501
|
Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops. Int J Mol Sci 2022; 24:ijms24010518. [PMID: 36613963 PMCID: PMC9820213 DOI: 10.3390/ijms24010518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Salt stress is an unfavorable outcome of global climate change, adversely affecting crop growth and yield. It is the second-biggest abiotic factor damaging the morphological, physio-biochemical, and molecular processes during seed germination and plant development. Salt responses include modulation of hormonal biosynthesis, ionic homeostasis, the antioxidant defense system, and osmoprotectants to mitigate salt stress. Plants trigger salt-responsive genes, proteins, and metabolites to cope with the damaging effects of a high salt concentration. Enhancing salt tolerance among crop plants is direly needed for sustainable global agriculture. Novel protein markers, which are used for crop improvement against salt stress, are identified using proteomic techniques. As compared to single-technique approaches, the integration of genomic tools and exogenously applied chemicals offers great potential in addressing salt-stress-induced challenges. The interplay of salt-responsive proteins and genes is the missing key of salt tolerance. The development of salt-tolerant crop varieties can be achieved by integrated approaches encompassing proteomics, metabolomics, genomics, and genome-editing tools. In this review, the current information about the morphological, physiological, and molecular mechanisms of salt response/tolerance in crops is summarized. The significance of proteomic approaches to improve salt tolerance in various crops is highlighted, and an integrated omics approach to achieve global food security is discussed. Novel proteins that respond to salt stress are potential candidates for future breeding of salt tolerance.
Collapse
|
502
|
Liu JN, Fang H, Liang Q, Dong Y, Wang C, Yan L, Ma X, Zhou R, Lang X, Gai S, Wang L, Xu S, Yang KQ, Wu D. Genomic analyses provide insights into the evolution and salinity adaptation of halophyte Tamarix chinensis. Gigascience 2022; 12:giad053. [PMID: 37494283 PMCID: PMC10370455 DOI: 10.1093/gigascience/giad053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The woody halophyte Tamarix chinensis is a pioneer tree species in the coastal wetland ecosystem of northern China, exhibiting high resistance to salt stress. However, the genetic information underlying salt tolerance in T. chinensis remains to be seen. Here we present a genomic investigation of T. chinensis to elucidate the underlying mechanism of its high resistance to salinity. RESULTS Using a combination of PacBio and high-throughput chromosome conformation capture data, a chromosome-level T. chinensis genome was assembled with a size of 1.32 Gb and scaffold N50 of 110.03 Mb. Genome evolution analyses revealed that T. chinensis significantly expanded families of HAT and LIMYB genes. Whole-genome and tandem duplications contributed to the expansion of genes associated with the salinity adaptation of T. chinensis. Transcriptome analyses were performed on root and shoot tissues during salt stress and recovery, and several hub genes responding to salt stress were identified. WRKY33/40, MPK3/4, and XBAT31 were critical in responding to salt stress during early exposure, while WRKY40, ZAT10, AHK4, IRX9, and CESA4/8 were involved in responding to salt stress during late stress and recovery. In addition, PER7/27/57/73 encoding class III peroxidase and MCM3/4/5/7 encoding DNA replication licensing factor maintained up/downregulation during salt stress and recovery stages. CONCLUSIONS The results presented here reveal the genetic mechanisms underlying salt adaptation in T. chinensis, thus providing important genomic resources for evolutionary studies on tamarisk and plant salt tolerance genetic improvement.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Shengyi Xu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| |
Collapse
|
503
|
Fedorin DN, Eprintsev AT, Florez Caro OJ, Igamberdiev AU. Effect of Salt Stress on the Activity, Expression, and Promoter Methylation of Succinate Dehydrogenase and Succinic Semialdehyde Dehydrogenase in Maize ( Zea mays L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 12:68. [PMID: 36616197 PMCID: PMC9823291 DOI: 10.3390/plants12010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The effect of salt stress on the expression of genes, the methylation of their promoters, and the enzymatic activity of succinate dehydrogenase (SDH) and succinic semialdehyde dehydrogenase (SSADH) was investigated in maize (Zea mays L.). The incubation of maize seedlings in a 150 mM NaCl solution for 24 h led to a several-fold increase in the activity of SSADH that peaked at 6 h of NaCl treatment, which was preceded by an increase in the Ssadh1 gene expression and a decrease in its promoter methylation observed at 3 h of salt stress. The increase in SDH activity and succinate oxidation by mitochondria was slower, developing by 24 h of NaCl treatment, which corresponded to the increase in expression of the genes Sdh1-2 and Sdh2-3 encoding SDH catalytic subunits and of the gene Sdh3-1 encoding the anchoring SDH subunit. The increase in the Sdh2-3 expression was accompanied by the decrease in promoter methylation. It is concluded that salt stress results in the rapid increase in succinate production via SSADH operating in the GABA shunt, which leads to the activation of SDH, the process partially regulated via epigenetic mechanisms. The role of succinate metabolism under the conditions of salt stress is discussed.
Collapse
Affiliation(s)
- Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Orlando J. Florez Caro
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
504
|
Alam MS, Yang ZK, Li C, Yan Y, Liu Z, Nazir MM, Xu JH. Loss-of-function mutations of OsbHLH044 transcription factor lead to salinity sensitivity and a greater chalkiness in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:110-123. [PMID: 36347113 DOI: 10.1016/j.plaphy.2022.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The most hazardous abiotic stress, salinity, restricted the world crop production, and grain chalkiness affected the grain quality to limit consumers' acceptance. The basic helix-loop-helix (bHLH) proteins modulate massive biological processes in plants. Here the CRISPR/Cas9 gene editing mutants were obtained to detect the function of OsbHLH044. The loss-of-function of OsbHLH044 mutants showed numerous altered plant phenotypes. Notably, the osbhlh044 mutants resulted in prominently reduced morphological and physiological parameters under salt stress. Lower antioxidant activities and higher lipid peroxidation and hydrogen peroxide (H2O2) accumulation in the osbhlh044 mutants caused salinity sensitivity due to elevated reactive oxygen species (ROS). Under salt stress, both shoots and roots of the osbhlh044 mutants acquired higher Na+. Moreover, the expression of ion homeostasis-related genes (OsHKTs, OsHAK, OsSOSs, and OsNHX) and ABA-responsive gene (OsLEA3) was significantly altered in the osbhlh044 mutants after salt stress. The expression levels of genes coding for starch (OsAGPL1, OsSSIIa, OsWx, and OsFLO2) and seed storage proteins (GluA1 and Globulin 1) were significantly decreased, indicating that they synthesize less store starch and proteins, resulting in grain chalkiness in the osbhlh044 mutants. Yeast one Hybrid (Y1H) showed that OsbHLH044 could activate salt- (OsHKT1;3, OsHAK7, OsSOS1, OsSOS2, OsNHX2, and OsLEA3 but not OsHKT2;1), and starch-related genes (OsSSIIa, OsWx, and OsFLO2) by binding to the G-boxes of their promoters. Therefore, the OsbHLH044 gene editing mutants revealed multiple functions, specifically a positive regulator of salt stress and grain quality, which might bring new insights into the breeding of rice varieties.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chao Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yan Yan
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Muhammad Mudassir Nazir
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Hong Xu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China; Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
505
|
Ageyeva M, Veselov A, Vodeneev V, Brilkina A. Cell-Type-Specific Length and Cytosolic pH Response of Superficial Cells of Arabidopsis Root to Chronic Salinity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243532. [PMID: 36559645 PMCID: PMC9783886 DOI: 10.3390/plants11243532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 05/30/2023]
Abstract
Soil salinity negatively affects the growth, development and yield of plants. Acidification of the cytosol in cells of glycophytes was reported under salinity, while various types of plant cells can have a specific reaction under the same conditions. Transgenic Arabidopsis plants expressing the pH sensor Pt-GFP in the cytosol were used in this work for determination of morphometric changes and cytosolic pH changes in the superficial cells of Arabidopsis roots under chronic salinity in vitro. We did not find changes in the length of the root cap cells, while there was a decrease in the length of the differentiation zone under 50, 75 mM NaCl and the size of the epidermal cells of the differentiation zone under 75 mM NaCl. The most significant changes of cytosolic pH to chronic salinity was noted in columella (decrease by 1 pH unit at 75 mM NaCl) and epidermal cells of the differentiation zone (decrease by 0.6 and 0.4 pH units at 50 and 75 mM NaCl, respectively). In developed lateral root cap cells, acidification of cytosol by 0.4 units occurred only under 75 mM NaCl in the medium. In poorly differentiated lateral cells of the root cap, there were no changes in pH under chronic salinity.
