501
|
Gold Glyconanoparticles Combined with 91–99 Peptide of the Bacterial Toxin, Listeriolysin O, Are Efficient Immunotherapies in Experimental Bladder Tumors. Cancers (Basel) 2022; 14:cancers14102413. [PMID: 35626016 PMCID: PMC9140107 DOI: 10.3390/cancers14102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary We propose a novel type of immunotherapy for bladder cancer using gold nanoparticles bound to a peptide of a bacterial toxin with anti-tumor capacities as listeriolysin O called Listeria nanovaccines. Here, we present the pre-clinical experiments on a mice model of bladder cancer and blood cells of patients with bladder cancer using these Listeria nanovaccines that activate the immune system, block the tumor immunosuppression environment, and reduce the tumor size. The impact of Listeria nanovaccines on the field of immunotherapies for solid tumors can be extended to other solid tumors containing lymphocyte infiltration. Therefore, we propose Listeria nanovaccines as immunotherapy for tumors such as melanoma, urothelial bladder carcinoma, non-small cell lung carcinoma, and glioblastoma. Abstract This study presents proof of concept assays to validate gold nanoparticles loaded with the bacterial peptide 91–99 of the listeriolysin O toxin (GNP-LLO91–99 nanovaccines) as immunotherapy for bladder tumors. GNP-LLO91–99 nanovaccines showed adjuvant abilities as they induce maturation and activation of monocyte-derived dendritic cells (MoDCs) to functional antigen-presenting cells in healthy donors and patients with melanoma or bladder cancer (BC), promoting a Th1 cytokine pattern. GNP-LLO91–99 nanovaccines were also efficient dendritic cell inducers of immunogenic tumor death using different bladder and melanoma tumor cell lines. The establishment of a pre-clinical mice model of subcutaneous BC confirmed that a single dose of GNP-LLO91–99 nanovaccines reduced tumor burden 4.7-fold and stimulated systemic Th1-type immune responses. Proof of concept assays validated GNP-LLO91–99 nanovaccines as immunotherapy by comparison to anti-CTLA-4 or anti-PD-1 antibodies. In fact, GNP-LLO91–99 nanovaccines increased percentages of CD4+ and CD8+ T cells, B cells, and functional antigen-presenting DCs in tumor-infiltrated lymphocytes, while they reduced the levels of myeloid-derived suppressor cells (MDSC) and suppressor T cells (Treg). We conclude that GNP-LLO91–99 nanovaccines can work as monotherapies or combinatory immunotherapies with anti-CTLA-4 or anti-PD-1 antibodies for solid tumors with high T cell infiltration, such as bladder cancer or melanoma.
Collapse
|
502
|
Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022; 23:5479. [PMID: 35628289 PMCID: PMC9141725 DOI: 10.3390/ijms23105479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
The failure of a long-lasting curative therapeutic benefit of currently applied chemotherapies against malignant cancers is suggested to be caused by the ineffectiveness of such interventions on cancer stem cells (CSCs). CD133/AC133 is a cell surface protein previously shown to have potential to identify CSCs in various tumors, including brain tumors. Moreover, an increase in the rate of cellular metabolism of glutamine and glucose are contributors to the fast cellular proliferation of some high-grade malignancies. Inhibition of glutaminolysis by utilizing pharmacological inhibitors of the enzyme glutaminase 1 (GLS1) can be an effective anti-CSC strategy. In this study, the clinical-stage GLS1 inhibitor Telaglenastat (CB-839) was loaded into PEGylated gold nanoparticles equipped with the covalently conjugated CD133 aptamer (Au-PEG-CD133-CB-839) and exposed to a collection of CD133-positive brain tumor models in vitro. Our results show that Au-PEG-CD133-CB-839 significantly decreased the viability of CD133-postive cancer cells in a dose-dependent manner, which was higher as compared to the effects of treatment of the cells with the individual components of the assembled nanodrug. Interestingly, the treatment effect was observed in glioblastoma stem cells modeling different transcriptomic subtypes of the disease. The presented platform is the fundament for subsequent target specificity characterization and in vivo application.
Collapse
Affiliation(s)
- Elham Poonaki
- Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (E.P.); (S.G.M.)
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
| | - Lars Rademacher
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Marilyn Kaul
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Laboratoire de Chimie de Coordination CNRS, 31400 Toulouse, France
| | - Sven G. Meuth
- Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (E.P.); (S.G.M.)
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
503
|
Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022; 14:1048. [PMID: 35631634 PMCID: PMC9145018 DOI: 10.3390/pharmaceutics14051048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Malignant brain tumor is a life-threatening disease with a low survival rate. The therapies available for the treatment of brain tumor is limited by poor uptake via the blood-brain barrier. The challenges with the chemotherapeutics used for the treatment of brain tumors are poor distribution, drug toxicity, and their inability to pass via the blood-brain barrier, etc. Several researchers have investigated the potential of nanomedicines for the treatment of brain cancer. Nanomedicines are designed with nanosize particle sizes with a large surface area and are loaded with bioactive agents via encapsulation, immersion, conjugation, etc. Some nanomedicines have been approved for clinical use. The most crucial part of nanomedicine is that they promote drug delivery across the blood-brain barrier, display excellent specificity, reduce drug toxicity, enhance drug bioavailability, and promote targeted drug release mechanisms. The aforementioned features make them promising therapeutics for brain targeting. This review reports the in vitro and in vivo results of nanomedicines designed for the treatment of brain cancers.
