501
|
Kozielewicz P, Turku A, Schulte G. Molecular Pharmacology of Class F Receptor Activation. Mol Pharmacol 2020; 97:62-71. [PMID: 31591260 DOI: 10.1124/mol.119.117986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
The class Frizzled (FZD) or class F of G protein-coupled receptors consists of 10 FZD paralogues and Smoothened (SMO). FZDs coordinate wingless/Int-1 signaling and SMO mediates Hedgehog signaling. Class F receptor signaling is intrinsically important for embryonic development and its dysregulation leads to diseases, including diverse forms of tumors. With regard to the importance of class F signaling in human disease, these receptors provide an attractive target for therapeutics, exemplified by the use of SMO antagonists for the treatment of basal cell carcinoma. Here, we review recent structural insights in combination with a more detailed functional understanding of class F receptor activation, G protein coupling, conformation-based functional selectivity, and mechanistic details of activating cancer mutations, which will lay the basis for further development of class F-targeting small molecules for human therapy. SIGNIFICANCE STATEMENT: Stimulated by recent insights into the activation mechanisms of class F receptors from structural and functional analysis of Frizzled and Smoothened, we aim to summarize what we know about the molecular details of ligand binding, agonist-driven conformational changes, and class F receptor activation. A better understanding of receptor activation mechanisms will allow us to engage in structure- and mechanism-driven drug discovery with the potential to develop more isoform-selective and potentially pathway-selective drugs for human therapy.
Collapse
Affiliation(s)
- Pawel Kozielewicz
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ainoleena Turku
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
502
|
Chauhan P, Gupta R, Jain BP, Pandey S, Goswami SK. Subcellular dynamics of variants of SG2NA in NIH3T3 fibroblasts. Cell Biol Int 2020; 44:637-650. [PMID: 31773824 DOI: 10.1002/cbin.11264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
SG2NA, a WD40 repeat protein of the Striatin subfamily, has four splicing and one messenger RNA edit variants. It is fast emerging as a scaffold for multimeric signaling complexes with roles in tissue development and disease. The green fluorescent protein (GFP)-tagged variants of SG2NA were ectopically expressed in NIH3T3 cells and their modulation by serum and GSK3β-ERK signaling were monitored. The 87, 78, and 35 kDa variants showed a biphasic modulation by serum till 24 h but the 52 kDa variant remained largely unresponsive. Inhibition of phosphatases by okadaic acid increased the levels of the endogenous 78 kDa and the ectopically expressed GFP-tagged 87 and 78 kDa SG2NAs. Contrastingly, okadaic acid treatment reduced the level of GFP-tagged 35 kDa SG2NA, suggesting differential modes of their stability through phosphorylation-dephosphorylation. The inhibition of GSK3β by LiCl showed a gradual decrease in the levels of 78 kDa. In the case of the other variants viz, GFP-tagged 35, 52, and 87 kDa, inhibition of GSK3β caused an initial increase followed by a decrease with a subtle difference in kinetics and intensities. Similar results were also seen upon inhibition of GSK3β by small interfering RNA. All the variants showed an increase followed by a decrease upon inhibition of extracellular-signal-regulated-kinase (ERK). These variants are localized in the plasma membrane, endoplasmic reticulum, mitochondria, and the nucleus with different propensities and no discernable subcellular distribution was seen upon stimulation by serum and the inhibition of phosphatases, GSK3β, and ERK. Taken together, the variants of SG2NA are modulated by the kinase-phosphatase network in a similar but characteristic manner.
Collapse
Affiliation(s)
- Pooja Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Microbiology and Molecular Genetics, Hadassah Medical School, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, POB 12272, Jerusalem, 91120, Israel
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar, Motihari, 845401, India
| | - Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- APSGMNS Govt PG College, Kawardha, Chhatishgarh
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| |
Collapse
|
503
|
Rezaei-Lotfi S, Farahani RM. Coupled cycling and regulation of metazoan morphogenesis. Cell Div 2020; 15:1. [PMID: 32002022 PMCID: PMC6986050 DOI: 10.1186/s13008-020-0059-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
Metazoan animals are characterized by restricted phenotypic heterogeneity (i.e. morphological disparity) of organisms within various species, a feature that contrasts sharply with intra-species morphological diversity observed in the plant kingdom. Robust emergence of morphogenic blueprint in metazoan animals reflects restricted autonomy of individual cells in adoption of fate outcomes such as differentiation. Fates of individual cells are linked to and influenced by fates of neighboring cells at the population level. Such coupling is a common property of all self-organising systems and propels emergence of order from simple interactions between individual cells without supervision by external directing forces. As a consequence of coupling, expected functional relationship between the constituent cells of an organ system is robustly established concurrent with multiple rounds of cell division during morphogenesis. Notably, the molecular regulation of multicellular coupling during morphogenic self-organisation remains largely unexplored. Here, we review the existing literature on multicellular self-organisation with particular emphasis on recent discovery that β-catenin is the key coupling factor that programs emergence of multi-cellular self-organisation by regulating synchronised cycling of individual cells.
Collapse
Affiliation(s)
| | - Ramin M Farahani
- IDR/Westmead Institute for Medical Research, Westmead, Australia.,2Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
504
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
505
|
Duan Y, Qiu Y, Huang X, Dai C, Yang J, He W. Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling. J Mol Med (Berl) 2020; 98:291-307. [PMID: 31927599 DOI: 10.1007/s00109-019-01870-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) has been proposed involving in β-catenin activity. We previously reported that FHL2 mediates TGF-β1-induced tubular epithelial-to-mesenchymal transition through activating Wnt/β-catenin signaling. However, the potential role and mechanism for FHL2 in TGF-β1-induced fibroblast activation and kidney fibrosis remains unknown. Here, we initially observed higher levels of FHL2 expression in fibrotic kidneys from both patients and mice, especially in α-smooth muscle actin (α-SMA)-positive cells in the interstitium. In cultured interstitial fibroblasts, FHL2 expression was induced by TGF-β1. Knockdown of FHL2 remarkably suppressed TGF-β1-induced α-SMA, type I collagen, and fibronectin expression, while overexpression of FHL2 was sufficient to activate fibroblasts. In mice, fibroblast-specific deletion of FHL2 diminished renal induction of α-SMA, type I collagen, and fibronectin and interstitial extracellular matrix deposition at 2 weeks after ureteral obstruction. We next investigated Wnt/β-catenin activity and found that β-catenin was activated in most FHL2-positive cells in renal interstitium from mice with obstructive nephropathy. In vitro, TGF-β1 induced a physical interaction between FHL2 and β-catenin, especially in the nucleus. Downregulation of FHL2 inhibited TGF-β1-induced active β-catenin upregulation, β-catenin nuclear translocation, and β-catenin-mediated transcription, whereas overexpression of FHL2 was able to activate Wnt/β-catenin signaling. FHL2 overexpression-induced β-catenin-mediated gene transcription could be hindered by ICG-001, but FHL2 overexpression-induced upregulation of active β-catenin could not be. Collectively, this study reveals that the signal regulatory effect of FHL2 on β-catenin plays an important role in TGF-β1-induced fibroblast activation and kidney fibrosis.
