501
|
Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, Ahmadiani A, Dargahi L. Fingolimod affects gene expression profile associated with LPS-induced memory impairment. Exp Brain Res 2014; 232:3687-96. [DOI: 10.1007/s00221-014-4052-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
|
502
|
Weekman EM, Sudduth TL, Abner EL, Popa GJ, Mendenhall MD, Brothers HM, Braun K, Greenstein A, Wilcock DM. Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation 2014; 11:127. [PMID: 25062954 PMCID: PMC4128532 DOI: 10.1186/1742-2094-11-127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/22/2014] [Indexed: 11/22/2022] Open
Abstract
Background The polarization to different neuroinflammatory phenotypes has been described in early Alzheimer’s disease, yet the impact of these phenotypes on amyloid-beta (Aβ) pathology remains unknown. Short-term studies show that induction of an M1 neuroinflammatory phenotype reduces Aβ, but long-term studies have not been performed that track the neuroinflammatory phenotype. Methods Wild-type and APP/PS1 transgenic mice aged 3 to 4 months received a bilateral intracranial injection of adeno-associated viral (AAV) vectors expressing IFNγ or green fluorescent protein in the frontal cortex and hippocampus. Mice were sacrificed 4 or 6 months post-injection. ELISA measurements were used for IFNγ protein levels and biochemical levels of Aβ. The neuroinflammatory phenotype was determined through quantitative PCR. Microglia, astrocytes, and Aβ levels were assessed with immunohistochemistry. Results AAV expressing IFNγ induced an M1 neuroinflammatory phenotype at 4 months and a mixed phenotype along with an increase in Aβ at 6 months. Microglial staining was increased at 6 months and astrocyte staining was decreased at 4 and 6 months in mice receiving AAV expressing IFNγ. Conclusions Expression of IFNγ through AAV successfully induced an M1 phenotype at 4 months that transitioned to a mixed phenotype by 6 months. This transition also appeared with an increase in amyloid burden suggesting that a mixed phenotype, or enhanced expression of M2a and M2c markers, could contribute to increasing amyloid burden and disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
503
|
Song SY, Jung YY, Hwang CJ, Lee HP, Sok CH, Kim JH, Lee SM, Seo HO, Hyun BK, Choi DY, Han SB, Ham YW, Hwang BY, Hong JT. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 2014; 11:118. [PMID: 24985096 PMCID: PMC4090659 DOI: 10.1186/1742-2094-11-118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Background ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property. Methods To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover’s Inc., Texas, United states). Results ent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a concentration dependent manner by ent-Sauchinone by blocking the phosphorylation of I κB and STAT3 in cultured astrocytes and microglial BV-2 cells. The docking model approach showed that ent-Sauchinone binds to STAT3, and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition NF-κB activation and Aβ generation. Conclusions These results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-κB activity, and thus could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer’s disease.
Collapse
Affiliation(s)
- Suk-Young Song
- College of Pharmacy and MRC, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant. Brain Struct Funct 2014; 220:2663-74. [PMID: 24947882 DOI: 10.1007/s00429-014-0817-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
The hippocampus is one of the most age-sensitive brain regions, yet the mechanisms of hippocampal shrinkage remain unclear. Recent studies suggest that hippocampal subfields are differentially vulnerable to aging and differentially sensitive to vascular risk. Promoters of inflammation are frequently proposed as major contributors to brain aging and vascular disease but their effects on hippocampal subfields are unknown. We examined the associations of hippocampal subfield volumes with age, a vascular risk factor (hypertension), and genetic polymorphisms associated with variation in pro-inflammatory cytokines levels (IL-1β C-511T and IL-6 C-174G) and risk for Alzheimer's disease (APOEε4) in healthy adult volunteers (N = 80; age = 22-82 years). Volumes of three hippocampal subfields, cornu ammonis (CA) 1-2, CA3-dentate gyrus, and the subiculum were manually measured on high-resolution magnetic resonance images. Advanced age was differentially associated with smaller volume of CA1-2, whereas carriers of the T allele of IL-1β C-511T polymorphism had smaller volume of all hippocampal subfields than CC homozygotes did. Neither of the other genetic variants, nor diagnosis of hypertension, was associated with any of the measured volumes. The results support the notion that volumes of age-sensitive brain regions may be affected by pro-inflammatory factors that may be targeted by therapeutic interventions.
Collapse
|
505
|
Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. ADVANCES IN ALZHEIMER'S DISEASE 2014; 3:78-93. [PMID: 25360394 PMCID: PMC4211261 DOI: 10.4236/aad.2014.32009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic neuroinflammation is thought to play an etiological role in Alzheimer's disease (AD), which is characterized pathologically by amyloid and tau formation, as well as neuritic dystrophy and synaptic degeneration. The causal relationship between these pathological events is a topic of ongoing research and discussion. Recent data from transgenic AD models point to a tight spatiotemporal link between neuritic and amyloid pathology, with the obligatory enzyme for β-amyloid (Aβ) production, namely β-secretase-1 (BACE1), is overexpressed in axon terminals undergoing dystrophic change. However, the axonal pathology inherent with BACE1 elevation seen in transgenic AD mice may be secondary to increased soluble Aβ in these genetically modified animals. Here we explored the occurrence of the AD-like axonal and dendritic pathology in adult rat brain affected by LPS-induced chronic neuroinflammation. Unilateral intracerebral LPS injection induced prominent inflammatory response in glial cells in the ipsilateral cortex and hippocampal formation. BACE1 protein levels were elevated the ipsilateral hippocampal lysates in the LPS treated animals relative to controls. BACE1 immunoreactive dystrophic axons appeared in the LPS-treated ipsilateral cortex and hippocampal formation, colocalizing with increased β-amyloid precursor protein and Aβ antibody (4G8) immunolabeling. Quantitative Golgi studies revealed reduction of dendritic branching points and spine density on cortical layer III and hippocampal CA3 pyramidal neurons in the LPS-treated ipsilateral cerebrum. These findings suggest that Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration occur in wildtype mammalian brain in partnership with neuroinflammation following LPS injection.