Collapse
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| | | |
Collapse
|
504
|
Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20551-20565. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor metastasis is a leading cause of breast cancer-related death. Taxane-loaded polymeric formulations, such as Genexol PM and Nanoxel M using poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles as drug carriers, have been approved for the treatment of metastatic breast cancer. Unfortunately, the physical instability of PEG-PLA micelles, leading to poor drug loading, premature drug leakage, and consequently limited drug delivery to tumors, largely hinders their therapeutic outcome. Inspired by the enantiomeric nature of PLA, this work developed stereocomplex PEG-PLA micelles through stereoselective interactions of enantiomeric PLA, which are further incorporated with a hypoxia-responsive moiety used as a hypoxia-cleavable linker of PEG and PLA, to maximize therapeutic outcomes. The results showed that the obtained micelles had high structural stability, showing improved drug loading for effective drug delivery to tumors as well as other tissues. Especially, they were capable of sensitively responding to the hypoxic tumor environment for drug release, reversing hypoxia-induced drug resistance and hypoxia-promoted cell migration for enhanced bioavailability under hypoxia. In vivo results further showed that the micelles, especially at a high dose, inhibited the growth of the primary tumor and improved tumor pathological conditions, consequently remarkably inhibiting its metastasis to the lungs and liver, while not causing any systemic toxicity. Hypoxia-responsive stereocomplex micelles thus emerge as a reliable drug delivery system to treat breast cancer metastasis.
Collapse
Affiliation(s)
- Min Lu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Nanjing Medical University, Affiliated Changzhou No. 2 People's Hospital, Changzhou 213000, People's Republic of China
| | - Jiajia Sun
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
505
|
Lv B, Ma J, Wang Y, Qu X, Qiu J, Hua K. Mitochondria-Targeted Mesoporous Organic Silica Nanoplatforms for Overcoming Cisplatin Resistance by Disturbing Mitochondrial Redox Homeostasis. Front Chem 2022; 10:875818. [PMID: 35615309 PMCID: PMC9124779 DOI: 10.3389/fchem.2022.875818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cisplatin (also known as DDP) resistance is one of the biggest challenges in the treatment of ovarian cancer. Recent studies have found that mitochondrion, as a potential target of DDP, participates in drug-related apoptosis and resistance. Overexpressed glutathione (GSH) in resistant cells is involved in protecting mitochondria from DDP or DDP-induced ROS. In this work, triphenylphosphonium (TPP) modified disulfide bond-rich (S-S) mesoporous organic silica nanoplatforms (DMON) were developed to deliver DDP (TPP-DMON@DDP) to mitochondria for overcoming DDP resistance. TPP supported the migration of nanoplatforms to the mitochondria, with consequent depletion of mitochondrial GSH by the S-S bond of DMON, leading to mitochondria in redox dyshomeostasis. These treated cells seemed more susceptible to the DDP released from the nanoplatforms. Significantly increased ROS production, mitochondrial damage, and apoptosis were observed in TPP-DMON@DDP-treated cells. Overall, interference of mitochondrial redox homeostasis provides a new opportunity for improving DDP cytotoxicity against resistant cells.
Collapse
Affiliation(s)
- Bin Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jingru Ma
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yumeng Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Junjun Qiu, ; Keqin Hua,
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Junjun Qiu, ; Keqin Hua,
| |
Collapse
|
506
|
Pitchika S, Sahoo SK. Paclitaxel and Lapatinib dual loaded chitosan-coated PLGA nanoparticles enhance cytotoxicity by circumventing MDR1-mediated trastuzumab resistance in HER2 positive breast cancers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
507
|
Fahira AI, Amalia R, Barliana MI, Gatera VA, Abdulah R. Polyethyleneimine (PEI) as a Polymer-Based Co-Delivery System for Breast Cancer Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:71-83. [PMID: 35422657 PMCID: PMC9005234 DOI: 10.2147/bctt.s350403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
Abstract
Cancer has become one of the leading causes of morbidity and mortality worldwide. This disease is classified broadly by tissue, organ, and system; different cancer types and subtypes require different treatments. Drug bioavailability, selectivity, and high dosage, as well as extended treatment, are significantly associated with the development of resistance – a complex problem in cancer therapy. It is expected that the combination of anticancer drugs and drug delivery systems, using polymers to increase the access of such agents to their site of action, will improve the efficacy of therapy. Polyethyleneimine (PEI) is a polymer used as a co-delivery system for anticancer drugs and gene therapy. PEI is also useful for other purposes, such as transfection and bio-adsorbent agents. In co-delivery, PEI can promote drug internalization. However, PEI with a high molecular weight is linked to higher cytotoxicity, thus requiring further evaluation of clinical safety. This review focuses on the utilization of PEI as a co-delivery system for anticancer therapy, as well as its potential to overcome resistance, particularly in the treatment of specific subtypes (eg, breast cancer). In conclusion, PEI has promising applications and is improvable for the development of anticancer drugs.
