501
|
Beamer E, Gölöncsér F, Horváth G, Bekő K, Otrokocsi L, Koványi B, Sperlágh B. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior. Neuropharmacology 2015; 104:94-104. [PMID: 26384652 DOI: 10.1016/j.neuropharm.2015.09.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/21/2022]
Abstract
The principle functions of neuroinflammation are to limit tissue damage and promote tissue repair in response to pathogens or injury. While neuroinflammation has utility, pathophysiological inflammatory responses, to some extent, underlie almost all neuropathology. Understanding the mechanisms that control the three stages of inflammation (initiation, propagation and resolution) is therefore of critical importance for developing treatments for diseases of the central nervous system. The purinergic signaling system, involving adenosine, ATP and other purines, plus a host of P1 and P2 receptor subtypes, controls inflammatory responses in complex ways. Activation of the inflammasome, leading to release of pro-inflammatory cytokines, activation and migration of microglia and altered astroglial function are key regulators of the neuroinflammatory response. Here, we review the role of P1 and P2 receptors in mediating these processes and examine their contribution to disorders of the nervous system. Firstly, we give an overview of the concept of neuroinflammation. We then discuss the contribution of P2X, P2Y and P1 receptors to the underlying processes, including a discussion of cross-talk between these different pathways. Finally, we give an overview of the current understanding of purinergic contributions to neuroinflammation in the context of specific disorders of the central nervous system, with special emphasis on neuropsychiatric disorders, characterized by chronic low grade inflammation or maternal inflammation. An understanding of the important purinergic contribution to neuroinflammation underlying neuropathology is likely to be a necessary step towards the development of effective interventions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Edward Beamer
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Gergely Horváth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Katinka Bekő
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Bence Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary.
| |
Collapse
|
502
|
Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res 2015; 1620:42-56. [PMID: 25935694 DOI: 10.1016/j.brainres.2015.04.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Neuronal apoptosis occurs as a sequel of oxidative stress associated with various neuropathies. In this study, we have investigated the protective effect of farnesol, a sequisterpene on lipopolysaccharide (LPS) induced neurodegeneration through modulation of intrinsic apoptotic cascade in the cortex and hippocampus of Swiss albino mice. Intraperitoneal (i.p.) injection of LPS (250 μg/kg b.wt. for 7 days) resulted in elevated levels of lipid peroxidation, protein carbonyls and 8-Hydroxydeoxyguanosine (8OHdG), with subsequent depletion in the antioxidant status and severe histological aberrations. These anomalies were accompanied by increased expressions of pro-apoptotic Bax, caspase-3 and p53 with decrease in anti-apoptotic Bcl-2. Farnesol treatment (100mg/kg b.wt.) ameliorated LPS-induced oxidative stress by enhancing the antioxidant defense system as evident from the increased levels of SOD, CAT, GSH and GST and exhibited protected cellular morphology manifested from histopathological and nissl staining analyses. Farnesol treatment also reduced the expulsion of cytochrome c from mitochondria and downregulated caspase 3 activation as revealed by immunoblot analysis. Furthermore, farnesol treatment reduced the expression of Bax and antagonized LPS-induced decrease in anti-apoptotic Bcl-2. Results of this study show that farnesol exerts neuroprotective effect by regulating intrinsic apoptotic cascade through its antioxidant effect during LPS-induced neurodegeneration.
Collapse
|
503
|
Dobson GP. Addressing the Global Burden of Trauma in Major Surgery. Front Surg 2015; 2:43. [PMID: 26389122 PMCID: PMC4558465 DOI: 10.3389/fsurg.2015.00043] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Despite a technically perfect procedure, surgical stress can determine the success or failure of an operation. Surgical trauma is often referred to as the "neglected step-child" of global health in terms of patient numbers, mortality, morbidity, and costs. A staggering 234 million major surgeries are performed every year, and depending upon country and institution, up to 4% of patients will die before leaving hospital, up to 15% will have serious post-operative morbidity, and 5-15% will be readmitted within 30 days. These percentages equate to around 1000 deaths and 4000 major complications every hour, and it has been estimated that 50% may be preventable. New frontline drugs are urgently required to make major surgery safer for the patient and more predictable for the surgeon. We review the basic physiology of the stress response from neuroendocrine to genomic systems, and discuss the paucity of clinical data supporting the use of statins, beta-adrenergic blockers and calcium-channel blockers. Since cardiac-related complications are the most common, particularly in the elderly, a key strategy would be to improve ventricular-arterial coupling to safeguard the endothelium and maintain tissue oxygenation. Reduced O2 supply is associated with glycocalyx shedding, decreased endothelial barrier function, fluid leakage, inflammation, and coagulopathy. A healthy endothelium may prevent these "secondary hit" complications, including possibly immunosuppression. Thus, the four pillars of whole body resynchronization during surgical trauma, and targets for new therapies, are: (1) the CNS, (2) the heart, (3) arterial supply and venous return functions, and (4) the endothelium. This is termed the Central-Cardio-Vascular-Endothelium (CCVE) coupling hypothesis. Since similar sterile injury cascades exist in critical illness, accidental trauma, hemorrhage, cardiac arrest, infection and burns, new drugs that improve CCVE coupling may find wide utility in civilian and military medicine.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University , Townsville, QLD , Australia
| |
Collapse
|
504
|
Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis. Exp Gerontol 2015; 69:176-88. [DOI: 10.1016/j.exger.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
|
505
|
Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochem Soc Trans 2015; 43:559-65. [DOI: 10.1042/bst20150028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/14/2022]
Abstract
The translocator protein (TSPO, 18 kDa), mainly localized in the outer mitochondrial membrane of steroidogenic tissues, is involved in several cellular functions. TSPO level alterations have been reported in a number of human disorders, particularly in cancer, psychiatric and neurological diseases. In the central nervous system (CNS), TSPO is usually expressed in glial cells, but also in some neuronal cell types. Interestingly, the expression of TSPO on glial cells rises after brain injury and increased TSPO expression is often observed in neurological disorders, gliomas, encephalitis and traumatic injury. Since TSPO is up-regulated in brain diseases, several structurally different classes of ligands targeting TSPO have been described as potential diagnostic or therapeutic agents. Recent researches have reported that TSPO ligands might be valuable in the treatment of brain diseases. This review focuses on currently available TSPO ligands, as useful tools for the treatment of neurodegeneration, neuro-inflammation and neurotrauma.
Collapse
|
506
|
Baloyannis SJ, Mavroudis I, Mitilineos D, Baloyannis IS, Costa VG. The hypothalamus in Alzheimer's disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 2015; 30:478-87. [PMID: 25380804 PMCID: PMC10852817 DOI: 10.1177/1533317514556876] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, characterized by irreversible decline of mental faculties, emotional and behavioral changes, loss of motor skills, and dysfunction of autonomic nervous system and disruption of circadian rhythms (CRs). We attempted to describe the morphological findings of the hypothalamus in early cases of AD, focusing our study mostly on the suprachiasmatic nucleus (SCN), the supraoptic nucleus (SON), and the paraventricular nucleus (PVN). Samples were processed for electron microscopy and silver impregnation techniques. The hypothalamic nuclei demonstrated a substantial decrease in the neuronal population, which was particularly prominent in the SCN. Marked abbreviation of dendritic arborization, in association with spinal pathology, was also seen. The SON and PVN demonstrated a substantial number of dystrophic axons and abnormal spines. Alzheimer's pathology, such as deposits of amyloid-β peptide and neurofibrillary degeneration, was minimal. Electron microscopy revealed mitochondrial alterations in the cell body and the dendritic branches. The morphological alterations of the hypothalamic nuclei in early cases of AD may be related to the gradual alteration of CRs and the instability of autonomic regulation.
