551
|
Abstract
The gut mucosa is exposed to a large community of commensal bacteria that are required for the processing of nutrients and the education of the local immune system. Conversely, the gut immune system generates innate and adaptive responses that shape the composition of the local microbiota. One striking feature of intestinal adaptive immunity is its ability to generate massive amounts of noninflammatory immunoglobulin A (IgA) antibodies through multiple follicular and extrafollicular pathways that operate in the presence or absence of cognate T-B cell interactions. Here we discuss the role of intestinal IgA in host-commensal mutualism, immune protection, and tolerance and summarize recent advances on the role of innate immune cells in intestinal IgA production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, and Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|
552
|
Abstract
IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.
Collapse
Affiliation(s)
- Andrea Cerutti
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, and Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
553
|
Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol 2008; 43:1-17. [PMID: 18297430 DOI: 10.1007/s00535-007-2111-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 08/29/2007] [Indexed: 02/04/2023]
Abstract
Accumulating data from animal models indicate that Inflammatory bowel disease (IBD) is mediated by a much more complicated mechanism than previously predicted. For example, the role of an individual molecule in the pathogenesis of IBD distinctly differs depending on several factors, including the fundamental mechanism of induction of the disease, the target cell type, the phase of disease, and the environment. Therefore, it has been difficult in the past to fully explain the complicated mechanism. Novel concepts have recently been proposed to further explain the complicated mechanism of IBD. In this review, we introduce past, current, and possible future concepts for IBD models regarding T helper (Th) 1, Th2, and Th17, antigen sampling and presentation, regulatory cell networks, NOD2, Toll-like receptors, bacteria/epithelia interaction, stem cells, autophagy, microRNAs, and glycoimmunology, and we also discuss the relevance of these new concepts, developed at the bench (in animal models), to the bedside.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Department of Pathology, Experimental Pathology, Simches 8234, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
554
|
Fagarasan S. Evolution, development, mechanism and function of IgA in the gut. Curr Opin Immunol 2008; 20:170-7. [PMID: 18456485 DOI: 10.1016/j.coi.2008.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 12/20/2022]
Abstract
Since its discovery as the most abundant Ig produced at mucosal surfaces, IgA has been the subject of continuous studies. The concepts emerged were that the precursors for IgA plasma cells are efficiently generated in follicular organized structures in the gut with the help of CD4 T cells and that secretory IgA provides protection against mucosal pathogens. Novel conceptual advances have been made in the past few years in describing new sites, mechanisms and functions of mucosal IgA synthesis.
Collapse
Affiliation(s)
- Sidonia Fagarasan
- Laboratory for Mucosal Immunity, RIKEN Research Center for Allergy and Immunology, 230-0045 Tsurumi, Yokohama, Japan.
| |
Collapse
|
555
|
Steinbrecher KA, Harmel-Laws E, Sitcheran R, Baldwin AS. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. THE JOURNAL OF IMMUNOLOGY 2008; 180:2588-99. [PMID: 18250470 DOI: 10.4049/jimmunol.180.4.2588] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NF-kappaB plays a central, proinflammatory role in chronic intestinal inflammation, yet recent work suggests a predominantly protective function for this transcription factor group in some cell types of the intestine. We herein describe the conditional deletion of the NF-kappaB RelA gene in murine intestinal epithelia and determine its function in homeostatic control of enterocyte proliferation/apoptosis and susceptibility to colonic inflammation. Mice lacking RelA in ileal and colonic enterocytes were born in expected Mendelian ratios, and RelA-null epithelia differentiated normally. Spontaneous intestinal disease and death occurred with low penetrance in neonates lacking epithelial RelA. IkappaBalpha and IkappaBbeta were significantly diminished in RelA-null epithelia, and endotoxin challenge revealed elevated p50 and c-Rel DNA binding activity as compared with controls. Deletion of RelA resulted in diminished expression of antimicrobial (defensin-related cryptdin 4, defensin-related cryptdin 5, RegIIIgamma) and antiapoptotic, prorestitution genes (Bcl-x(L), RegIV, IL-11, IL-18), and basal rates of epithelial apoptosis and proliferation were elevated. Mice lacking colonic RelA were sensitive to dextran sodium sulfate-induced colitis. Although experimental colitis enhanced proliferation in cells lacking RelA, sustained epithelial cell apoptosis precluded mucosal healing and decreased animal survival. We conclude that activation of RelA is required for homeostatic regulation of cell death and division in intestinal epithelia, as well as for protection from development of severe, acute inflammation of the intestine.