Collapse
Affiliation(s)
- Xiaohua Deng
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Meili Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Weiming Ai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Nursing in Internal Medicine, School of Nursing, Xiangtan Vocational and Technical College, Xiangtan, China
| | - Lixin He
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
- Department of Anatomy and Physiology, School of Nursing, Xiangtan Vocational and technical College, Xiangtan, China
| | - Dahua Lu
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Peter R. Patrylo
- Departments of Physiology, Anatomy and Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Carbondale, USA
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, USA
| | - Xuegang Luo
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, China
| |
Collapse
|
506
|
Joshi YB, Giannopoulos PF, Chu J, Praticò D. Modulation of lipopolysaccharide-induced memory insult, γ-secretase, and neuroinflammation in triple transgenic mice by 5-lipoxygenase. Neurobiol Aging 2014; 35:1024-31. [PMID: 24332986 PMCID: PMC3948206 DOI: 10.1016/j.neurobiolaging.2013.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/28/2013] [Accepted: 11/15/2013] [Indexed: 01/01/2023]
Abstract
Besides amyloid and tau pathology, a constant feature of Alzheimer's disease (AD) is an intense inflammatory response, which is considered an active player in its pathogenesis. The 5-Lipoxygenase (5LO) is a proinflammatory enzyme and an endogenous modulator of AD-like phenotype in mouse models of the disease. To further understand the role of 5LO in AD pathogenesis, we exposed the triple transgenic (3×Tg) and 3×Tg/5LO knockout mice to lipopolysaccharide (LPS), a known inducer of neuroinflammation, and evaluated its effect on their AD-like phenotype. 3×Tg mice treated with LPS manifested a worsening of behavior, γ-secretase up-regulation, and increased neuroinflammatory responses. These effects were completely prevented in 3×Tg mice genetically deficient for 5LO. By contrast, the absence of 5LO did not protect against increase in tau phosphorylation at specific epitopes that were mediated by the activation of the cyclin-dependent kinase 5. Our data demonstrate that the 5LO pathway affects key neuropathological features of the AD-like phenotype (behavior, abeta, microgliosis, astrocytosis) but not others (tau pathology) in the LPS-dependent neuroinflammation model. The opposite ways whereby 5LO influences the LPS-dependent effects in vivo supports the complex nature of the neuroinflammatory response in AD and its differential role in modulating amyloid and tau neuropathology.
Collapse
Affiliation(s)
- Yash B Joshi
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Phillip F Giannopoulos
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jin Chu
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
507
|
Valero J, Mastrella G, Neiva I, Sánchez S, Malva JO. Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Front Neurosci 2014; 8:83. [PMID: 24795557 PMCID: PMC4001049 DOI: 10.3389/fnins.2014.00083] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
The cognitive reserve is the capacity of the brain to maintain normal performance while exposed to insults or ageing. Increasing evidences point to a role for the interaction between inflammatory conditions and cognitive reserve status during Alzheimer's disease (AD) progression. The production of new neurons along adult life can be considered as one of the components of the cognitive reserve. Interestingly, adult neurogenesis is decreased in mouse models of AD and following inflammatory processes. The aim of this work is to reveal the long-term impact of a systemic inflammatory event on memory and adult neurogenesis in wild type (WT) and triple transgenic mouse model of AD (3xTg-AD). Four month-old mice were intraperitoneally injected once with saline or lipopolysaccharide (LPS) and their performance on spatial memory analyzed with the Morris water maze (MWM) test 7 weeks later. Our data showed that a single intraperitoneal injection with LPS has a long-term impact in the production of hippocampal neurons. Consistently, LPS-treated WT mice showed less doublecortin-positive neurons, less synaptic contacts in newborn neurons, and decreased dendritic volume and complexity. These surprising observations were accompanied with memory deficits. 3xTg-AD mice showed a decrease in new neurons in the dentate gyrus compatible with, although exacerbated, the pattern observed in WT LPS-treated mice. In 3xTg-AD mice, LPS injection did not significantly affected the production of new neurons but reduced their number of synaptic puncta and impaired memory performance, when compared to the observations made in saline-treated 3xTg-AD mice. These data indicate that LPS treatment induces a long-term impairment on hippocampal neurogenesis and memory. Our results show that acute neuroinflammatory events influence the production of new hippocampal neurons, affecting the cognitive reserve and leading to the development of memory deficits associated to AD pathology.
Collapse
Affiliation(s)
- Jorge Valero
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Institute for Interdisciplinary Research, University of Coimbra Coimbra, Portugal
| | - Giorgia Mastrella
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; International Master Degree in Neuroscience, Department of Life Sciences, "Università degli Studi di Trieste" Trieste, Italy
| | - Ismael Neiva
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Silvia Sánchez
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - João O Malva
- Faculty of Medicine, Institute for Biomedical Imaging and Life Sciences, University of Coimbra Coimbra, Portugal
| |
Collapse
|
508
|
Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int 2014; 69:35-40. [DOI: 10.1016/j.neuint.2014.02.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
|
509
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
510
|
Shin JW, Cheong YJ, Koo YM, Kim S, Noh CK, Son YH, Kang C, Sohn NW. α-Asarone Ameliorates Memory Deficit in Lipopolysaccharide-Treated Mice via Suppression of Pro-Inflammatory Cytokines and Microglial Activation. Biomol Ther (Seoul) 2014; 22:17-26. [PMID: 24596617 PMCID: PMC3936426 DOI: 10.4062/biomolther.2013.102] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/31/2022] Open
Abstract
α-Asarone exhibits a number of pharmacological actions including neuroprotective, anti-oxidative, anticonvulsive, and cognitive enhancing action. The present study investigated the effects of α-asarone on pro-inflammatory cytokines mRNA, microglial activation, and neuronal damage in the hippocampus and on learning and memory deficits in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Varying doses of α-asarone was orally administered (7.5, 15, or 30 mg/kg) once a day for 3 days before the LPS (3 mg/kg) injection. α-Asarone significantly reduced TNF-α and IL-1β mRNA at 4 and 24 hours after the LPS injection at dose of 30 mg/kg. At 24 hours after the LPS injection, the loss of CA1 neurons, the increase of TUNEL-labeled cells, and the up-regulation of BACE1 expression in the hippocampus were attenuated by 30 mg/kg of α-asarone treatment. α-Asarone significantly reduced Iba1 protein expression in the hippocampal tissue at a dose of 30 mg/kg. α-Asarone did not reduce the number of Iba1-expressing microglia on immunohistochemistry but the average cell size and percentage areas of Iba1-expressing microglia in the hippocampus were significantly decreased by 30 mg/kg of α-asarone treatment. In the Morris water maze test, α-asarone significantly prolonged the swimming time spent in the target and peri-target zones. α-Asarone also significantly increased the number of target heading and memory score in the Morris water maze. The results suggest that inhibition of pro-inflammatory cytokines and microglial activation in the hippocampus by α-asarone may be one of the mechanisms for the α-asarone-mediated ameliorating effect on memory deficits.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Young-Jin Cheong
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yong-Mo Koo
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Sooyong Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chung-Ku Noh
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Young-Ha Son
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chulhun Kang