Collapse
Affiliation(s)
- Maria Ageyeva
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Alexander Veselov
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
| |
Collapse
|
506
|
Li K, Liu X, He F, Chen S, Zhou G, Wang Y, Li L, Zhang S, Ren M, Yuan Y. Genome-wide analysis of the Tritipyrum WRKY gene family and the response of TtWRKY256 in salt-tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1042078. [PMID: 36589069 PMCID: PMC9795024 DOI: 10.3389/fpls.2022.1042078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The transcription factor WRKY is widespread in the plant kingdom and plays a crucial role in diverse abiotic stress responses in plant species. Tritipyrum, an octoploid derived from an intergeneric cross between Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is a valuable germplasm resource for introducing superior traits of Th. elongatum into T. aestivum. The recent release of the complete genome sequences of T. aestivum and Th. elongatum enabled us to investigate the organization and expression profiling of Tritipyrum WRKY genes across the entire genome. RESULTS In this study, 346 WRKY genes, from TtWRKY1 to TtWRKY346, were identified in Tritipyrum. The phylogenetic analysis grouped these genes into three subfamilies (I-III), and members of the same subfamilies shared a conserved motif composition. The 346 TtWRKY genes were dispersed unevenly across 28 chromosomes, with 218 duplicates. Analysis of synteny suggests that the WRKY gene family may have a common ancestor. Expression profiles derived from transcriptome data and qPCR demonstrated that 54 TtWRKY genes exhibited relatively high levels of expression across various salt stresses and recovery treatments. Tel1E01T143800 (TtWRKY256) is extremely sensitive to salt stress and is on the same evolutionary branch as the salt-tolerant A. thaliana genes AtWRKY25 and AtWRKY33. From 'Y1805', the novel AtWRKY25 was cloned. The Pearson correlation analysis identified 181 genes that were positively correlated (R>0.9) with the expression of TtWRKY256, and these genes were mainly enriched in metabolic processes, cellular processes, response to stimulus, biological regulation, and regulation of biological. Subcellular localization and qRT-PCR analysis revealed that TtWRKY256 was located in the nucleus and was highly expressed in roots, stems, and leaves under salt stress. DISCUSSION The above results suggest that TtWRKY256 may be associated with salt stress tolerance in plants and may be a valuable alien gene for improving salt tolerance in wheat.
Collapse
Affiliation(s)
- Kuiyin Li
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
- Anshun University, Anshun, China
| | - Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | | | - Luhua Li
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, College of Agronomy, Guizhou University, Guiyang, China
| | - Yuanyuan Yuan
- Jinan Academy of Agricultural Sciences, Jinan, China
- Yantai Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
507
|
Yu T, Cen Q, Kang L, Mou W, Zhang X, Fang Y, Zhang X, Tian Q, Xue D. Identification and expression pattern analysis of the OsSnRK2 gene family in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1088281. [PMID: 36582638 PMCID: PMC9792972 DOI: 10.3389/fpls.2022.1088281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a class of plant-specific serine/threonine (Ser/Thr) protein kinase that plays an important role in rice stress tolerance, growth and development. However, systematic bioinformatics and expression pattern analysis have not been reported. In the current study, ten OsSnRK2 genes were identified in the rice genome and located on 7 chromosomes, which can be classified into three subfamilies (I, II, and III). Many cis-regulatory elements were identified in the promoter region of OsSnRK2 genes, including hormone response elements, defense and stress responsive elements, indicating that the OsSnRK2 family may play a crucial role in response to hormonal and abiotic stress. Quantitative tissue analysis showed that OsSnRK2 genes expressed in all tissues of rice, but the expression abundance varied from different tissues and showed varietal variability. In addition, expression pattern of OsSnRK2 were analyzed under abiotic stress (salt, drought, salt and drought) and showed obvious difference in diverse abiotic stress. In general, these results provide useful information for understanding the OsSnRK2 gene family and analyzing its functions in rice in response to ABA, salt and drought stress, especially salt-drought combined stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dawei Xue
- *Correspondence: Quanxiang Tian, ; Dawei Xue,
| |
Collapse
|
508
|
Liu R, Wen SS, Sun TT, Wang R, Zuo WT, Yang T, Wang C, Hu JJ, Lu MZ, Wang LQ. PagWOX11/12a positively regulates the PagSAUR36 gene that enhances adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7298-7311. [PMID: 36001042 DOI: 10.1093/jxb/erac345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adventitious root (AR) development is an extremely complex biological process that is affected by many intrinsic factors and extrinsic stimuli. Some WUSCHEL-related homeobox (WOX) transcription factors have been reported to play important roles in AR development, but their functional relationships with auxin signaling are poorly understood, especially the developmental plasticity of roots in response to adversity stress. Here, we identified that the WOX11/12a-SMALL AUXIN UP RNA36 (SAUR36) module mediates AR development through the auxin pathway in poplar, as well as under salt stress. PagWOX11/12a displayed inducible expression during AR development, and overexpression of PagWOX11/12a significantly promoted AR development and increased salt tolerance in poplar, whereas dominant repression of PagWOX11/12a produced the opposite phenotype. PagWOX11/12a proteins directly bind to the SAUR36 promoter to regulate SAUR36 transcription, and this binding was enhanced during salt stress. Genetic modification of PagWOX11/12a-PagSAUR36 expression revealed that the PagWOX11/12a-PagSAUR36 module is crucial for controlling AR development via the auxin pathway. Overall, our results indicate that a novel WOX11-SAUR-auxin signaling regulatory module is required for AR development in poplar. These findings provide key insights and a better understanding of the involvement of WOX11 in root developmental plasticity in saline environments.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Shuang-Shuang Wen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Ting-Ting Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wen-Teng Zuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Tao Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jian-Jun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liu-Qiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
509
|
Koteyeva NK, Voznesenskaya EV, Berim A, Gang DR, Edwards GE. Structural diversity in salt excreting glands and salinity tolerance in Oryza coarctata, Sporobolus anglicus and Urochondra setulosa. PLANTA 2022; 257:9. [PMID: 36482224 DOI: 10.1007/s00425-022-04035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Unlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C3 wild rice species Oryza coarctata, and C4 species Sporobolus anglicus and Urochondra setulosa. The leaf anatomy and ultrastructure of salt glands, pattern of salt excretion, gas exchange, accumulation of key photosynthetic enzymes, leaf water content and osmolality, and levels of some osmolytes, were compared when grown without salt, with 200 mM NaCl versus 200 mM KCl. Under salt treatments, there was little effect on the capacity for CO2 assimilation, while stomatal conductance decreased with a reduction in water loss by transpiration and an increase in water use efficiency. All three species accumulate compatible solutes but with drastic differences in osmolyte composition. Having high capacity for salt excretion, they have distinct structural differences in the salt excreting machinery. S. anglicus and U. setulosa have bicellular glands while O. coarctata has unique single-celled salt glands with a partitioning membrane system that are responsible for salt excretion rather than multiple hairs as previously suggested. The features of physiological responses and salt excretion indicate similar mechanisms are involved in providing tolerance and excretion of Na+ and K+.
Collapse
Affiliation(s)
- Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
510
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. Integrated metabolomic and transcriptomic analysis reveals the role of phenylpropanoid biosynthesis pathway in tomato roots during salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1023696. [PMID: 36570882 PMCID: PMC9773889 DOI: 10.3389/fpls.2022.1023696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As global soil salinization continues to intensify, there is a need to enhance salt tolerance in crops. Understanding the molecular mechanisms of tomato (Solanum lycopersicum) roots' adaptation to salt stress is of great significance to enhance its salt tolerance and promote its planting in saline soils. A combined analysis of the metabolome and transcriptome of S. lycopersicum roots under different periods of salt stress according to changes in phenotypic and root physiological indices revealed that different accumulated metabolites and differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis were significantly altered. The levels of phenylpropanoids increased and showed a dynamic trend with the duration of salt stress. Ferulic acid (FA) and spermidine (Spd) levels were substantially up-regulated at the initial and mid-late stages of salt stress, respectively, and were significantly correlated with the expression of the corresponding synthetic genes. The results of canonical correlation analysis screening of highly correlated DEGs and construction of regulatory relationship networks with transcription factors (TFs) for FA and Spd, respectively, showed that the obtained target genes were regulated by most of the TFs, and TFs such as MYB, Dof, BPC, GRAS, and AP2/ERF might contribute to the regulation of FA and Spd content levels. Ultimately, FA and Spd attenuated the harm caused by salt stress in S. lycopersicum, and they may be key regulators of its salt tolerance. These findings uncover the dynamics and possible molecular mechanisms of phenylpropanoids during different salt stress periods, providing a basis for future studies and crop improvement.
Collapse
Affiliation(s)
- Chunping Jia
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| | - Qinghui Yu
- College of Life Science and Technology, Xinjiang University, Urumqi, China
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China
| |
Collapse
|
511
|
Xiang YH, Yu JJ, Liao B, Shan JX, Ye WW, Dong NQ, Guo T, Kan Y, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Lin HX. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. MOLECULAR PLANT 2022; 15:1908-1930. [PMID: 36303433 DOI: 10.1016/j.molp.2022.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.