Collapse
Affiliation(s)
- Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
556
|
Hardenberg G, van Bostelen L, Hahne M, Medema JP. Thymus-independent class switch recombination is affected by APRIL. Immunol Cell Biol 2008; 86:530-4. [PMID: 18362943 DOI: 10.1038/icb.2008.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tumour necrosis factor (TNF) family member a proliferation-inducing ligand (APRIL) is implicated in various B-cell processes, such as class switch recombination, plasma cell differentiation and plasma cell survival. This was suggested from initial studies analysing B-cell responses in APRIL-deficient and transgenic mice, and mice deficient for the TNF receptors of APRIL, transmembrane activator and CAML interactor (TACI) and B-cell maturation antigen. Here, we present additional evidence for the importance of APRIL in thymus-independent (TI) B-cell responses, using APRIL-deficient and transgenic mice. APRIL-deficient mice show an impaired immunoglobulin A (IgA) response towards TI B-cell antigens, whereas APRIL transgenic mice show exaggerated TI B-cell responses. Moreover, antibody titres to TI antigens were sustained in APRIL transgenic mice for a long time and even increased up to 75 days in the case of IgA against 4-hydroxy-nitrophenacetyl-lipopolysaccharide.
Collapse
Affiliation(s)
- Gijs Hardenberg
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
557
|
Cario E. Therapeutic impact of toll-like receptors on inflammatory bowel diseases: a multiple-edged sword. Inflamm Bowel Dis 2008; 14:411-21. [PMID: 17941072 DOI: 10.1002/ibd.20294] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have begun to define the mechanisms through which Toll-like receptors (TLRs) regulate intestinal homeostasis in health and disease. Current therapies for inflammatory bowel diseases (IBDs) mostly aim at interrupting the inflammatory cascade through agents that regulate TH1 or TH2 cytokine responses. As recognition grows for TLR dysfunction to play a role in IBD pathogenesis, TLRs could provide another valid interventional target for novel therapy development. However, seemingly contradictory results from studying different murine models of colitis have so far confounded whether therapeutically useful modulation of TLRs is best accomplished by activating, inhibiting, or rather a combination of both at different stages of mucosal disease. This review evaluates potential strategies as well as their rationale and future prospects.
Collapse
Affiliation(s)
- Elke Cario
- Division of Gastroenterology & Hepatology, University Hospital of Essen, University of Duisburg-Essen, Institutsgruppe I, Virchowstrasse 171, Essen, Germany.
| |
Collapse
|
558
|
Abstract
Most antibody-secreting cells (ASCs) in mucosal tissues produce immunoglobulin A (IgA), the most abundant immunoglobulin in the body and the main class of antibody found in secretions. IgA-ASCs differentiate in the mucosal-associated lymphoid tissues and are usually considered as a homogeneous population of cells. However, IgA-ASCs that travel to the small intestine have unique characteristics in terms of their migratory requirements. These IgA-ASCs require the homing molecules alpha4beta7 and CCR9 to interact with their ligands, mucosal addressin cell adhesion molecule-1 and CCL25, which are constitutively expressed in the small intestine. Indeed, recent work has shown that IgA-ASCs specific for the small bowel are generated under different conditions as compared with IgA-ASCs in other mucosal compartments. Moreover, the mechanisms inducing IgA class switching may also vary according to the tissue where IgA-ASCs differentiate. Here we describe the mechanisms involved in the differentiation of IgA-ASCs in mucosal compartments, in particular those involved in the generation of gut-homing IgA-ASCs.
Collapse
|
559
|
Different partners in different places? Blood 2008. [DOI: 10.1182/blood-2007-11-120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
560
|
Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Semin Immunol 2008; 20:59-66. [DOI: 10.1016/j.smim.2007.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
|
561
|
Mora JR. Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis 2008; 14:275-89. [PMID: 17924560 DOI: 10.1002/ibd.20280] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lymphocyte migration is at the heart of chronic inflammatory ailments, including inflammatory bowel disease (IBD). Whereas naïve lymphocytes migrate to all secondary lymphoid organs, they are mostly excluded from nonlymphoid peripheral tissues. Upon activation, lymphocytes change their pattern of adhesion receptors and acquire the capacity to migrate to extralymphoid tissues. Antigen-experienced T cells are subdivided into different subsets based on their expression of homing receptors that favor their accumulation in specific tissues, such as the skin and the gut mucosa. B cells and antibody-secreting cells (ASC) also show tissue-tropism, which is somewhat correlated with the class of immunoglobulin that they produce. In fact, IgA-ASC are located in mucosal tissues, where they produce IgA, the main class of antibodies found in secretions. Although IgA-ASC are usually considered as a homogeneous pool of cells, those located in the small bowel have some unique migratory characteristics, suggesting that they are generated under different conditions as compared to IgA-ASC in other mucosal compartments. Foxp3(+) regulatory T cells (T(REG)) can also exhibit tissue-specific migratory potential and recent evidence suggests that T(REG) can be imprinted with gut-specific homing. Moreover, foxp3(+) T(REG) are enriched in the small bowel lamina propria, where they can be generated locally. The present review addresses our current understanding of how tissue-specific homing is acquired and modulated on T cells, B cells, and ASC, with a special emphasis on the intestinal mucosa. Harnessing these mechanisms could offer novel, effective, and more specific therapeutic strategies in IBD.