Collapse
Affiliation(s)
- Ying Duan
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China.,Department of Blood Purification Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
506
|
Sunkara RR, Sarate RM, Setia P, Shah S, Gupta S, Chaturvedi P, Gera P, Waghmare SK. SFRP1 in Skin Tumor Initiation and Cancer Stem Cell Regulation with Potential Implications in Epithelial Cancers. Stem Cell Reports 2020; 14:271-284. [PMID: 31928951 PMCID: PMC7013199 DOI: 10.1016/j.stemcr.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Wnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1−/− (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1−/− CSCs. Expression profiling on Sfrp1−/− CSCs showed upregulation of genes involved in epithelial to mesenchymal transition, stemness, proliferation, and metastasis. Further, SOX-2 and SFRP1 expression was validated in human skin cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, and breast cancer. The data showed downregulation of SFRP1 and upregulation of SOX-2, establishing their inverse correlation. Importantly, we broadly uncover an inverse correlation of SFRP1 and SOX-2 in epithelial cancers that may be used as a potential prognostic marker in the management of cancer. Loss of Sfrp1 accelerates murine skin tumor initiation and SCC progression Sfrp1 loss enhances in vivo tumorigenic potential of murine skin CSCs We found enhanced EMT and Sox-2 in Sfrp1−/− murine skin SCC Sfrp1 and Sox-2 are inversely correlated in multiple human epithelial cancers
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Priyanka Setia
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | | | - Poonam Gera
- Cancer Research Institute, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
507
|
Carreira-Barbosa F, Nunes SC. Wnt Signaling: Paths for Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:189-202. [PMID: 32130700 DOI: 10.1007/978-3-030-34025-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Wnt signaling pathways are well known for having several pivotal roles during embryonic development. However, the same developmental signaling pathways also present key roles in cancer initiation and progression. In this chapter, several issues regarding the roles of both canonical and non-canonical Wnt signaling pathways in cancer will be explored, mainly concerning their role in the maintenance of cancer stemness, in the metabolism reprograming of cancer cells and in the modulation of the tumor microenvironment. The role of Wnt signaling cascades in the response of cancer cells to anti-cancer treatments will be also discussed, as well as its potential therapeutic targeting during cancer treatment. Collectively, increasing evidence has been supporting pivotal roles of Wnt signaling in several features of cancer biology, however; a lot is still to be elucidated.
Collapse
Affiliation(s)
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| |
Collapse
|
508
|
Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 2020; 15:1580-1589. [PMID: 32209757 PMCID: PMC7437582 DOI: 10.4103/1673-5374.276320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by upper and lower motor neuron degeneration, which leads to progressive paralysis of skeletal muscles and, ultimately, respiratory failure between 2–5 years after symptom onset. Unfortunately, currently accepted treatments for amyotrophic lateral sclerosis are extremely scarce and only provide modest benefit. As a consequence, a great effort is being done by the scientific community in order to achieve a better understanding of the different molecular and cellular processes that influence the progression and/or outcome of this neuropathological condition and, therefore, unravel new potential targets for therapeutic intervention. Interestingly, a growing number of experimental evidences have recently shown that, besides its well-known physiological roles in the developing and adult central nervous system, the Wnt family of proteins is involved in different neuropathological conditions, including amyotrophic lateral sclerosis. These proteins are able to modulate, at least, three different signaling pathways, usually known as canonical (β-catenin dependent) and non-canonical (β-catenin independent) signaling pathways. In the present review, we aim to provide a general overview of the current knowledge that supports the relationship between the Wnt family of proteins and its associated signaling pathways and amyotrophic lateral sclerosis pathology, as well as their possible mechanisms of action. Altogether, the currently available knowledge suggests that Wnt signaling modulation might be a promising therapeutic approach to ameliorate the histopathological and functional deficits associated to amyotrophic lateral sclerosis, and thus improve the progression and outcome of this neuropathology.
Collapse
Affiliation(s)
| | - Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | | |
Collapse
|
509
|
Pradilla Dieste A, Chenlo M, Perez-Romero S, Garcia-Rendueles ÁR, Suarez-Fariña M, Garcia-Lavandeira M, Bernabeu I, Cameselle-Teijeiro JM, Alvarez CV. GFRα 1-2-3-4 co-receptors for RET Are co-expressed in Pituitary Stem Cells but Individually Retained in Some Adenopituitary Cells. Front Endocrinol (Lausanne) 2020; 11:631. [PMID: 33071961 PMCID: PMC7543094 DOI: 10.3389/fendo.2020.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022] Open
Abstract
The RET tyrosine kinase receptor is expressed by the endocrine somatotroph cells of the pituitary where it has important functions regulating survival/apoptosis. However, RET is also expressed by the GPS pituitary stem cells localized in a niche between the adenopituitary and the intermediate lobe. To bind any of its four ligands, RET needs one of four co-receptors called GFRα1-4. It has been previously shown that GFRα1 is expressed by somatotroph cells and acromegaly tumors. GFRα2 was shown to be expressed by pituitary stem cells. GFRα4 was proposed as not expressed in the pituitary. Here we study the RNA and protein expression of the four GFRα co-receptors for RET in rat and human pituitary. The four co-receptors were abundantly expressed at the RNA level both in rat and human pituitary, although GFRα4 was the less abundant. Multiple immunofluorescence for each co-receptor and β-catenin, a marker of stem cell niche was performed. The four GFRα co-receptors were co-expressed by the GPS cells at the niche colocalizing with β-catenin. Isolated individual scattered cells positive for one or other receptor could be found through the adenopituitary with low β-catenin expression. Some of them co-express GFRα1 and PIT1. Immunohistochemistry in normal human pituitary confirmed the data. Our data suggest that the redundancy of GFRα co-expression is a self-supportive mechanism which ensures niche maintenance and proper differentiation.