Collapse
Affiliation(s)
- Alistia Ilmiah Fahira
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Vesara Ardhe Gatera
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biology Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
508
|
Pandey M, Choudhury H, Ying JNS, Ling JFS, Ting J, Ting JSS, Zhia Hwen IK, Suen HW, Samsul Kamar HS, Gorain B, Jain N, Mohd Amin MCI. Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14040795. [PMID: 35456629 PMCID: PMC9025168 DOI: 10.3390/pharmaceutics14040795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.P.); (H.C.); Tel.: +60-166-048-589 (M.P.)
| | - Jenifer Ngu Shao Ying
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jessica Foo Sze Ling
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jong Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Jocelyn Su Szhiou Ting
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ivory Kuek Zhia Hwen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Ho Wan Suen
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Hazimah Syazwani Samsul Kamar
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; (J.N.S.Y.); (J.F.S.L.); (J.T.); (J.S.S.T.); (I.K.Z.H.); (H.W.S.); (H.S.S.K.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India;
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
509
|
Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
510
|
Chen XY, Yung LYL, Tan PH, Bay BH. Harnessing the Immunogenic Potential of Gold Nanoparticle-Based Platforms as a Therapeutic Strategy in Breast Cancer Immunotherapy: A Mini Review. Front Immunol 2022; 13:865554. [PMID: 35432376 PMCID: PMC9008216 DOI: 10.3389/fimmu.2022.865554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains the most common malignancy among women worldwide. Although the implementation of mammography has dramatically increased the early detection rate, conventional treatments like chemotherapy, radiation therapy, and surgery, have significantly improved the prognosis for breast cancer patients. However, about a third of treated breast cancer patients are known to suffer from disease recurrences and progression to metastasis. Immunotherapy has recently gained traction due to its ability to establish long-term immune surveillance, and response for the prevention of disease recurrence and extension of patient survival. Current research findings have revealed that gold nanoparticles can enhance the safety and efficacy of cancer immunotherapy, through their unique intrinsic properties of good biocompatibility, durability, convenient surface modification, as well as enhanced permeability and retention effect. Gold nanoparticles are also able to induce innate immune responses through the process of immunogenic cell death, which can lead to the establishment of lasting adaptive immunity. As such gold nanoparticles are considered as good candidates for next generation immunotherapeutic strategies. This mini review gives an overview of gold nanoparticles and their potential applications in breast cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Lin-Yue Lanry Yung
- Department of Biomolecular and Chemical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
511
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
512
|
Janani B, Vijayakumar M, Priya K, Kim JH, Prabakaran DS, Shahid M, Al-Ghamdi S, Alsaidan M, Othman Bahakim N, Hassan Abdelzaher M, Ramesh T. EGFR-Based Targeted Therapy for Colorectal Cancer—Promises and Challenges. Vaccines (Basel) 2022; 10:vaccines10040499. [PMID: 35455247 PMCID: PMC9030067 DOI: 10.3390/vaccines10040499] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinoma (CRC) is the most lethal and common form of cancer in the world. It was responsible for almost 881,000 cancer deaths in 2018. Approximately 25% of cases are diagnosed at advanced stages with metastasis—this poses challenges for effective surgical control and future tumor-related mortality. There are numerous diagnostic methods that can be used to reduce the risk of colorectal carcinoma. Among these, targeted nanotherapy aims to eliminate the tumor and any metastasis. Active targeting can increase the effectiveness and quantity of drugs delivered to the target site. Antibodies that target overexpressed receptors on cell surfaces and indicators are coupled with drug-loaded carriers. The major target receptors of chemotherapeutic drugs delivery include VEGFR, EGFR, FGFR, HER2, and TGF. On account of its major and diverse roles in cancer, it is important to target EGFR in particular for better tumor selection, as EGFR is overexpressed in 25 to 82% of colorectal carcinoma cases. The EGFR monoclonal immunoglobulins cetuximab/panitumumab can thus be used to treat colorectal cancer. This review examines carriers that contain cetuximab-conjugated therapeutic drugs as well as their efficacy in anticancer activities.
Collapse
Affiliation(s)
- Balakarthikeyan Janani
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
| | - Mayakrishnan Vijayakumar
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - Kannappan Priya
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
- Correspondence: (K.P.); (T.R.)
| | - Jin Hee Kim
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, 209 Neugdong-ro, Gwangjin-gu, Seoul 05006, Korea; (M.V.); (J.H.K.)
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea;
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Sameer Al-Ghamdi
- Family and Community Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammed Alsaidan
- Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
| | - Mohammad Hassan Abdelzaher
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Department of Medical Biochemistry, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut 71515, Egypt
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.S.); (N.O.B.); (M.H.A.)
