501
|
|
502
|
Influence of the interaction between long noncoding RNAs and hypoxia on tumorigenesis. Tumour Biol 2015; 37:1379-85. [DOI: 10.1007/s13277-015-4457-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
|
503
|
Zhang F, Zhang L, Zhang C. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumour Biol 2015; 37:163-75. [PMID: 26586396 DOI: 10.1007/s13277-015-4445-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 01/17/2023] Open
Abstract
The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopedics, The first Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Liang Zhang
- Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
504
|
Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 2015; 44:863-77. [PMID: 26578588 PMCID: PMC4737147 DOI: 10.1093/nar/gkv1206] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA 52241, USA
| |
Collapse
|
505
|
Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, Wheeler J, Williams A, Santiago-Turla C, Qin X, Rautenbach RM, Ziskind A, Ramsay M, Uebe S, Song L, Safi A, Vithana EN, Mizoguchi T, Nakano S, Kubota T, Hayashi K, Manabe SI, Kazama S, Mori Y, Miyata K, Yoshimura N, Reis A, Crawford GE, Pasutto F, Carmichael TR, Williams SEI, Ozaki M, Aung T, Khor CC, Stamer WD, Ashley-Koch AE, Allingham RR. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet 2015; 24:6552-63. [PMID: 26307087 PMCID: PMC4614704 DOI: 10.1093/hmg/ddv347] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022] Open
Abstract
Exfoliation syndrome (XFS) is a common, age-related, systemic fibrillinopathy. It greatly increases risk of exfoliation glaucoma (XFG), a major worldwide cause of irreversible blindness. Coding variants in the lysyl oxidase-like 1 (LOXL1) gene are strongly associated with XFS in all studied populations, but a functional role for these variants has not been established. To identify additional candidate functional variants, we sequenced the entire LOXL1 genomic locus (∼40 kb) in 50 indigenous, black South African XFS cases and 50 matched controls. The variants with the strongest evidence of association were located in a well-defined 7-kb region bounded by the 3'-end of exon 1 and the adjacent region of intron 1 of LOXL1. We replicated this finding in US Caucasian (91 cases/1031 controls), German (771 cases/1365 controls) and Japanese (1484 cases/1188 controls) populations. The region of peak association lies upstream of LOXL1-AS1, a long non-coding RNA (lncRNA) encoded on the opposite strand of LOXL1. We show that this region contains a promoter and, importantly, that the strongly associated XFS risk alleles in the South African population are functional variants that significantly modulate the activity of this promoter. LOXL1-AS1 expression is also significantly altered in response to oxidative stress in human lens epithelial cells and in response to cyclic mechanical stress in human Schlemm's canal endothelial cells. Taken together, these findings support a functional role for the LOXL1-AS1 lncRNA in cellular stress response and suggest that dysregulation of its expression by genetic risk variants plays a key role in XFS pathogenesis.
Collapse
Affiliation(s)
- Michael A Hauser
- Department of Medicine, Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore, Duke, National University of Singapore, Singapore, Singapore,
| | - Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | | | - Pratap Challa
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew Williams
- Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | | | | | - Robyn M Rautenbach
- Division of Ophthalmology, Department of Surgical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ari Ziskind
- Division of Ophthalmology, Department of Surgical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, NHLS and School of Pathology and Sydney Brenner Institute for Molecular Bioscience, University of Witwatersrand, Johannesburg, South Africa
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lingyun Song
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Takanori Mizoguchi
- Mizoguchi Eye Hospital, 6-13 Tawara-machi, Sasebo, Nagasaki 857-0016, Japan
| | - Satoko Nakano
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshiaki Kubota
- Department of Ophthalmology, Oita University Faculty of Medicine, Oita, Japan
| | - Ken Hayashi
- Hayashi Eye Hospital, 23-35, Hakataekimae-4, Hakata-ku, Fukuoka, Japan
| | - Shin-ichi Manabe
- Hayashi Eye Hospital, 23-35, Hakataekimae-4, Hakata-ku, Fukuoka, Japan
| | - Shigeyasu Kazama
- Shinjo Eye Clinic, 889-1, Mego, Simokitakatamachi, Miyazaki-shi, Miyazaki 880-0035, Japan
| | - Yosai Mori
- Miyata Eye Hospital, 6-3, Kurahara, Miyakonojo, Miyazaki 885-0051, Japan
| | - Kazunori Miyata
- Miyata Eye Hospital, 6-3, Kurahara, Miyakonojo, Miyazaki 885-0051, Japan, University of Miyazaki, Miyazaki, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gregory E Crawford
- Center for Genomic and Computational Biology and Department of Pediatrics, Duke University, Durham, NC, USA
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Trevor R Carmichael
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa and
| | - Susan E I Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa and
| | - Mineo Ozaki
- Ozaki Eye Hospital, 1-15, Kamezaki, Hyuga, Miyazaki 883-0066, Japan
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore, Duke, National University of Singapore, Singapore, Singapore
| |
Collapse
|
506
|
A potential prognostic long non-coding RNA signature to predict metastasis-free survival of breast cancer patients. Sci Rep 2015; 5:16553. [PMID: 26549855 PMCID: PMC4637883 DOI: 10.1038/srep16553] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in a variety of biological processes, and dysregulated lncRNAs have demonstrated potential roles as biomarkers and therapeutic targets for cancer prognosis and treatment. In this study, by repurposing microarray probes, we analyzed lncRNA expression profiles of 916 breast cancer patients from the Gene Expression Omnibus (GEO). Nine lncRNAs were identified to be significantly associated with metastasis-free survival (MFS) in the training dataset of 254 patients using the Cox proportional hazards regression model. These nine lncRNAs were then combined to form a single prognostic signature for predicting metastatic risk in breast cancer patients that was able to classify patients in the training dataset into high- and low-risk subgroups with significantly different MFSs (median 2.4 years versus 3.0 years, log-rank test p < 0.001). This nine-lncRNA signature was similarly effective for prognosis in a testing dataset and two independent datasets. Further analysis showed that the predictive ability of the signature was independent of clinical variables, including age, ER status, ESR1 status and ERBB2 status. Our results indicated that lncRNA signature could be a useful prognostic marker to predict metastatic risk in breast cancer patients and may improve upon our understanding of the molecular mechanisms underlying breast cancer metastasis.