Collapse
Affiliation(s)
- You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
512
|
Wan J, Meng S, Wang Q, Zhao J, Qiu X, Wang L, Li J, Lin Y, Mu L, Dang K, Xie Q, Tang J, Ding D, Zhang Z. Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2022; 22:563. [PMID: 36460977 PMCID: PMC9719116 DOI: 10.1186/s12870-022-03959-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Rice is a salt-sensitive crop. Complex gene regulatory cascades are likely involved in salinity stress in rice roots. microRNA168 (miR168) is a conserved miRNA among different plant species. It in-directly regulates the expression of all miRNAs by targeting gene ARGONAUTE1(AGO1). Short Tandem Target Mimic (STTM) technology is an ideal approach to study miRNA functions by in-activating mature miRNA in plants. RESULTS In this study, rice miR168 was inactivated by STTM. The T3 generation seedlings of STTM168 exhibited significantly enhanced salt resistance. Direct target genes of rice miR168 were obtained by in silico prediction and further confirmed by degradome-sequencing. PINHEAD (OsAGO1), which was previously suggested to be a plant abiotic stress response regulator. RNA-Seq was performed in root samples of 150mM salt-treated STTM168 and control seedlings. Among these screened 481 differentially expressed genes within STTM168 and the control, 44 abiotic stress response related genes showed significant difference, including four known salt-responsive genes. CONCLUSION Based on sequencing and qRT-PCR, a "miR168-AGO1-downstream" gene regulation model was proposed to be responsible for rice salt stress response. The present study proved miR168-AGO1 cascade to play important role in rice salinity stress responding, as well as to be applied in agronomic improvement in further.
Collapse
Affiliation(s)
- Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Liangfa Wang
- Hebi Academy of Agricultural Sciences, 458030, Hebi, China
| | - Juan Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, 550006, Guiyang, China
| | - Yuan Lin
- Hebi Academy of Agricultural Sciences, 458030, Hebi, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Kuntai Dang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Qiankun Xie
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China
- The Shennong laboratory, 450002, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, 450002, Zhengzhou, China.
| |
Collapse
|
513
|
Ecophysiological and Biochemical Responses Depicting Seed Tolerance to Osmotic Stresses in Annual and Perennial Species of Halopeplis in a Frame of Global Warming. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122020. [PMID: 36556385 PMCID: PMC9785675 DOI: 10.3390/life12122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022]
Abstract
Plant abundance and distribution are regulated by subtle changes in ecological factors, which are becoming more frequent under global climate change. Species with a higher tolerance to such changes, especially during early lifecycle stages, are highly likely to endure climate change. This study compared the germination adaptability of Halopeplis amplexicaulis and H. perfoliata, which differ in life-form and grow in different environments. Optimal conditions, tolerances and the biochemical responses of seeds to osmotic stresses were examined. Seeds of H. perfoliata germinated in a wider range of temperature regimes and were more tolerant to osmotic stresses than H. amplexicaulis seeds. Neither NaCl nor PEG treatment invoked the H2O2 content in germinating seeds of the tested species. Consequently, unaltered, or even decreased activities of H2O2 detoxification enzymes and non-enzymatic antioxidants were observed in germinating seeds in response to the aforementioned stresses. High and comparable levels of recovery from isotonic treatments, alongside a lack of substantial oxidative damage indicated that the osmotic stress, rather than the ionic toxicity, may be responsible for the germination inhibition. Hence, rainy periods, linked to water availability, may act as a key determinant for germination and H. perfoliata could be less affected by global warming owing to better germinability under high temperatures compared with H. amplexicaulis. Such studies involving biochemical analysis coupled with the germination ecology of congeneric species, which differ in life-form and occurrence are scarce, therefore are important in understanding the impacts of global changes on species abundance/distribution.
Collapse
|
514
|
Lu K, Li C, Guan J, Liang WH, Chen T, Zhao QY, Zhu Z, Yao S, He L, Wei XD, Zhao L, Zhou LH, Zhao CF, Wang CL, Zhang YD. The PPR-Domain Protein SOAR1 Regulates Salt Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:62. [PMID: 36463341 PMCID: PMC9719575 DOI: 10.1186/s12284-022-00608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Previous studies in Arabidopsis reported that the PPR protein SOAR1 plays critical roles in plant response to salt stress. In this study, we reported that expression of the Arabidopsis SOAR1 (AtSOAR1) in rice significantly enhanced salt tolerance at seedling growth stage and promoted grain productivity under salt stress without affecting plant productivity under non-stressful conditions. The transgenic rice lines expressing AtSOAR1 exhibited increased ABA sensitivity in ABA-induced inhibition of seedling growth, and showed altered transcription and splicing of numerous genes associated with salt stress, which may explain salt tolerance of the transgenic plants. Further, we overexpressed the homologous gene of SOAR1 in rice, OsSOAR1, and showed that transgenic plants overexpressing OsSOAR1 enhanced salt tolerance at seedling growth stage. Five salt- and other abiotic stress-induced SOAR1-like PPRs were also identified. These data showed that the SOAR1-like PPR proteins are positively involved in plant response to salt stress and may be used for crop improvement in rice under salinity conditions through transgenic manipulation.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cheng Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ju Guan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Wen-Hua Liang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Xiao-Dong Wei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Li-Hui Zhou
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Cai-Lin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, 210014, Nanjing, China.
| |
Collapse
|
515
|
Ren W, Chen L, Xie ZM, Peng X. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. BMC PLANT BIOLOGY 2022; 22:552. [PMID: 36451095 PMCID: PMC9710056 DOI: 10.1186/s12870-022-03930-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinization is major abiotic stress limiting cotton production. Melatonin (MT) has been implicated in salt stress tolerance in multiple crops including upland cotton. Here, we explored the transcriptomic and metabolomic response of a salt-tolerant self-bred high-yielding cotton line SDS-01, which was exogenously sprayed with four MT concentrations (50, 100, 200, and 500 μM). RESULTS Here we found that MT improves plant biomass and growth under salt stress. The combined transcriptome sequencing and metabolome profiling approach revealed that photosynthetic efficiency is improved by increasing the expressions of chlorophyll metabolism and antenna proteins in MT-treated seedlings. Additionally, linoleic acid and flavonoid biosynthesis were improved after MT treatment. The Na+/K+ homeostasis-related genes were increasingly expressed in salt-stressed seedlings treated with MT as compared to the ones experiencing only salt stress. Melatonin treatment activated a cascade of plant-hormone signal transduction and reactive oxygen scavenging genes to alleviate the detrimental effects of salt stress. The global metabolome profile revealed an increased accumulation of flavonoids, organic acids, amino acids and derivatives, saccharides, and phenolic acids in MT-treated seedlings. Interestingly, N, N'-Diferuloylputrescine a known antioxidative compound was highly accumulated after MT treatment. CONCLUSION Collectively, our study concludes that MT is a salt stress regulator in upland cotton and alleviates salt-stress effects by modulating the expressions of photosynthesis (and related pathways), flavonoid, ROS scavenging, hormone signaling, linoleic acid metabolism, and ion homeostasis-related genes.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 China
- China Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505 Xinjiang China
| | - Zong ming Xie
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang China
| | - Xiaofeng Peng
- Agricultural Science Research Institute of the third division of Xinjiang production and Construction Corps, Tumushuke, 843800 Xinjiang China
| |
Collapse
|
516
|
Chen Y, Li H, Zhang S, Du S, Wang G, Zhang J, Jiang J. Analysis of the Antioxidant Mechanism of Tamarix ramosissima Roots under NaCl Stress Based on Physiology, Transcriptomic and Metabolomic. Antioxidants (Basel) 2022; 11:2362. [PMID: 36552570 PMCID: PMC9774368 DOI: 10.3390/antiox11122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
There is a serious problem with soil salinization that affects the growth and development of plants. Tamarix ramosissima Ledeb (T. ramosissima), as a halophyte, is widely used for afforestation in salinized soils. At present, there are few reports on the antioxidant mechanism of T. ramosissima under NaCl stress. In this study, we learned about the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) content changes in T. ramosissima. We also mined the relevant metabolic pathways in the antioxidant mechanism, candidate key genes, and their related differential metabolites and verified them using quantitative real-time PCR (qRT-PCR). The results show that the SOD, POD, and CAT activities, and the H2O2 and MDA content reached the highest values in the roots of T. ramosissima. Simultaneously, 92 differentially expressed genes (DEGs) related to antioxidant enzyme activities changed during 48 and 168 h of NaCl stress, and these DEGs were mainly upregulated in 168 h. Based on the association analysis of transcriptomic and metabolomic data, we found Unigene0089358 and Unigene0007782 as genes related to key enzymes in the flavonoid biosynthesis pathway. They were located in the upstream positive regulation at 48 and 168 h under NaCl stress, and their respective related metabolites (phloretin and pinocembrin) were involved in resistance to NaCl stress, and they were significantly correlated with their respective metabolites. In conclusion, at 48 and 168 h under NaCl stress, the roots of T. ramosissima resist NaCl stress by enhancing enzymatic and nonenzymatic antioxidant mechanisms, scavenging ROS generated by high-salt stress, alleviating NaCl toxicity, and maintaining the growth of T. ramosissima. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of antioxidants to alleviate NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Haijia Li
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Shiyang Zhang
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shanfeng Du
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Guangyu Wang
- Department of Forest Resources Management and Faculty of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jinchi Zhang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
517
|
Zhu B, Zheng S, Fan W, Zhang M, Xia Z, Chen X, Zhao A. Ectopic overexpression of mulberry MnT5H2 enhances melatonin production and salt tolerance in tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:1061141. [PMID: 36507424 PMCID: PMC9733638 DOI: 10.3389/fpls.2022.1061141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Soil salinization severely inhibits plant growth and has become one of the major limiting factors for global agricultural production. Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in regulating plant growth and development and in responding to abiotic stresses. Tryptamine-5-hydroxylase (T5H) is an enzyme essential for the biosynthesis of melatonin in plants. Previous studies have identified the gene MnT5H for melatonin synthesis in mulberry (Morus notabilis), but the role of this gene in response to salinity stress in mulberry is remain unclear. In this study, we ectopically overexpressed MnT5H2 in tobacco (Nicotiana tabacum L.) and treated it with NaCl solutions. Compared to wild-type (WT), melatonin content was significantly increased in the overexpression-MnT5H2 tobacco. Under salt stress, the expression of NtCAT, NtSOD, and NtERD10C and activity of catalase (CAT), peroxidase (POD), and the content of proline (Pro) in the transgenic lines were significantly higher than that in WT. The Malondialdehyde (MDA) content in transgenic tobacco was significantly lower than that of WT. Furthermore, transgenic tobacco seedlings exhibited faster growth in media with NaCl. This study reveals the changes of melatonin and related substance content in MnT5H2-overexpressing tobacco ultimately lead to improve the salt tolerance of transgenic tobacco, and also provides a new target gene for breeding plant resistance to salt.