- Correspondence: (K.P.); (T.R.)
| |
Collapse
|
513
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
514
|
Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022; 284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan; Department of Bioengineering, University of Illinois at Urbana-Champaign, United States
| | - Wei-Yuan Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Taiwan
| | - Chen-Hsiang Kuan
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taiwan
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Taiwan.
| |
Collapse
|
515
|
Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 2022; 23:3217. [PMID: 35328638 PMCID: PMC8948775 DOI: 10.3390/ijms23063217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer spheroids are in vitro 3D models that became crucial in nanomaterials science thanks to the possibility of performing high throughput screening of nanoparticles and combined nanoparticle-drug therapies on in vitro models. However, most of the current spheroid analysis methods involve manual steps. This is a time-consuming process and is extremely liable to the variability of individual operators. For this reason, rapid, user-friendly, ready-to-use, high-throughput image analysis software is necessary. In this work, we report the INSIDIA 2.0 macro, which offers researchers high-throughput and high content quantitative analysis of in vitro 3D cancer cell spheroids and allows advanced parametrization of the expanding and invading cancer cellular mass. INSIDIA has been implemented to provide in-depth morphologic analysis and has been used for the analysis of the effect of graphene quantum dots photothermal therapy on glioblastoma (U87) and pancreatic cancer (PANC-1) spheroids. Thanks to INSIDIA 2.0 analysis, two types of effects have been observed: In U87 spheroids, death is accompanied by a decrease in area of the entire spheroid, with a decrease in entropy due to the generation of a high uniform density spheroid core. On the other hand, PANC-1 spheroids' death caused by nanoparticle photothermal disruption is accompanied with an overall increase in area and entropy due to the progressive loss of integrity and increase in variability of spheroid texture. We have summarized these effects in a quantitative parameter of spheroid disruption demonstrating that INSIDIA 2.0 multiparametric analysis can be used to quantify cell death in a non-invasive, fast, and high-throughput fashion.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Enrico Rosa
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Ginevra Friggeri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Lorena Di Pietro
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Chiara Moriconi
- Theolytics, The Sherard Building, Edmund Halley Road, Oxford Science Park, Oxford OX4 4DQ, UK; or
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
516
|
Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 2022; 40:255-276. [PMID: 35148814 PMCID: PMC8930620 DOI: 10.1016/j.ccell.2022.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials and targeted drug delivery vehicles improve the therapeutic index of drugs and permit greater control over their pharmacokinetics, biodistribution, and bioavailability. Here, nanotechnologies applied to cancer immunotherapy are discussed with a focus on current and next generation self-assembling drug delivery systems composed of lipids and/or polymers. Topics covered include the fundamental design, suitability, and inherent properties of nanomaterials that induce anti-tumor immune responses and support anti-cancer vaccination. Established active and passive targeting strategies as well as newer "indirect" methods are presented together with insights into how nanocarrier structure and surface chemistry can be leveraged for controlled delivery to the tumor microenvironment while minimizing off-target effects.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
517
|
Shueng PW, Yu LY, Hou HH, Chiu HC, Lo CL. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. Int J Mol Sci 2022; 23:ijms23063080. [PMID: 35328500 PMCID: PMC8954455 DOI: 10.3390/ijms23063080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low. Therefore, pH-sensitive polymer–liposome complexes with charge-conversion copolymers and CTPP-containing cationic liposomes were designed for efficiently delivering an anti-cancer agent, ceramide, into cancer cellular mitochondria. The charge-conversion copolymers, methoxypoly(ethylene glycol)-block-poly(methacrylic acid-g-histidine), were anionic and helped in absorbing and shielding the positive charges of cationic liposomes at pH 7.4. In contrast, charge-conversion copolymers became neutral in order to depart from cationic liposomes and induced endosomal escape for releasing cationic liposomes into cytosol at acidic endosomes. The experimental results reveal that these pH-sensitive polymer–liposome complexes could rapidly escape from MCF-7 cell endosomes and target MCF-7 mitochondria within 3 h, thereby leading to the generation of reactive oxygen species and cell apoptosis. These findings provide a promising solution for cationic liposomes in cancer mitochondrial-targeting drug delivery.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsiao-Hsin Hou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan;
| | - Chun-Liang Lo
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (L.-Y.Y.); (H.-H.H.)
- Correspondence:
| |
Collapse
|
518
|
Green Supported Cu nanoparticles on modified Fe3O4 nanoparticles using Thymbra spicata flower extract: Investigation of its antioxidant and the anti-human lung cancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
519
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
520
|
Sobierajska P, Serwotka-Suszczak A, Targonska S, Szymanski D, Marycz K, Wiglusz RJ. Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform-Physicochemical Properties and In Vitro Studies on Mastocytoma Cells. Int J Mol Sci 2022; 23:ijms23041944. [PMID: 35216060 PMCID: PMC8875076 DOI: 10.3390/ijms23041944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp–Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp–Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour.
Collapse
Affiliation(s)
- Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Damian Szymanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| |
Collapse
|
521
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
522
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
523
|
Zhou F, Zhu H, Fu C. Editorial: Clinical Therapeutic Development Against Cancers Resistant to Targeted Therapies. Front Pharmacol 2022; 12:816896. [PMID: 35095531 PMCID: PMC8790167 DOI: 10.3389/fphar.2021.816896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Fanfan Zhou
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
524
|
Amphiphilic Anionic Oligomer-Stabilized Calcium Phosphate Nanoparticles with Prospects in siRNA Delivery via Convection-Enhanced Delivery. Pharmaceutics 2022; 14:pharmaceutics14020326. [PMID: 35214058 PMCID: PMC8877163 DOI: 10.3390/pharmaceutics14020326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer’s high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.