Collapse
|
507
|
Schick S, Fournier D, Thakurela S, Sahu SK, Garding A, Tiwari VK. Dynamics of chromatin accessibility and epigenetic state in response to UV damage. J Cell Sci 2015; 128:4380-94. [PMID: 26446258 DOI: 10.1242/jcs.173633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/29/2015] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms determine the access of regulatory factors to DNA during events such as transcription and the DNA damage response. However, the global response of histone modifications and chromatin accessibility to UV exposure remains poorly understood. Here, we report that UV exposure results in a genome-wide reduction in chromatin accessibility, while the distribution of the active regulatory mark H3K27ac undergoes massive reorganization. Genomic loci subjected to epigenetic reprogramming upon UV exposure represent target sites for sequence-specific transcription factors. Most of these are distal regulatory regions, highlighting their importance in the cellular response to UV exposure. Furthermore, UV exposure results in an extensive reorganization of super-enhancers, accompanied by expression changes of associated genes, which may in part contribute to the stress response. Taken together, our study provides the first comprehensive resource for genome-wide chromatin changes upon UV irradiation in relation to gene expression and elucidates new aspects of this relationship.
Collapse
Affiliation(s)
- Sandra Schick
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | |
Collapse
|
508
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
509
|
Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, Yang H, Sun J. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res 2015; 34:102. [PMID: 26362431 PMCID: PMC4567800 DOI: 10.1186/s13046-015-0219-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 12/03/2022] Open
Abstract
Background Dysregulated long non-coding RNAs (lncRNAs) have been found to have oncogenic and/or tumor suppressive roles in the development and progression of cancer, implying their potentials as novel independent biomarkers for cancer diagnosis and prognosis. However, the prognostic significance of expression profile-based lncRNA signature for outcome prediction in patients with multiple myeloma (MM) has not yet been investigated. Methods LncRNA expression profiles of a large cohort of patients with MM were obtained and analyzed by repurposing the publically available microarray data. An lncRNA-focus risk score model was developed from the training dataset, and then validated in the testing and another two independent external datasets. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction. The biological function of prognostic lncRNAs was predicted using bioinformatics analysis. Results Four lncRNAs were identified to be significantly associated with overall survival (OS) of patients with MM in the training dataset, and were combined to develop a four-lncRNA prognostic signature to stratify patients into high-risk and low-risk groups. Patients of training dataset in the high-risk group exhibited shorter OS than those in the low-risk group (HR = 2.718, 95 % CI = 1.937-3.815, p <0.001). The similar prognostic values of four-lncRNA signature were observed in the testing dataset, entire GSE24080 dataset and another two independent external datasets. Multivariate Cox regression and stratified analysis showed that the prognostic power of four-lncRNA signature was independent of clinical features, including serum beta 2-microglobulin (Sβ2M), serum albumin (ALB) and lactate dehydrogenase (LDH). ROC analysis also demonstrated the better performance for predicting 3-year OS. Functional enrichment analysis suggested that these four lncRNAs may be involved in known genetic and epigenetic events linked to MM. Conclusions Our results demonstrated potential application of lncRNAs as novel independent biomarkers for diagnosis and prognosis in MM. These lncRNA biomarkers may contribute to the understanding of underlying molecular basis of MM. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0219-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Zhenzhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
510
|
Esposito F, De Martino M, Forzati F, Fusco A. HMGA1-pseudogene overexpression contributes to cancer progression. Cell Cycle 2015; 13:3636-9. [PMID: 25483074 DOI: 10.4161/15384101.2014.974440] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two pseudogenes for HMGA1, whose overexpression has a critical role in cancer progression, have been identified. They act as decoy for miRNAs that are able to target the HMGA1 gene then enhancing cell proliferation and migration. Moreover, these pseudogenes contain sequences that are potential target sites for cancer-related miRNAs. Interestingly, HMGA1 pseudogenes are highly expressed in human anaplastic thyroid carcinomas, that is one of the most aggressive tumor in mankind, but almost undetectable in well differentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Francesco Esposito
- a Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli ; Università degli Studi di Napoli "Federico II," ; Naples , Italy
| | | | | | | |
Collapse
|
511
|
Exploration of Deregulated Long Non-Coding RNAs in Association with Hepatocarcinogenesis and Survival. Cancers (Basel) 2015; 7:1847-62. [PMID: 26378581 PMCID: PMC4586798 DOI: 10.3390/cancers7030865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are larger than 200 nucleotides in length and pervasively expressed across the genome. An increasing number of studies indicate that lncRNA transcripts play integral regulatory roles in cellular growth, division, differentiation and apoptosis. Deregulated lncRNAs have been observed in a variety of human cancers, including hepatocellular carcinoma (HCC). We determined the expression profiles of 90 lncRNAs for 65 paired HCC tumor and adjacent non-tumor tissues, and 55 lncRNAs were expressed in over 90% of samples. Eight lncRNAs were significantly down-regulated in HCC tumor compared to non-tumor tissues (p < 0.05), but no lncRNA achieved statistical significance after Bonferroni correction for multiple comparisons. Within tumor tissues, carrying more aberrant lncRNAs (6–7) was associated with a borderline significant reduction in survival (HR = 8.5, 95% CI: 1.0–72.5). The predictive accuracy depicted by the AUC was 0.93 for HCC survival when using seven deregulated lncRNAs (likelihood ratio test p = 0.001), which was similar to that combining the seven lncRNAs with tumor size and treatment (AUC = 0.96, sensitivity = 87%, specificity = 87%). These data suggest the potential association of deregulated lncRNAs with hepatocarcinogenesis and HCC survival.