Collapse
Affiliation(s)
- Stavros J Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| | - Ioannis Mavroudis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Demetrios Mitilineos
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Ioannis S Baloyannis
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece
| | - Vassiliki G Costa
- Department of Neurology, Laboratory of Neuropathology and Electron Microscopy, Aristotelian University, Thessaloniki, Greece Laboratory of Neuropathology, Institute for Research on Alzheimer's Disease, Iraklion, Greece
| |
Collapse
|
507
|
Zhang J, Dai H, Deng Y, Tian J, Zhang C, Hu Z, Bing G, Zhao L. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology 2015. [PMID: 26215101 DOI: 10.1016/j.tox.2015.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasing epidemiological and toxicological evidence suggests that pesticides and other environmental exposures may be associated with the development of Parkinson's disease (PD). Chlorpyrifos (CPF) is a widely used organophosphorous pesticide with developmental neurotoxicity. Its neurotoxicity, notably on the monoamine system, suggests that exposure of CPF may induce dopaminergic neuronal injury. We investigated whether neonatal exposure to CPF contributes to initiation and progression of dopaminergic neurotoxicity and explored the possible underlying mechanisms. The newborn rats were administrated 5 mg/kg CPF subcutaneously from postnatal day (PND) 11 to PND 14 daily. The effect of CPF on dopaminergic neurons, microglia, astrocyte, nuclear factor-κB (NF-κB) p. 65 and p. 38 mitogen-activated protein kinase (MAPK) signaling pathways was analyzed in the substantia nigra of rats at 12h, 24h, 72 h, 16d and 46 d after exposure. CPF-treated rats exhibited significant reduction of dopaminergic neurons at 16d and 46 d after exposure, and a significant increase in the expression of microglia and astrocytes in the substantia nigra after CPF exposure. Intense activation of NF-κB p. 65 and p. 38 MAPK inflammatory signaling pathways was observed. Our findings indicate that neonatal exposure to CPF may induce long-term dopaminergic neuronal damage in the substantia nigra mediated by the activation of inflammatory response via NF-κB p. 65 and p. 38 MAPK pathways in the nigrostriatal system.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Dai
- Department of Paediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanying Deng
- Department of Paediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Tian
- Department of Paediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Zhang
- Department of Paediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoying Bing
- Department of Anatomy and Neurobiology, University of Kentucky, School of Medicine, Lexington, KY 40502, USA
| | - Lingling Zhao
- Department of Paediatrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
508
|
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207229 DOI: 10.3978/j.issn.2305-5839.2015.03.49] [Citation(s) in RCA: 534] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain, which is characterized by the formation of extracellular amyloid plaques (or senile plaques) and intracellular neurofibrillary tangles. However, increasing evidences demonstrated that neuroinflammatory changes, including chronic microgliosis are key pathological components of AD. Microglia, the resident immune cells of the brain, is constantly survey the microenvironment under physiological conditions. In AD, deposition of β-amyliod (Aβ) peptide initiates a spectrum of cerebral neuroinflammation mediated by activating microglia. Activated microglia may play a potentially detrimental role by eliciting the expression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) influencing the surrounding brain tissue. Emerging studies have demonstrated that up-regulation of pro-inflammatory cytokines play multiple roles in both neurodegeneration and neuroprotection. Understanding the pro-inflammatory cytokines signaling pathways involved in the regulation of AD is crucial to the development of strategies for therapy. This review will discuss the mechanisms and important role of pro-inflammatory cytokines in the pathogenesis of AD, and the ongoing drug targeting pro-inflammatory cytokine for therapeutic modulation.
Collapse
Affiliation(s)
- Wen-Ying Wang
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Meng-Shan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
509
|
von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 2015; 7:124. [PMID: 26257642 PMCID: PMC4507468 DOI: 10.3389/fnagi.2015.00124] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022] Open
Abstract
Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | - Jaime Eugenín
- Laboratory of Neural Systems, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH) Santiago, Chile
| |
Collapse
|
510
|
An anti-inflammatory role for C/EBPδ in human brain pericytes. Sci Rep 2015; 5:12132. [PMID: 26166618 PMCID: PMC4499812 DOI: 10.1038/srep12132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/01/2015] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurological disorders and pericytes are implicated in brain inflammatory processes. Cellular inflammatory responses are orchestrated by transcription factors but information on transcriptional control in pericytes is lacking. Because the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ) is induced in a number of inflammatory brain disorders, we sought to investigate its role in regulating pericyte immune responses. Our results reveal that C/EBPδ is induced in a concentration- and time-dependent fashion in human brain pericytes by interleukin-1β (IL-1β). To investigate the function of the induced C/EBPδ in pericytes we used siRNA to knockdown IL-1β-induced C/EBPδ expression. C/EBPδ knockdown enhanced IL-1β-induced production of intracellular adhesion molecule-1 (ICAM-1), interleukin-8, monocyte chemoattractant protein-1 (MCP-1) and IL-1β, whilst attenuating cyclooxygenase-2 and superoxide dismutase-2 gene expression. Altered ICAM-1 and MCP-1 protein expression were confirmed by cytometric bead array and immunocytochemistry. Our results show that knock-down of C/EBPδ expression in pericytes following immune stimulation increased chemokine and adhesion molecule expression, thus modifying the human brain pericyte inflammatory response. The induction of C/EBPδ following immune stimulation may act to limit infiltration of peripheral immune cells, thereby preventing further inflammatory responses in the brain.
Collapse
|
511
|
Sun X, Voloboueva LA, Stary CM, Giffard RG. Physiologically normal 5% O2 supports neuronal differentiation and resistance to inflammatory injury in neural stem cell cultures. J Neurosci Res 2015; 93:1703-12. [PMID: 26147710 DOI: 10.1002/jnr.23615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023]
Abstract
Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Ludmila A Voloboueva
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
512
|
Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW. Role of Microvascular Disruption in Brain Damage from Traumatic Brain Injury. Compr Physiol 2015; 5:1147-1160. [PMID: 26140712 PMCID: PMC4573402 DOI: 10.1002/cphy.c140057] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood-brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug-treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis.
Collapse
Affiliation(s)
- Aric F Logsdon
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
- Center for Neuroscience, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
513
|
Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol 2015; 35:2771-89. [PMID: 26055327 DOI: 10.1128/mcb.00181-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients.