Collapse
|
525
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
526
|
Lin YF, Liu JJ, Chang YJ, Yu CS, Yi W, Lane HY, Lu CH. Predicting Anticancer Drug Resistance Mediated by Mutations. Pharmaceuticals (Basel) 2022; 15:ph15020136. [PMID: 35215249 PMCID: PMC8878306 DOI: 10.3390/ph15020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mutations are always emerging. In this study, we explored the relationship between drug-resistant mutations and drug resistance from the perspective of protein structure. By combining data from previously identified drug-resistant mutations and information of protein structure and function, we used machine learning-based methods to build models to predict cancer drug resistance mutations. The performance of our combined model achieved an accuracy of 86%, a Matthews correlation coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information is needed concerning drug resistance and, in particular, clarification is needed about the relationships between the drug and the drug resistance mutations in proteins. Highly accurate predictions regarding drug resistance mutations can be helpful for developing new strategies with personalized cancer treatments. Our novel concept, which combines protein structure information, has the potential to elucidate physiological mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Jia-Jun Liu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
| | - Chin-Sheng Yu
- Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40201, Taiwan;
| | - Wei Yi
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; (Y.-F.L.); (W.Y.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 40402, Taiwan; (J.-J.L.); (Y.-J.C.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
527
|
Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102678. [PMID: 34796680 PMCID: PMC8805580 DOI: 10.1002/advs.202102678] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Indexed: 05/10/2023]
Abstract
Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadan6517838736Iran
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Ashkan Bigham
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | - Matineh Ghomi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz61537‐53843Iran
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| | - Yasaman Esmaeili
- Biosensor Research CenterSchool of Advanced Technologies in MedicineIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Pouria Samadi
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversitySariyerIstanbul34396Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
| | - Shokrollah Sharifi
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | | | - Aziz Maleki
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Hao Song
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbane4072Australia
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Nasser Nikfarjam
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)Zanjan45137‐66731Iran
| | - Colin Burvill
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Virgilio Mattoli
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Maria Grazia Raucci
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Kai Zheng
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐NurembergErlangen91058Germany
| | - Luigi Ambrosio
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Pooyan Makvandi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| |
Collapse
|
528
|
Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021; 30:463-475. [PMID: 34962448 DOI: 10.1080/1061186x.2021.2023160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies in children and adolescents. The toxicity to healthy tissues from conventional therapeutic strategies, including chemotherapy and radiotherapy, and drug resistance, severely affect OS patients' quality of life and cancer-specific outcomes. Many efforts have been made to develop various nanomaterial-based drug delivery systems with specific properties to overcome these limitations. Among the developed nanocarriers, liposomes are the most successful and promising candidates for providing targeted tumor therapy and enhancing the safety and therapeutic effect of encapsulated agents. Liposomes have low immunogenicity, high biocompatibility, prolonged half-life, active group protection, cell-like membrane structure, safety, and effectiveness. This review will discuss various nanomaterial-based carriers in cancer therapy and then the characteristics and design of liposomes with a particular focus on the targeting feature. We will also summarize the recent advances in the liposomal drug delivery system for OS treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yongqiang Dong
- Department of Orthopedics, Xinchang People's Hospital, Shaoxing 312500, China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing 312500, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| |
Collapse
|
529
|
Sunoqrot S, Orainee B, Alqudah DA, Daoud F, Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Int J Pharm 2021; 610:121255. [PMID: 34737014 DOI: 10.1016/j.ijpharm.2021.121255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) is a bioactive natural compound with potent antioxidant and anticancer properties. However, its poor water solubility has been a major limitation against its widespread clinical use. The aim of this study was to develop a nanoscale formulation for CUR to improve its solubility and potentially enhance its bioactivity, by leveraging the self-assembly behavior of tannic acid (TA) and amphiphilic poloxamers to form CUR-entrapped nanoassemblies. To optimize drug loading, formulation variables included the CUR: TA ratio and the type of amphiphilic polymer (Pluronic® F-127 or Pluronic® P-123). The optimal CUR nanoparticles (NPs) were around 200 nm in size with a high degree of monodispersity and 56% entrapment efficiency. Infrared spectroscopy confirmed the presence of intermolecular interactions between CUR and the NP formulation components. X-ray diffraction revealed that CUR was entrapped in the NPs in an amorphous state. The NPs maintained excellent colloidal stability under various conditions. In vitro release of CUR from the NPs showed a biphasic controlled release pattern up to 72 h. Antioxidant and antiproliferative assays against a panel of human cancer cell lines revealed significantly higher activity for CUR NPs compared to free CUR, particularly in MCF-7 and MDA-MB-231 breast cancer cells. This was attributed to greater cellular uptake of the NPs compared to the free drug as verified by confocal microscopy imaging and flow cytometry measurements. Our findings present a highly promising NP delivery platform for CUR prepared via a simple self-assembly process with the ability to potentiate its bioactivity in cancer and other diseases where oxidative stress is implicated.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Bayan Orainee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Dana A Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
530
|
Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021; 23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Presently, most of the treatment strategies for cancer are focused on the surgical removal of cancerous tumors, along with physical and chemical treatment such as radiotherapy and chemotherapy, respectively. The primary issue associated with these methods is the inhibition of normal cell growth and serious side effects associated with systemic toxicity. The traditional chemotherapeutics which were delivered systemically were inadequate and had serious dose limiting side effects. Recent advances in the development of chemotherapeutics have simultaneously paved the way for efficient targeted drug delivery. Despite the advances in the field of oncogenic drugs, several limitations remain, such as early blood clearance, acquired resistance against cytotoxic agents, toxicity associated with chemotherapeutics, and site-specific drug delivery. Hence, this review article focuses on the recent scientific advancements made in different types of drug delivery systems, including, organic nanocarriers (polymers, albumins, liposomes, and micelles), inorganic nanocarriers (mesoporous silica nanoparticles, gold nanoparticles, platinum nanoparticles, and carbon nanotubes), aptamers, antibody-drug conjugates, and peptides. These targeted drug delivery approaches offer numerous advantages such as site-specific drug delivery, minimal toxicity, better bioavailability, and an increased overall efficacy of the chemotherapeutics. Graphical abstract.