Collapse
|
512
|
Bergougnoux A, Claustres M, De Sario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics 2015; 7:119-26. [PMID: 25687471 DOI: 10.2217/epi.14.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of chronic airway diseases are characterized by high inflammation and unbalanced activation of the immune response, which lead to tissue damage and progressive reduction of the pulmonary function. Because they are exposed to various environmental stimuli, lung cells are prone to epigenomic changes. Many genes responsible for the immune response and inflammation are tightly regulated by DNA methylation, which suggests that alteration of the epigenome in lung cells may have a considerable impact on the penetrance and/or the severity of airway diseases. A major hurdle in clinical epigenomic studies is to gather appropriate biospecimens. Herein, we show that nasal epithelial cells are suitable to analyze DNA methylation in human diseases primarily affecting the lower airway tract.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory Genetics of Rare Diseases, INSERM U827, Montpellier, France
| | | | | |
Collapse
|
513
|
IDH1 mutation-associated long non-coding RNA expression profile changes in glioma. J Neurooncol 2015; 125:253-63. [PMID: 26337623 DOI: 10.1007/s11060-015-1916-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022]
Abstract
Isocitrate dehydrogenase 1 (IDH1) mutation is an important prognostic marker in glioma. However, its downstream effect remains incompletely understood. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis in a number of human malignancies, including glioma. Here, we investigated whether and how lncRNA expression profiles would differ between gliomas with or without IDH1 mutation. By using our previously reported lncRNA mining approach, we performed lncRNA profiling in three public glioma microarray datasets. The differential lncRNA expression analysis was then conducted between mutant-type and wild-type IDH1 glioma samples. Comparison analysis identified 14 and 9 lncRNA probe sets that showed significantly altered expressions in astrocytic and oligodendroglial tumors, respectively (fold change ≥ 1.5, false discovery rate ≤ 0.1). Moreover, the differential expressions of these lncRNAs could be confirmed in the independent testing sets. Functional exploration of the lncRNAs by analyzing the lncRNA-protein interactions revealed that these IDH1 mutation-associated lncRNAs were involved in multiple tumor-associated cellular processes, including metabolism, cell growth and apoptosis. Our data suggest the potential roles of lncRNA in gliomagenesis, and may help to understand the pathogenesis of gliomas associated with IDH1 mutation.
Collapse
|
514
|
Wang Y, Liu X, Zhang H, Sun L, Zhou Y, Jin H, Zhang H, Zhang H, Liu J, Guo H, Nie Y, Wu K, Fan D, Zhang H, Liu L. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting γ-synuclein. Neoplasia 2015; 16:1094-106. [PMID: 25499222 PMCID: PMC4309257 DOI: 10.1016/j.neo.2014.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023] Open
Abstract
Hypoxia has been implicated as a crucial microenvironmental factor that induces cancer metastasis. We previously reported that hypoxia could promote gastric cancer (GC) metastasis, but the underlying mechanisms are not clear. Long noncoding RNAs (lncRNAs) have recently emerged as important regulators of carcinogenesis that act on multiple pathways. However, whether lncRNAs are involved in hypoxia-induced GC metastasis remains unknown. In this study, we investigated the differentially expressed lncRNAs resulting from hypoxia-induced GC and normoxia conditions using microarrays and validated our results through real-time quantitative polymerase chain reaction. We found an lncRNA, AK058003, that is upregulated by hypoxia. AK058003 is frequently upregulated in GC samples and promotes GC migration and invasion in vivo and in vitro. Furthermore, AK058003 can mediate the metastasis of hypoxia-induced GC cells. Next, we identified γ-synuclein (SNCG), which is a metastasis-related gene regulated by AK058003. In addition, we found that the expression of SNCG is positively correlated with that of AK058003 in the clinical GC samples used in our study. Furthermore, we found that the SNCG gene CpG island methylation was significantly increased in GC cells depleted of AK058003. Intriguingly, SNCG expression is also increased by hypoxia, and SNCG upregulation by AK058003 mediates hypoxia-induced GC cell metastasis. These results advance our understanding of the role of lncRNA-AK058003 as a regulator of hypoxia signaling, and this newly identified hypoxia/lncRNA-AK058003/SNCG pathway may help in the development of new therapeutics.
Collapse
Affiliation(s)
- Yafang Wang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiangqiang Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hongbo Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Li Sun
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Yongan Zhou
- Department of thoracic surgery, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Haifeng Jin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hui Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Jiaming Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Hao Guo
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032,China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.
| | - Lili Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
515
|
Liu S, Song L, Zeng S, Zhang L. MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol 2015; 37:633-40. [PMID: 26242259 DOI: 10.1007/s13277-015-3732-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/28/2015] [Indexed: 12/31/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1) is a large, infrequently spliced non-coding RNA aberrantly expressed in cervical cancer. But the molecular mechanisms of its oncogenic role are still not quite clear. The present study explored whether there is a competing endogenous RNAs (ceRNAs) mechanism involved in the oncogenic effect of MALAT1. MALAT1 expression was firstly verified in high-risk human papillomavirus (HR-HPV)-positive tumor tissues and cell lines. Its regulation over miR-124 and the downstream target of miR-124 in regulation of growth, invasion, and apoptosis of the cancer cells are also studied. Findings of this study confirmed higher MALAT1 expression in HR-HPV (+) cervical cancer. Knockdown of endogenous MALAT1 significantly reduced cell growth rate and invasion and increased cell apoptosis of Hela and siHa cells. Besides, knockdown of MALAT1 increased the expression of miRNA-124, while ectopic expression of miR-124 decreased MALAT1 expression. In addition, we also verified a direct interaction between miR-124 and 3'UTR of GRB2. MALAT1 can indirectly modulate GRB2 expression via competing miR-124. Knockdown of GRB2 reduced cell invasion and increased cell apoptosis. In conclusion, MALAT1 can promote HR-HPV (+) cancer cell growth and invasion at least partially through the MALAT1-miR-124-RBG2 axis. This finding might provide some useful evidence about the lncRNA interaction regulatory network in tumorigenesis cervical cancer.
Collapse
Affiliation(s)
- Shikai Liu
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| | - Lili Song
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China.