Collapse
|
514
|
Iturria-Medina Y, Evans AC. On the central role of brain connectivity in neurodegenerative disease progression. Front Aging Neurosci 2015; 7:90. [PMID: 26052284 PMCID: PMC4439541 DOI: 10.3389/fnagi.2015.00090] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP) transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| |
Collapse
|
515
|
Merighi S, Borea PA, Stefanelli A, Bencivenni S, Castillo CA, Varani K, Gessi S. A2aand a2badenosine receptors affect HIF-1α signaling in activated primary microglial cells. Glia 2015; 63:1933-1952. [DOI: 10.1002/glia.22861] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Stefania Merighi
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Pier Andrea Borea
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Angela Stefanelli
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Serena Bencivenni
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Carlos Alberto Castillo
- Department of Nursing; Faculty of Nursing; Occupational and Speech Therapies, University of Castilla-La Mancha; Talavera De La Reina Spain
| | - Katia Varani
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| | - Stefania Gessi
- Department of Medical Sciences; Pharmacology Section, University of Ferrara; via Fossato Di Mortara 17/19 Ferrara 44121 Italy
| |
Collapse
|
516
|
Iyalomhe O, Chen Y, Allard J, Ntekim O, Johnson S, Bond V, Goerlitz D, Li J, Obisesan TO. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes. Exp Gerontol 2015; 69:159-69. [PMID: 25981742 DOI: 10.1016/j.exger.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Yuanxiu Chen
- Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Joanne Allard
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Oyonumo Ntekim
- Department of Health, Human Performance, and Leisure Studies, College of Arts and Science, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Sheree Johnson
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Vernon Bond
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - David Goerlitz
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - James Li
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA; Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA.
| |
Collapse
|
517
|
Ojo JO, Rezaie P, Gabbott PL, Stewart MG. Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 2015; 7:57. [PMID: 25972808 PMCID: PMC4413780 DOI: 10.3389/fnagi.2015.00057] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/04/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is one of the greatest risk factors for the development of sporadic age-related neurodegenerative diseases and neuroinflammation is a common feature of this disease phenotype. In the immunoprivileged brain, neuroglial cells, which mediate neuroinflammatory responses, are influenced by the physiological factors in the microenvironment of the central nervous system (CNS). These physiological factors include but are not limited to cell-to-cell communication involving cell adhesion molecules, neuronal electrical activity and neurotransmitter and neuromodulator action. However, despite this dynamic control of neuroglial activity, in the healthy aged brain there is an alteration in the underlying neuroinflammatory response notably seen in the hippocampus, typified by astrocyte/microglia activation and increased pro-inflammatory cytokine production and signaling. These changes may occur without any overt concurrent pathology, however, they typically correlate with deteriorations in hippocamapal or cognitive function. In this review we examine two important phenomenons, firstly the relationship between age-related brain deterioration (focusing on hippocampal function) and underlying neuroglial response(s), and secondly how the latter affects molecular and cellular processes within the hippocampus that makes it vulnerable to age-related cognitive decline.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Department of Life Sciences, The Open UniversityWalton Hall, UK
- Department of Neuropathology, Roskamp InstituteSarasota, FL, USA
| | - Payam Rezaie
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | - Paul L. Gabbott
- Department of Life Sciences, The Open UniversityWalton Hall, UK
| | | |
Collapse
|
518
|
Abstract
Microglia are macrophages that colonize the brain during development to establish a resident population of professional phagocytes that protect against invading pathogens and contribute to brain development and homeostasis. As such, these cells sit at the interface between immunology and neurobiology. In addition to their key roles in brain physiology, microglia offer a great opportunity to address central questions in biology relating to how migrating cells find their positions in the embryo, adopt a behavior that is appropriate for that position, and interact with their local environment. We aim, in this review, to survey key recent advances in microglial research.
Collapse
Affiliation(s)
- Alessandra Maria Casano
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Francesca Peri
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
519
|
Xu Y, Sheng H, Tang Z, Lu J, Ni X. Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency. Behav Brain Res 2015; 288:71-8. [PMID: 25907742 DOI: 10.1016/j.bbr.2015.04.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/04/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Estrogen deficiency is involved in the development of depression. However, the mechanism underlying estrogen modulates depression-like behavior remains largely unknown. Inflammation and indoleamine-2,3-dioxygenase (IDO) have been shown to play pivotal roles in various depression models. The objective of the present study was to investigate whether estrogen deficiency-induced depression-like behavior is associated with inflammation and IDO activation in brain. The results showed that ovariectomy resulted in depression-like behavior in female rats and caused a decrease in 5-HT content and an increase in levels of IDO, IFN-γ, IL-6, toll like receptor (TLR)-4 and phosphorylated NF-κB (p65 subunit) in hippocampus but not in prefrontal cortex (PFC). 17β-Estradiol (E2) treatment ameliorated depression-like behavior and restored above neurochemical alternations in hippocampus in ovariectomized rats. Partial correlation analysis showed that the levels of phosphorylated p65, IFN-γ and IL-6 in hippocampus correlated to serum E2 level. Our study suggests that estrogen inhibits inflammation and activates of IDO and maintains 5-HT level in hippocampus, thereby ameliorating depression-like behavior.
Collapse
Affiliation(s)
- Yongjun Xu
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Zhiping Tang
- School of Kinesiology, The key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai 200438, China
| | - Jianqiang Lu
- School of Kinesiology, The key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai 200438, China.
| | - Xin Ni
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
520
|
Investigating the microstructural and neurochemical environment within the basal ganglia of current methamphetamine abusers. Drug Alcohol Depend 2015; 149:122-7. [PMID: 25700612 DOI: 10.1016/j.drugalcdep.2015.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Methamphetamine is a highly addictive psychostimulant and the medical, social, and economic consequences associated with its use have become a major international problem. Current evidence has shown methamphetamine to be particularly neurotoxic to dopamine neurons and striatal structures within the basal ganglia. A previous study from our laboratory demonstrated larger putamen volumes in actively using methamphetamine-dependent participants. The purpose of this current study was to determine whether striatal structures in the same sample of participants also exhibit pathology on the microstructural and molecular level. METHODS Diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were carried out in current methamphetamine users (n = 18) and healthy controls (n = 22) to investigate diffusion indices and neurometabolite levels in the basal ganglia. RESULTS Contrary to findings from previous DTI and MRS studies, no significant differences in diffusion indices or metabolite levels were observed in the basal ganglia regions of current methamphetamine users. CONCLUSIONS These findings differ from those reported in abstinent users and the absence of diffusion and neurochemical abnormalities may suggest that striatal enlargement in current methamphetamine use may be due to mechanisms other than edema and glial proliferation.
Collapse
|
521
|
Critical Contribution of Adenosine A2AReceptors in Bone Marrow–Derived Cells to White Matter Lesions Induced by Chronic Cerebral Hypoperfusion. J Neuropathol Exp Neurol 2015; 74:305-18. [DOI: 10.1097/nen.0000000000000174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
522
|
Inflammatory mediator release from primary rhesus microglia in response to Borrelia burgdorferi results from the activation of several receptors and pathways. J Neuroinflammation 2015; 12:60. [PMID: 25889406 PMCID: PMC4396743 DOI: 10.1186/s12974-015-0274-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In previous studies, neurons were documented to undergo apoptosis in the presence of microglia and live Borrelia burgdorferi, but not with either agent alone. Microscopy showed that several Toll-like receptors (TLRs) were upregulated in microglia upon B. burgdorferi exposure. It was hypothesized that the inflammatory milieu generated by microglia in the presence of B. burgdorferi results in neuronal apoptosis and that this inflammation was likely generated through TLR pathways. METHODS In this study, we explored the role of several TLR and nucleotide-binding oligomerization domain containing 2 (NOD2)-dependent pathways in inducing inflammation in the presence of B. burgdorferi, using ribonucleic acid interference (RNAi) and/or inhibitors, in primary non-human primate (NHP) microglia. We also used several inhibitors for key mitogen-activated protein kinase (MAPK) pathways to determine the role of downstream pathways in inflammatory mediator release. RESULTS The results show that the TLR2 pathway plays a predominant role in inducing inflammation, as inhibition of TLR2 with either small interfering RNA (siRNA) or inhibitor, in the presence of B. burgdorferi, significantly downregulated interleukin 6 (IL-6), chemokine (C-X-C) motif ligand 8 (CXCL8), chemokine (C-C) motif ligand 2 (CCL2), and tumor necrosis factor (TNF) production. This was followed by TLR5, the silencing of which significantly downregulated IL-6 and TNF. The role of TLR4 was inconclusive as a TLR4-specific inhibitor and TLR4 siRNA had opposing effects in the presence of B. burgdorferi. Silencing of NOD2 by siRNA in the presence of B. burgdorferi significantly upregulated IL-6, CCL2, and TNF. Downstream signaling involved the adaptor molecule myeloid differentiation primary response 88 (MyD88), as expected, as well as the MAPK pathways, with extracellular signal-regulated kinase (ERK) being predominant, followed by Jun N-terminal kinase (JNK) and p38 pathways. CONCLUSIONS Several receptors and pathways, with both positive and negative effects, mediate inflammation of primary microglia in response to B. burgdorferi, resulting in a complex, tightly regulated immune network.