Collapse
|
531
|
Ibrahim SRM, Altyar AE, Sindi IA, El-Agamy DS, Abdallah HM, Mohamed SGA, Mohamed GA. Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114552. [PMID: 34438028 DOI: 10.1016/j.jep.2021.114552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kirenol (Kr) is an ent-pimarane type diterpenoid that has been reported from Siegesbeckiaorientalis, S. pubescens, and S. glabrescens (family Asteraceae). These plants have been used traditionally for treating various ailments such as hypertension, neurasthenia, rheumatoid arthritis, asthma, snakebites, allergic disorders, paralysis, soreness, cutaneous disorders, rubella, menstrual disorders, numbness of limbs, dizziness, headache, and malaria. Importantly, in recent years, Kr has received great attention due to its diversified pharmacological activities. AIM OF THE STUDY The current work aims to give an overview on the reported pharmacological activities of Kr. Furthermore, the findings regarding its methods for extraction, quantitative analysis, purification, pharmacokinetics, pharmaceutical and food preparations, biosynthesis, identification, semisynthetic analogues, and toxicity are highlighted to provide a reference and perspective for its further investigation. METHODS Electronic databases including ScienceDirect, Web of Knowledge, SCOPUS, Wiley Online Library, Taylor & Francis, PubMed, Springer, JACS, and Google Scholar were searched up to the beginning of 2021 to identify the reported studies. RESULTS A total of 93 articles have been reviewed. The reported data suggested that Kr possessed various bioactivities including cytotoxic, apoptotic, anticancer, anti-inflammatory, cardio-protective, anti-photo-aging, anti-adipogenic, antimicrobial, muscle function improvement, fracture and wound healing, and anti-arthritic. In addition, studies revealed that the antioxidative and anti-inflammatory activities of Kr may mediate many of its therapeutic potentials as confirmed by several in-vitro and in-vivo studies. CONCLUSION This review provides an updated summary of the recent studies on Kr, including methods for extraction, quantitative analysis, purification, pharmacokinetics, pharmaceutical and food preparations, biosynthesis, and identification, as well as semisynthetic analogues, pharmacological activities, and toxicity. Thus, this work can provide useful considerations for planning and design future research on Kr.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Batterjee Medical College, Preparatory Year Program, Jeddah, 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Ikhlas A Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah, Al-Munawwarah, 30078, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
532
|
Geyik G, Işıklan N. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery. Int J Biol Macromol 2021; 192:701-715. [PMID: 34637816 DOI: 10.1016/j.ijbiomac.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
In the last two decades, the utilization of magnetic nanospheres in intelligent polymeric structures have received increased attention of researchers in numerous biomedical applications. Here, hybrid nanostructured triple-responsive magnetic nanospheres (κ-Car-g-P(AA/DMA)@Fe3O4) containing inorganic iron oxide core (Fe3O4) and organic graft copolymeric shell based on κ-carrageenan (κ-Car) and poly(acrylic acid/dimethylaminoethyl methacrylate) (P(AA/DMA)) were synthesized by microwave induced co-precipitation technique. The structure, size, surface morphology, magnetic property and stability of synthesized κ-Car-g-P(AA/DMA)@Fe3O4 magnetic nanospheres were characterized using FTIR, UV, XRD, TEM, Zeta-sizer, and VSM. κ-Car-g-P(AA/DMA)@Fe3O4 nanospheres were loaded with 5-Fluorouracil (5-FU) as an antineoplastic drug, and their 5-FU release behavior was explored in diverse graft yields, pH values, temperatures and in the existence of an alternating magnetic field. The κ-Car-g-P(AA/DMA)@Fe3O4 nanospheres demonstrated pH-, thermo-, and magnetic field-responsive 5-FU release with good biocompatibility and excellent anticancer activity. In addition, 5-FU release under 50 mT magnetic field reached to 100% within 4 h. This work exhibits that hybrid nanospheres have a triple stimuli-responsive influence, which is of principal importance for the future design and application of multi-functional responsive platforms to develop externally stimulated release of active agents and their healthcare capability.