Collapse
Affiliation(s)
- Alberto Pradilla Dieste
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ángela R. Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ignacio Bernabeu
- Department of Endocrinology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), USC, Santiago de Compostela, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS)-SERGAS, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Clara V. Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- *Correspondence: Clara V. Alvarez
| |
Collapse
|
510
|
Gomez-Giro G, Arias-Fuenzalida J, Jarazo J, Zeuschner D, Ali M, Possemis N, Bolognin S, Halder R, Jäger C, Kuper WFE, van Hasselt PM, Zaehres H, del Sol A, van der Putten H, Schöler HR, Schwamborn JC. Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun 2019; 7:222. [PMID: 31888773 PMCID: PMC6937812 DOI: 10.1186/s40478-019-0871-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
The juvenile form of neuronal ceroid Lipofuscinosis (JNCL) is the most common form within this group of rare lysosomal storage disorders, causing pediatric neurodegeneration. The genetic disorder, which is caused by recessive mutations affecting the CLN3 gene, features progressive vision loss, cognitive and motor decline and other psychiatric conditions, seizure episodes, leading to premature death. Animal models have traditionally aid the understanding of the disease mechanisms and pathology and are very relevant for biomarker research and therapeutic testing. Nevertheless, there is a need for establishing reliable and predictive human cellular models to study the disease. Since patient material, particularly from children, is scarce and difficult to obtain, we generated an engineered a CLN3-mutant isogenic human induced pluripotent stem cell (hiPSC) line carrying the c.1054C → T pathologic variant, using state of the art CRISPR/Cas9 technology. To prove the suitability of the isogenic pair to model JNCL, we screened for disease-specific phenotypes in non-neuronal two-dimensional cell culture models as well as in cerebral brain organoids. Our data demonstrates that the sole introduction of the pathogenic variant gives rise to classical hallmarks of JNCL in vitro. Additionally, we discovered an alteration of the splicing caused by this particular mutation. Next, we derived cerebral organoids and used them as a neurodevelopmental model to study the particular effects of the CLN3Q352X mutation during brain formation in the disease context. About half of the mutation -carrying cerebral organoids completely failed to develop normally. The other half, which escaped this severe defect were used for the analysis of more subtle alterations. In these escapers, whole-transcriptome analysis demonstrated early disease signatures, affecting pathways related to development, corticogenesis and synapses. Complementary metabolomics analysis confirmed decreased levels of cerebral tissue metabolites, some particularly relevant for synapse formation and neurotransmission, such as gamma-amino butyric acid (GABA). Our data suggests that a mutation in CLN3 severely affects brain development. Furthermore, before disease onset, disease -associated neurodevelopmental changes, particular concerning synapse formation and function, occur.
Collapse
|
511
|
Baruch-Eliyahu N, Rud V, Braiman A, Priel E. Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci Rep 2019; 9:18118. [PMID: 31792359 PMCID: PMC6889131 DOI: 10.1038/s41598-019-54741-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
The telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Natalie Baruch-Eliyahu
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vladislav Rud
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Esther Priel
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
512
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
513
|
Loganathan L, Natarajan K, Muthusamy K. Computational study on cross-talking cancer signalling mechanism of ring finger protein 146, AXIN and Tankyrase protein complex. J Biomol Struct Dyn 2019; 38:5173-5185. [PMID: 31760854 DOI: 10.1080/07391102.2019.1696707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is distinguished by uncontrolled cell growth and it is regulated by several environmental and genetic factors. The Wnt β-Catenin signaling pathway has been considered as the most significant colon cancer-targeted pathway. AXIN plays a major regulatory role in the Wnt signaling mechanism. The AXIN after PARsylated by TNKS is ubiqutinated by RNF146 through its WWE domain that leads to degradation of AXIN protein. Several studies have been proposed highlighting the inhibition of the PARsylation mechanism that mediates the degradation of AXIN and improves β-catenin stability. The present study focused on the identification of potential inhibitors for the inhibition of RNF146-TNKS complex through identifying potential RNF146 inhibitors to prevent ubiquitination of AXIN, further to confirm the regulatory role and inhibition mechanism of RNF146-AXIN and RNF146-TNKS. The docked complex was then evaluated using various computational analysis. Molecular interactions analysis was performed to observe the interacting residues between the protein complex. The compounds from various databases were docked with the RNF146 and complex proteins. Both the protein complex and ligand were analyzed for the confirmation of structural stability using molecular dynamics simulations. Selected compounds' atomic configuration and electron profile were analyzed through DFT calculations and ADME/T (Physico-chemical) properties. As a result, we found several common lead compounds for RNF146, TNKS protein inhibition. Therefore, the docked compounds may act as a better antagonist molecule for RNF146, TNKS and associated signaling molecules. Further, experimental validations are required to prove the potency of the identified compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Keerthana Natarajan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | | |
Collapse
|
514
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
515
|
Ljungberg JK, Kling JC, Tran TT, Blumenthal A. Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Front Immunol 2019; 10:2521. [PMID: 31781093 PMCID: PMC6857519 DOI: 10.3389/fimmu.2019.02521] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that aberrant WNT expression and signaling is associated with developmental defects, malignant transformation and carcinogenesis. More recently, WNT ligands have emerged as integral components of host responses to infection but their functions in the context of immune responses are incompletely understood. Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate defense mechanisms, as well as the bridging of innate and adaptive immunity have been described. To what degree WNT responses are defined by the nature of the invading pathogen or are specific for subsets of host cells is currently not well-understood. Here we provide an overview of WNT responses during infection with phylogenetically diverse pathogens and highlight functions of WNT ligands in the host defense against infection. Detailed understanding of how the WNT network orchestrates immune cell functions will not only improve our understanding of the fundamental principles underlying complex immune response, but also help identify therapeutic opportunities or potential risks associated with the pharmacological targeting of the WNT network, as currently pursued for novel therapeutics in cancer and bone disorders.
Collapse
Affiliation(s)
- Johanna K Ljungberg
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica C Kling
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thao Thanh Tran
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
516
|
Li R, Lin S, Zhu M, Deng Y, Chen X, Wei K, Xu J, Li G, Bian L. Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. SCIENCE ADVANCES 2019; 5:eaaw3896. [PMID: 31663014 PMCID: PMC6795506 DOI: 10.1126/sciadv.aaw3896] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/25/2019] [Indexed: 05/30/2023]
Abstract
Noncanonical Wnt signaling in stem cells is essential to numerous developmental events. However, no prior studies have capitalized on the osteoinductive potential of noncanonical Wnt ligands to functionalize biomaterials in enhancing the osteogenesis and associated skeleton formation. Here, we investigated the efficacy of the functionalization of biomaterials with a synthetic Wnt5a mimetic ligand (Foxy5 peptide) to promote the mechanosensing and osteogenesis of human mesenchymal stem cells by activating noncanonical Wnt signaling. Our findings showed that the immobilized Wnt5a mimetic ligand activated noncanonical Wnt signaling via the up-regulation of Disheveled 2 and downstream RhoA-ROCK signaling, leading to enhanced intracellular calcium level, F-actin stability, actomyosin contractility, and cell adhesion structure development. This enhanced mechanotransduction in stem cells promoted the in vitro osteogenic lineage commitment and the in vivo healing of rat calvarial defects. Our work provides valuable guidance for the developmentally inspired design of biomaterials for a wide array of therapeutic applications.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Sien Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Meiling Zhu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Yingrui Deng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Jianbin Xu