Collapse
Affiliation(s)
- Baozhong Zhu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Sha Zheng
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Meirong Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Xuefei Chen
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
518
|
Zheng Y, Zong J, Liu J, Wang R, Chen J, Guo H, Kong W, Liu J, Chen Y. Mining for salt-tolerant genes from halophyte Zoysia matrella using FOX system and functional analysis of ZmGnTL. FRONTIERS IN PLANT SCIENCE 2022; 13:1063436. [PMID: 36466287 PMCID: PMC9714509 DOI: 10.3389/fpls.2022.1063436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Zoysia matrella is a salt-tolerant turfgrass grown in areas with high soil salinity irrigated with effluent water. Previous studies focused on explaining the regulatory mechanism of Z. matrella salt-tolerance at phenotypic and physiological levels. However, the molecular mechanism associated with salt tolerance of Z. matrella remained unclear. In this study, a high-efficient method named FOX (full-length cDNA overexpression) hunting system was used to search for salt-tolerant genes in Z. matrella. Eleven candidate genes, including several known or novel salt-tolerant genes involved in different metabolism pathways, were identified. These genes exhibited inducible expression under salt stress condition. Furthermore, a novel salt-inducible candidate gene ZmGnTL was transformed into Arabidopsis for functional analysis. ZmGnTL improved salt-tolerance through regulating ion homeostasis, reactive oxygen species scavenging, and osmotic adjustment. In summary, we demonstrated that FOX is a reliable system for discovering novel genes relevant to salt tolerance and several candidate genes were identified from Z. matrella that can assist molecular breeding for plant salt-tolerance improvement.
Collapse
Affiliation(s)
- Yuying Zheng
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jun Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ruying Wang
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weiyi Kong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
519
|
Lu X, Ma L, Zhang C, Yan H, Bao J, Gong M, Wang W, Li S, Ma S, Chen B. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC PLANT BIOLOGY 2022; 22:528. [PMID: 36376811 PMCID: PMC9661776 DOI: 10.1186/s12870-022-03907-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress. RESULTS We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively. CONCLUSIONS Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.
Collapse
Affiliation(s)
- Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070 China
| | - CongCong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - HaoKai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - JinYu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - MeiShuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - WenHui Wang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of HorticultureCollege of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - ShaoYing Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - BaiHong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
520
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
521
|
Bawa G, Liu Z, Wu R, Zhou Y, Liu H, Sun S, Liu Y, Qin A, Yu X, Zhao Z, Yang J, Hu M, Sun X. PIN1 regulates epidermal cells development under drought and salt stress using single-cell analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1043204. [PMID: 36466268 PMCID: PMC9716655 DOI: 10.3389/fpls.2022.1043204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Over the course of evolution, plants have developed plasticity to acclimate to environmental stresses such as drought and salt stress. These plant adaptation measures involve the activation of cascades of molecular networks involved in stress perception, signal transduction and the expression of stress related genes. Here, we investigated the role of the plasma membrane-localized transporter of auxin PINFORMED1 (PIN1) in the regulation of pavement cells (PCs) and guard cells (GCs) development under drought and salt stress conditions. The results showed that drought and salt stress treatment affected the development of PCs and GCs. Further analysis identified the different regulation mechanisms of PIN1 in regulating the developmental patterns of PCs and GCs under drought and salt stress conditions. Drought and salt stress also regulated the expression dynamics of PIN1 in pif1/3/4/5 quadruple mutants. Collectively, we revealed that PIN1 plays a crucial role in regulating plant epidermal cells development under drought and salt stress conditions, thus contributing to developmental rebustness and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
522
|
Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Cells 2022; 11:3590. [PMID: 36429019 PMCID: PMC9688763 DOI: 10.3390/cells11223590] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental abiotic stresses challenge food security by depressing crop yields often exceeding 50% of their annual production. Different methods, including conventional as well as genomic-assisted breeding, mutagenesis, and genetic engineering have been utilized to enhance stress resilience in several crop species. Plant breeding has been partly successful in developing crop varieties against abiotic stresses owning to the complex genetics of the traits as well as the narrow genetic base in the germplasm. Irrespective of the fact that genetic engineering can transfer gene(s) from any organism(s), transgenic crops have become controversial mainly due to the potential risk of transgene-outcrossing. Consequently, the cultivation of transgenic crops is banned in certain countries, particularly in European countries. In this scenario, the discovery of the CRISPR tool provides a platform for producing transgene-free genetically edited plants-similar to the mutagenized crops that are not extensively regulated such as genetically modified organisms (GMOs). Thus, the genome-edited plants without a transgene would likely go into the field without any restriction. Here, we focused on the deployment of CRISPR for the successful development of abiotic stress-tolerant crop plants for sustaining crop productivity under changing environments.
Collapse
Affiliation(s)
- Mehboob-ur Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Ahmad Raza
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Niaz Ahmad
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
523
|
Zhao L, Li Y, Li Y, Chen W, Yao J, Fang S, Lv Y, Zhang Y, Zhu S. Systematical Characterization of the Cotton Di19 Gene Family and the Role of GhDi19-3 and GhDi19-4 as Two Negative Regulators in Response to Salt Stress. Antioxidants (Basel) 2022; 11:2225. [PMID: 36421411 PMCID: PMC9686973 DOI: 10.3390/antiox11112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.
Collapse
Affiliation(s)
- Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youzhong Li
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
524
|
Tahjib-Ul-Arif M, Wei X, Jahan I, Hasanuzzaman M, Sabuj ZH, Zulfiqar F, Chen J, Iqbal R, Dastogeer KMG, Sohag AAM, Tonny SH, Hamid I, Al-Ashkar I, Mirzapour M, El Sabagh A, Murata Y. Exogenous nitric oxide promotes salinity tolerance in plants: A meta-analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:957735. [PMID: 36420041 PMCID: PMC9676926 DOI: 10.3389/fpls.2022.957735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.