Collapse
|
523
|
Huang SY, Sung CS, Chen WF, Chen CH, Feng CW, Yang SN, Hung HC, Chen NF, Lin PR, Chen SC, Wang HMD, Chu TH, Tai MH, Wen ZH. Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation 2015; 12:59. [PMID: 25889774 PMCID: PMC4386079 DOI: 10.1186/s12974-015-0280-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/07/2015] [Indexed: 12/30/2022] Open
Abstract
Background Many cancer research studies have extensively examined the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) pathway. There are only few reports that suggest that PTEN might affect pain; however, there is still a lack of evidence to show the role of PTEN for modulating pain. Here, we report a role for PTEN in a rodent model of neuropathic pain. Results We found that chronic constriction injury (CCI) surgery in rats could elicit downregulation of spinal PTEN as well as upregulation of phosphorylated PTEN (phospho-PTEN) and phosphorylated mammalian target of rapamycin (phospho-mTOR). After examining such changes in endogenous PTEN in neuropathic rats, we explored the effects of modulating the spinal PTEN pathway on nociceptive behaviors. The normal rats exhibited mechanical allodynia after intrathecal (i.t.) injection of adenovirus-mediated PTEN antisense oligonucleotide (Ad-antisense PTEN). These data indicate the importance of downregulation of spinal PTEN for nociception. Moreover, upregulation of spinal PTEN by i.t. adenovirus-mediated PTEN (Ad-PTEN) significantly prevented CCI-induced development of nociceptive sensitization, thermal hyperalgesia, mechanical allodynia, cold allodynia, and weight-bearing deficits in neuropathic rats. Furthermore, upregulation of spinal PTEN by i.t. Ad-PTEN significantly attenuated CCI-induced microglia and astrocyte activation, upregulation of tumor necrosis factor-α (TNF-α) and phospho-mTOR, and downregulation of PTEN in neuropathic rats 14 days post injury. Conclusions These findings demonstrate that PTEN plays a key, beneficial role in a rodent model of neuropathic pain.
Collapse
Affiliation(s)
- Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan. .,School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 11221, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, DAPI Road, Kaohsiung, 83301, Taiwan. .,Department of Neurosurgery, Xiamen Chang Gung Memorial Hospital, No. 123, Xiafei Road, Fujian, 361026, China.
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Nan Yang
- School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, I-Shou University, No. 1, Yida Road, Kaohsiung, 82445, Taiwan.
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Nan-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, No. 2, Zhongzheng 1st Road, Kaohsiung, 80284, Taiwan.
| | - Pey-Ru Lin
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - San-Cher Chen
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Hui-Min David Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Graduate Institute of Natural Products, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan. .,Center for Stem Cell Research, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Kaohsiung, 80708, Taiwan.
| | - Tian-Huei Chu
- Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, #70 Lienhai Road, Kaohsiung, 80424, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan. .,Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
524
|
Chen WF, Huang SY, Liao CY, Sung CS, Chen JY, Wen ZH. The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 2015; 53:1-11. [PMID: 25890701 DOI: 10.1016/j.biomaterials.2015.02.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 02/09/2023]
Abstract
The antimicrobial peptide piscidin (PCD)-1 has been reported to have antibacterial and immunomodulatory functions. Here, we investigated the anti-neuropathic properties of PCD-1, in order to determine its potential as a compound to alleviate pain. Treatment with PCD-1 suppressed the inflammatory proteins COX-2 and iNOS in murine macrophage (RAW264.7) and microglial (BV2) cell lines stimulated by lipopolysaccharide (LPS). For studies of the effect of PCD-1 in vivo, mononeuropathy in rats was induced by chronic constriction injury (CCI), and the resulting anti-nociceptive behaviors were compared between CCI controls and CCI rats given intrathecal injections of PCD-1. Much like gabapentin, PCD-1 exerts anti-nociceptive effects against thermal hyperalgesia, with a median effective dose (ED50) of 9.5 μg in CCI rats. In CCI rats, PCD-1 exerted effects against mechanical and cold allodynia, thermal hyperalgesia, and weight-bearing deficits. Furthermore, CCI-mediated activation of microglia and astrocytes in the dorsal horn of the lumbar spinal cord were decreased by PCD-1. In addition, PCD-1 suppressed up-regulation of interleukin-1β (IL-1β) and phosphorylated mammalian target of rapamycin (phospho-mTOR) in CCI rats. Finally, CCI-induced down-regulation of transforming growth factor-β1 (TGF-β1) in rats was attenuated by injection of PCD-1. Taken together, the present findings demonstrate that the marine antimicrobial peptide PCD-1 has anti-nociceptive effects, and thus may have potential for development as an alternative pain-alleviating agent.
Collapse
Affiliation(s)
- Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan; Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta Pei Rd, Kaohsiung 833, Taiwan
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chang-Yi Liao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, 201 Sec 2, Shih-Pai Rd, Taipei 112, Taiwan; School of Medicine, National Yang-Ming University, 155 Sec 2, Li-Nong St, Taipei 112, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan 262, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan; Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan.
| |
Collapse
|
525
|
Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune Function and the Consequences of Alcohol Exposure. Alcohol Res 2015; 37:331-41, 344-51. [PMID: 26695754 PMCID: PMC4590627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Induction of neuroimmune genes by binge drinking increases neuronal excitability and oxidative stress, contributing to the neurobiology of alcohol dependence and causing neurodegeneration. Ethanol exposure activates signaling pathways featuring high-mobility group box 1 and Toll-like receptor 4 (TLR4), resulting in induction of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells, which regulates expression of several cytokine genes involved in innate immunity, and its target genes. This leads to persistent neuroimmune responses to ethanol that stimulate TLRs and/or certain glutamate receptors (i.e., N-methyl-d-aspartate receptors). Alcohol also alters stress responses, causing elevation of peripheral cytokines, which further sensitize neuroimmune responses to ethanol. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of alcohol abuse have identified significant frontal cortical degeneration and loss of hippocampal neurogenesis, consistent with neuroimmune activation pathology contributing to these alcohol-induced, long-lasting changes in the brain. These alcohol-induced long-lasting increases in brain neuroimmune-gene expression also may contribute to the neurobiology of alcohol use disorder.