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, New Territories 999077, Hong Kong, P. R. China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, P. R. China
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Sha Tin, New Territories, 999077 Hong Kong, P.R. China
| |
Collapse
|
517
|
Nie X, Xia F, Liu Y, Zhou Y, Ye W, Hean P, Meng J, Liu H, Liu L, Wen J, Ren X, Chen WD, Wang YD. Downregulation of Wnt3 Suppresses Colorectal Cancer Development Through Inhibiting Cell Proliferation and Migration. Front Pharmacol 2019; 10:1110. [PMID: 31632267 PMCID: PMC6779829 DOI: 10.3389/fphar.2019.01110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
The aberrant expression of Wnt3 has linked to several types of human malignancies. However, it is not known for its role in tumorigenesis of colorectal cancer (CRC). Herein, we show that Wnt3 is upregulated in human CRC tissues and is essential for the CRC progression. Knockdown of Wnt3 in human CRC cells delayed tumor formation in nude mouse xenografts through silencing of canonical Wnt pathway and glycolysis. We further found that silencing of Wnt3 enhanced the sensitivity of CRC cells to cisplatin through inducing apoptotic cell death. Taken together, it demonstrates that Wnt3 is a novel clinical biomarker for the detection of CRC and plays an important role in colorectal tumorigenesis. Therefore, downregulation of Wnt3 will be a valuable strategy in CRC treatment.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Fulin Xia
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Ying Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Panha Hean
- Department of General Surgery, Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Jiming Meng
- Department of General Surgery, Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Jianxun Wen
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Xuequn Ren
- Department of General Surgery, Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
518
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
519
|
Hashimoto Y, Greco TM, Cristea IM. Contribution of Mass Spectrometry-Based Proteomics to Discoveries in Developmental Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:143-154. [PMID: 31347046 DOI: 10.1007/978-3-030-15950-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
520
|
Zhang JL, Yuan XB, Chen SJ, Chen HH, Xu N, Xue WH, Fu SJ, Zhang CX, Xu HJ. The histone deacetylase NlHDAC1 regulates both female and male fertility in the brown planthopper, Nilaparvata lugens. Open Biol 2019; 8:180158. [PMID: 30977704 PMCID: PMC6303786 DOI: 10.1098/rsob.180158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone acetylation is a specific type of chromatin modification that serves as a key regulatory mechanism for many cellular processes in mammals. However, little is known about its biological function in invertebrates. Here, we identified 12 members of histone deacetylases (NlHDACs) in the brown planthopper (BPH), Nilaparvata lugens. RNAi-mediated silencing assay showed that NlHdac1, NlHdac3 and NlHdac4 played critical roles in female fertility via regulating ovary maturation or ovipositor development. Silencing of NlHdac1 substantially increased acetylation level of histones H3 and H4 in ovaries, indicating NlHDAC1 is the main histone deacetylase in ovaries of BPH. RNA sequencing (RNA-seq) analysis showed that knockdown of NlHdac1 impaired ovary development via multiple signalling pathways including the TOR pathway. Acoustic recording showed that males with NlHdac1 knockdown failed to make courtship songs, and thus were unacceptable to wild-type females, resulting in unfertilized eggs. Competition mating assay showed that wild-type females overwhelmingly preferred to mate with control males over NlHdac1-knockdown males. These findings improve our understanding of reproductive strategies controlled by HDACs in insects and provide a potential target for pest control.
Collapse
Affiliation(s)
- Jin-Li Zhang
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Xiao-Bo Yuan
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Sun-Jie Chen
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hao-Hao Chen
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Nan Xu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Wen-Hua Xue
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Sheng-Jie Fu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hai-Jun Xu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
521
|
Jia XX, Zhu TT, Huang Y, Zeng XX, Zhang H, Zhang WX. Wnt/β-catenin signaling pathway regulates asthma airway remodeling by influencing the expression of c-Myc and cyclin D1 via the p38 MAPK-dependent pathway. Exp Ther Med 2019; 18:3431-3438. [PMID: 31602218 PMCID: PMC6777302 DOI: 10.3892/etm.2019.7991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
Airway remodeling is the main characteristic of asthma; however, the mechanisms underlying this pathophysiological change have not been fully elucidated. Previous studies have indicated that the Wnt/β-catenin and mitogen-activated protein kinase (MAPK) signaling pathway are involved in the development of airway remodeling during asthma. Therefore, the present study established an airway remodeling rat model, after which β-catenin, cyclin D1 and c-Myc protein expressions were analyzed via western blotting in the lung tissue and airway smooth muscle cells (ASMCs) of rats. The mRNA expression of the aforementioned proteins were evaluated via reverse transcription-quantitative PCR. β-catenin, cyclin D1 and c-Myc are core transcription factors and target genes of the Wnt/β-catenin and MAPK signaling pathways. Furthermore, β-catenin, c-Myc and cyclin D1 protein expression were determined following blocking of the p38 MAPK signaling pathway in vitro. The results demonstrated that higher expressions of β-catenin, cyclin D1 and c-Myc were detected in lung tissues and ASMCs in the asthma group compared with the control. Blocking the p38 MAPK signaling pathway with a specific inhibitor SB203580 also downregulated the expressions of β-catenin, cyclin D1 and c-Myc in vitro. Taken together, these results indicated that the Wnt/β-catenin signaling pathway may regulate the process of airway remodeling via the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Xiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ting-Ting Zhu
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yue Huang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xin-Xin Zeng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hong Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei-Xi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
522
|
Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod 2019; 101:526-537. [PMID: 31220231 PMCID: PMC8127039 DOI: 10.1093/biolre/ioz030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The preimplantation embryo has a remarkable ability to execute its developmental program using regulatory information inherent within itself. Nonetheless, the uterine environment is rich in cell signaling molecules termed embryokines that act on the embryo during the morula-to-blastocyst transition, promoting blastocyst formation and programming the embryo for subsequent developmental events. Programming can not only affect developmental processes important for continuance of development in utero but also affect characteristics of the offspring during postnatal life. Given the importance of embryokines for regulation of embryonic development, it is likely that some causes of infertility involve aberrant secretion of embryokines by the uterus. Embryokines found to regulate development of the bovine embryo include insulin-like growth factor 1, colony stimulating factor 2 (CSF2), and dickkopf WNT signaling pathway inhibitor 1. Embryo responses to CSF2 exhibit sexual dimorphism, suggesting that sex-specific programming of postnatal function is caused by maternal signals acting on the embryo during the preimplantation period that regulate male embryos differently than female embryos.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Paula Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Zona Rural General Paz, Córdoba, Argentina
| |
Collapse
|
523
|
Gomez GA, Prasad MS, Wong M, Charney RM, Shelar PB, Sandhu N, Hackland JOS, Hernandez JC, Leung AW, García-Castro MI. WNT/β-catenin modulates the axial identity of embryonic stem cell-derived human neural crest. Development 2019; 146:dev.175604. [PMID: 31399472 DOI: 10.1242/dev.175604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX+ HOX- NC and high WNT leading to posterior OTX- HOX+ NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives. Furthermore, unlike anterior NC, posterior NC exhibits a transient TBXT+/SOX2+ neuromesodermal precursor-like intermediate. Finally, we analyze the contributions of other signaling pathways in posterior NC formation, which suggest a crucial role for FGF in survival/proliferation, and a requirement of BMP for NC maturation. As expected retinoic acid (RA) and FGF are able to modulate HOX expression in the posterior NC. Surprisingly, early RA supplementation prohibits NC formation. This work reveals for the first time that the amplitude of WNT signaling can modulate the axial identity of NC cells in humans.