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Nak-Won Sohn
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
511
|
Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res 2014; 39:624-44. [PMID: 24590859 DOI: 10.1007/s11064-014-1266-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota-termed "dysbiosis", impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional "Gut-Brain Axis" pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Grattan Street, 3rd Floor, Room No. 344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
512
|
Daulatzai MA. Role of stress, depression, and aging in cognitive decline and Alzheimer's disease. Curr Top Behav Neurosci 2014; 18:265-96. [PMID: 25167923 DOI: 10.1007/7854_2014_350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Late-onset Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of progressive cognitive dysfunction and dementia. Despite considerable progress in elucidating the molecular pathology of this disease, we are not yet close to unraveling its etiopathogenesis. A battery of neurotoxic modifiers may underpin neurocognitive pathology via deleterious heterogeneous pathologic impact in brain regions, including the hippocampus. Three important neurotoxic factors being addressed here include aging, stress, and depression. Unraveling "upstream pathologies" due to these disparate neurotoxic entities, vis-à-vis cognitive impairment involving hippocampal dysfunction, is of paramount importance. Persistent systemic inflammation triggers and sustains neuroinflammation. The latter targets several brain regions including the hippocampus causing upregulation of amyloid beta and neurofibrillary tangles, synaptic and neuronal degeneration, gray matter volume atrophy, and progressive cognitive decline. However, what is the fundamental source of this peripheral inflammation in aging, stress, and depression? This chapter highlights and delineates the inflammatory involvement-i.e., from its inception from gut to systemic inflammation to neuroinflammation. It highlights an upregulated cascade in which gut-microbiota-related dysbiosis generates lipopolysaccharides (LPS), which enhances inflammation and gut's leakiness, and through a Web of interactions, it induces stress and depression. This may increase neuronal dysfunction and apoptosis, promote learning and memory impairment, and enhance vulnerability to cognitive decline.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Department, Melbourne School of Engineering, The University of Melbourne, Building 193, 3rd Floor, Room no. 3/344, Parkville, VIC, 3010, Australia,
| |
Collapse
|
513
|
Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice. Molecules 2013; 18:15788-803. [PMID: 24352029 PMCID: PMC6269849 DOI: 10.3390/molecules181215788] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022] Open
Abstract
The present study investigated the effects of glycyrrhizin (GRZ) on neuroinflammation and memory deficit in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Varying doses of GRZ was orally administered (10, 30, or 50 mg/kg) once a day for 3 days before the LPS (3 mg/kg) injection. At 24 h after the LPS injection, GRZ significantly reduced TNF-α and IL-1β mRNA at doses of 30 and 50 mg/kg. COX-2 and iNOS protein expressions were significantly reduced by GRZ at doses of 30 and 50 mg/kg. In the Morris water maze test, GRZ (30 mg/kg) significantly prolonged the swimming time spent in the target and peri-target zones. GRZ also significantly increased the target heading and memory score numbers. In the hippocampal tissue, GRZ significantly reduced the up-regulated Iba1 protein expression and the average cell size of Iba1-expressing microglia induced by LPS. The results indicate that GRZ ameliorated the memory deficit induced by systemic LPS treatment and the effect of GRZ was found to be mediated through the inhibition of pro-inflammatory mediators and microglial activation in the brain tissue. This study supports that GRZ may be a putative therapeutic drug on neurodegenerative diseases associated with cognitive deficits and neuroinflammation such as Alzheimer's disease.
Collapse
|
514
|
Effects of chemokine receptor signalling on cognition-like, emotion-like and sociability behaviours of CCR6 and CCR7 knockout mice. Behav Brain Res 2013; 261:31-9. [PMID: 24333375 DOI: 10.1016/j.bbr.2013.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 01/27/2023]
Abstract
Inflammation is regarded as an important mechanism of neuropsychiatric disorders. Chemokines, which are a part of the immune system, have effects on various aspects of brain function, but little is known about their effects on behaviour. We have compared the cognition-like behaviour (learning and spatial memory) of CCR6(-/-) and CCR7(-/-) mice with wild type (WT) C57BL/6 mice, in the Barnes maze, as well as a range of other behaviours, including exploratory, anxiety and depression-like behaviour, using a battery of tests. Levels of cytokines TNF-α, IL-1β and IL-6 were also measured. In the Barnes maze, CCR7(-/-) mice were shown to take longer to learn the location of the escape box on the 1st of 4 days of training. In the behavioural battery, CCR6(-/-) mice showed higher locomotor activity and lower anxiety in the open field test, and a lack of preference for social novelty in a sociability test. CCR7(-/-) mice behaved much like WT mice, although showed higher anxiety in Elevated Zero Maze. While baseline saccharin preference in a 2-bottle choice test, a test for anhedonia depression-like behaviour, was equal in all strains at baseline, weekly tests showed that both CCR6(-/-) and CCR7(-/-) mice developed a decreased preference for saccharin compared to WT over time. There were no differences between strains in any of the cytokines measured. These results suggest that chemokine receptors may play a role in cognition and learning behaviour, as well as anxiety and other behaviours, although the biological mechanisms are still unclear.
Collapse
|
515
|
Choi MS, Kwak HJ, Kweon KJ, Hwang JM, Shin JW, Sohn NW. Effects of β-Asarone on Pro-Inflammatory Cytokines and Learning and Memory Impairment in Lipopolysaccharide-Treated Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.6116/kjh.2013.28.6.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
516
|
Lee B, Sur B, Park J, Kim SH, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside rg3 alleviates lipopolysaccharide-induced learning and memory impairments by anti-inflammatory activity in rats. Biomol Ther (Seoul) 2013; 21:381-90. [PMID: 24244826 PMCID: PMC3825202 DOI: 10.4062/biomolther.2013.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 11/05/2022] Open
Abstract
The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center
| | | | | | | | | | | | | | | | | |
Collapse
|
517
|
Wang CC, Tsai YJ, Hsieh YC, Lin RJ, Lin CL. The aqueous extract from Toona sinensis leaves inhibits microglia-mediated neuroinflammation. Kaohsiung J Med Sci 2013; 30:73-81. [PMID: 24444536 PMCID: PMC7118447 DOI: 10.1016/j.kjms.2013.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
The leaves of Toona sinensis, a well‐known traditional oriental medicine, have been prescribed for the treatment of enteritis and infection. Recently, aqueous extracts of Toona sinensis leaves (TSL‐1) have demonstrated many biological effects both in vitro and in vivo. In the central nervous system, microglial activation and their proinflammatory responses are considered an important therapeutic strategy for neuroinflammatory disorders such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. The present study attempted to validate the effect of TSL‐1 on microglia‐mediated neuroinflammation stimulated by lipopolysaccharide (LPS). As inflammatory parameters, the production of nitric oxide (NO), inducible NO synthase, and tumor necrosis factor‐α were evaluated. Our results demonstrate that TSL‐1 suppresses LPS‐induced NO production, tumor necrosis factor‐α secretion, and inducible NO synthase protein expression in a concentration‐dependent manner, without causing cytotoxicity. In addition, the inhibitory effects of TSL‐1 in LPS‐stimulated BV‐2 microglia were extended to post‐treatment suggesting the therapeutic potential of TSL‐1. Therefore, this work provides the future evaluation of the role of TSL‐1 in the treatment of neurodegenerative diseases by inhibition of inflammatory mediator production in activated microglia.