Collapse
|
526
|
Najjar S, Pearlman DM. Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 2015; 161:102-12. [PMID: 24948485 DOI: 10.1016/j.schres.2014.04.041] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Neuroinflammation and white matter pathology have each been independently associated with schizophrenia, and experimental studies have revealed mechanisms by which the two can interact in vitro, but whether these abnormalities simultaneously co-occur in people with schizophrenia remains unclear. METHOD We searched MEDLINE, EMBASE, PsycINFO and Web of Science from inception through 12 January 2014 for studies reporting human data on the relationship between microglial or astroglial activation, or cytokines and white matter pathology in schizophrenia. RESULTS Fifteen studies totaling 792 subjects (350 with schizophrenia, 346 controls, 49 with bipolar disorder, 37 with major depressive disorder and 10 with Alzheimer's disease) met all eligibility criteria. Five neuropathological and two neuroimaging studies collectively yielded consistent evidence of an association between schizophrenia and microglial activation, particularly in white rather than gray matter regions. Ultrastructural analysis revealed activated microglia near dystrophic and apoptotic oligodendroglia, demyelinating and dysmyelinating axons and swollen and vacuolated astroglia in subjects with schizophrenia but not controls. Two neuroimaging studies found an association between carrier status for a functional single nucleotide polymorphism in the interleukin-1β gene and abnormal white as well as gray matter volumes in schizophrenia but not controls. A neuropathological study found that orbitofrontal white matter neuronal density was increased in schizophrenia cases exhibiting high transcription levels of pro-inflammatory cytokines relative to those exhibiting low transcription levels and to controls. Schizophrenia was associated with decreased astroglial density specifically in subgenual cingulate white matter and anterior corpus callosum, but not other gray or white matter areas. Astrogliosis was consistently absent. Data on astroglial gene expression, mRNA expression and protein concentration were inconsistent. CONCLUSION Neuroinflammation is associated with white matter pathology in people with schizophrenia, and may contribute to structural and functional disconnectivity, even at the first episode of psychosis.
Collapse
Affiliation(s)
- Souhel Najjar
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States.
| | - Daniel M Pearlman
- Neuroinflammation Research Group, Epilepsy Center Division, Department of Neurology, NYU School of Medicine, New York, New York, United States; The Dartmouth Institute of Health Policy and Clinical Practice, Audrey and Theodor Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| |
Collapse
|
527
|
Size-dependent long-term tissue response to biostable nanowires in the brain. Biomaterials 2014; 42:172-83. [PMID: 25542805 DOI: 10.1016/j.biomaterials.2014.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
Abstract
Nanostructured neural interfaces, comprising nanotubes or nanowires, have the potential to overcome the present hurdles of achieving stable communication with neuronal networks for long periods of time. This would have a strong impact on brain research. However, little information is available on the brain response to implanted high-aspect-ratio nanoparticles, which share morphological similarities with asbestos fibres. Here, we investigated the glial response and neuronal loss in the rat brain after implantation of biostable and structurally controlled nanowires of different lengths for a period up to one year post-surgery. Our results show that, as for lung and abdominal tissue, the brain is subject to a sustained, local inflammation when biostable and high-aspect-ratio nanoparticles of 5 μm or longer are present in the brain tissue. In addition, a significant loss of neurons was observed adjacent to the 10 μm nanowires after one year. Notably, the inflammatory response was restricted to a narrow zone around the nanowires and did not escalate between 12 weeks and one year. Furthermore, 2 μm nanowires did not cause significant inflammatory response nor significant loss of neurons nearby. The present results provide key information for the design of future neural implants based on nanomaterials.
Collapse
|
528
|
Costa RC, Orlando DR, Abreu CC, Nakagaki KYR, Mesquita LP, Nascimento LC, Silva AC, Maiorka PC, Peconick AP, Raymundo DL, Varaschin MS. Histological and immunohistochemical characterization of the inflammatory and glial cells in the central nervous system of goat fetuses and adult male goats naturally infected with Neospora caninum. BMC Vet Res 2014; 10:291. [PMID: 25495444 PMCID: PMC4270032 DOI: 10.1186/s12917-014-0291-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/25/2014] [Indexed: 12/03/2022] Open
Abstract
Background Neospora caninum is an apicomplexan protozoan that is considered one of the main agents responsible for abortion in ruminants. The lesions found in the central nervous system (CNS) of aborted fetuses show multifocal necrosis, gliosis, and perivascular cuffs of mononuclear cells, but the inflammatory and glial cells have not been immunophenotypically characterized. The lesions in the CNS of infected adult animals have rarely been described. Therefore, in this study, we characterized the lesions, the immunophenotypes of the inflammatory and glial cells and the expression of MHC-II and PCNA in the CNS of goats infected with N. caninum. The CNS of eight aborted fetuses and six adult male goats naturally infected with N. caninum were analyzed with lectin histochemistry (RCA1) and immunohistochemistry (with anti-CD3, −CD79α, −GFAP, −MHC-II, and -PCNA antibodies). All animals were the offspring of dams naturally infected with N. caninum. Results The microscopic lesions in the CNS of the aborted fetuses consisted of perivascular cuffs composed mainly of macrophages (RCA1+), rare T lymphocytes (CD3+), and rare B lymphocytes (CD79α+). Multifocal necrosis surrounded by astrocytes (GFAP+), gliosis composed predominantly of monocytic-lineage cells (macrophages and microglia, RCA1+), and the cysts of N. caninum, related (or not) to the lesions were present. Similar lesions were found in four of the six male goats, and multinucleate giant cells related to focal gliosis were also found in three adult goats. Anti-GFAP immunostaining showed astrocytes characterizing areas of glial scarring. Cysts of N. caninum were found in three adult male goats. The presence of N. caninum was evaluated with histopathology, immunohistochemistry, and PCR. Immunohistochemistry demonstrated anti-PCNA labeling of macrophages and microglia in the perivascular cuffs and the expression of MHC-II by microglia and endothelial cells in the CNS of the aborted fetuses and adult male goats. Conclusions Macrophages and microglia were the predominant inflammatory cells in the CNS of aborted fetuses and healthy adult male goats infected with N. caninum. Activated astrocytes were mainly associated with inflamed areas, suggesting that astrocytes were involved in the resolution of the lesions.
Collapse
Affiliation(s)
- Rafael Carneiro Costa
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Débora Ribeiro Orlando
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Camila Costa Abreu
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | | | - Leonardo Pereira Mesquita
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, São Paulo, SP, Brazil.
| | - Lismara Castro Nascimento
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Aline Costa Silva
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Paulo César Maiorka
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Av. Prof. Dr. Orlando Marques de Paiva, 87 - Cidade Universitária, São Paulo, SP, Brazil.
| | - Ana Paula Peconick
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Djeison Lutier Raymundo
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| | - Mary Suzan Varaschin
- Universidade Federal de Lavras, Setor de Patologia Veterinária, Caixa postal 3037, Lavras, MG, Brazil.
| |
Collapse
|
529
|
Cherry JD, Olschowka JA, O'Banion MK. Are "resting" microglia more "m2"? Front Immunol 2014; 5:594. [PMID: 25477883 PMCID: PMC4235363 DOI: 10.3389/fimmu.2014.00594] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - John A Olschowka
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - M Kerry O'Banion
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
530
|
Chatterjee D, Addya S, Khan RS, Kenyon LC, Choe A, Cohrs RJ, Shindler KS, Sarma JD. Mouse hepatitis virus infection upregulates genes involved in innate immune responses. PLoS One 2014; 9:e111351. [PMID: 25360880 PMCID: PMC4216085 DOI: 10.1371/journal.pone.0111351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
Neurotropic recombinant strain of Mouse Hepatitis Virus, RSA59, induces meningo-encephalitis, myelitis and demyelination following intracranial inoculation. RSA59 induced neuropathology is partially caused by activation of CNS resident microglia, as demonstrated by changes in cellular morphology and increased expression of a microglia/macrophage specific calcium ion binding factor, Iba1. Affymetrix Microarray analysis for mRNA expression data reveals expression of inflammatory mediators that are known to be released by activated microglia. Microglia-specific cell surface molecules, including CD11b, CD74, CD52 and CD68, are significantly upregulated in contrast to CD4, CD8 and CD19. Protein analysis of spinal cord extracts taken from mice 6 days post-inoculation, the time of peak inflammation, reveals robust expression of IFN-γ, IL-12 and mKC. Data suggest that activated microglia and inflammatory mediators contribute to a local CNS microenvironment that regulates viral replication and IFN-γ production during the acute phase of infection, which in turn can cause phagolysosome maturation and phagocytosis of the myelin sheath, leading to demyelination.