| | - Saitian Zeng
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| | - Liang Zhang
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| |
Collapse
|
516
|
Abstract
The most widely used approach for defining gene function is to reduce or completely disrupt its normal expression. For over a decade, RNAi has ruled the lab, offering a magic bullet to disrupt gene expression in many organisms. However, new biotechnological tools--specifically CRISPR-based technologies--have become available and are squeezing out RNAi dominance in mammalian cell studies. These seemingly competing technologies leave research investigators with the question: "Which technology should I use in my experiment?" This review offers a practical resource to compare and contrast these technologies, guiding the investigator when and where to use this fantastic array of powerful tools.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
517
|
Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson QJ. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res 2015. [PMID: 26202974 PMCID: PMC4666383 DOI: 10.1093/nar/gkv727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the ‘allelome’ by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Christoph P Dotter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp C Bammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| |
Collapse
|
518
|
Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, Hao D, Sun J. A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med 2015; 13:231. [PMID: 26183581 PMCID: PMC4504221 DOI: 10.1186/s12967-015-0556-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Background Accumulated evidence suggests that dysregulated expression of long non-coding RNAs (lncRNAs) may play a critical role in tumorigenesis and prognosis of cancer, indicating the potential utility of lncRNAs as cancer prognostic or diagnostic markers. However, the power of lncRNA signatures in predicting the survival of patients with non-small cell lung cancer (NSCLC) has not yet been investigated. Methods We performed an array-based transcriptional analysis of lncRNAs in large patient cohorts with NSCLC by repurposing microarray probes from the gene expression omnibus database. A risk score model was constructed based on the expression data of these eight lncRNAs in the training dataset of NSCLC patients and was subsequently validated in other two independent NSCLC datasets. The biological implications of prognostic lncRNAs were also analyzed using the functional enrichment analysis. Results An expression pattern of eight lncRNAs was found to be significantly associated with overall survival (OS) of NSCLC patients in the training dataset. With the eight-lncRNA signature, patients of the training dataset could be classified into high- and low-risk groups with significantly different OS (median survival 1.67 vs. 6.06 years, log-rank test p = 4.33E−09). The prognostic power of eight-lncRNA signature was further validated in other two non-overlapping independent NSCLC cohorts, demonstrating good reproducibility and robustness of this eight-lncRNA signature in predicting OS of NSCLC patients. Multivariate regression and stratified analysis suggested that the prognostic power of the eight-lncRNA signature was independent of clinical and pathological factors. Functional enrichment analyses revealed potential functional roles of the eight prognostic lncRNAs in tumorigenesis. Conclusions These findings indicate that the eight-lncRNA signature may be an effective independent prognostic molecular biomarker in the prediction of NSCLC patient survival. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0556-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China. .,School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.
| | - Maoni Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Dongfeng He
- Department of Interventional Radiology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150040, People's Republic of China.
| | - Xiaojun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Dapeng Hao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
519
|
Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry. Appl Biochem Biotechnol 2015; 176:1834-45. [PMID: 26155902 DOI: 10.1007/s12010-015-1680-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are nonprotein coding transcripts longer than 200 nucleotides. Recently in mammals, thousands of long noncoding RNAs have been identified and studied as key molecular players in different biological processes with protein complexes. As a long noncoding RNA, maternally expressed gene 3 (MEG3) plays an important role in many cellular processes. However, the mechanism underlying MEG3 regulatory effects remains enigmatic. By using the specific interaction between MS2 coat protein and MS2 RNA hairpin, we developed a method (MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS)) to identify proteins that interact with MEG3. Mass spectrometry and gene ontology (GO) analysis showed that MEG3 binding proteins possess nucleotide binding properties and take part in transport, translation, and other biological processes. In addition, interleukin enhancer binding factor 3 (ILF3) and poly(A) binding protein, cytoplasmic 3 (PABPC3) were validated for their interaction with MEG3. These findings indicate that the newly developed method can effectively enrich lncRNA binding proteins and provides a strong basis for studying MEG3 functions.
Collapse
|
520
|
Koziol U, Radio S, Smircich P, Zarowiecki M, Fernández C, Brehm K. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells. Genome Biol Evol 2015; 7:2136-53. [PMID: 26133390 PMCID: PMC4558846 DOI: 10.1093/gbe/evv126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2015] [Indexed: 12/14/2022] Open
Abstract
Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes.
Collapse
Affiliation(s)
- Uriel Koziol
- Institute of Hygiene and Microbiology, University of Würzburg, Germany Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Radio
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Zarowiecki
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Germany
| |
Collapse
|
521
|
Raabe CA, Brosius J. Does every transcript originate from a gene? Ann N Y Acad Sci 2015; 1341:136-48. [PMID: 25847549 DOI: 10.1111/nyas.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
Outdated gene definitions favored regions corresponding to mature messenger RNAs, in particular, the open reading frame. In eukaryotes, the intergenic space was widely regarded nonfunctional and devoid of RNA transcription. Original concepts were based on the assumption that RNA expression was restricted to known protein-coding genes and a few so-called structural RNA genes, such as ribosomal RNAs or transfer RNAs. With the discovery of introns and, more recently, sensitive techniques for monitoring genome-wide transcription, this view had to be substantially modified. Tiling microarrays and RNA deep sequencing revealed myriads of transcripts, which cover almost entire genomes. The tremendous complexity of non-protein-coding RNA transcription has to be integrated into novel gene definitions. Despite an ever-growing list of functional RNAs, questions concerning the mass of identified transcripts are under dispute. Here, we examined genome-wide transcription from various angles, including evolutionary considerations, and suggest, in analogy to novel alternative splice variants that do not persist, that the vast majority of transcripts represent raw material for potential, albeit rare, exaptation events.
Collapse
Affiliation(s)
- Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | | |
Collapse
|
522
|
Wang TZ, Liu M, Zhao MG, Chen R, Zhang WH. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC PLANT BIOLOGY 2015; 15:131. [PMID: 26048392 PMCID: PMC4457090 DOI: 10.1186/s12870-015-0530-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/20/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been shown to play crucially regulatory roles in diverse biological processes involving complex mechanisms. However, information regarding the number, sequences, characteristics and potential functions of lncRNAs in plants is so far overly limited. RESULTS Using high-throughput sequencing and bioinformatics analysis, we identified a total of 23,324 putative lncRNAs from control, osmotic stress- and salt stress-treated leaf and root samples of Medicago truncatula, a model legume species. Out of these lncRNAs, 7,863 and 5,561 lncRNAs were identified from osmotic stress-treated leaf and root samples, respectively. While, 7,361 and 7,874 lncRNAs were identified from salt stress-treated leaf and root samples, respectively. To reveal their potential functions, we analyzed Gene Ontology (GO) terms of genes that overlap with or are neighbors of the stress-responsive lncRNAs. Enrichments in GO terms in biological processes such as signal transduction, energy synthesis, molecule metabolism, detoxification, transcription and translation were found. CONCLUSIONS LncRNAs are likely involved in regulating plant's responses and adaptation to osmotic and salt stresses in complex regulatory networks with protein-coding genes. These findings are of importance for our understanding of the potential roles of lncRNAs in responses of plants in general and M. truncatula in particular to abiotic stresses.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Min Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Min-Gui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| | - Rujin Chen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
523
|
Noncoding RNAs, post-transcriptional RNA operons and Chinese hamster ovary cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.14.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
524
|
Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res 2015; 24:335-41. [PMID: 24892958 DOI: 10.1097/cmr.0000000000000080] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Melanoma is a highly aggressive skin cancer with increasing incidence worldwide. Long noncoding RNAs (lncRNAs), a group of nonprotein-coding transcripts longer than 200 nucleotides, are pervasively transcribed in the genome and are emerging as new players in tumorigenesis. The primary objective of this study was to investigate the role of six cancer-related lncRNAs in pairs of melanoma and adjacent normal tissues (ANTs). A total of 63 primary melanoma, paired ANTs, and metastatic lesions were collected in a Chinese population. Real-time PCR analysis was carried out to compare a series of cancer-related lncRNAs among primary melanoma tissues, ANTs, and metastatic lesions. In in-vitro studies, transwell migration assay was carried out to estimate the migration abilities of melanoma cells with different expression levels of urothelial carcinoma-associated 1 (UCA1) or metastasis-associated lung adenocarcinoma transcript 1 (Malat-1) lncRNAs. We found that UCA1 and Malat-1 lncRNAs were markedly more increased in melanomas than in paired ANTs (P<0.05). Melanomas at later stages (stages 3-4) showed higher expression of UCA1 lncRNA than those at early stages (stages 1-2) (P=0.455). In melanomas with lymph node metastasis, the metastatic lesions had a relatively higher expression of Malat-1 lncRNA than in paired primary tumors (P=0.414). Knockdown of UCA1 or Malat-1 lncRNA could attenuate the migrational ability of melanoma cells in in-vitro studies. Increased expression of UCA1 and Malat-1 lncRNAs might have a correlation with melanoma metastasis.