Collapse
Affiliation(s)
- Md. Tahjib-Ul-Arif
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Israt Jahan
- Department of Biology, York University, Toronto, ON, Canada
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Zahid Hasan Sabuj
- Breeding Division, Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abdullah Al Mamun Sohag
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sadia Haque Tonny
- Plant Biology and Biofunctional Chemistry Lab, Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Imran Hamid
- Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
- Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohsen Mirzapour
- Faculty of Agriculture, Department of Agricultural Biotechnology, Siirt University, Siirt, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
525
|
Lu Y, Yao K, Gong Z, Zhang Y, Meng Y, Liu Q. Molecular manipulations of miR398 increase rice grain yield under different conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1037604. [PMID: 36420017 PMCID: PMC9676918 DOI: 10.3389/fpls.2022.1037604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Rice miR398 targets two stress-tolerant genes, CSD1-2 (Cu/Zn Superoxide Dismutases1-2) and CCS (copper chaperone of CSD), which usually boost plants' tolerance by inhibiting growth. So, how to accurately regulate the activities of miR398 targets and thus make rice better able to adapt to different conditions has great significances in producing rice yields under the current circumstances of shrinking arable lands resulting from global urbanization and increasing salty soil caused by irrigation. Through controlling the expressions of miR398 in different levels, we found down-regulated expression of miR398 targets can promote growth under good growth conditions while up-regulated expressions of the targets can help rice tolerate salt. In this study, we over-expressed miR398 highly, moderately, and lowly, then three concomitantly inverse levels of its targets' expression were obtained. Under normal growth conditions, the transgenic lines with low and moderate levels of over-expressions of miR398 could increase grain yields 14.5% and 7.3%, respectively, although no transgenic lines could survive well under salty conditions simulating real saline-alkali soil. Using short tandem target mimic (STTM) technology to silence miR398 highly, moderately, and lowly respectively, also three inverse levels of its targets' expression were obtained. All three transgenic lines exhibited good agronomic performances under salt stress in inverse to their degrees of STTM, but their growth was inhibited differently under normal conditions. Altogether, we suggest that flexibly manipulating the expression of miR398 is an ideal strategy to help rice survive better and achieve optimized yields under specific conditions.
Collapse
Affiliation(s)
- Yuzhu Lu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kena Yao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yixin Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
526
|
Sun Y, Li J, Xing J, Yu X, Lu Y, Xu W, Zhao N, Liu Z, Guo Z. Evaluation of salt tolerance in common vetch (Vicia sativa L.) germplasms and the physiological responses to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153811. [PMID: 36126616 DOI: 10.1016/j.jplph.2022.153811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Common vetch (Vicia sativa L.) is an important leguminous crop, providing humans with starch from seeds, feeding livestock with vegetative organs, or fertilizing soils by returning to field. It is aimed to evaluate salt tolerance in common vetch collections for breeding programs and to investigate the underlined physiological mechanisms. Relative germination rate and relative seedling growth showed great difference among common vetch collections in response to salt. A lower level of Na+ and higher levels of K+ and K+/Na+ ratio were maintained in both shoots and roots in salt-tolerant collections than in salt-sensitive ones under salt stress. Expression of the genes involved in transportation and redistribution of Na+ and K+ were cooperatively responsible for salt stress. Transcript levels of NHX7, HKT1, AKT2, and HAK17 in leaves and roots were induced after salt stress, with higher transcript levels in salt-tolerant collections compared with the sensitive ones. Proline and P5CS1 transcript levels were increased after salt stress, with higher levels in salt-tolerant collection compared with salt-sensitive ones. Both O2- and H2O2 were accumulated after salt stress, and lower levels were accumulated in salt-tolerant collection compared with salt-sensitive ones. Superoxide dismutase, catalase and ascorbate peroxidase activities were altered in response to salt and higher levels were maintained in salt-tolerant collections compared with salt-sensitive ones. It is suggested that salt tolerance in common vetch is associated with maintenance of K+ and Na+ homeostasis and the associated gene expression and promoted proline accumulation and antioxidant defense system.
Collapse
Affiliation(s)
- Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jie Li
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jincheng Xing
- Jiangsu Coastal Institute of Agriculture Science, Yancheng, 224002, China.
| | - Xiao Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yiwen Lu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenkai Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Na Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
527
|
Jiang Y, Wang Z, Du H, Dong R, Yuan Y, Hua J. Assessment of functional relevance of genes associated with local temperature variables in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3290-3304. [PMID: 35943206 DOI: 10.1111/pce.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
How likely genetic variations associated with environment identified in silico from genome wide association study are functionally relevant to environmental adaptation has been largely unexplored experimentally. Here we analyzed top 29 genes containing polymorphisms associated with local temperature variation (minimum, mean, maximum) among 1129 natural accessions of Arabidopsis thaliana. Their loss-of-function mutants were assessed for growth and stress tolerance at five temperatures. Twenty genes were found to affect growth or tolerance at one or more of these temperatures. Significantly, genes associated with maximum temperature more likely have a detect a function at higher temperature, while genes associated with minimum temperature more likely have a function at lower temperature. In addition, gene variants are distributed more frequently at geographic locations where they apparently offer an enhanced growth or tolerance for five genes tested. Furthermore, variations in a large proportion of the in silico identified genes associated with minimum or mean-temperatures exhibited a significant association with growth phenotypes experimentally assessed at low temperature for a small set of natural accessions. This study shows a functional relevance of gene variants associated with environmental variables and supports the feasibility of the use of local temperature factors in investigating the genetic basis of temperature adaptation.
Collapse
Affiliation(s)
- Yuan Jiang
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Hui Du
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Runlong Dong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Yaping Yuan
- Jilin Engineering Research Center of Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
528
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
529
|
Li X, Fan S, Cui X, Shao A, Wang W, Xie Y, Fu J. Transcriptome analysis of perennial ryegrass reveals the regulatory role of Aspergillus aculeatus under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13805. [PMID: 36270788 DOI: 10.1111/ppl.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Perennial ryegrass (Lolium perenne) is an important turf grass and forage grass with moderately tolerant to salinity stress. Aspergillus aculeatus has been documented to involved in salt stress response of perennial ryegrass, while the A. aculeatus-mediated molecular mechanisms are unclear. Therefore, to investigate the molecular mechanisms underlying A. aculeatus-mediated salt tolerance, the comprehensive transcriptome analysis of the perennial ryegrass roots was performed. Twelve cDNA libraries from roots were constructed after 12 h of plant-fungus cocultivation under 300 mM salt stress concentrations. A total of 21,915 differentially expressed genes (DEGs) were identified through pairwise comparisons. Enrichment analysis revealed that potentially important A. aculeatus-induced salt responsive genes belonging to specific categories, such as hormonal metabolism (auxin and salicylic acid metabolism related genes), secondary metabolism (flavonoid's metabolism related genes) and transcription factors (MYB, HSF and AP2/EREBP family). In addition, weighted gene co-expression network analysis (WGCNA) showed that blue and black modules were significantly positively correlated with the peroxidase activity and proline content, then the hub genes within these two modules were further identified. Taken together, we found the categories of A. aculeatus-induced salt responsive genes, revealing underlying fungus-induced molecular mechanisms of salt stress response in perennial ryegrass roots. Besides, fungus-induced salt-tolerant hub genes represent a foundation for further exploring the molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xinyu Cui
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
530
|
Li Y, You X, Tang Z, Zhu T, Liu B, Chen MX, Xu Y, Liu TY. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13817. [PMID: 36344445 DOI: 10.1111/ppl.13817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.
Collapse
Affiliation(s)
- Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zhe Tang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| |
Collapse
|
531
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
532
|
Zhou X, Yin Y, Wang G, Amombo E, Li X, Xue Y, Fu J. Mitigation of salt stress on low temperature in bermudagrass: resistance and forage quality. FRONTIERS IN PLANT SCIENCE 2022; 13:1042855. [PMID: 36388506 PMCID: PMC9650215 DOI: 10.3389/fpls.2022.1042855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Climate change causes plants encountering several abiotic stresses simultaneously. Responses of plants to a single stress has been comprehensively studied, but it is hard to speculated infer the effects of stress combination based on these researches. Here, the response mechanism of bermudagrass to low temperature and salt treatment was investigated in this study. The results showed that low temperature (LT) treatment decreased the relative growth rate, chlorophyll fluorescence transient curve, biomass, and crude fat content of bermudagrass, whereas low temperature + salt (LT+S) treatment greatly undermined these declines. Furthermore, at 6 h and 17 d, the expression levels of glyoxalase I (GLYI), Cu-Zn/superoxide dismutase (Cu-Zn/SOD), peroxidase 2 (POD2), and oxidative enzyme 1(CAT1) in roots were considerably higher in the low temperature + salt treatment than in the low temperature treatment. Low temperature stress is more detrimental to bermudagrass, but mild salt addition can mitigate the damage by enhancing photosynthesis and improving the expression of antioxidant system genes (Cu-Zn/SOD, POD2 and CAT1) and glyoxalase system GLYI gene in roots. This study summarized the probable interaction mechanism of low temperature and salt stress on bermudagrass, which can provide beneficial reference for the growth of fodder in cold regions.