Collapse
Affiliation(s)
- Chao-Chuan Wang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yee-Jean Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ching Hsieh
- Department of Medical Research, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Rong-Jyh Lin
- Department of Parasitology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
518
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 754] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
519
|
Weintraub MK, Bisson CM, Nouri JN, Vinson BT, Eimerbrink MJ, Kranjac D, Boehm GW, Chumley MJ. Imatinib methanesulfonate reduces hippocampal amyloid-β and restores cognitive function following repeated endotoxin exposure. Brain Behav Immun 2013; 33:24-8. [PMID: 23665252 DOI: 10.1016/j.bbi.2013.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized, in part, by atrophy of the adult brain and increased presence of extracellular amyloid-beta (Aβ) plaques. Previous studies in our lab have shown that peripheral inflammation can lead to increased central Aβ and deficits in learning and memory. In order to determine whether Aβ accumulation in the brain is responsible for the learning deficits, we attempted to decrease peripheral production of Aβ in order to reduce central Aβ accumulation. It has previously been shown that Aβ is produced in large quantities in the liver, and is transferred across the blood-brain barrier (BBB). Recent research has shown that peripheral treatment with imatinib methanesulfonate salt (IM), known to interfere with the interaction between gamma (γ)-secretase and the γ-secretase activating protein (GSAP), decreases the cleavage of peripheral amyloid precursor protein into Aβ. Because IM poorly penetrates the BBB, we hypothesized that co-administration of IM with LPS would decrease peripheral production of Aβ in the presence of LPS-induced inflammation, leading to a decrease in Aβ accumulation in the hippocampus. We show that peripheral IM treatment eliminates hippocampal Aβ elevation that follows LPS-induced peripheral inflammation. Importantly, IM also eliminates the cognitive impairment seen following seven consecutive days of LPS administration, implicating Aβ peptides as a likely cause of these cognitive deficits.
Collapse
|
520
|
Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease. Acta Neuropathol Commun 2013; 1:62. [PMID: 24252346 PMCID: PMC3893418 DOI: 10.1186/2051-5960-1-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
For the last 20 years, the "amyloid cascade hypothesis" has dominated research aimed at understanding, preventing, and curing Alzheimer's disease (AD). During that time researchers have acquired an enormous amount of data and have been successful, more than 300 times, in curing the disease in animal model systems by treatments aimed at clearing amyloid deposits. However, to date similar strategies have not been successful in human AD patients. Hence, before rushing into further clinical trials with compounds that aim at lowering amyloid-beta (Aβ) levels in increasingly younger people, it would be of highest priority to re-assess the initial assumption that accumulation of Aβ in the brain is the primary pathological event driving AD. Here we question this assumption by highlighting experimental evidence in support of the alternative hypothesis suggesting that APP and Aβ are part of a neuronal stress/injury system, which is up-regulated to counteract inflammation/oxidative stress-associated neurodegeneration that could be triggered by a brain injury, chronic infections, or a systemic disease. In AD, this protective program may be overridden by genetic and other risk factors, or its maintenance may become dysregulated during aging. Here, we provide a hypothetical example of a hypothesis-driven correlation between car accidents and airbag release in analogy to the evolution of the amyloid focus and as a way to offer a potential explanation for the failure of the AD field to translate the success of amyloid-related therapeutic strategies in experimental models to the clinic.
Collapse
|
521
|
MIAO YULIAN, REN JIANMIN, JIANG LING, LIU JINBO, JIANG BEI, ZHANG XIAOLI. α-lipoic acid attenuates obesity-associated hippocampal neuroinflammation and increases the levels of brain-derived neurotrophic factor in ovariectomized rats fed a high-fat diet. Int J Mol Med 2013; 32:1179-86. [DOI: 10.3892/ijmm.2013.1482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/23/2013] [Indexed: 11/06/2022] Open
|
522
|
Perry DC, Lehmann M, Yokoyama JS, Karydas A, Lee JJ, Coppola G, Grinberg LT, Geschwind D, Seeley WW, Miller BL, Rosen H, Rabinovici G. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol 2013; 70:774-8. [PMID: 23609919 DOI: 10.1001/2013.jamaneurol.393] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. OBSERVATIONS This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. CONCLUSIONS AND RELEVANCE In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.
Collapse
Affiliation(s)
- David C Perry
- Department of Neurology, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Inhibitory effect of a 2,4-bis(4-hydroxyphenyl)-2-butenal diacetate on neuro-inflammatory reactions via inhibition of STAT1 and STAT3 activation in cultured astrocytes and microglial BV-2 cells. Neuropharmacology 2013; 79:476-87. [PMID: 23891616 DOI: 10.1016/j.neuropharm.2013.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 06/02/2013] [Accepted: 06/19/2013] [Indexed: 11/21/2022]
Abstract
2,4-Bis(p-hydroxyphenyl)-2-butenal (Butenal), a tyrosine-fructose Maillard reaction product has been demonstrated as an effective compound for prevention of neuroinflammatory diseases. However, this compound was vulnerable to environmental factors. Our research has been continuously made to improve druggability of Butenal and identified 2,4-bis(4-hydroxyphenyl)but-2-enal diacetate (HPBD) as an alternative. Herein, to investigate potential anti-neuroinflammatory and anti-amyloidogenic effects of HPBD, we treated HPBD (0.5, 1, and 2 μg/ml) on the lipopolysaccharides (LPS) (1 μg/ml) stimulated astrocytes and microglial BV-2 cell. HPBD inhibited LPS-induced NO and ROS production, and LPS-elevated expression of iNOS, COX2, β-site APP-cleaving enzyme 1 (BACE1), C99, and Aβ1-42 levels as well as attenuation of β-secretase activities. The activation of nuclear factor-kappaB (NF-κB), signal transducer and activator of transcription1 (STAT1), and STAT3 was concomitantly inhibited by HPBD. Moreover, siRNA targeting STAT3 abolished HPBD-induced inhibitory effects on neuro-inflammation and amyloidogenesis. In addition, pull down assay and docking model showed interaction of HPBD with STAT3. These findings suggest that HPBD may be useful and potentially therapeutic choices for the treatment of neuroinflammatory diseases.