Collapse
Affiliation(s)
- Gustavo A Gomez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Man Wong
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Patrick B Shelar
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Nabjot Sandhu
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - James O S Hackland
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Jacqueline C Hernandez
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Alan W Leung
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I García-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
524
|
Tao Y, Mis M, Blazer L, Ustav M, Steinhart Z, Chidiac R, Kubarakos E, O'Brien S, Wang X, Jarvik N, Patel N, Adams J, Moffat J, Angers S, Sidhu SS. Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. eLife 2019; 8:e46134. [PMID: 31452509 PMCID: PMC6711705 DOI: 10.7554/elife.46134] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Secreted Wnt proteins regulate development and adult tissue homeostasis by binding and activating cell-surface Frizzled receptors and co-receptors including LRP5/6. The hydrophobicity of Wnt proteins has complicated their purification and limited their use in basic research and as therapeutics. We describe modular tetravalent antibodies that can recruit Frizzled and LRP5/6 in a manner that phenocopies the activities of Wnts both in vitro and in vivo. The modular nature of these synthetic Frizzled and LRP5/6 Agonists, called FLAgs, enables tailored engineering of specificity for one, two or multiple members of the Frizzled family. We show that FLAgs underlie differentiation of pluripotent stem cells, sustain organoid growth, and activate stem cells in vivo. Activation of Wnt signaling circuits with tailored FLAgs will enable precise delineation of functional outcomes directed by distinct receptor combinations and could provide a new class of therapeutics to unlock the promise of regenerative medicine.
Collapse
Affiliation(s)
- Yuyong Tao
- Donnelly CentreUniversity of TorontoTorontoCanada
| | - Monika Mis
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Levi Blazer
- Donnelly CentreUniversity of TorontoTorontoCanada
| | - Mart Ustav
- Donnelly CentreUniversity of TorontoTorontoCanada
| | - Zachary Steinhart
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Rony Chidiac
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Elli Kubarakos
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Siobhan O'Brien
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Xiaomei Wang
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Nick Jarvik
- Donnelly CentreUniversity of TorontoTorontoCanada
| | - Nish Patel
- Donnelly CentreUniversity of TorontoTorontoCanada
| | | | - Jason Moffat
- Donnelly CentreUniversity of TorontoTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
- Canadian Institute for Advanced ResearchTorontoCanada
| | - Stephane Angers
- Department of Pharmaceutical SciencesLeslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Sachdev S Sidhu
- Donnelly CentreUniversity of TorontoTorontoCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| |
Collapse
|
525
|
What makes flatworms go to pieces. Nature 2019; 572:593-594. [PMID: 31444489 DOI: 10.1038/d41586-019-02376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
526
|
Participation of the Serine Protease Jonah66Ci in the Drosophila Antinematode Immune Response. Infect Immun 2019; 87:IAI.00094-19. [PMID: 31182620 DOI: 10.1128/iai.00094-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Serine proteases and serine protease homologs form the second largest gene family in the Drosophila melanogaster genome. Certain genes in the Jonah multigene family encoding serine proteases have been implicated in the fly antiviral immune response. Here, we report the involvement of Jonah66Ci in the Drosophila immune defense against Steinernema carpocapsae nematode infection. We find that Drosophila Jonah66Ci is upregulated in response to symbiotic (carrying the mutualistic bacterium Xenorhabdus nematophila) or axenic (lacking Xenorhabdus) Steinernema nematodes and is expressed exclusively in the gut of Drosophila larvae. Inactivation of Jonah66Ci provides a survival advantage to larvae against axenic nematodes and results in differential expression of Toll and Imd pathway effector genes, specifically in the gut. Also, inactivation of Jonah66Ci increases the numbers of enteroendocrine and mitotic cells in the gut of uninfected larvae, and infection with Steinernema nematodes reduces their numbers, whereas the numbers of intestinal stem cells are unaffected by nematode infection. Jonah66Ci knockdown further reduces nitric oxide levels in response to infection with symbiotic Steinernema nematodes. Finally, we show that Jonah66Ci knockdown does not alter the feeding rates of uninfected Drosophila larvae; however, infection with axenic Steinernema nematodes lowers larval feeding. In conclusion, we report that Jonah66Ci participates in maintaining homeostasis of certain physiological processes in Drosophila larvae in the context of Steinernema nematode infection. Similar findings will take us a step further toward understanding the molecular and physiological mechanisms that take place during parasitic nematode infection in insects.
Collapse
|
527
|
Nfonsam LE, Jandova J, Jecius HC, Omesiete PN, Nfonsam VN. SFRP4 expression correlates with epithelial mesenchymal transition-linked genes and poor overall survival in colon cancer patients. World J Gastrointest Oncol 2019; 11:589-598. [PMID: 31435461 PMCID: PMC6700031 DOI: 10.4251/wjgo.v11.i8.589] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colon cancer is among the most commonly diagnosed cancers in the United States with an estimated 97220 new cases expected by the end of 2018. It affects 1.2 million people around the world and is responsible for about 0.6 million deaths every year. Despite decline in overall incidence and mortality over the past 30 years, there continues to be an alarming rise in early-onset colon cancer cases (< 50 years). Patients are often diagnosed at late stages of the disease and tend to have poor survival. We previously showed that the WNT “gatekeeper” gene, secreted frizzled-related protein 4 (SFRP4), is over-expressed in early-onset colon cancer. SFRP4 is speculated to play an essential role in cancer by inhibiting the epithelial mesenchymal transition (EMT).
AIM To investigate the correlation between SFRP4 expression and EMT-linked genes in colon cancer and how it affects patient survival.
METHODS SFRP4 expression relative to that of EMT-linked genes and survival analysis were performed using the University of California Santa Cruz Cancer Browser interface.
RESULTS SFRP4 was found to be co-expressed with the EMT-linked markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP7, MMP9, and COL1A1. SFRP4 expression negatively correlated with the EMT-linked suppressors CLDN4, CLDN7, TJP3, MUC1, and CDH1. The expression of SFRP4 and the EMT-linked markers was higher in mesenchymal-like samples compared to epithelial-like samples which potentially implicates SFRP4-EMT mechanism in colon cancer. Additionally, patients overexpressing SFRP4 presented with poor overall survival (P = 0.0293).
CONCLUSION Considering the implication of SFRP4 in early-onset colon cancer, particularly in the context of EMT, tumor metastasis, and invasion, and the effect of increased expression on colon cancer patient survival, SFRP4 might be a potential biomarker for early-onset colon cancer that could be targeted for diagnosis and/or disease therapy.