Collapse
Affiliation(s)
- Dhriti Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur, West Bengal, India
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Reas S. Khan
- Scheie Eye Institute and FM Kirby Centre for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lawrence C. Kenyon
- Departments of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexander Choe
- Departments of Neurology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Randall J. Cohrs
- Departments of Neurology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kenneth S. Shindler
- Scheie Eye Institute and FM Kirby Centre for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KS); (JDS)
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata (IISER-K), Mohanpur, West Bengal, India
- * E-mail: (KS); (JDS)
| |
Collapse
|
531
|
Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep 2014; 4:6824. [PMID: 25351234 PMCID: PMC5381369 DOI: 10.1038/srep06824] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1β when activated. Here we show that purified (>99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1β release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X7R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (≤5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X7R activation may represent an important route for microglia-derived IL-1β. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases.
Collapse
|
532
|
Malaspina A, Puentes F, Amor S. Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. Int Immunol 2014; 27:117-29. [DOI: 10.1093/intimm/dxu099] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
533
|
Kongsui R, Beynon SB, Johnson SJ, Walker FR. Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. J Neuroinflammation 2014; 11:182. [PMID: 25343964 PMCID: PMC4213482 DOI: 10.1186/s12974-014-0182-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022] Open
Abstract
Background Microglial morphology within the healthy brain has been the subject of a number of observational studies. These have suggested that microglia may consist of separate classes, which possess substantially different morphological features. Critically, there have been no systematic quantitative studies of microglial morphology within the healthy brain. Methods We examined microglial cells within the adult rat prefrontal cortex. At high magnification, digital reconstructions of cells labelled with the microglial-specific marker ionized calcium-binding adapter molecule-1 (Iba-1) were made in each of the cortical layers. These reconstructions were subsequently analyzed to determine the convex hull area of the cells, their somal perimeter, the length of processes, the number of processes, the extent of process branching and the volume of processes. We additionally examined whether cells’ morphological features were associated with cell size or numerical density. Results Our analysis indicated that while there was substantial variability in the size of cells within the prefrontal cortex, cellular morphology was extremely consistent within each of the cortical layers. Conclusions Our results provide quantitative confirmation that microglia are largely homogenous in the uninjured rodent prefrontal cortex.
Collapse
|
534
|
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia. Front Immunol 2014; 5:523. [PMID: 25374571 PMCID: PMC4205853 DOI: 10.3389/fimmu.2014.00523] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a normal and healthy response to neuronal damage. However, excessive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in progressive diseases such as Alzheimer’s, Parkinson’s, age-related macular degeneration, and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as neuroprotective agents. Erythropoietin (EPO) is a known neuroprotective agent that indirectly attenuates neuroinflammation, in part, by inhibiting neuronal apoptosis. In this review, we provide evidence that EPO also modulates neuroinflammation upstream of apoptosis by acting directly on glia. Further, the signaling induced by EPO may differ depending on cell type and context possibly as a result of activation of different receptors. While significant progress has been made in our understanding of EPO signaling, this review also identifies areas for future study in terms of the role of EPO in modulating neuroinflammation.
Collapse
Affiliation(s)
- Wesley S Bond
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center , Nashville, TN , USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center , Nashville, TN , USA
| |
Collapse
|
535
|
Kim J, Kim H, Park SB. Privileged Structures: Efficient Chemical “Navigators” toward Unexplored Biologically Relevant Chemical Spaces. J Am Chem Soc 2014; 136:14629-38. [DOI: 10.1021/ja508343a] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonghoon Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Heejun Kim
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Seung Bum Park
- Department
of Chemistry, Seoul National University, Seoul 151-747, South Korea
- Department
of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
536
|
Lee S, Nam Y, Koo JY, Lim D, Park J, Ock J, Kim J, Suk K, Park SB. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation. Nat Chem Biol 2014; 10:1055-60. [PMID: 25306442 DOI: 10.1038/nchembio.1669] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
Because of the critical role of neuroinflammation in various neurological diseases, there are continuous efforts to identify new therapeutic targets as well as new therapeutic agents to treat neuroinflammatory diseases. Here we report the discovery of inflachromene (ICM), a microglial inhibitor with anti-inflammatory effects. Using the convergent strategy of phenotypic screening with early stage target identification, we show that the direct binding target of ICM is the high mobility group box (HMGB) proteins. Mode-of-action studies demonstrate that ICM blocks the sequential processes of cytoplasmic localization and extracellular release of HMGBs by perturbing its post-translational modification. In addition, ICM effectively downregulates proinflammatory functions of HMGB and reduces neuronal damage in vivo. Our study reveals that ICM suppresses microglia-mediated inflammation and exerts a neuroprotective effect, demonstrating the therapeutic potential of ICM in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Youngpyo Nam
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ja Young Koo
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Donghyun Lim
- Department of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul, Korea
| | - Jongmin Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jiyeon Ock
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jaehong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seung Bum Park
- 1] Department of Chemistry, Seoul National University, Seoul, Korea. [2] Department of Biophysics and Chemical Biology/N-Bio Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
537
|
Fan Z, Aman Y, Ahmed I, Chetelat G, Landeau B, Ray Chaudhuri K, Brooks DJ, Edison P. Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimers Dement 2014; 11:608-21.e7. [DOI: 10.1016/j.jalz.2014.06.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Fan
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Yahyah Aman
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Imtiaz Ahmed
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Gaël Chetelat
- Inserm-EPHE-University of Caen/Basse-Normandie; Caen France
| | | | - K. Ray Chaudhuri
- Department of Neurology, National Parkinson Foundation Centre of Excellence; King's College Hospital, and King's Health Partners; London UK
| | - David J. Brooks
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| | - Paul Edison
- Neurology Imaging Unit, Department of Medicine; Imperial College London, Hammersmith Hospital; London UK
| |
Collapse
|
538
|
Martini AC, Forner S, Bento AF, Rae GA. Neuroprotective effects of lipoxin A4 in central nervous system pathologies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316204. [PMID: 25276776 PMCID: PMC4174961 DOI: 10.1155/2014/316204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023]
Abstract
Many diseases of the central nervous system are characterized and sometimes worsened by an intense inflammatory response in the affected tissue. It is now accepted that resolution of inflammation is an active process mediated by a group of mediators that can act in synchrony to switch the phenotype of cells, from a proinflammatory one to another that favors the return to homeostasis. This new genus of proresolving mediators includes resolvins, protectins, maresins, and lipoxins, the first to be discovered. In this short review we provide an overview of current knowledge into the cellular and molecular interactions of lipoxins in diseases of the central nervous system in which they appear to facilitate the resolution of inflammation, thus exerting a neuroprotective action.