Collapse
|
533
|
Zhang X, Zhu T, Li Z, Jia Z, Wang Y, Liu R, Yang M, Chen QB, Wang Z, Guo S, Li P. Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root length in response to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:992799. [PMID: 36388478 PMCID: PMC9644038 DOI: 10.3389/fpls.2022.992799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianze Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhi Li
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing-Bin Chen
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenjie Wang
- Sanya Institute, Henan University, Sanya, Hainan, China
| | - Siyi Guo
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
534
|
Hong Y, Guan X, Wang X, Kong D, Yu S, Wang Z, Yu Y, Chao ZF, Liu X, Huang S, Zhu JK, Zhu G, Wang Z. Natural variation in SlSOS2 promoter hinders salt resistance during tomato domestication. HORTICULTURE RESEARCH 2022; 10:uhac244. [PMID: 36643750 PMCID: PMC9832868 DOI: 10.1093/hr/uhac244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 05/29/2023]
Abstract
Increasing soil salinization seriously impairs plant growth and development, resulting in crop loss. The Salt-Overly-Sensitive (SOS) pathway is indispensable to the mitigation of Na + toxicity in plants under high salinity. However, whether natural variations of SOS2 contribute to salt tolerance has not been reported. Here a natural variation in the SlSOS2 promoter region was identified to be associated with root Na+/K+ ratio and the loss of salt resistance during tomato domestication. This natural variation contains an ABI4-binding cis-element and plays an important role in the repression of SlSOS2 expression. Genetic evidence revealed that SlSOS2 mutations increase root Na+/K+ ratio under salt stress conditions and thus attenuate salt resistance in tomato. Together, our findings uncovered a critical but previously unknown natural variation of SOS2 in salt resistance, which provides valuable natural resources for genetic breeding for salt resistance in cultivated tomatoes and other crops.
Collapse
Affiliation(s)
| | | | | | - Dali Kong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shuojun Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhiqiang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yongdong Yu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Fei Chao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangtao Zhu
- Correspondence to: ; Tel: +86-15800313102 (Zhen Wang) or ; Tel: +86-15887800218 (Guangtao Zhu)
| | - Zhen Wang
- Correspondence to: ; Tel: +86-15800313102 (Zhen Wang) or ; Tel: +86-15887800218 (Guangtao Zhu)
| |
Collapse
|
535
|
Yang G, Pan W, Cao R, Guo Q, Cheng Y, Zhao Q, Cui L, Nie X. Multi-omics reveals the key and specific miRNA-mRNA modules underlying salt tolerance in wild emmer wheat (Triticum dicoccoides L.). BMC Genomics 2022; 23:724. [PMID: 36284277 PMCID: PMC9597961 DOI: 10.1186/s12864-022-08945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Salt stress is one of the most destructive environmental factors limiting crop growth and development. MicroRNAs (miRNAs) are a class of conserved endogenous small non-coding RNAs, playing the crucial role in regulating salt response and tolerance in plants. However, the miRNAs in wild emmer wheat, especially the key and specific salt-responsive miRNAs are not well studied. Results Here, we performed small RNA, transcriptome, and degradome sequencing of both of salt-tolerance (ST) and salt-sensitive (SS) wild emmer genotypes to identify the miRNA-mRNA modules associating with salt tolerance. Totally, 775 miRNAs, including 361 conserved known miRNAs and 414 novel miRNAs were detected. Differential expression analysis identified 93 salt-responsive miRNAs under salt stress. Combined with RNA-seq and degradome sequencing analysis, 224 miRNA-mRNA modules displayed the complete opposite expression trends between ST and SS genotypes, most of which functionally enriched into ROS homeostasis maintaining, osmotic pressure modulating, and root growth and development. Finally, the qRT-PCR and a large-scale yeast functional screening were also performed to initially validate the expression pattern and function of candidate genes. Conclusions This study reported the key and specific miRNA-mRNA modules associated with salt tolerance in wild emmer, which lay the foundation for improving the salt tolerance in cultivated emmer and bread wheat through miRNA engineering approach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08945-3.
Collapse
Affiliation(s)
- Guang Yang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wenqiu Pan
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Rui Cao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qifan Guo
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yue Cheng
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qinlong Zhao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Licao Cui
- grid.411859.00000 0004 1808 3238College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
536
|
Guo X, Ahmad N, Zhao S, Zhao C, Zhong W, Wang X, Li G. Effect of Salt Stress on Growth and Physiological Properties of Asparagus Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:2836. [PMID: 36365288 PMCID: PMC9657929 DOI: 10.3390/plants11212836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Salt stress could inhibit the growth and development of crops and negatively affect yield and quality. The objective of this study was to investigate the physiological responses of different asparagus cultivars to salt stress. Twenty days old seedlings ofasalt-tolerant Apollo andasalt-sensitive cultivar JL1 were subjected to 0 (CK) and120 mM NaCl stress for 20 d. Their changes in growth, ion contents, antioxidant enzyme activities and gene expression were analyzed. Salt stress significantly inhibited the growth of both cultivars, and JL1 showed a greater decrease than Apollo. The root development of Apollo was promoted by 120 mM NaCl treatment. The Na+ content in roots, stems, and leaves of both cultivars was increased under salt stress, while K+ content and K+/Na+ decreased. The salt-tolerant cultivar Apollo showed less extent of increase in Na+ and decrease in K+ content and kept a relatively high K+/Na+ ratio to compare with JL1. The contents of proline, soluble sugar and protein increased in Apollo, while thesesubstances changed differently in JL1 under salt stress. Activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were gradually increased under salt stress in Apollo, while the corresponding enzyme activities in JL1 were decreased at the late stage of salt stress. The expression of SOD, POD, and CAT genes of both cultivars changed in a similar way to the enzyme activities. Malondialdehyde (MDA) content was increased slightly in Apollo, while increased significantly in JL1. At the late stage of salt stress, Apollomaintained a relatively high K+/Na+, osmotic adjustment ability and antioxidant defense capability, and therefore exhibited higher tolerance to salt stress than that of JL1.
Collapse
Affiliation(s)
- Xin Guo
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan 250100, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| |
Collapse
|
537
|
Bharadwaj PS, Sanchez L, Li D, Enyi D, Van de Poel B, Chang C. The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2022; 13:998267. [PMID: 36340412 PMCID: PMC9632724 DOI: 10.3389/fpls.2022.998267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 06/13/2023]
Abstract
Plants are often faced with an array of adverse environmental conditions and must respond appropriately to grow and develop. In angiosperms, the plant hormone ethylene is known to play a protective role in responses to abiotic stress. Here we investigated whether ethylene mediates resistance to abiotic stress in the liverwort Marchantia polymorpha, one of the most distant land plant relatives of angiosperms. Using existing M. polymorpha knockout mutants of Mpein3, and Mpctr1, two genes in the ethylene signaling pathway, we examined responses to heat, salinity, nutrient deficiency, and continuous far-red light. The Mpein3 and Mpctr1 mutants were previously shown to confer ethylene insensitivity and constitutive ethylene responses, respectively. Using mild or sub-lethal doses of each stress treatment, we found that Mpctr1 mutants displayed stress resilience similar to or greater than the wild type. In contrast, Mpein3 mutants showed less resilience than the wild type. Consistent with ethylene being a stress hormone, we demonstrated that ethylene production is enhanced by each stress treatment. These results suggest that ethylene plays a role in protecting against abiotic stress in M. polymorpha, and that ethylene has likely been conserved as a stress hormone since before the evolutionary divergence of bryophytes from the land plant lineage approximately 450 Ma.
Collapse
Affiliation(s)
- Priyanka S. Bharadwaj
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lizbeth Sanchez
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Divine Enyi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, University of Leuven, Leuven, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
538
|
Wang J, Li Y, Wang Y, Du F, Zhang Y, Yin M, Zhao X, Xu J, Yang Y, Wang W, Fu B. Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin. Antioxidants (Basel) 2022; 11:antiox11102045. [PMID: 36290768 PMCID: PMC9598814 DOI: 10.3390/antiox11102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)–scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life Sciences, China Agricultural University, Beijing 100193, China
| | - Yingbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinxiao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengping Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Yin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongqing Yang
- College of Life Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (W.W.); (B.F.)