Collapse
Affiliation(s)
- Landry E Nfonsam
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario K1H 8L1, Canada
| | - Jana Jandova
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Hunter C Jecius
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Pamela N Omesiete
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Valentine N Nfonsam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
528
|
Petko J, Thileepan M, Sargen M, Canfield V, Levenson R. Alternative splicing of the Wnt trafficking protein, Wntless and its effects on protein-protein interactions. BMC Mol Cell Biol 2019; 20:22. [PMID: 31286866 PMCID: PMC6615345 DOI: 10.1186/s12860-019-0208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Wntless (Wls) is a protein that regulates secretion of Wnt signaling molecules from Wnt-producing cells. Wnt signaling is known to be critical for several developmental and homeostatic processes. However, Wnt-independent functions of Wls are now being elucidated. Primates express an alternative splice variant of Wls (here termed WlsX). WlsX contains an alternatively spliced COOH-terminus, and does not appear to be able to sustain significant levels of WNT secretion because of its inability to undergo retrograde trafficking to the endoplasmic reticulum. The functional significance for this alternatively spliced form of Wls has not yet been elucidated. We previously identified a cohort of Wls interacting proteins using a combination of yeast 2-hybrid and candidate gene approaches. Results In the present study, we analyzed the interaction of WlsX with previously identified Wls interactors, and additionally screened for novel protein interactors of WlsX utilizing a membrane yeast two hybrid screen. Three novel Wls interactors, Glycoprotein M6A (GPM6A), Alkylglycerol Monooxygenase (AGMO), and ORAI1 were identified. Each of these novel WlsX interactors, as well as all other Wls interacting proteins identified previously, with the exception of the mu-opioid receptor, were found to interact with both Wls and WlsX splice forms. We show that WlsX can form homodimers, but that WlsX may not interact with Wls. Conclusions WlsX has the ability to form homodimers and to interact with most known Wls interacting proteins. Taken together, our results suggest that Wls and WlsX may have overlapping, but distinct functions, including sensitivity to opioid drugs. While studies have focused on the ability of Wls interacting proteins to affect Wnt secretion, future efforts will explore the reciprocal regulation of these proteins by Wls, possibly via Wnt-independent mechanisms.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Biology Department, Penn State York, York, Pa, USA
| | - Victor Canfield
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
529
|
Jalil AS, Reddy SB, Plautz CZ. Cellular effects of diquat dibromide exposure: Interference with Wnt signaling and cytoskeletal development. TOXICOLOGY RESEARCH AND APPLICATION 2019. [DOI: 10.1177/2397847319858563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The herbicidal action of diquat dibromide (DD) on plant cells is due primarily to the initiation of reactive oxygen species (ROS) formation, lipoperoxidation, and apoptotic cell death. It has been demonstrated that oxidative stress also occurs in animal cells exposed to high concentrations of DD; however, observations of DD’s effects on animal cells at concentrations below the reported ROS-initiation threshold suggest that some of these effects may not be attributable to ROS-induced cell death. Our results suggest that DD causes disruption of the Wnt pathway, calcium dysregulation, and cytoskeletal damage during development. Using embryos of the pond snail Lymnaea palustris as our model organism, we observed increased mortality, developmental delay and abnormality, altered motility, calcium dysregulation, decreased heart rate, and arrhythmia in embryos exposed to DD. Sperm extracted from adult snails that were exposed to DD exhibit altered motility, increased abundance, and high mortality. Effects were quantified via real-time imaging, heart rate assessment, flow cytometry, and mortality scoring. We propose that there are two models for the mechanism of DD’s action in animal cells: at low concentrations (≤28 µg/L), apoptotic cell death does not occur, but cytoskeletal elements, calcium regulation, and Wnt signaling are compromised, causing irreversible damage in L. palustris embryos; such damage is partially remediated with antioxidants or lithium chloride. At high concentrations of DD (≥44.4 µg/L), calcium dysregulation may be triggered, leading to the establishment of an intracellular positive feedback loop of ROS formation in the mitochondria, calcium release from the endoplasmic reticulum, calcium efflux, and apoptotic cell death. Permanent cellular damage occurring from exposure to sublethal concentrations of this widespread herbicide underscores the importance of research that elucidates the mechanism of DD on nontarget organisms.
Collapse
Affiliation(s)
- Amaris S Jalil
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - Sneha B Reddy
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | | |
Collapse
|
530
|
García-Gómez MC, Vilahur G. Osteoporosis and vascular calcification: A shared scenario. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 32:33-42. [PMID: 31221532 DOI: 10.1016/j.arteri.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a systemic skeletal disease, characterised by low bone mass and deterioration in the micro-architecture of bone tissue, which causes increased bone fragility and consequently greater susceptibility to fractures. It is the most frequent metabolic bone disease in our population, and fractures resulting from osteoporosis are becoming more common. Furthermore, vascular calcification is a recognised risk factor of cardiovascular morbidity and mortality that historically has been considered a passive and degenerative process. However, it is currently recognised as an active process, which has histopathological characteristics, mineral composition and initiation and development mechanisms characteristic of bone formation. Paradoxically, patients with osteoporosis frequently show vascular calcifications. Traditionally, they have been considered as independent processes related to age, although more recent epidemiological studies have shown that there is a close relationship between the loss of bone mass and vascular calcification, regardless of age. In fact, both conditions share risk factors and pathophysiological mechanisms. These include the relationship between proteins of bone origin, such as osteopontin and osteoprotegerin (OPG), with vascular pathology, and the intercellular protein system RANK/RANKL/OPG and the Wnt signalling pathway. The mechanisms linked in both pathologies should be considered in clinical decisions, given that treatments for osteoporosis could have unforeseen effects on vascular calcification, and vice versa. In short, a better understanding of the relationship between both entities can help in proposing strategies to reduce the increasing prevalence of vascular calcification and osteoporosis in the aging population.
Collapse
Affiliation(s)
| | - Gemma Vilahur
- Programa ICCC-Institut de Recerca Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, España; CIBERCV Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
531
|
Teves ME, Strauss JF, Sapao P, Shi B, Varga J. The Primary Cilium: Emerging Role as a Key Player in Fibrosis. Curr Rheumatol Rep 2019; 21:29. [PMID: 31115730 DOI: 10.1007/s11926-019-0822-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The myofibroblast is the culprit in the pathogenesis of fibrosis in systemic sclerosis (SSc). Activation of morphogen signaling pathways has been shown to be critically involved in organ fibrosis. Remarkably, the cellular receptors and key molecules from these signaling pathways are localized in the primary cilium. The primary cilium is a unique cellular organelle present in virtually all cells. This article summarizes recent studies evaluating the association between primary cilia and morphogen signaling driving myofibroblast transition and subsequent fibrosis. RECENT FINDINGS Emerging observations implicate dysfunctional primary cilia in fibrosis in many different tissues and organs. Primary cilia seem to be necessary for the initiation of the transition and sustained activation of myofibroblasts. We summarize recent progress in this field and propose the primary cilium as a potential mediator of fibrosis pathogenesis in SSc. Understanding the contributions of primary cilia in fibrosis may ultimately inform the development of entirely new approaches for fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, 1101 E Marshall Street, Richmond, VA, 23298, USA.