Collapse
|
524
|
Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 2013; 5:29. [PMID: 23847533 PMCID: PMC3705200 DOI: 10.3389/fnagi.2013.00029] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.
Collapse
Affiliation(s)
- Kendall R Walker
- Alzheimer's Disease Research Laboratory, Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
525
|
Stepanichev MY, Onufriev MV, Piskunov AK, Moiseeva YV, Lazareva NA, Moiseenok AG, Gusev PV, Gulyaeva NV. The effects of derivatives of pantothenic acid on free-radical processes and the corticosterone level in the hippocampus and neocortex of rats after interoceptive stress. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
526
|
Wang CM, Liu MY, Wang F, Wei MJ, Wang S, Wu CF, Yang JY. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer's disease. Pharmacol Biochem Behav 2013; 106:57-67. [DOI: 10.1016/j.pbb.2013.03.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 11/15/2022]
|
527
|
Gonçalves N, Simões AT, Cunha RA, de Almeida LP. Caffeine and adenosine A2Areceptor inactivation decrease striatal neuropathology in a lentiviral-based model of Machado-Joseph disease. Ann Neurol 2013; 73:655-66. [DOI: 10.1002/ana.23866] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
|
528
|
Yagnik RM, Benzeroual KE. Tigecycline prevents LPS-induced release of pro-inflammatory and apoptotic mediators in neuronal cells. Toxicol In Vitro 2013. [DOI: 10.1016/j.tiv.2012.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
529
|
Holmes C. Review: Systemic inflammation and Alzheimer's disease. Neuropathol Appl Neurobiol 2013; 39:51-68. [DOI: 10.1111/j.1365-2990.2012.01307.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Affiliation(s)
- C. Holmes
- University of Southampton; Division of Clinical and Experimental Science; Memory Assessment and Research Centre; Moorgreen Hospital; Southampton; UK
| |
Collapse
|
530
|
Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer's disease-related pathology. Proc Natl Acad Sci U S A 2013; 110:1941-6. [PMID: 23322736 DOI: 10.1073/pnas.1215165110] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The pathogenesis of this neurodegenerative disease, currently without curative treatment, is associated with the accumulation of amyloid β (Aβ) in brain parenchyma and cerebral vasculature. AD patients are unable to clear this toxic peptide, leading to Aβ accumulation in their brains and, presumably, the pathology associated with this devastating disease. Compounds that stimulate the immune system to clear Aβ may therefore have great therapeutic potential in AD patients. Monophosphoryl lipid A (MPL) is an LPS-derived Toll-like receptor 4 agonist that exhibits unique immunomodulatory properties at doses that are nonpyrogenic. We show here that repeated systemic injections of MPL, but not LPS, significantly improved AD-related pathology in APP(swe)/PS1 mice. MPL treatment led to a significant reduction in Aβ load in the brain of these mice, as well as enhanced cognitive function. MPL induced a potent phagocytic response by microglia while triggering a moderate inflammatory reaction. Our data suggest that the Toll-like receptor 4 agonist MPL may be a treatment for AD.
Collapse
|
531
|
Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem 2013; 24:298-310. [DOI: 10.1016/j.jnutbio.2012.06.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 12/27/2022]
|
532
|
Impairment of lithium chloride-induced conditioned gaping responses (anticipatory nausea) following immune system stimulation with lipopolysaccharide (LPS) occurs in both LPS tolerant and LPS non-tolerant rats. Brain Behav Immun 2013; 27:123-32. [PMID: 23064080 DOI: 10.1016/j.bbi.2012.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/17/2012] [Accepted: 10/04/2012] [Indexed: 12/26/2022] Open
Abstract
Anticipatory nausea is a classically conditioned response to a context that has been previously paired with toxin-induced nausea and/or vomiting. When injected with a nausea-inducing drug, such as lithium chloride (LiCl), rats will show a distinctive conditioned gaping response that has been suggested to be an index of nausea. Previous studies have found that immune system activation with an endotoxin, such as lipopolysaccharide (LPS), attenuates LiCl-induced conditioned gaping in rats. The present study examined the acquisition of LiCl-induced conditioned gaping in rats that were either LPS tolerant or LPS non-tolerant, as little is known about the effects of endotoxin tolerance on learning and memory. Male Long-Evan rats were given four systemic injections of LPS (200 μg/kg) or isotonic saline (NaCl) to induce LPS tolerance, indexed with 24 h changes in body weight following treatment. The animals were then given 4 acquisition trials in a LiCl-induced conditioned gaping paradigm. On conditioning days animals were treated with LPS (200 μg/kg) or saline followed 90 min later by injection of LiCl (127 mg/kg) or saline and then placed in a distinctive context for 30 min and their behavior video-recorded. On a drug free test day all animals were again placed in the distinctive context for 10 min and behavior was video-recorded. Gaping responses were scored for all acquisition days and the test day. Spleen and body weights were also obtained for all rats at the end of the experiment. Gaping responses were attenuated in rats treated with LPS in both the LPS tolerant and LPS non-tolerant groups. There were significant negative correlations between spleen weight as well as spleen/body weight ratios, and levels of conditioned gaping responses in LiCl treated rats, but not control rats. These results show that LPS interferes with learning/memory in the anticipatory nausea paradigm in rats that are both LPS tolerant and LPS non-tolerant.