Collapse
Affiliation(s)
- Alessandra Cadete Martini
- Departmento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil
| | - Stefânia Forner
- Departmento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil
| | - Allisson Freire Bento
- Centro de Inovação e Ensaios Pré-Clínicos (CIEnP), Av. Luiz Boiteux Piazza, 1302-Canasvieiras, 88056-000 Florianópolis, SC, Brazil
| | - Giles Alexander Rae
- Departmento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil
| |
Collapse
|
539
|
Dowie MJ, Grimsey NL, Hoffman T, Faull RL, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat 2014; 59-60:62-71. [DOI: 10.1016/j.jchemneu.2014.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
|
540
|
Gao Y, Chu SF, Li JP, Zuo W, Wen ZL, He WB, Yan JQ, Chen NH. Do glial cells play an anti-oxidative role in Huntington's disease? Free Radic Res 2014; 48:1135-44. [PMID: 24957138 DOI: 10.3109/10715762.2014.936432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a condition of imbalance between reactive oxygen species (ROS) formation and antioxidant capacity as a result of dysfunction of the antioxidant system. ROS can be served as a second messenger at low or moderate concentration, while excessive amount of ROS under oxidative stress condition would destroy macromolecules like proteins, DNA, and lipids, finally leading to cell apoptosis or necrosis. Changes in these macromolecules are involved in various pathological changes and progression of diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive neuronal cell loss, accompanied with inclusions formed by protein aggregates in neurons or glial cells. Neurons have always received much more attention than glial cells in neurodegenerative diseases. Actually, glial cells might play a key role in the functioning of neurons and cellular survival through an antioxidant way. Additionally, neurons can modulate the activities of glia either. Herein, the main purposes of this review are to mention the connection between Huntington's disease (HD) and oxidative stress, to summarize the characteristics and functions of glial cells in HD, to state the cross talk between neurons and glial cells, and to emphasize the conclusive role of activation of Keap1-Nrf2-ARE pathway in glial cells against oxidative stress in HD.
Collapse
Affiliation(s)
- Y Gao
- Department of Pharmacology, State Key of Laboratory Bioactive Substances and Functions of Natural Medicines, Institute of MateriaMedica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
541
|
Heuss ND, Pierson MJ, Montaniel KRC, McPherson SW, Lehmann U, Hussong SA, Ferrington DA, Low WC, Gregerson DS. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice. J Neuroinflammation 2014; 11:143. [PMID: 25116321 PMCID: PMC4149240 DOI: 10.1186/s12974-014-0143-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/29/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. METHODS CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. RESULTS Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. CONCLUSIONS The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater than the resident microglia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dale S Gregerson
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Lions Research Bldg, Rm 314, 2001 6th St SE, Minneapolis 55455, MN, USA.
| |
Collapse
|
542
|
Abstract
Human immunodeficiency virus (HIV) invades the brain early during infection and generates a chronic inflammatory microenvironment that can eventually result in neurological disease, even in the absence of significant viral replication. Thus, HIV-1 infection of the brain has been characterized both as a neuroimmunological and neurodegenerative disorder. While the brain and central nervous system (CNS) have historically been regarded as immune privileged or immunologically quiescent, newer concepts of CNS immunity suggest an important if not defining role for innate immune responses generated by glial cells. Innate immunity may be the first line of defense against HIV infection of the brain and CNS, with multiple cellular elements providing responses that can be anti-viral and neuroprotective, but also potentially neurotoxic, impairing neurogenesis and promoting neuronal apoptosis. To investigate the effects of HIV exposure on neurogenesis and neuronal survival, we have studied the responses of human neuroepithelial progenitor (NEP) cells, which undergo directed differentiation into astrocytes and neurons in vitro. We identified a group of genes that were differentially expressed in NEP-derived cells during virus exposure. This included genes that are strongly related to interferon-induced responses and antigen presentation. Moreover, we observed that the host factor apolipoprotein E influences the innate immune response expressed by these cells, with a more robust response in the apolipoprotein E3/E3 genotype cultures compared to the apolipoprotein E3/E4 counterparts. Thus, neuroepithelial progenitors and their differentiated progeny recognize HIV and respond to it by mounting an innate immune response with a vigor that is influenced by the host factor apolipoprotein E.
Collapse
|
543
|
Ma J, Jiang T, Tan L, Yu JT. TYROBP in Alzheimer’s Disease. Mol Neurobiol 2014; 51:820-6. [DOI: 10.1007/s12035-014-8811-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
|
544
|
Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, Kim HM, Kim DH, Yoon SY. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 2014; 10:1761-75. [PMID: 25126727 DOI: 10.4161/auto.29647] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) and resultant inflammation are critical pathological features of Alzheimer disease (AD). Microglia, a primary immune cell in brain, ingests and degrades extracellular Aβ fibrils via the lysosomal system. Autophagy is a catabolic process that degrades native cellular components, however, the role of autophagy in Aβ degradation by microglia and its effects on AD are unknown. Here we demonstrate a novel role for autophagy in the clearance of extracellular Aβ fibrils by microglia and in the regulation of the Aβ-induced NLRP3 (NLR family, pyrin domain containing 3) inflammasome using microglia specific atg7 knockout mice and cell cultures. We found in microglial cultures that Aβ interacts with MAP1LC3B-II via OPTN/optineurin and is degraded by an autophagic process mediated by the PRKAA1 pathway. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mi-Hyang Cho
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| | - Kwangmin Cho
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| | - Hoe-Jin Kang
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| | - Eun-Young Jeon
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| | - Hun-Sik Kim
- Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea; Department of Medicine; Graduate School; University of Ulsan College of Medicine; Seoul, Korea
| | - Hyung-Joon Kwon
- Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Department of Medicine; Graduate School; University of Ulsan College of Medicine; Seoul, Korea
| | - Hong-Mi Kim
- Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Department of Medicine; Graduate School; University of Ulsan College of Medicine; Seoul, Korea
| | - Dong-Hou Kim
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| | - Seung-Yong Yoon
- Alzheimer Disease Experts Lab (ADEL); Asan Institute of Life Sciences; Asan Medical Center; University of Ulsan College of Medicine; Seoul, Korea; Department of Anatomy and Cell Biology; University of Ulsan College of Medicine; Seoul, Korea; Bio-Medical Institute of Technology (BMIT); University of Ulsan College of Medicine; Seoul, Korea; Cell Dysfunction Research Center (CDRC); University of Ulsan College of Medicine; Seoul, Korea
| |
Collapse
|
545
|
Popa-Wagner A, Buga AM, Tica AA, Albu CV. Perfusion deficits, inflammation and aging precipitate depressive behaviour. Biogerontology 2014; 15:439-48. [PMID: 25033986 DOI: 10.1007/s10522-014-9516-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is a severe psychiatric illness that is associated with significant morbidity and mortality. Despite advances in the treatment of major depression, one-third of depressed patients fail to respond to conventional antidepressant medication. One pathophysiologic mechanism hypothesized to contribute to treatment resistance in depression is inflammation. Inflammation has been linked to depression by a number of putative mechanisms involving perfusion deficits that can trigger microglial activation and subsequent neuroinflammation in the elderly. However, the pathophysiological mechanisms remain to be further elucidated. This review focusses on recent studies addressing the complex relationships between depression, aging, inflammation and perfusion deficits in the elderly. We expect that a better understanding of neuroinflammatory mechanisms associated with age-related diseases may lead to the discovery of new biomarkers of MDD and development of new therapeutic interventions.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany,
| | | | | | | |
Collapse
|
546
|
Ramesh G. Novel Therapeutic Targets in Neuroinflammation and Neuropathic Pain. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052540 DOI: 10.14800/ics.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is abounding evidence that neuroinflammation plays a major role in the pathogenesis of neurodegeneration and neuropathic pain. Chemokine-induced recruitment of peripheral immune cells is a central feature in inflammatory neurodegenerative disorders. Immune cells, glial cells and neurons constitute an integral network that coordinates the immune response by releasing inflammatory mediators that in turn modulate inflammation, neurodegeneration and the signal transduction of pain, via interaction with neurotransmitters and their receptors. The chemokine monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand (MCP-1/CCL2) and its receptor C-C chemokine receptor (CCR2) play a major role in mediating neuroinflammation and targeting CCL2/CCR2 represents a promising strategy to limit neuroinflammation-induced neuropathy. In addition, the CCL2/CCR2 axis is also involved in mediating the pain response. Key cellular signaling events such as phosphorylation and subsequent activation of mitogen activated protein kinase (MAPK) p38 and its substrate MAPK-activated protein MAPKAP Kinase (MK) MK-2, regulate neuroinflammation, neuronal survival and synaptic activity. Further, MAPKs such as extracellular signal-regulated kinases (ERK), c-jun N-terminal kinase (JNK) and p38 play vital roles in mediating the pain signaling cascade and contribute to the maintenance of peripheral and central neuronal sensitization associated with chronic pain. This review outlines the rationale for developing therapeutic strategies against CCL2/CCR2 and MAPK signaling networks, identifying them as novel therapeutic targets for limiting neuroinflammation and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA, USA
| |
Collapse
|
547
|
Streit WJ, Xue QS. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 2014; 29:93-6. [PMID: 24908174 DOI: 10.1016/j.coi.2014.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023]
Abstract
Microglial cells comprising the brain's immune system are essential for ensuring neuroprotection in the normal and pathological CNS. On the basis of histopathological observations in human brain, we believe that the ability of microglia to provide neuroprotection deteriorates as our brains get older and that such CNS immune senescence is a major factor contributing to the development of aging-related neurodegenerative diseases, notably Alzheimer's disease. The idea is consistent with the fact that immune senescence occurs naturally in the periphery, rendering the elderly people more susceptible to infections and cancers. There is an analogous situation in the brain, except that here the main impact comes down to diminished neuroprotection and resultant neurodegeneration.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA.