Collapse
|
525
|
Qiu JJ, Yan JB. Long non-coding RNA LINC01296 is a potential prognostic biomarker in patients with colorectal cancer. Tumour Biol 2015; 36:7175-83. [PMID: 25894381 DOI: 10.1007/s13277-015-3448-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC), one of the most malignant cancers, is currently the fourth leading cause of cancer deaths worldwide. Recent studies indicated that long non-coding RNAs (lncRNAs) could be robust molecular prognostic biomarkers that can refine the conventional tumor-node-metastasis staging system to predict the outcomes of CRC patients. In this study, the lncRNA expression profiles were analyzed in five datasets (GSE24549, GSE24550, GSE35834, GSE50421, and GSE31737) by probe set reannotation and an lncRNA classification pipeline. Twenty-five lncRNAs were differentially expressed between CRC tissue and tumor-adjacent normal tissue samples. In these 25 lncRNAs, patients with higher expression of LINC01296, LINC00152, and FIRRE showed significantly better overall survival than those with lower expression (P < 0.05), suggesting that these lncRNAs might be associated with prognosis. Multivariate analysis indicated that LINC01296 overexpression was an independent predictor for patients' prognosis in the test datasets (GSE24549, GSE24550) (P = 0.001) and an independent validation series (GSE39582) (P = 0.027). Our results suggest that LINC01296 could be a novel prognosis biomarker for the diagnosis of CRC.
Collapse
Affiliation(s)
- Jia-Jun Qiu
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, 24/1400 West Beijing Rd., Shanghai, 200040, China
| | - Jing-Bin Yan
- Shanghai Children's Hospital, Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University School of Medicine, 24/1400 West Beijing Rd., Shanghai, 200040, China. .,Key Laboratory of Embryo Molecular Biology, Ministry of Health of China and Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China. .,State Key Laboratory of Biocherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
526
|
Duggirala A, Delogu F, Angelini TG, Smith T, Caputo M, Rajakaruna C, Emanueli C. Non coding RNAs in aortic aneurysmal disease. Front Genet 2015; 6:125. [PMID: 25883602 PMCID: PMC4381652 DOI: 10.3389/fgene.2015.00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023] Open
Abstract
An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches. Non-coding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs have opened the field of ncRNAs capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers for aortic aneurysm. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focus at ncRNA roles in aorta aneurysms. We discuss the potential of therapeutic interventions targeting ncRNAs and we describe the research models allowing for mechanistic studies and clinical translation attempts for controlling aneurysm progression. Furthermore, we discuss the potential role of microRNAs and lncRNAs as clinical biomarkers.
Collapse
Affiliation(s)
- Aparna Duggirala
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Francesca Delogu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | | | - Tanya Smith
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK ; Rush Centre for Congenital and Structural Heart Disease, Rush University Medical Centre Chicago, IL, USA
| | - Cha Rajakaruna
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol Bristol, UK
| |
Collapse
|
527
|
Hu G, Yang T, Zheng J, Dai J, Nan A, Lai Y, Zhang Y, Yang C, Jiang Y. Functional role and mechanism of lncRNA LOC728228 in malignant 16HBE cells transformed by anti-benzopyrene-trans-7,8-dihydrodiol-9,10-epoxide. Mol Carcinog 2015; 54 Suppl 1:E192-204. [PMID: 25820656 DOI: 10.1002/mc.22314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/21/2015] [Indexed: 11/09/2022]
Abstract
Lung cancer is a major health problem, and is considered one of the deadliest cancers in humans. It is refractory to current treatments, and the mechanisms of lung cancer are unknown. Long noncoding RNAs (lncRNAs) are involved in various biological processes and human diseases. However, the exact functional roles and mechanisms of lncRNAs are largely unclear. In this study, we attempted to identify lung-cancer-related lncRNAs. We found changes in lncRNA expression in the anti-benzo(a) pyrene-7,8-diol-9,10-epoxide (anti-BPDE)-transformed human bronchial epithelial cell line (16HBE-T cells) using microarrays and qRT-PCR. Of these lncRNAs, LOC728228 was upregulated relative to its expression in control untransformed16HBE (16HBE-N) cells. LOC728228 knockdown inhibited cell proliferation, caused G0/G1-phase cell-cycle arrest, reduced cellular migration, suppressed colony formation in vitro, and inhibited tumor growth in a nude mouse xenograft model. LOC728228 knockdown also suppressed cyclin D1 expression, and the depletion of cyclin D1 induced G0/G1-phase cell-cycle arrest and inhibited cell proliferation, thus influencing the malignant potential of cancer cells. In summary, our results suggest that lncRNA LOC728228 has an oncogene-like function and plays a vital role in human lung cancer.