Collapse
|
533
|
RETRACTED: Multiple inflammatory pathways are involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice. Neurobiol Aging 2012; 33:2661-77. [DOI: 10.1016/j.neurobiolaging.2011.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
|
534
|
Erickson MA, Hansen K, Banks WA. Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood-brain barrier: protection by the antioxidant N-acetylcysteine. Brain Behav Immun 2012; 26:1085-94. [PMID: 22809665 PMCID: PMC3434291 DOI: 10.1016/j.bbi.2012.07.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022] Open
Abstract
Impairment in two blood-brain barrier (BBB) efflux transporters, p-glycoprotein (Pgp) and low-density lipoprotein receptor-related protein-1 (LRP-1) are thought to contribute to the progression of Alzheimer's disease (AD) by resulting in the brain accumulation of their substrate amyloid beta peptide (Aβ). The initial cause of impaired efflux, however, is unknown. We have shown that induction of systemic inflammation by intraperitoneal administration of lipopolysaccharide impairs the efflux of Aβ from the brain, suggesting that systemic inflammation could be one such initiator. In this study, we determined whether pre-administration of the antioxidant N-aceytlcysteine (Nac) has a protective effect against LPS-induced Aβ transporter dysfunction. Our findings were that Nac protected against LPS-induced Aβ transport dysfunction at the BBB through an LRP-1-dependent and Pgp-independent mechanism. This was associated with Nac exerting antioxidant effects in the periphery but not the brain, despite an increased rate of entry of Nac into the brain following LPS. We also found that Nac pre-administration resulted in lower blood levels of the cytokines and chemokines interferon-γ, interleukin-10, CCL2, CCL4, and CCL5, but only lowered CCL4 in the cerebral cortex and hippocampus. Finally, we observed that hippocampal cytokine responses to LPS were decreased compared to cortex. These findings demonstrate a novel mechanism by which antioxidants prevent Aβ accumulation in the brain caused by inflammation, and therefore protect against AD.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Saint Louis University, Department of Pharmacology and Physiology, St. Louis, MO, USA,GRECC, Veterans Affairs Puget Sound Health Care System; Seattle, WA, USA
| | - Kim Hansen
- GRECC, Veterans Affairs Puget Sound Health Care System; Seattle, WA, USA,University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, Seattle, WA, USA
| | - William A. Banks
- GRECC, Veterans Affairs Puget Sound Health Care System; Seattle, WA, USA,University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, Seattle, WA, USA
| |
Collapse
|
535
|
Xing Y, Zhang X, Zhao K, Cui L, Wang L, Dong L, Li Y, Liu Z, Wang C, Zhang X, Zhu C, Qiao H, Ji Y, Cao X. Beneficial effects of sulindac in focal cerebral ischemia: a positive role in Wnt/β-catenin pathway. Brain Res 2012; 1482:71-80. [PMID: 22981403 DOI: 10.1016/j.brainres.2012.08.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/09/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulated evidences have established that inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a target for treatment. Sulindac is well known as a nonsteroidal anti-inflammatory drug. However, little is known regarding the effect of sulindac in acute cerebral ischemia. Here, we designed this study to investigate the potential protective effects of sulindac in focal cerebral ischemia and the mechanisms underlying in vivo. METHODS Focal cerebral ischemia was induced in male Sprague-Dawley rats by permanent middle cerebral artery occlusion (pMCAO). Sulindac was administrated at dose of 4, 10, or 20mg/kg at 30 min before the operation. Neurological deficit scores, brain water content and infarct volumes were measured at 24h after pMCAO. Immunohistochemistry, western blot and reverse transcription-polymerase chain reaction were used for examining the mediators involved in Wnt/β-catenin signaling pathway, including the positive regulators dishevelled (Dvl) and β-catenin, the negative regulators adenomatous polyposis coli (APC), and P-β-catenin, as well as the downstream targets Bcl-2, Bax and claudin-5. RESULTS Compared with Vehicle group, 20mg/kg sulindac reduced neurological deficits, brain water content and infarct volumes. The same dose of sulindac upregulated the expression of Dvl, β-catenin, Bcl2 and claudin-5, and downregulated APC, P-β-catenin and Bax compared with Vehicle group. CONCLUSIONS These results showed that sulindac had a significant beneficial effect in cerebral ischemia; this effect may be correlated with the activation of the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yinxue Xing
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Ifuku M, Katafuchi T, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 2012; 9:197. [PMID: 22889165 PMCID: PMC3444880 DOI: 10.1186/1742-2094-9-197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer's disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. METHODS In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. RESULTS Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3-16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. CONCLUSIONS These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD.
Collapse
Affiliation(s)
- Masataka Ifuku
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
537
|
Katafuchi T, Ifuku M, Mawatari S, Noda M, Miake K, Sugiyama M, Fujino T. Effects of plasmalogens on systemic lipopolysaccharide-induced glial activation and β-amyloid accumulation in adult mice. Ann N Y Acad Sci 2012; 1262:85-92. [DOI: 10.1111/j.1749-6632.2012.06641.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
538
|
Park SY, Kim YH, Kim Y, Lee SJ. Aromatic-turmerone's anti-inflammatory effects in microglial cells are mediated by protein kinase A and heme oxygenase-1 signaling. Neurochem Int 2012; 61:767-77. [PMID: 22766494 DOI: 10.1016/j.neuint.2012.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/07/2012] [Accepted: 06/23/2012] [Indexed: 11/30/2022]
Abstract
Despite data supporting an immune-modulating effect of ar-turmerone in vitro, the underlying signaling pathways are largely unknown. Here, we investigated the anti-neuroinflammatory properties of ar-turmerone in LPS-stimulated BV-2 microglial cells. Increased pro-inflammatory cytokines and chemokines, PGE(2), NO and ROS production and MMP-9 enzymatic activity in LPS-stimulated microglial cells was inhibited by ar-turmerone. Subsequent mechanistic studies revealed that ar-turmerone inhibited LPS-induced JNK, p38 MAPK and NF-κB activation. Furthermore, ar-turmerone decreased the phosphorylation of LPS-induced STAT-1. Additionally, ar-turmerone increased the phosphorylation of STAT-3, an anti-inflammatory transcription factor. We next demonstrated that ar-turmerone induced HO-1 and Nrf-2 activation suppressed the activation of neuroinflammatory molecules in LPS-induced microglial cells, and that down-regulation of HO-1 signals was sufficient to induce the expression of iNOS, COX-2 and ROS production in microglial cells. Interestingly, we found that ar-turmerone induced phosphorylation of CREB by upregulating the cAMP level in microglial cells. Furthermore, HO-1 activation via PKA-mediated CREB phosphorylation attenuated the expression of neuroinflammatory molecules in LPS-induced microglial cells. Overall, the results of this study demonstrate that HO-1 and its upstream effectors PKA play a pivotal role in the anti-neuroinflammatory response of ar-turmerone in LPS-stimulated microglia.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
539
|
Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, Banks WA. Lipopolysaccharide impairs amyloid β efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. J Neuroinflammation 2012; 9:150. [PMID: 22747709 PMCID: PMC3410805 DOI: 10.1186/1742-2094-9-150] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells. Conclusions These results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pharmacology and Physiology, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
540
|
Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 2012; 14:13-20. [PMID: 22728094 DOI: 10.1016/j.intimp.2012.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 01/27/2023]
Abstract
Amyloid β (Aβ) induces the production of neuroinflammatory molecules, which may contribute to the pathogenesis of numerous neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Aromatic (ar)-turmerone, turmeric oil isolated from Curcuma longa, has long been used in Southeast Asia as both a remedy and a food. In this study, we investigated the anti-inflammatory effects of ar-turmerone in BV2 microglial cells. Aβ-stimulated microglial cells were tested for the expression and activation of MMP-9, iNOS, and COX-2, the production of proinflammatory cytokines, chemokines, and ROS, as well as the underlying signaling pathways. Ar-turmerone significantly suppressed Aβ-induced expression and activation of MMP-9, iNOS, and COX-2, but not MMP-2. Ar-turmerone also reduced TNF-α, IL-1β, IL-6, and MCP-1 production in Aβ-stimulated microglial cells. Further, ar-turmerone markedly inhibited the production of ROS. Impaired translocation and activation of NF-κB were observed in Aβ-stimulated microglial cells exposed to ar-turmerone. Furthermore, ar-turmerone inhibited the phosphorylation and degradation of IκB-α as well as the phosphorylation of JNK and p38 MAPK. These results suggest that ar-turmerone impaired the Aβ-induced inflammatory response of microglial cells by inhibiting the NF-κB, JNK, and p38 MAPK signaling pathways. Lastly, ar-turmerone protected hippocampal HT-22 cells from indirect neuronal toxicity induced by activated microglial cells. These novel findings provide new insights into the development of ar-turmerone as a therapeutic agent for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
541
|
Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2012; 61:71-90. [PMID: 22674585 DOI: 10.1002/glia.22350] [Citation(s) in RCA: 559] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/17/2012] [Indexed: 01/11/2023]
Abstract
It is well accepted that CNS inflammation has a role in the progression of chronic neurodegenerative disease, although the mechanisms through which this occurs are still unclear. The inflammatory response during most chronic neurodegenerative disease is dominated by the microglia and mechanisms by which these cells contribute to neuronal damage and degeneration are the subject of intense study. More recently it has emerged that systemic inflammation has a significant role to play in the progression of these diseases. Well-described adaptive pathways exist to transduce systemic inflammatory signals to the brain, but activation of these pathways appears to be deleterious to the brain if the acute insult is sufficiently robust, as in severe sepsis, or sufficiently prolonged, as in repeated stimulation with robust doses of inflammogens such as lipopolysaccharide (LPS). Significantly, moderate doses of inflammogens produce new pathology in the brain and exacerbate or accelerate features of disease when superimposed upon existing pathology or in the context of genetic predisposition. It is now apparent in multiple chronic disease states, and in ageing, that microglia are primed by prior pathology, or by genetic predisposition, to respond more vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS inflammatory response to systemic inflammation, into one that has deleterious consequences for the individual. In this review, the preclinical and clinical evidence supporting a significant role for systemic inflammation in chronic neurodegenerative diseases will be discussed. Mechanisms by which microglia might effect neuronal damage and dysfunction, as a consequence of systemic stimulation, will be highlighted.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.
| |
Collapse
|
542
|
Lee YJ, Choi DY, Yun YP, Han SB, Kim HM, Lee K, Choi SH, Yang MP, Jeon HS, Jeong JH, Oh KW, Hong JT. Ethanol Extract of Magnolia officinalis
Prevents Lipopolysaccharide-Induced Memory Deficiency via Its Antineuroinflammatory and Antiamyloidogenic Effects. Phytother Res 2012; 27:438-47. [DOI: 10.1002/ptr.4740] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Young-Jung Lee
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Dong-Young Choi
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Yeo-Pyo Yun
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Sang Bae Han
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Hwan Mook Kim
- College of Pharmacy; Gachon University of Medicine and Science; Incheon 406-799 Korea
| | - Kiho Lee
- College of Pharmacy; Korea University; Jochiwon Chungnam 339-700 Korea
| | - Seok Hwa Choi
- College of Veterinary Medicine; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Mhan-Pyo Yang
- College of Veterinary Medicine; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Hyun Soo Jeon
- Department of Obstetrics and Gynecology, School of Medicine; Konkuk University, Chungju Hospital; Chungju Korea
| | - Jea-Hwang Jeong
- Department of Biosciences and Biomedicine; Chungbuk Provincial College; Okcheongun Chungbuk 373-807 Korea
| | - Ki-Wan Oh
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| | - Jin Tae Hong
- College of Pharmacy; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- Medical Research Center; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
- CBITRC; Chungbuk National University; 12 Gaesin-dong, Heungduk-gu Cheongju Chungbuk 361-763 Korea
| |
Collapse
|
543
|
Kang WH, Simon MJ, Gao S, Banta S, Morrison B. Attenuation of astrocyte activation by TAT-mediated delivery of a peptide JNK inhibitor. J Neurotrauma 2012; 28:1219-28. [PMID: 21510821 DOI: 10.1089/neu.2011.1879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Astrocyte activation contributes to the brain's response to disease and injury. Activated astrocytes generate harmful radicals that exacerbate brain damage including nitric oxide, peroxides and superoxides. Furthermore, reactive astrocytes hinder regeneration of damaged neural circuits by secreting neuro-developmental inhibitors and glycosaminoglycans (GAGs), which physically block growth cone extension. Therefore, targeted therapeutic strategies to limit astrocyte activation may enhance recovery from many neurodegenerative states. Previously, we demonstrated that the HIV-1 TAT cell-penetrating peptide, a short non-toxic peptide from the full-length TAT protein, delivered a protein cargo to astrocytes in a process dependent on cell-surface GAG. Since activated astrocytes produce GAG, in this study we tested whether TAT could transduce activated astrocytes, deliver a biologically active cargo, and produce a physiological effect. Astrocyte activation was induced by IL-1β, lipopolysaccharide (LPS), or mechanical stretch injury, and quantified by increased GAG and nitrite content. TAT-mediated delivery of a mock therapeutic protein, GFP, increased significantly after activation. Nitrite production, GAG expression, and GFP-TAT transduction were significantly attenuated by inhibitors of JNK, p38, or ERK. TAT fused to a peptide JNK inhibitor delivered the peptide inhibitor to activated astrocytes and significantly reduced activation. Our study is the first to report significant and direct modulation of astrocyte activation with a peptide JNK inhibitor. Our promising in vitro results warrant in vivo follow-up, as TAT-mediated protein delivery may have broad therapeutic potential for preventing astrocyte activation with the possibility of limiting off-target, negative side effects.