| | - Qing-Shan Xue
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
548
|
Vartak-Sharma N, Gelman BB, Joshi C, Borgamann K, Ghorpade A. Astrocyte elevated gene-1 is a novel modulator of HIV-1-associated neuroinflammation via regulation of nuclear factor-κB signaling and excitatory amino acid transporter-2 repression. J Biol Chem 2014; 289:19599-612. [PMID: 24855648 DOI: 10.1074/jbc.m114.567644] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), a novel human immunodeficiency virus (HIV)-1 and tumor necrosis factor (TNF)-α-inducible oncogene, has generated significant interest in the field of cancer research as a therapeutic target for many metastatic aggressive tumors. However, little is known about its role in astrocyte responses during HIV-1 central nervous system (CNS) infection and whether it contributes toward the development of HIV-associated neurocognitive disorders (HAND). Therefore, in this study, we investigated changes in AEG-1 CNS expression in HIV-1-infected brain tissues and elucidated a potential mechanism of AEG-1-mediated regulation of HAND. Immunoblotting and immunohistochemical analyses of HIV-1 seropositive and HIV-1 encephalitic human brain tissues revealed significantly elevated levels of AEG-1 protein. Immunohistochemical analyses of HIV-1 Tat transgenic mouse brain tissues also showed a marked increase in AEG-1 staining. Similar to in vivo observations, cultured astrocytes expressing HIV-1 Tat also revealed AEG-1 and cytokine up-regulation. Astrocytes treated with HAND-relevant stimuli, TNF-α, interleukin (IL)-1β, and HIV-1, also significantly induced AEG-1 expression and nuclear translocation via activation of the nuclear factor (NF)-κB pathway. Co-immunoprecipitation studies demonstrated IL-1β- or TNF-α-induced AEG-1 interaction with NF-κB p65 subunit. AEG-1 knockdown decreased NF-κB activation, nuclear translocation, and transcriptional output in TNF-α-treated astrocytes. Moreover, IL-1β treatment of AEG-1-overexpressing astrocytes significantly lowered expression of excitatory amino acid transporter 2, increased expression of excitatory amino acid transporter 2 repressor ying yang 1, and reduced glutamate clearance, a major transducer of excitotoxic neuronal damage. Findings from this study identify a novel transcriptional co-factor function of AEG-1 and further implicate AEG-1 in HAND-associated neuroinflammation.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Benjamin B Gelman
- the Departments of Pathology and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chaitanya Joshi
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Kathleen Borgamann
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Anuja Ghorpade
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| |
Collapse
|
549
|
Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB, Bollinger KE. Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci 2014; 55:3375-84. [PMID: 24812552 PMCID: PMC4042630 DOI: 10.1167/iovs.13-12823] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 04/29/2014] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate the effects of the σ 1 receptor (σR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)-induced inflammatory changes in retinal microglia cells. METHODS Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the σR1 antagonist BD1063. Morphologic changes were assayed. Cell viability was assessed by using MTT assay. Supernatant levels of tumor necrosis factor α (TNF-α), interleukin 10, (IL-10), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO) were determined. Reactive oxygen species (ROS) formation was assayed, and levels of mitogen-activated protein kinases (MAPKs) were analyzed by using Western blot. RESULTS The σR1 protein was expressed in retinal microglia. Incubation with LPS and/or (+)-pentazocine did not alter cell viability or σR1 protein levels. Incubation with LPS for 24 hours induced a marked change in microglial morphology and a significant increase in secreted levels of TNF-α, IL-10, MCP-1, and NO. Pretreatment with (+)-pentazocine inhibited the LPS-induced morphologic changes. Release of TNF-α, IL-10, MCP-1, and NO was reduced with (+)-pentazocine. Intracellular ROS formation was suppressed with (+)-pentazocine. Phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was reduced in the presence of (+)-pentazocine. The σR1 antagonist BD1063 blocked the (+)-pentazocine-mediated inhibition of LPS-induced morphologic changes. In addition, BD1063 treatment blocked (+)-pentazocine-mediated suppression of LPS-induced TNF-α, IL-10, MCP-1, NO, and intracellular ROS release. CONCLUSIONS Treatment with (+)-pentazocine suppressed inflammatory responses of retinal microglia and inhibited LPS-induced activation of ERK/JNK MAPK. In neurodegenerative disease, (+)-pentazocine may exert neuroprotective effects through manipulation of microglia.
Collapse
Affiliation(s)
- Jing Zhao
- James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States
| | - Yonju Ha
- James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Gregory I. Liou
- James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States
- Department of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States
| | - Sylvia B. Smith
- James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States
| | - Kathryn E. Bollinger
- James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, Georgia, United States
| |
Collapse
|
550
|
Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia 2014; 62:1831-55. [PMID: 24807544 DOI: 10.1002/glia.22690] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
An improved understanding and characterization of glial activation and its relationship with white matter injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination after brain trauma. Traumatic brain injury (TBI) is a significant public healthcare burden and a leading cause of death and disability in the United States. Particularly, traumatic white matter (WM) injury or traumatic axonal injury has been reported as being associated with patients' poor outcomes. However, there is very limited data reporting the importance of glial activation after TBI and its interaction with WM injury. This article presents a systematic review of traumatic WM injury and the associated glial activation, from basic science to clinical diagnosis and prognosis, from advanced neuroimaging perspective. It concludes that there is a disconnection between WM injury research and the essential role of glia which serve to restore a healthy environment for axonal regeneration following WM injury. Particularly, there is a significant lack of non-invasive means to characterize the complex pathophysiology of WM injury and glial activation in both animal models and in humans. An improved understanding and characterization of the relationship between glia and WM injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination.
Collapse
Affiliation(s)
- Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan; Department of Radiology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|