Collapse
Affiliation(s)
- Gongcheng Hu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Ti Yang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Jingli Zheng
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Jiabing Dai
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Aruo Nan
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Yandong Lai
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Yajie Zhang
- Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Chengfeng Yang
- Department of Physiology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan, 48824
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, PR China
| |
Collapse
|
528
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
529
|
Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 2015; 16:18. [PMID: 25884509 PMCID: PMC4399149 DOI: 10.1186/s12868-015-0157-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
Background Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. Conclusions Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yufeng Liu
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yanlin Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Liren Huang
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen, 518083, PR China.
| | - Tao Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Yonghui Dang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China. .,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Shaanxi, PR China.
| |
Collapse
|
530
|
Kadakkuzha BM, Liu XA, McCrate J, Shankar G, Rizzo V, Afinogenova A, Young B, Fallahi M, Carvalloza AC, Raveendra B, Puthanveettil SV. Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci 2015; 9:63. [PMID: 25798087 PMCID: PMC4351618 DOI: 10.3389/fncel.2015.00063] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Jennifer McCrate
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Gautam Shankar
- Informatics Core, The Scripps Research Institute Jupiter, FL, USA
| | - Valerio Rizzo
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Alina Afinogenova
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | - Brandon Young
- Genomics Core, The Scripps Research Institute Jupiter, FL, USA
| | - Mohammad Fallahi
- Informatics Core, The Scripps Research Institute Jupiter, FL, USA
| | | | - Bindu Raveendra
- Department of Neuroscience, The Scripps Research Institute Jupiter, FL, USA
| | | |
Collapse
|
531
|
Gu M, Naiyachit Y, Wood TJ, Millar CB. H2A.Z marks antisense promoters and has positive effects on antisense transcript levels in budding yeast. BMC Genomics 2015; 16:99. [PMID: 25765960 PMCID: PMC4337092 DOI: 10.1186/s12864-015-1247-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The histone variant H2A.Z, which has been reported to have both activating and repressive effects on gene expression, is known to occupy nucleosomes at the 5' ends of protein-coding genes. RESULTS We now find that H2A.Z is also significantly enriched in gene coding regions and at the 3' ends of genes in budding yeast, where it co-localises with histone marks associated with active promoters. By comparing H2A.Z binding to global gene expression in budding yeast strains engineered so that normally unstable transcripts are abundant, we show that H2A.Z is required for normal levels of antisense transcripts as well as sense ones. High levels of H2A.Z at antisense promoters are associated with decreased antisense transcript levels when H2A.Z is deleted, indicating that H2A.Z has an activating effect on antisense transcripts. Decreases in antisense transcripts affected by H2A.Z are accompanied by increased levels of paired sense transcripts. CONCLUSIONS The effect of H2A.Z on protein coding gene expression is a reflection of its importance for normal levels of both sense and antisense transcripts.
Collapse
Affiliation(s)
- Muxin Gu
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Yanin Naiyachit
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Thomas J Wood
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| | - Catherine B Millar
- Faculty of Life Sciences, University of Manchester, M13 9PT, Manchester, UK.
| |
Collapse
|
532
|
Cao J, Luo Z, Cheng Q, Xu Q, Zhang Y, Wang F, Wu Y, Song X. Three-dimensional regulation of transcription. Protein Cell 2015; 6:241-53. [PMID: 25670626 PMCID: PMC4383755 DOI: 10.1007/s13238-015-0135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022] Open
Abstract
Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and non-coding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.
Collapse
Affiliation(s)
- Jun Cao
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Zhengyu Luo
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qingyu Cheng
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qianlan Xu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Fei Wang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Wu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Xiaoyuan Song
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
533
|
Li W, Li J, Wang R, Xie H, Jia Z. MDR1 will play a key role in pharmacokinetic changes under hypoxia at high altitude and its potential regulatory networks. Drug Metab Rev 2015; 47:191-8. [PMID: 25639892 DOI: 10.3109/03602532.2015.1007012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Some newest studies indicated that drug transports may play the key role in pharmacokinetics changes under hypoxia at high altitude; MDR1 is now known to affect the disposition of many administered drugs and make a major contribution to absorption, distribution, metabolism, excretion. Different expression of MDR1 is frequently found in different normal tissues and tumor cells; it is important to better understand how MDR1 is regulated under hypoxia, which seems to be a complex and highly controlled process. Several signaling pathways and transcription factors have been described as being involved in the regulation of MDR1 expression, such as MAPK/ERK, nuclear factor-kappaB, hypoxia-inducible factor-1a, pregnane × receptor, constitutive androstane receptor and microRNA. Recently, researches have been increasingly appreciating long non-coding RNAs (lncRNAs) as an integral component of gene regulatory networks. lncRNAs play crucial roles in various biological processes ranging from epigenetic gene regulation, transcriptional control, post-transcriptional regulation, pre-mRNA processing and nuclear organization. A last recent research showed that H19 gene non-coding RNA is believed to induce P-glycoprotein expression under hypoxia.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of the Plateau Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command , PLA, Lanzhou , China
| | | | | | | | | |
Collapse
|
534
|
Chandra V, Hong KM. Effects of deranged metabolism on epigenetic changes in cancer. Arch Pharm Res 2015; 38:321-37. [PMID: 25628247 DOI: 10.1007/s12272-015-0561-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022]
Abstract
The concept of epigenetics is now providing the mechanisms by which cells transfer their new environmental-change-induced phenotypes to their daughter cells. However, how extracellular or cytoplasmic environmental cues are connected to the nuclear epigenome remains incompletely understood. Recently emerging evidence suggests that epigenetic changes are correlated with metabolic changes via chromatin remodeling. As many human complex diseases including cancer harbor both epigenetic changes and metabolic dysregulation, understanding the molecular processes linking them has huge implications for disease pathogenesis and therapeutic intervention. In this review, the impacts of metabolic changes on cancer epigenetics are discussed, along with the current knowledge on cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Vishal Chandra
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 410-769, Korea
| | | |
Collapse
|
535
|
Shi X, Sun M, Wu Y, Yao Y, Liu H, Wu G, Yuan D, Song Y. Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol 2015; 36:503-13. [PMID: 25618601 DOI: 10.1007/s13277-015-3106-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
It is a great surprise that the genomes of mammals and other eukaryotes harbor many thousands of long noncoding RNAs (lncRNAs). Although these long noncoding transcripts were once considered to be simply transcriptional noise or cloning artifacts, multiple studies have suggested that lncRNAs are emerging as new players in diverse human diseases, especially in cancer, and that the molecular mechanisms of lncRNAs need to be elucidated. More recently, evidence has begun to accumulate describing the complex post-transcriptional regulation in which lncRNAs are involved. It was reported that lncRNAs can be implicated in degradation, translation, pre-messenger RNA (mRNA) splicing, and protein activities and even as microRNAs (miRNAs) sponges in both a sequence-dependent and sequence-independent manner. In this review, we present an updated vision of lncRNAs and summarize the mechanism of post-transcriptional regulation by lncRNAs, providing new insight into the functional cellular roles that they may play in human diseases, with a particular focus on cancers.