Collapse
Affiliation(s)
- Woo Hyeun Kang
- Department of Biomedical, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
544
|
Fan K, Wu X, Fan B, Li N, Lin Y, Yao Y, Ma J. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation. J Neuroinflammation 2012; 9:96. [PMID: 22607609 PMCID: PMC3410810 DOI: 10.1186/1742-2094-9-96] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 05/20/2012] [Indexed: 12/17/2022] Open
Abstract
Background Cathepsin C (Cat C) functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro. Methods C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Results Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Conclusions Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the expression, release and upregulate enzymatic activity of Cat C in microglial cells. Further investigation is required to determine the functional role of Cat C in the progression of neuroinflammation, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future.
Collapse
Affiliation(s)
- Kai Fan
- Department of Anatomy, Dalian Medical University, No, 9, West Segment of South Lvshun Road, Dalian, Liaoning, 116044, China
| | | | | | | | | | | | | |
Collapse
|
545
|
Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: a protective role for melatonin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:843649. [PMID: 22666521 PMCID: PMC3359765 DOI: 10.1155/2012/843649] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/12/2012] [Indexed: 01/05/2023]
Abstract
Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.
Collapse
|
546
|
Abstract
While immune responses in neurodegeneration were regarded as little more than a curiosity a decade ago, they are now increasingly moving toward center stage. Factors driving this movement include the recognition that most of the relevant immune molecules are produced within the brain, that microglia are proficient immune cells shaping neuronal circuitry and fate, and that systemic immune responses affect brain function. We will review this complex field from the perspective of neurons, extra-neuronal brain cells, and the systemic environment and highlight the possibility that cell intrinsic innate immune molecules in neurons may function in neurodegenerative processes.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5489, USA
| | | |
Collapse
|
547
|
Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, McLinden KA, Boehm GW, Chumley MJ. Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 2012; 229:176-84. [DOI: 10.1016/j.bbr.2012.01.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022]
|
548
|
Jung BK, Pyo KH, Shin KY, Hwang YS, Lim H, Lee SJ, Moon JH, Lee SH, Suh YH, Chai JY, Shin EH. Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer's disease. PLoS One 2012; 7:e33312. [PMID: 22470449 PMCID: PMC3310043 DOI: 10.1371/journal.pone.0033312] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/07/2012] [Indexed: 12/23/2022] Open
Abstract
Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD) in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49) of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide), anti-inflammatory cytokines (IL-10 and TGF-β), neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA), and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice.
Collapse
Affiliation(s)
- Bong-Kwang Jung
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Young Shin
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Sang Hwang
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoungsub Lim
- Department of Neuroscience, School of Dentistry, Seoul National University, Seoul Republic of Korea
| | - Sung Joong Lee
- Department of Neuroscience, School of Dentistry, Seoul National University, Seoul Republic of Korea
| | - Jung-Ho Moon
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Hyung Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Yil Chai
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
549
|
Nasoohi S, Hemmati AA, Moradi F, Ahmadiani A. The γ-secretase blocker DAPT impairs recovery from lipopolysaccharide-induced inflammation in rat brain. Neuroscience 2012; 210:99-109. [PMID: 22445932 DOI: 10.1016/j.neuroscience.2012.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/15/2022]
Abstract
γ-Secretase is an important contributing enzyme in Alzheimer's disease and is therefore an important therapeutic target. However, the impact of γ-secretase inhibition is not well studied in acute neuroinflammation induced by systemic infection. In this study the influence of γ-secretase on the expression of some proinflammatory markers was assessed in the acute phase as well as the subsiding phase of neuroinflammation. Cerebral γ-secretase cleavage activity was measured by a fluorometric assay after lipopolysaccharide (LPS) intraperitoneal administration. Time profiles of TNF-α and COX-II expression were then determined to detect the time points relevant to the maximal inflammatory responses and the subsequent recovery phase. γ-Secretase activity coincident with TNF-α protein expression returned to its basal level till 8-12 h after systemic challenge with low dose LPS while COX-II over expression lasted for 48-72 h later. Pharmacological inhibition of γ-secretase with local or systemic administration of DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) was performed to indicate the results on the developmental and sinking phases of inflammatory responses in 6 and 72 h post LPS respectively. Our results demonstrate that both local and systemic modulation of γ-secretase hyper-activity with DAPT increase the duration of TNF-α, COX-II, and NFκB induction. We consistently found mild augmented apoptosis in animals treated with DAPT as determined by measuring cleaved caspase-3 expression and by TUNEL assay 72 h following LPS injection. These results suggest that γ-secretase modulation interferes with certain immune regulatory pathways which may restrict some inflammatory transcription factors such as NFκB.
Collapse
Affiliation(s)
- S Nasoohi
- Department of Pharmacology and Toxicology, School of Pharmacy and Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Golestan, PO Box 6287, Ahvaz, Iran
| | | | | | | |
Collapse
|
550
|
Cui W, Sun Y, Wang Z, Xu C, Peng Y, Li R. Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice. Neuroscience 2012; 210:200-10. [PMID: 22425753 DOI: 10.1016/j.neuroscience.2012.02.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 02/25/2012] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is associated with beta-amyloid deposition, glial activation, and increased levels of the cytokines, as well as cholinergic dysfunction. Liver X receptor (LXR) has been found to inhibit the expression of pro-inflammatory genes. However, the effects of LXR activation on inflammatory response and on cholinergic system in AD are not yet clear. The present results revealed that LXR activation markedly attenuated several inflammatory markers and decreased microglial activation and reactive astrocytes in amyloid precursor protein (APP)/PS1 transgenic mice. Additionally, LXR activation significantly increased the number of cholinergic neurons in the medial septal regions and the basal nucleus of Meynert (NBM), and attenuated cognitive impairment. Furthermore, we observed that LXR activation inhibited the production of COX-2 and iNOS from Aβ(25-35)-induced microglia. LXR activation and nuclear factor kappa B (NF-κB) inhibitor PDTC both attenuated Aβ(25-35) induction of NF-κB activation. These results suggest that LXR agonists suppress the production of pro-inflammatory molecules, at least in part, by modulating NF-κB-signaling pathway. Collectively, these studies suggest that LXR agonists may have therapeutic significance in AD.
Collapse
Affiliation(s)
- W Cui
- Department of Human Anatomy, Xinxiang Medical University, Xinxiang 453003, China
| | | | | | | | | | | |
Collapse
|