Collapse
Affiliation(s)
- Gülcan Geyik
- Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey; Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey.
| |
Collapse
|
533
|
Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021; 9:7984-7995. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.
Collapse
Affiliation(s)
- Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Jose M Paez-Muñoz
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain.
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María L García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología (Junta de Andalucía-Universidad de Málaga), C/Severo Ochoa, 35, 29590 Málaga, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain
| |
Collapse
|
534
|
Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021; 609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
As active targeting using nanomedicines establishes itself as a strategy of choice in cancer therapy, several target receptors or ligands overexpressed in cancer cells have been identified and exploited. Among them, the epidermal growth factor receptor (EGFR) has emerged as one of the most promising oncomarkers for active targeting nanomedicines due to its overexpression and its active involvement in a wide range of cancer types. Henceforth, many novel EGFR-targeted nanomedicines for cancer therapy have been developed, giving encouraging results both in vitro and in vivo. This review focuses on different applications of such medicines in oncotherapy. On an important note, the contribution of EGFR-targeting ligands to final therapy efficacy along with current challenges and possible solutions or alternatives are emphasized.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
535
|
Wijewantha N, Eikanger MM, Antony RM, Potts RA, Rezvani K, Sereda G. Targeting Colon Cancer Cells with Enzyme-Triggered Casein-Gated Release of Cargo from Mesoporous Silica-Based Nanoparticles. Bioconjug Chem 2021; 32:2353-2365. [PMID: 34672618 PMCID: PMC8776503 DOI: 10.1021/acs.bioconjchem.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. Despite notable improvements in therapeutic strategies available to CRC patients, late stages of CRC have a higher incidence rate of drug resistance, which is associated with a higher mortality rate. The development of therapeutic strategies that use nanoparticles as a drug delivery system has become one of the most promising potential approaches for cancer therapy. Previous studies have shown that a natural plant alkaloid, veratridine (VTD), suppresses colon cancer cell migration and invasion, two essential factors in tumor metastasis, through activation of the gene that encodes the tumor-suppressor protein UBXN2A. The goal of this study is to develop a nanoassembly to selectively deliver VTD to cancer cells and release it on demand while leaving normal cells intact. We packaged the targeted therapy anticancer molecule VTD inside mesoporous silica nanoparticles (MSNs) impermeable to the blood-brain barrier (BBB) and with selective affinity to CRC cells and sealed the VTD-loaded nanoparticles with an enzymatically cleavable protein. The particles will deliver and release VTD only at the targeted colorectal tumor sites. Since the enzyme MMP-7 protease is dominantly secreted by CRC cells, the release triggered by the enzymes will increase VTD concentration at tumor cells, enhancing the efficiency of the new therapy. We have proven the selective affinity of two types of VTD-carrying particles to CRC cells and enzyme- or acid-triggered VTD release. Negatively surface-charged MSNs showed significant affinity toward positively charged cancer cells but not negatively charged normal fibroblast colon cells, making VTD-MSNs a promising anticancer drug with minimal side effects.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069, United States
| | - Morgan M Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Ryan M Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Rashaun A Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, South Dakota 57069, United States
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
536
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
537
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
538
|
Mohapatra A, Sathiyamoorthy P, Park IK. Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics 2021; 13:1867. [PMID: 34834282 PMCID: PMC8622235 DOI: 10.3390/pharmaceutics13111867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy strategies leveraging the body's own immune system against cancer cells have gained significant attention due to their remarkable therapeutic efficacy. Several immune therapies have been approved for clinical use while expanding the modalities of cancer therapy. However, they are still not effective in a broad range of cancer patients because of the typical immunosuppressive microenvironment and limited antitumor immunity achieved with the current treatment. Novel approaches, such as nanoparticle-mediated cancer immunotherapies, are being developed to overcome these challenges. Various types of nanoparticles, including liposomal, polymeric, and metallic nanoparticles, are reported for the development of effective cancer therapeutics. Metallic nanoparticles (MNPs) are one of the promising candidates for anticancer therapy due to their unique theranostic properties and are thus explored as both imaging and therapeutic agents. In addition, MNPs offer a dense surface functionalization to target tumor tissue and deliver genetic, therapeutic, and immunomodulatory agents. Furthermore, MNPs interact with the tumor microenvironment (TME) and regulate the levels of tumor hypoxia, glutathione (GSH), and reactive oxygen species (ROS) for remodulation of TME for successful therapy. In this review, we discuss the role of nanoparticles in tumor microenvironment modulation and anticancer therapy. In particular, we evaluated the response of MNP-mediated immune cells, such as dendritic cells, macrophages, T cells and NK cells, against tumor cells and analyzed the role of MNP-based cancer therapies in regulating the immunosuppressive environment.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (A.M.); (P.S.)