| |
Collapse
|
539
|
Zhang Q, Qin B, Wang GD, Zhang WJ, Li M, Yin ZG, Yuan X, Sun HY, Du JD, Du YL, Jia P. Exogenous melatonin enhances cell wall response to salt stress in common bean ( Phaseolus vulgaris) and the development of the associated predictive molecular markers. FRONTIERS IN PLANT SCIENCE 2022; 13:1012186. [PMID: 36325547 PMCID: PMC9619082 DOI: 10.3389/fpls.2022.1012186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Common bean (Phaseolus vulgaris) is an important food crop; however, its production is affected by salt stress. Salt stress can inhibit seed germination, promote senescence, and modify cell wall biosynthesis, assembly, and architecture. Melatonin, an indole heterocycle, has been demonstrated to greatly impact cell wall structure, composition, and regulation in plants under stress. However, the molecular basis for such assumptions is still unclear. In this study, a common bean variety, "Naihua" was treated with water (W), 70 mmol/L NaCl solution (S), and 100 μmol/L melatonin supplemented with salt solution (M+S) to determine the response of common bean to exogenous melatonin and explore regulatory mechanism of melatonin against salt stress. The results showed that exogenous melatonin treatment alleviated salt stress-induced growth inhibition of the common bean by increasing the length, surface area, volume, and diameter of common bean sprouts. Moreover, RNA sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) indicated that the cell wall regulation pathway was involved in the salt stress tolerance of the common bean enhanced by melatonin. Screening of 120 germplasm resources revealed that melatonin treatment improved the salt tolerance of more than 65% of the common bean germplasm materials. Melatonin also up-regulated cell wall pathway genes by at least 46%. Furthermore, we analyzed the response of the common bean germplasm materials to melatonin treatment under salt stress using the key genes associated with the synthesis of the common bean cell wall as the molecular markers. The results showed that two pairs of markers were significantly associated with melatonin, and these could be used as candidate markers to predict whether common bean respond to exogenous melatonin and then enhance salt tolerance at the sprouting stage. This study shows that cell wall can respond to exogenous melatonin and enhance the salt tolerance of common bean. The makers identified in this study can be used to select common bean varieties that can respond to melatonin under stress. Overall, the study found that cell wall could response melatonin and enhance the salt tolerance and developed the makers for predicting varieties fit for melatonin under stress in common bean, which may be applied in the selection or development of common bean varieties with abiotic stress tolerance.
Collapse
Affiliation(s)
- Qi Zhang
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Bin Qin
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Guang-da Wang
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Wen-jing Zhang
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Ming Li
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Zhen-gong Yin
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiankai Yuan
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Hao-yue Sun
- Qiqihar Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihaer, China
| | - Ji-dao Du
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Yan-li Du
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Herlongjiang Bayi Agricultural University, Daqing, China
| | - Pengyu Jia
- College of Agriculture, Herlongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Herlongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
540
|
Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J Fungi (Basel) 2022; 8:jof8101092. [PMID: 36294657 PMCID: PMC9605608 DOI: 10.3390/jof8101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. Epichloë gansuensis, seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with Achnatherum inebrians and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of A. inebrians roots mediated by E. gansuensis. We found that E. gansuensis played an important role in the gene expression of the host’s roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of A. inebrians. Importantly, E. gansuensis significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of A. inebrians mediated by E. gansuensis and could drive progress in the cultivation of new salt-resistance breeds with endophytes.
Collapse
|
541
|
Wang G, Weng L, Huang Y, Ling Y, Zhen Z, Lin Z, Hu H, Li C, Guo J, Zhou JL, Chen S, Jia Y, Ren L. Microbiome-metabolome analysis directed isolation of rhizobacteria capable of enhancing salt tolerance of Sea Rice 86. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156817. [PMID: 35750176 DOI: 10.1016/j.scitotenv.2022.156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil salinization has been recognized as one of the main factors causing the decrease of cultivated land area and global plant productivity. Application of salt tolerant plants and improvement of plant salt tolerance are recognized as the major routes for saline soil restoration and utilization. Sea rice 86 (SR86) is known as a rice cultivar capable of growing in saline soil. Genome sequencing and transcriptome analysis of SR86 have been conducted to explore its salt tolerance mechanisms while the contribution of rhizobacteria is underexplored. In the present study, we examined the rhizosphere bacterial diversity and soil metabolome of SR86 seedlings under different salinity to understand their contribution to plant salt tolerance. We found that salt stress could significantly change rhizobacterial diversity and rhizosphere metabolites. Keystone taxa were identified via co-occurrence analysis and the correlation analysis between keystone taxa and rhizosphere metabolites indicated lipids and their derivatives might play an important role in plant salt tolerance. Further, four plant growth promoting rhizobacteria (PGPR), capable of promoting the salt tolerance of SR86, were isolated and characterized. These findings might provide novel insights into the mechanisms of plant salt tolerance mediated by plant-microbe interaction, and promote the isolation and application of PGPR in the restoration and utilization of saline soil.
Collapse
Affiliation(s)
- Guang Wang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Sha Chen
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, China.
| |
Collapse
|
542
|
Aguirre-Becerra H, Feregrino-Pérez AA, Esquivel K, Perez-Garcia CE, Vazquez-Hernandez MC, Mariana-Alvarado A. Nanomaterials as an alternative to increase plant resistance to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023636. [PMID: 36304397 PMCID: PMC9593029 DOI: 10.3389/fpls.2022.1023636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 05/03/2023]
Abstract
The efficient use of natural resources without negative repercussions to the environment has encouraged the incursion of nanotechnology to provide viable alternatives in diverse areas, including crop management. Agriculture faces challenges due to the combination of different abiotic stresses where nanotechnology can contribute with promising applications. In this context, several studies report that the application of nanoparticles and nanomaterials positively affects crop productivity through different strategies such as green synthesis of nanoparticles, plant targeted protection through the application of nanoherbicides and nanofungicides, precise and constant supply of nutrients through nanofertilizers, and tolerance to abiotic stress (e.g., low or high temperatures, drought, salinity, low or high light intensities, UV-B, metals in soil) by several mechanisms such as activation of the antioxidant enzyme system that alleviates oxidative stress. Thus, the present review focuses on the benefits of NPs against these type of stress and their possible action mechanisms derived from the interaction between nanoparticles and plants, and their potential application for improving agricultural practices.
Collapse
Affiliation(s)
- Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Karen Esquivel
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | - Ma. Cristina Vazquez-Hernandez
- Cuerpo Académico de Innovación en Bioprocesos Sustentables, Depto. De Ingenierías, Tecnológico Nacional de México en Roque, Guanajuato, Mexico
| | | |
Collapse
|
543
|
Similar Responses of Relatively Salt-Tolerant Plants to Na and K during Chloride Salinity: Comparison of Growth, Water Content and Ion Accumulation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101577. [PMID: 36295012 PMCID: PMC9605674 DOI: 10.3390/life12101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to compare changes in growth, ion accumulation and tissue water content in relatively salt-tolerant plant taxa—Beta vulgaris subsp. maritima, Beta vulgaris subsp. vulgaris var. cicla, Cochlearia officinalis, Mentha aquatica and Plantago maritima—as a result of NaCl and KCl salinity in controlled conditions. Similar growth responses to Na+ and K+ salinity in a form of chloride salts were found for all model plants, including growth stimulation at low concentrations, an increase in water content in leaves, and growth inhibition at high salinity for less salt-resistant taxa. All plant taxa were cultivated in soil except M. aquatica, which was cultivated in hydroponics. While the morphological responses of B. vulgaris subsp. vulgaris var. cicla, B. vulgaris subsp. maritima and P. maritima plants to NaCl and KCl were rather similar, C. officinalis plants tended to perform worse when treated with KCl, but the opposite was evident for M. aquatica. Plants treated with KCl accumulated higher concentrations of K+ in comparison to the accumulation of Na+ in plants treated with equimolar concentrations of NaCl. KCl-treated plants also had higher tissue levels of electrical conductivity than NaCl-treated plants. Based on the results of the present study, it seems that both positive and negative effects of Na+ and K+ on plant growth were due to unspecific ionic effects of monovalent cations or/and the specific effect of Cl−.
Collapse
|
544
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
545
|
Shuyskaya E, Rakhmankulova Z, Prokofieva M, Saidova L, Toderich K, Voronin P. Intensity and duration of salinity required to form adaptive response in C 4 halophyte Kochia prostrata (L.) Shrad. FRONTIERS IN PLANT SCIENCE 2022; 13:955880. [PMID: 36275591 PMCID: PMC9585317 DOI: 10.3389/fpls.2022.955880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to salinity is a highly multifaceted process, harnessing various physiological mechanisms depending on the severity and duration of salt stress. This study focuses on the effects of 4- and 10-day treatments with low (100 mM NaCl) and moderate (200 mM NaCl) salinity on growth, CO2/H2O gas exchange, stomatal apparatus performance, the efficiency of photosystems I and II (PS I and II), content of key C4 photosynthesis enzymes, and the accumulation of Na+, K+, and proline in shoots of the widespread forage C4 halophyte Kochia prostrata. Our data show that 4 days of low salinity treatment resulted in a decrease in biomass, intensity of apparent photosynthesis, and cyclic electron transport around PS I. It was accompanied by an increase in transpiration and Rubisco and PEPC contents, while the Na+ and proline contents were low in K. prostrata shoots. By the 10th day of salinity, Na+ and proline have accumulated; PS I function has stabilized, while PS II efficiency has decreased due to the enhanced non-photochemical quenching of chlorophyll fluorescence (NPQ). Thus, under low salinity conditions, Na+ accumulated slowly and the imbalance between light and dark reactions of photosynthesis was observed. These processes might be induced by an early sodium signaling wave that affects cellular pH and ion homeostasis, ultimately disturbing photosynthetic electron transport. Another adaptive reaction more "typical" of salt-tolerant species was observed at 200 mM NaCl treatment. It proceeds in two stages. First, during the first 4 days, dry biomass and apparent photosynthesis decrease, whereas stomata sensitivity and dissipation energy during dark respiration increase. In parallel, an active Na+ accumulation and a decreased K+/Na+ ratio take place. Second, by the 10th day, a fully-fledged adaptive response was formed, when growth and apparent photosynthesis stabilized and stomata closed. Decreased dissipation energy, increased WUE, stabilization of Rubisco and PEPC contents, and decreased proline content testify to the completion of the adaptation and stabilization of the physiological state of plants. The obtained results allowed us to conclude that the formation of a full-fledged salt-tolerant response common for halophytes in K. prostrata occurs by the 10th day of moderate salinity.
