J 2003; 22:3737-48. [PMID: 12853488 PMCID: PMC165622 DOI: 10.1093/emboj/cdg352] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 05/20/2003] [Accepted: 05/21/2003] [Indexed: 11/12/2022] Open
Abstract
To study the relationship between DNA replication and transcription in vivo, we investigated Hox gene activation in two vertebrate systems: the embryogenesis of Xenopus and the retinoic acid-induced differentiation of pluripotent mouse P19 cells. We show that the first cell cycles following the mid- blastula transition in Xenopus are necessary and sufficient for HoxB activation, whereas later cell cycles are necessary for the correct expression pattern. In P19 cells, HoxB expression requires proliferation, and the entire locus is activated within one cell cycle. Using synchronous cultures, we found that activation of HoxB genes is colinear within a single cell cycle, occurs during S phase and requires S phase. The HoxB locus replicates early, whereas replication is still required for maximal expression later in S phase. Thus, induction of HoxB genes occurs in a DNA replication-dependent manner and requires only one cell cycle. We propose that S-phase remodelling licenses the locus for transcriptional regulation.
Collapse
Affiliation(s)
- Daniel Fisher
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Cedex 05 Montpellier, France
| | | |
Collapse
|
550
|
Fitch MJ, Donato JJ, Tye BK. Mcm7, a subunit of the presumptive MCM helicase, modulates its own expression in conjunction with Mcm1. J Biol Chem 2003; 278:25408-16. [PMID: 12738768 DOI: 10.1074/jbc.m300699200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Mcm7 protein is a subunit of the presumed heteromeric MCM helicase that melts origin DNA and unwinds replication forks. Previous work showed that Mcm1 binds constitutively to the MCM7 promoter and regulates MCM7 expression. Here, we identify Mcm7 as a novel cofactor of Mcm1 in the regulation of MCM7 expression. Transcription of MCM7 is increased in the mcm7-1 mutant and decreased in the mcm1-1 mutant, suggesting that Mcm7 modulates its own expression in conjunction with Mcm1. Indeed, Mcm7 stimulates Mcm1 binding to the early cell cycle box upstream of the promoters of MCM7 as well as CDC6 and MCM5. Whereas Mcm1 binds these promoters constitutively, Mcm7 is recruited during late M phase, consistent with Mcm7 playing a direct role in modulating the periodic expression of early cell cycle genes. The multiple roles of Mcm7 in replication initiation, replication elongation, and autoregulation parallel those of the oncoprotein, the large T-antigen of the SV40 virus.
Collapse
Affiliation(s)
- Michael J Fitch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|