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, 1101 E Marshall Street, Richmond, VA, 23298, USA
| | - Paulene Sapao
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, 1101 E Marshall Street, Richmond, VA, 23298, USA.,Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Bo Shi
- Scleroderma Program, Division of Rheumatology, Northwestern University, 240 East Huron St., Chicago, IL, 60611, USA
| | - John Varga
- Scleroderma Program, Division of Rheumatology, Northwestern University, 240 East Huron St., Chicago, IL, 60611, USA.
| |
Collapse
|
532
|
Timbergen MJM, Smits R, Grünhagen DJ, Verhoef C, Sleijfer S, Wiemer EAC. Activated Signaling Pathways and Targeted Therapies in Desmoid-Type Fibromatosis: A Literature Review. Front Oncol 2019; 9:397. [PMID: 31165043 PMCID: PMC6534064 DOI: 10.3389/fonc.2019.00397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Desmoid-type fibromatosis (DTF) is a rare, soft tissue tumor of mesenchymal origin which is characterized by local infiltrative growth behavior. Besides "wait and see," surgery and radiotherapy, several systemic treatments are available for symptomatic patients. Recently, targeted therapies are being explored in DTF. Unfortunately, effective treatment is still hampered by the limited knowledge of the molecular mechanisms that prompt DTF tumorigenesis. Many studies focus on Wnt/β-catenin signaling, since the vast majority of DTF tumors harbor a mutation in the CTNNB1 gene or the APC gene. The established role of the Wnt/β-catenin pathway in DTF forms an attractive therapeutic target, however, drugs targeting this pathway are still in an experimental stage and not yet available in the clinic. Only few studies address other signaling pathways which can drive uncontrolled growth in DTF such as: JAK/STAT, Notch, PI3 kinase/AKT, mTOR, Hedgehog, and the estrogen growth regulatory pathways. Evidence for involvement of these pathways in DTF tumorigenesis is limited and predominantly based on the expression levels of key pathway genes, or on observed clinical responses after targeted treatment. No clear driver role for these pathways in DTF has been identified, and a rationale for clinical studies is often lacking. In this review, we highlight common signaling pathways active in DTF and provide an up-to-date overview of their therapeutic potential.
Collapse
Affiliation(s)
- Milea J. M. Timbergen
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Dirk J. Grünhagen
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
533
|
Adebayo Michael AO, Ko S, Tao J, Moghe A, Yang H, Xu M, Russell JO, Pradhan-Sundd T, Liu S, Singh S, Poddar M, Monga JS, Liu P, Oertel M, Ranganathan S, Singhi A, Rebouissou S, Zucman-Rossi J, Ribback S, Calvisi D, Qvartskhava N, Görg B, Häussinger D, Chen X, Monga SP. Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. Cell Metab 2019; 29:1135-1150.e6. [PMID: 30713111 PMCID: PMC6506359 DOI: 10.1016/j.cmet.2019.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Based on their lobule location, hepatocytes display differential gene expression, including pericentral hepatocytes that surround the central vein, which are marked by Wnt-β-catenin signaling. Activating β-catenin mutations occur in a variety of liver tumors, including hepatocellular carcinoma (HCC), but no specific therapies are available to treat these tumor subsets. Here, we identify a positive relationship between β-catenin activation, its transcriptional target glutamine synthetase (GS), and p-mTOR-S2448, an indicator of mTORC1 activation. In normal livers of mice and humans, pericentral hepatocytes were simultaneously GS and p-mTOR-S2448 positive, as were β-catenin-mutated liver tumors. Genetic disruption of β-catenin signaling or GS prevented p-mTOR-S2448 expression, while its forced expression in β-catenin-deficient livers led to ectopic p-mTOR-S2448 expression. Further, we found notable therapeutic benefit of mTORC1 inhibition in mutant-β-catenin-driven HCC through suppression of cell proliferation and survival. Thus, mTORC1 inhibitors could be highly relevant in the treatment of liver tumors that are β-catenin mutated and GS positive.
Collapse
Affiliation(s)
- Adeola O Adebayo Michael
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Akshata Moghe
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hong Yang
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, PR China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tirthadipa Pradhan-Sundd
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jayvir S Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarangarajan Ranganathan
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pediatric Pathology, Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra Rebouissou
- Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, Equipe Labellisée Ligue Contre le Cancer, Paris 75010, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, 75010 Paris, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 93000 Bobigny, France; Université Paris Diderot, IUH, 75010 Paris, France
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique fonctionnelle des Tumeurs solides, Equipe Labellisée Ligue Contre le Cancer, Paris 75010, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, 75010 Paris, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 93000 Bobigny, France; Université Paris Diderot, IUH, 75010 Paris, France
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Diego Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
534
|
Abstract
Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.
Collapse
Affiliation(s)
- Lindsay B Case
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Jonathon A Ditlev
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , ,
| |
Collapse
|
535
|
Rajakulendran N, Rowland KJ, Selvadurai HJ, Ahmadi M, Park NI, Naumenko S, Dolma S, Ward RJ, So M, Lee L, MacLeod G, Pasiliao C, Brandon C, Clarke ID, Cusimano MD, Bernstein M, Batada N, Angers S, Dirks PB. Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells. Genes Dev 2019; 33:498-510. [PMID: 30842215 PMCID: PMC6499328 DOI: 10.1101/gad.321968.118] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
In this study, Rajakulendran et al. investigated the role of Wnt/βcatenin signaling in GBM stem cell renewal and fate decisions. They identify new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity. Developmental signal transduction pathways act diversely, with context-dependent roles across systems and disease types. Glioblastomas (GBMs), which are the poorest prognosis primary brain cancers, strongly resemble developmental systems, but these growth processes have not been exploited therapeutically, likely in part due to the extreme cellular and genetic heterogeneity observed in these tumors. The role of Wnt/βcatenin signaling in GBM stem cell (GSC) renewal and fate decisions remains controversial. Here, we report context-specific actions of Wnt/βcatenin signaling in directing cellular fate specification and renewal. A subset of primary GBM-derived stem cells requires Wnt proteins for self-renewal, and this subset specifically relies on Wnt/βcatenin signaling for enhanced tumor burden in xenograft models. In an orthotopic Wnt reporter model, Wnthi GBM cells (which exhibit high levels of βcatenin signaling) are a faster-cycling, highly self-renewing stem cell pool. In contrast, Wntlo cells (with low levels of signaling) are slower cycling and have decreased self-renewing potential. Dual inhibition of Wnt/βcatenin and Notch signaling in GSCs that express high levels of the proneural transcription factor ASCL1 leads to robust neuronal differentiation and inhibits clonogenic potential. Our work identifies new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity, which deserve further exploration therapeutically.