Collapse
Affiliation(s)
- Xuefei Shi
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China,
| | | | | | | | | | | | | | | |
Collapse
|
536
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
537
|
Yang JR, Zhang J. Human long noncoding RNAs are substantially less folded than messenger RNAs. Mol Biol Evol 2014; 32:970-7. [PMID: 25540450 DOI: 10.1093/molbev/msu402] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) do not code for proteins but function as RNAs. Because the functions of an RNA rely on either its sequence or secondary structure, lncRNAs should be folded at least as strongly as messenger RNAs (mRNAs), which serve as messengers for translation and are generally thought to lack secondary structure-dependent RNA-level functions. Contrary to this prediction, analysis of genome-wide experimental data of human RNA folding reveals that lncRNAs are substantially less folded than mRNAs even after the control of expression level and GC% (percentage of guanines and cytosines), although both lncRNAs and mRNAs are more strongly folded than expected by chance. In contrast to mRNAs, lncRNAs show neither the positive correlation between folding strength and expression level nor the negative correlation between folding strength and evolutionary rate. These and other results support that although RNA folding undoubtedly plays a role in RNA biology it is also important in translation and/or protein biology.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan
| |
Collapse
|
538
|
Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H, Sun J. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. MOLECULAR BIOSYSTEMS 2014; 11:760-9. [PMID: 25502053 DOI: 10.1039/c4mb00511b] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accumulated evidence has shown that long non-coding RNAs (lncRNA) act as a widespread layer in gene regulatory networks and are involved in a wide range of biological processes. The dysregulation of lncRNA has been implicated in various complex human diseases. Although several computational methods have been developed to predict disease-related lncRNA, this still remains a considerable challenging task. In this study, we tried to construct an lncRNA-lncRNA crosstalk network by examining the significant co-occurrence of shared miRNA response elements on lncRNA transcripts from the competing endogenous RNAs viewpoint. As expected, functional analysis showed that lncRNA sharing significantly enriched interacting miRNAs tend to be involved in similar diseases and have more functionally related flanking gene sets. We further proposed a novel rank-based method, RWRHLD, to prioritize candidate lncRNA-disease associations by integrating three networks (miRNA-associated lncRNA-lncRNA crosstalk network, disease-disease similarity network and known lncRNA-disease association network) into a heterogeneous network and implementing a random walk with restart on this heterogeneous network. We used leave-one-out cross-validation to test the performance of this rank-based method in this study based on known experimentally verified lncRNA-disease associations and obtained a reliable AUC value of 0.871, which is much higher than RWR merely based on an lncRNA network, hypergeometric test and random situation. Furthermore, several novel lncRNA-disease associations predicted in case studies of ovarian cancer and prostate cancer have been confirmed in new studies by literature surveys.
Collapse
Affiliation(s)
- Meng Zhou
- School of Life Science, Jilin University, Changchun 130012, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
539
|
Chen FC, Pan CL, Lin HY. Functional Implications of RNA Splicing for Human Long Intergenic Noncoding RNAs. Evol Bioinform Online 2014; 10:219-28. [PMID: 25574121 PMCID: PMC4264600 DOI: 10.4137/ebo.s20772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) have been suggested as playing important roles in human gene regulation. The majority of annotated human lincRNAs include multiple exons and are alternatively spliced. However, the connections between alternative RNA splicing (AS) and the functions/regulations of lincRNAs have remained elusive. In this study, we compared the sequence evolution and biological features between single-exonic lincRNAs and multi-exonic lincRNAs (SELs and MELs, respectively) that were present only in the hominoids (hominoid-specific) or conserved in primates (primate-conserved). The MEL exons were further classified into alternatively spliced exons (ASEs) and constitutively spliced exons (CSEs) for evolutionary analyses. Our results indicate that SELs and MELs differed significantly from each other. Firstly, in hominoid-specific lincRNAs, MELs (both CSEs and ASEs) evolved slightly more rapidly than SELs, which evolved approximately at the neutral rate. In primate-conserved lincRNAs, SELs and ASEs evolved slightly more slowly than CSEs and neutral sequences. The evolutionary path of hominid-specific lincRNAs thus seemed to have diverged from that of their more ancestral counterparts. Secondly, both of the exons and transcripts of SELs were significantly longer than those of MELs, and this was probably because SEL transcripts were more resistant to RNA splicing than MELs. Thirdly, SELs were physically closer to coding genes than MELs. Fourthly, SELs were more widely expressed in human tissues than MELs. These results suggested that SELs and MELs represented two biologically distinct groups of genes. In addition, the SEL-MEL and ASE-CSE differences implied that splicing might be important for the functionality or regulations of lincRNAs in primates.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan. ; Department of Biological Science and Technology, National Chiao-Tung University, Taiwan. ; Department of Dentistry, China Medical University, Taiwan
| | - Chia-Lin Pan
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan
| | - Hsuan-Yu Lin
- Institute of Population Health Sciences, National Health Research Institutes, Taiwan
| |
Collapse
|
540
|
Fang XY, Pan HF, Leng RX, Ye DQ. Long noncoding RNAs: novel insights into gastric cancer. Cancer Lett 2014; 356:357-66. [PMID: 25444905 DOI: 10.1016/j.canlet.2014.11.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Recent advances in the non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack coding protein function, termed non-coding RNA (ncRNA). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNA world. Moreover, accumulating evidence has demonstrated that many lncRNAs are dysregulated in gastric cancer (GC) and closely related to tumorigenesis, metastasis, and prognosis or diagnosis. In this review, we will briefly outline the regulation and functional role of lncRNAs in GC. Finally, we discussed the potential of lncRNAs as prospective novel targets in GC treatment and biomarkers for GC diagnosis.