Collapse
Affiliation(s)
- Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Zulfira Rakhmankulova
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Maria Prokofieva
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Luizat Saidova
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| | - Kristina Toderich
- International Platform for Dryland Research and Education, Tottori University, Tottori City, Japan
| | - Pavel Voronin
- K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, Moscow, Russia
| |
Collapse
|
546
|
Holsteens K, De Jaegere I, Wynants A, Prinsen ELJ, Van de Poel B. Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:982622. [PMID: 36275599 PMCID: PMC9585276 DOI: 10.3389/fpls.2022.982622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Salt stress hampers plant growth and development through both osmotic and ionic imbalances. One of the key players in modulating physiological responses towards salinity is the plant hormone abscisic acid (ABA). How plants cope with salinity largely depends on the magnitude of the soil salt content (stress severity), but also on age-related developmental processes (ontogeny). Here we studied how ABA directs salt stress responses in tomato plants for both mild and severe salt stress in leaves of different ages. We used the ABA-deficient mutant notabilis, which contains a null-mutation in the gene of a rate-limiting ABA biosynthesis enzyme 9-cis-epoxycarotenoid dioxygenase (NCED1), leading to impaired stomatal closure. We showed that both old and young leaves of notabilis plants keep a steady-state transpiration and photosynthesis rate during salt stress, probably due to their dysfunctional stomatal closure. At the whole plant level, transpiration declined similar to the wild-type, impacting final growth. Notabilis leaves were able to produce osmolytes and accumulate ions in a similar way as wild-type plants, but accumulated more proline, indicating that osmotic responses were not impaired by the NCED1 mutation. Besides NCED1, also NCED2 and NCED6 are strongly upregulated under salt stress, which could explain why the notabilis mutant did not show a lower ABA content upon salt stress, except in young leaves. This might be indicative of a salt-mediated feedback mechanism on NCED2/6 in notabilis and might explain why notabilis plants seem to perform better under salt stress compared to wild-type plants with respect to biomass and water content accumulation.
Collapse
Affiliation(s)
- Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Isabel De Jaegere
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Arne Wynants
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | | | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
- KU Leuven Plant Institute, (LPI), University of Leuven, Leuven, Belgium
| |
Collapse
|
547
|
Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, Mahdavinia G, Hassanpouraghdam MB, Ioannou A, Kulak M, Fotopoulos V. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int J Biol Macromol 2022; 224:893-907. [DOI: 10.1016/j.ijbiomac.2022.10.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
548
|
Zhou X, Li J, Wang Y, Liang X, Zhang M, Lu M, Guo Y, Qin F, Jiang C. The classical SOS pathway confers natural variation of salt tolerance in maize. THE NEW PHYTOLOGIST 2022; 236:479-494. [PMID: 35633114 DOI: 10.1111/nph.18278] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
Sodium (Na+ ) is the major cation damaging crops in the salinised farmland. Previous studies have shown that the Salt Overly Sensitive (SOS) pathway is important for salt tolerance in Arabidopsis. Nevertheless, the SOS pathway remains poorly investigated in most crops. This study addresses the function of the SOS pathway and its association with the natural variation of salt tolerance in maize. First, we showed that a naturally occurring 4-bp frame-shifting deletion in ZmSOS1 caused the salt hypersensitive phenotype of the maize inbred line LH65. Accordingly, mutants lacking ZmSOS1 also displayed a salt hypersensitive phenotype, due to an impaired root-to-rhizosphere Na+ efflux and an increased shoot Na+ concentration. We next showed that the maize SOS3/SOS2 complex (ZmCBL4/ZmCIPK24a and ZmCBL8/ZmCIPK24a) phosphorylates ZmSOS1 therefore activating its Na+ -transporting activity, with their loss-of-function mutants displaying salt hypersensitive phenotypes. Moreover, we observed that a LTR/Gypsy insertion decreased the expression of ZmCBL8, thereby increasing shoot Na+ concentration in natural maize population. Taken together, our study demonstrated that the maize SOS pathway confers a conservative salt-tolerant role, and the components of SOS pathway (ZmSOS1 and ZmCBL8) confer the natural variations of Na+ regulation and salt tolerance in maize, therefore providing important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Xueyan Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Yiqiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
549
|
Baoxiang W, Bo X, Yan L, Jingfang L, Zhiguang S, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A Novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111393. [PMID: 35878697 DOI: 10.1016/j.plantsci.2022.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The bzip transcription factors can modulate the transcriptional expressions of target genes by binding specifically to cis-regulatory elements in the promoter region of stress-related genes, hence regulating plant stress resistance. Here, we investigated a stress-responsive transcription factor Osbzip20 under abiotic stresses. The OsbZIP20-GFP fusion protein predominantly aggregated in the nucleus, in accordance with our subcellular localization. OsbZIP20 transcript was observed in all vegetative tissues with highest levels being detected in the seed. Transcription of Osbzip20 was induced by salinity, exsiccation, and abscisic acid. Overexpression of OsbZIP20 in transgenic rice considerably improved tolerance to salt and drought stresses, as well as increased sensitivity to ABA. Furthermore, abiotic stress responsive genes transcript were found to be remarkably elevated in transgenic rice overexpressing OsbZIP20 than in wild-type plants. SAPK10 was discovered to directly interact with and phosphorylate OsbZIP20. Yeast one-hybrid and luciferase assay revealed that OsbZIP20 acted as a transcriptional stimulator. Interestingly, gel shift assay showed that phosphorylated bZIP20 augmented its DNA-binding affinity to the ABRE element of the NHX1 promoter and induced its transcription. In sum, our findings establish a novel signaling pathway associated with the SAPK10-bZIP20-NHX1 synergistic interaction, as well as a new strategy for enhancing rice drought and salt tolerance.
Collapse
Affiliation(s)
- Wang Baoxiang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xu Bo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Liu Yan
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Li Jingfang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Sun Zhiguang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Chi Ming
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xing Yungao
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Yang Bo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Li Jian
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Liu Jinbo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Chen Tingmu
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Fang Zhaowei
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Lu Baiguan
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xu Dayong
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China.
| | - Babatunde Kazeem Bello
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China.
| |
Collapse
|
550
|
Takács Z, Czékus Z, Tari I, Poór P. The role of ethylene signalling in the regulation of salt stress response in mature tomato fruits: Metabolism of antioxidants and polyamines. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153793. [PMID: 35995003 DOI: 10.1016/j.jplph.2022.153793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Salt stress-induced ethylene (ET) can influence the defence responses of plants that can be dependent on plant organs. In this work, the effects of salt stress evoked by 75 mM NaCl treatment were measured in fruits of wild-type (WT) and ET receptor-mutant Never ripe (Nr) tomato. Salt stress reduced the weight and size of fruits both in WT and Nr, which proved to be more pronounced in mutants. In addition, significantly higher H2O2 levels and lipid peroxidation were measured after the salt treatment in Nr as compared to the untreated control than in WT. ET regulated the key antioxidant enzymes, especially ascorbate peroxidase (APX), in WT but in the mutant fruits the activity of APX did not change and the superoxide dismutase and catalase activities were downregulated compared to untreated controls after salt treatment contributing to a higher degree of oxidative stress in Nr fruits. The dependency of PA metabolism on the active ET signalling was investigated for the first time in fruits of Nr mutants under salt stress. 75 mM NaCl enhanced the accumulation of spermine in WT fruits, which was not observed in Nr, but levels of putrescine and spermidine were elevated by salt stress in these tissues. Moreover, the catabolism of PAs was much stronger under high salinity in Nr fruits contributing to higher oxidative stress, which was only partially alleviated by the increased total and reduced ascorbate and glutathione pool. We can conclude that ET-mediated signalling plays a crucial role in the regulation of salt-induced oxidative stress and PA levels in tomato fruits at the mature stage.
Collapse
Affiliation(s)
- Zoltán Takács
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary.
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary.
| | - Irma Tari
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary.
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary.
| |
Collapse
|