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (A.M.); (P.S.)
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea; (A.M.); (P.S.)
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
539
|
Lakkakula JR, Krause RWM, Divakaran D, Barage S, Srivastava R. 5-Fu inclusion complex capped gold nanoparticles for breast cancer therapy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
540
|
McFadden M, Singh SK, Oprea-Ilies G, Singh R. Nano-Based Drug Delivery and Targeting to Overcome Drug Resistance of Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13215480. [PMID: 34771642 PMCID: PMC8582784 DOI: 10.3390/cancers13215480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OvCa) is a destructive malignancy due to difficulties in early detection and late advanced-stage diagnoses, leading to high morbidity and mortality rates for women. Currently, the quality treatment for OvCa includes tumor debulking surgery and intravenous platinum-based chemotherapy. However, numerous patients either succumb to the disease or undergo relapse due to drug resistance, such as to platinum drugs. There are several mechanisms that cause cancer cells' resistance to chemotherapy, such as inactivation of the drug, alteration of the drug targets, enhancement of DNA repair of drug-induced damage, and multidrug resistance (MDR). Some targeted therapies, such as nanoparticles, and some non-targeted therapies, such as natural products, reverse MDR. Nanoparticle targeting can lead to the reversal of MDR by allowing direct access for agents to specific tumor sites. Natural products have many anti-cancer properties that adversely regulate the factors contributing to MDR. The present review displays the current problems in OvCa treatments that lead to resistance and proposes using nanotechnology and natural products to overcome drug resistance.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (M.M.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence:
| |
Collapse
|
541
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
542
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
543
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
544
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
545
|
Preparation and Pharmacokinetic Characterization of an Anti-Virulence Compound Nanosuspensions. Pharmaceutics 2021; 13:pharmaceutics13101586. [PMID: 34683879 PMCID: PMC8540953 DOI: 10.3390/pharmaceutics13101586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance has become a worldwide public health threat due to the rapid evolution and spread of antibiotic-resistant bacteria. CCG-211790 is a novel anti-virulence compound that does not kill bacteria but could ameliorate human diseases by inhibiting expression of virulence factors, thereby applying less selection pressure for antibiotic resistance. However, its potential clinical use is restricted because of its poor aqueous solubility, resulting in formulation challenges. Nanosuspension technology is an effective way to circumvent this problem. Nanosuspensions of CCG-211790 with two different particle sizes, NanoA (315 ± 6 nm) and NanoB (915 ± 24 nm), were prepared using an antisolvent precipitation-ultrasonication method with Tween 80 as the stabilizer. Particle and pharmacokinetics (PK) of CCG-211790 nanosuspensions were characterized. Both NanoA and NanoB demonstrated remarkable increases in dissolution rate compared with the bulk compound. The PK parameters of NanoA were comparable to those of CCG-211790 solution formulation in intravenous or oral administration, suggesting that CCG-211790 nanosuspensions with smaller particle size improved oral bioavailability and drug exposure compared to traditional formulations of drug candidates.
Collapse
|
546
|
Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2516. [PMID: 34684956 PMCID: PMC8539562 DOI: 10.3390/nano11102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles (BNPs) have shown better biological potential compared to their monometallic counterparts owing to the synergistic effect produced by these alloys. In this study, selenium-capped silver nanoparticles (Ag@Se NPs) were synthesized using an Ocimum tenuiflorum extract. These BNPs were characterized using UV-visible, Fourier transform infrared spectroscopy, nanoparticle tracking analysis, electron microscopy and energy dispersive x-ray analysis. Response surface methodology was used to understand how extract volume and temperature influenced the zeta potential, hydrodynamic size and NP concentration. The phytoconstituents were identified using gas chromatography-mass spectrometry (GC-MS) and molecular docking studies were performed on B-DNA to determine possible genotoxicity. Antioxidant activities, in vitro cytotoxicity (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay), and genotoxicity (Allium cepa root cells) of these BNPs, were also evaluated. A surface plasmon resonance band around 420 nm confirmed BNP formation with significant quantities of silver and selenium. The Ag@Se NPs displayed good stability, dispersity, antioxidant activity, and compatibility at low concentrations but showed significant cytotoxicity and genotoxicity at high concentrations. Molecular docking analysis showed weak interactions between the plant constituents and B-DNA, suggesting no genotoxicity. These results provide an insight into the conditions required for optimal production of eco-friendly Ag@Se NPs with interesting biological properties.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (F.O.); (M.A.)
| |
Collapse
|
547
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
548
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
549
|
Mishra N. Nanoparticulate Carriers for the treatment of Infectious Diseases and Cancer. Curr Mol Pharmacol 2021; 14:261-262. [PMID: 34433396 DOI: 10.2174/187446721403210706114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior (M.P.), India
| |
Collapse
|
550
|
α-Mangostin Nanoparticles Cytotoxicity and Cell Death Modalities in Breast Cancer Cell Lines. Molecules 2021; 26:molecules26175119. [PMID: 34500560 PMCID: PMC8434247 DOI: 10.3390/molecules26175119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG’s cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
Collapse
|