Collapse
Affiliation(s)
- Xin-yu Fang
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hai-feng Pan
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Rui-xue Leng
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dong-qing Ye
- Department of Epidemiology and Biostatistics, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
541
|
Kang D, Kim YJ, Hong K, Han K. TE composition of human long noncoding RNAs and their expression patterns in human tissues. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
542
|
Kapusta A, Feschotte C. Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 2014; 30:439-52. [PMID: 25218058 PMCID: PMC4464757 DOI: 10.1016/j.tig.2014.08.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 02/08/2023]
Abstract
Thousands of genes encoding long noncoding RNAs (lncRNAs) have been identified in all vertebrate genomes thus far examined. The list of lncRNAs partaking in arguably important biochemical, cellular, and developmental activities is steadily growing. However, it is increasingly clear that lncRNA repertoires are subject to weak functional constraint and rapid turnover during vertebrate evolution. We discuss here some of the factors that may explain this apparent paradox, including relaxed constraint on sequence to maintain lncRNA structure/function, extensive redundancy in the regulatory circuits in which lncRNAs act, as well as adaptive and non-adaptive forces such as genetic drift. We explore the molecular mechanisms promoting the birth and rapid evolution of lncRNA genes, with an emphasis on the influence of bidirectional transcription and transposable elements, two pervasive features of vertebrate genomes. Together these properties reveal a remarkably dynamic and malleable noncoding transcriptome which may represent an important source of robustness and evolvability.
Collapse
Affiliation(s)
- Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
543
|
Hu G, Lou Z, Gupta M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One 2014; 9:e107016. [PMID: 25197831 PMCID: PMC4157848 DOI: 10.1371/journal.pone.0107016] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/11/2014] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E) in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.
Collapse
Affiliation(s)
- Guangzhen Hu
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zhenkun Lou
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mamta Gupta
- Division of Hematology and Division of Oncology Research, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
544
|
Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr 2014; 68:1179-85. [PMID: 25182020 DOI: 10.1038/ejcn.2014.173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023]
Abstract
Nutrition affects the brain throughout life, with profound implications for cognitive decline and dementia. These effects are mediated by changes in expression of multiple genes, and responses to nutrition are in turn affected by individual genetic variability. An important layer of regulation is provided by the epigenome: nutrition is one of the many epigenetic regulators that modify gene expression without changes in DNA sequence. Epigenetic mechanisms are central to brain development, structure and function, and include DNA methylation, histone modifications and non-protein-coding RNAs. They enable cell-specific and age-related gene expression. Although epigenetic events can be highly stable, they can also be reversible, highlighting a critical role for nutrition in prevention and treatment of disease. Moreover, they suggest key mechanisms by which nutrition is involved in the pathogenesis of age-related cognitive decline: many nutrients, foods and diets have both immediate and long-term effects on the epigenome, including energy status, that is, energy intake, physical activity, energy metabolism and related changes in body composition, and micronutrients involved in DNA methylation, for example, folate, vitamins B6 and B12, choline, methionine. Optimal brain function results from highly complex interactions between numerous genetic and environmental factors, including food intake, physical activity, age and stress. Future studies linking nutrition with advances in neuroscience, genomics and epigenomics should provide novel approaches to the prevention of cognitive decline, and treatment of dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- M J Dauncey
- Wolfson College, University of Cambridge, Cambridge, UK
| |
Collapse
|
545
|
Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4975-83. [PMID: 24948679 PMCID: PMC4144774 DOI: 10.1093/jxb/eru256] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein-coding genes are considered to be a dominant component of the eukaryotic transcriptome; however, many studies have shown that intergenic, non-coding transcripts also play an important role. Long intergenic non-coding RNAs (lincRNAs) were found to play a vital role in human and Arabidopsis. However, lincRNAs and their regulatory roles remain poorly characterized in woody plants, especially Populus trichocarpa (P. trichocarpa). A large set of Populus RNA-Seq data were examined with high sequencing depth under control and drought conditions and a total of 2542 lincRNA candidates were identified. In total, 51 lincRNAs and 20 lincRNAs were identified as putative targets and target mimics of known Populus miRNAs, respectively. A total of 504 lincRNAs were found to be drought responsive, eight of which were confirmed by RT-qPCR. These findings provide a comprehensive view of Populus lincRNAs, which will enable in-depth functional analysis.
Collapse
Affiliation(s)
- Peng Shuai
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Dan Liang
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Sha Tang
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Zhoujia Zhang
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Chu-Yu Ye
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yanyan Su
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Xinli Xia
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Weilun Yin
- College of Biological Sciences and Technology, National Engineering Laboratory of Tree Breeding, Beijing Forestry University, mailbox 69, No. 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|
546
|
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51:344-57. [PMID: 25123609 DOI: 10.3109/10408363.2014.944299] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale , Slovenia
| | | | | | | | | |
Collapse
|
547
|
Brosius J. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harb Perspect Biol 2014; 6:a016089. [PMID: 25081515 DOI: 10.1101/cshperspect.a016089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
548
|
Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 2014; 24:594-602. [PMID: 25022466 DOI: 10.1016/j.tcb.2014.06.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a pervasive and recently recognized class of genes. lncRNAs have been proposed to modulate gene expression and nuclear architecture, but their physiological functions are still largely unclear. Several recent efforts to inactivate lncRNA genes in mouse models have shed light on their functions. Different genetic strategies have yielded specific lessons about the roles of lncRNA transcription, the lncRNA transcript itself, and underlying sequence elements. Current results indicate important functions for lncRNAs in organ development, immunity, organismal viability, and in human diseases.
Collapse
|
549
|
Abstract
Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression.
Collapse
|
550
|
Abstract
The study of long noncoding RNAs (lncRNAs) is still in its infancy with more putative RNAs identified than those with ascribed functions. Defined as transcripts that are longer than 200 nucleotides without a coding sequence, their numbers are on the rise and may well challenge protein coding transcripts in number and diversity. lncRNAs are often expressed at low levels and their sequences are frequently poorly conserved, making it unclear if they are transcriptional noise or bonafide effectors. Despite these limitations, inroads into their functions are being made and it is clear they make a contribution in regulating all aspects of biology. The early verdict on their activity, however, suggests the majority function as chromatin modifiers. A good proportion show a connection to disease highlighting their importance and the need to determine their function. The focus of this review is on lncRNAs which influence developmental processes which in itself covers a large range of known activities.
Collapse
Affiliation(s)
- Jamila I Horabin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W. Call St., Tallahassee, FL, 32306-4300, USA,
| |
Collapse
|