Collapse
Affiliation(s)
- Nishani Rajakulendran
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Katherine J Rowland
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Nicole I Park
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Sergey Naumenko
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Sonam Dolma
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ryan J Ward
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Milly So
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Clarissa Pasiliao
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Caroline Brandon
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Ian D Clarke
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael D Cusimano
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Mark Bernstein
- Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Nizar Batada
- Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, United Kingdom
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada.,Faculty of Medicine, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Faculty of Medicine, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada.,Faculty of Medicine, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Neurosurgery The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
536
|
Autophagy promotes hepatic differentiation of hepatic progenitor cells by regulating the Wnt/β-catenin signaling pathway. J Mol Histol 2019; 50:75-90. [PMID: 30604254 PMCID: PMC6323068 DOI: 10.1007/s10735-018-9808-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Hepatic progenitor cells (HPCs) can be activated when the liver suffers persistent and severe damage and can differentiate into hepatocytes to maintain liver regeneration and homeostasis. However, the molecular mechanism underlying the hepatic differentiation of HPCs is unclear. Therefore, in this study, we aimed to investigate the roles of autophagy and the Wnt/β-catenin signaling pathway during hepatic differentiation of HPCs in vivo and in vitro. First, immunohistochemistry, immunofluorescence and electron microscopy showed that Atg5 and β-catenin were highly expressed in human fibrotic liver and mouse liver injury induced by feeding a 50% choline-deficient diet plus 0.15% ethionine solution in drinking water (CDE diet) for 21 days; in addition, these factors were expressed in CK19-positive HPCs. Second, Western blotting and immunofluorescence confirmed that CK19-positive HPCs incubated in differentiation medium for 7 days can differentiate into hepatocytes and that differentiated HPCs were able to take up ICG and secrete albumin and urea. Further investigation via Western blotting, immunofluorescence and electron microscopy revealed autophagy and the Wnt/β-catenin pathway to be activated during hepatic differentiation of HPCs. Next, we found that inhibiting autophagy by downregulating Atg5 gene expression impaired hepatic differentiation of HPCs and inhibited activation of the Wnt/β-catenin pathway, which was rescued by overexpression of the β-catenin gene. Moreover, downregulating β-catenin gene expression without inhibiting autophagy still impeded the differentiation of HPCs. Finally, coimmunoprecipitation demonstrated that P62 forms a complex with phosphorylated glycogen synthase kinase 3 beta (pGSK3β). Third, in mouse CDE-induced liver injury, immunohistochemistry and immunofluorescence confirmed that downregulating Atg5 gene expression inhibited autophagy, thus impeding hepatic differentiation of HPCs and inhibiting activation of the Wnt/β-catenin pathway. As observed in vitro, overexpression of β-catenin rescued this phenomenon caused by autophagy inhibition, though decreasing β-catenin levels without autophagy inhibition still impeded HPC differentiation. We also found that HPCs differentiated into hepatocytes in human fibrotic liver tissue. Collectively, these results demonstrate that autophagy promotes HPC differentiation by regulating Wnt/β-catenin signaling. Our results are the first to identify a role for autophagy in promoting the hepatic differentiation of HPCs.
Collapse
|
537
|
Anderson WJ, Hornick JL. Immunohistochemical correlates of recurrent genetic alterations in sarcomas. Genes Chromosomes Cancer 2018; 58:111-123. [DOI: 10.1002/gcc.22700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/25/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- William J. Anderson
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| | - Jason L. Hornick
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
538
|
Poggi L, Casarosa S, Carl M. An Eye on the Wnt Inhibitory Factor Wif1. Front Cell Dev Biol 2018; 6:167. [PMID: 30574494 PMCID: PMC6292148 DOI: 10.3389/fcell.2018.00167] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
The coordinated interplay between extrinsic activating and repressing cell signaling molecules is pivotal for embryonic development and subsequent tissue homeostasis. This is well exemplified by studies on the evolutionarily conserved Wnt signaling pathways. Tight temporal and spatial regulation of Wnt signaling activity is required throughout lifetime, from maternal stages before gastrulation until and throughout adulthood. Outside cells, the action of numerous Wnt ligands is counteracted and fine-tuned by only a handful of well characterized secreted inhibitors, such as for instance Dickkopf, secreted Frizzled Related Proteins and Cerberus. Here, we give an overview of our current understanding of another secreted Wnt signaling antagonist, the Wnt inhibitory factor Wif1. Wif1 can directly interact with various Wnt ligands and inhibits their binding to membrane bound receptors. Epigenetic promoter methylation of Wif1, leading to silencing of its transcription and concomitant up-regulation of Wnt signaling, is a common feature during cancer progression. Furthermore, an increasing number of reports describe Wif1 involvement in regulating processes during embryonic development, which so far has not received as much attention. We will summarize our knowledge on Wif1 function and its mode of action with a particular focus on the zebrafish (Danio rerio). In addition, we highlight the potential of Wif1 research to understand and possibly influence mechanisms underlying eye diseases and regeneration.
Collapse
Affiliation(s)
- Lucia Poggi
- Laboratory of Molecular and Cellular Ophthalmology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Matthias Carl
- Laboratory of Translational Neurogenetics, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
539
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
540
|
Duan L, Yang Q, Yang J, Hu Q, Wang B, Li P, Chen W. Identification of serum β-catenin as a biomarker in patients with HBV-related liver diseases. J Transl Med 2018; 16:265. [PMID: 30268125 PMCID: PMC6162905 DOI: 10.1186/s12967-018-1645-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Substantial evidence indicates that β-catenin is a pivotal regulator that contributes to the initiation and development of various types of diseases. Recently, β-catenin can be detected in human serum and also reported to be correlated with several disease progression in a little research. However, very little is known about the relationship between serum β-catenin and HBV-related liver disease. METHODS Serum levels of β-catenin, from 77 patients with chronic hepatitis B (CHB), 63 patients with hepatitis B associated liver cirrhosis (HBLC), 61 patients with hepatocellular carcinoma (HCC), 41 healthy HBV carriers (HHCs) and 78 healthy controls (HCs) were measured by ELISA. Correlations of serum β-catenin with viral replication and liver necroinflammation parameters were analyzed. The receiver operating characteristic (ROC) curve was used to assess the discriminating power of serum β-catenin to grade different stages of HBV-related disorders. Human hepatic cell line L02 was transfected with a HBV plasmid, and β-catenin levels and the underlying mechanism were analyzed. RESULTS Chronic hepatitis B and HBLC patients but not HHC or HCC showed significantly higher serum β-catenin levels than HCs. β-catenin levels were not correlated with HBV DNA levels but were correlated with necroinflammation parameters. HBV-infected cell model showed elevated levels of phosphorylation at Ser473 in Akt (p-Akt), phosphorylation at Ser9 in GSK3β (p-GSK3β) and β-catenin, all of which was blocked by treatment with Akt inhibitor LY294002. Additionally, ROC analysis of β-catenin for discriminating patients with CHB from HHCs, which yielded an AUC of 0.71 (cutoff value, 42 pg/mL; 95% CI 0.61-0.81) with 64.93% sensitivity, 73.17% specificity and 69.05% accuracy. ROC analysis of β-catenin for discriminating patients with HCC from chronic HBV infection mainly including CHB and HBLC, which yielded an AUC of 0.75 (cutoff value, 42 pg/mL; 95% CI 0.67-0.83) with 66.43% sensitivity, 75.41% specificity and 70.92% accuracy. CONCLUSIONS HBV infection enhances β-catenin expression by activating Akt/GSK3β signaling. Serum β-catenin levels are correlated with necroinflammation parameters but not with viral load. Serum β-catenin has potential to discriminate the phase of HBV-related disorders, particularly predicts the patients with CHB from HHCs and also predicting HCC form chronic HBV infection.
Collapse
Affiliation(s)
- Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Qianfan Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Jun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Qin Hu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yu Zhong District, Chongqing, 400010, China.
| |
Collapse
|