Collapse
Affiliation(s)
- J Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
562
|
Abstract
The production of immunoglobulin A (IgA) in mammals exceeds all other isotypes, and it is mostly exported across mucous membranes. The discovery of IgA and the realization that it dominates humoral mucosal immunity, in contrast to the IgG dominance of the systemic immune system, was early evidence for the distinct nature of mucosal immunology. It is now clear that IgA can function in high-affinity modes for neutralization of toxins and pathogenic microbes, and as a low-affinity system to contain the dense commensal microbiota within the intestinal lumen. The basic map of induction of IgA B cells in the Peyer's patches, which then circulate through the lymph and bloodstream to seed the mucosa with precursors of plasma cells that produce dimeric IgA for export through the intestinal epithelium, has been known for more than 30 years. In this review, we discuss the mechanisms underlying selective IgA induction of mucosal B cells for IgA production and the immune geography of their homing characteristics. We also review the functionality of secretory IgA directed against both commensal organisms and pathogens.
Collapse
|
563
|
Abstract
Antibody class switching occurs in mature B cells in response to antigen stimulation and costimulatory signals. It occurs by a unique type of intrachromosomal deletional recombination within special G-rich tandem repeated DNA sequences [called switch, or S, regions located upstream of each of the heavy chain constant (C(H)) region genes, except Cdelta]. The recombination is initiated by the B cell-specific activation-induced cytidine deaminase (AID), which deaminates cytosines in both the donor and acceptor S regions. AID activity converts several dC bases to dU bases in each S region, and the dU bases are then excised by the uracil DNA glycosylase UNG; the resulting abasic sites are nicked by apurinic/apyrimidinic endonuclease (APE). AID attacks both strands of transcriptionally active S regions, but how transcription promotes AID targeting is not entirely clear. Mismatch repair proteins are then involved in converting the resulting single-strand DNA breaks to double-strand breaks with DNA ends appropriate for end-joining recombination. Proteins required for the subsequent S-S recombination include DNA-PK, ATM, Mre11-Rad50-Nbs1, gammaH2AX, 53BP1, Mdc1, and XRCC4-ligase IV. These proteins are important for faithful joining of S regions, and in their absence aberrant recombination and chromosomal translocations involving S regions occur.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012
| | - Jeroen E.J. Guikema
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012
| | - Carol E. Schrader
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-012
| |
Collapse
|
564
|
Abstract
The intestinal immune system includes an immunoglobulin (Ig)A-inductive site represented by Peyer's patches (PPs) and an IgA effector site represented by the lamina propria (LP). This canonical map of intestinal IgA production has been blurred recently by studies showing the presence of active IgA class switching in the LP. Here we discuss the functional implications and controversial nature of these findings.
Collapse
|
565
|
Brandtzaeg P, Kiyono H, Pabst R, Russell MW. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol 2008; 1:31-7. [PMID: 19079158 DOI: 10.1038/mi.2007.9] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stimulation of mucosal immunity has great potential in vaccinology and immunotherapy. However, the mucosal immune system is more complex than the systemic counterpart, both in terms of anatomy (inductive and effector tissues) and effectors (cells and molecules). Therefore, immunologists entering this field need a precise terminology as a crucial means of communication. Abbreviations for mucosal immune-function molecules related to the secretory immunoglobulin A system were defined by the Society for Mucosal Immunolgy Nomenclature Committee in 1997, and are briefly recapitulated in this article. In addition, we recommend and justify standard nomenclature and abbreviations for discrete mucosal immune-cell compartments, belonging to, and beyond, mucosa-associated lymphoid tissue.
Collapse
Affiliation(s)
- P Brandtzaeg
- Department of Pathology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|
566
|
IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2:328-39. [PMID: 18005754 DOI: 10.1016/j.chom.2007.09.013] [Citation(s) in RCA: 622] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/17/2007] [Accepted: 09/19/2007] [Indexed: 01/03/2023]
Abstract
Colonization of germ-free mice with a normal gut microbiota elicits bacteria-specific IgA antibody responses. The effects of these responses on microbial and host biology remain poorly defined. Therefore, we developed a gnotobiotic mouse model where the microbiota is reduced to one bacterial species, and the antibody repertoire to a single, monoclonal IgA against the bacterium's capsular polysaccharide. Bacteroides thetaiotaomicron was introduced into germ-free wild-type, immunodeficient Rag1(-/-), or Rag1(-/-) mice harboring IgA-producing hybridoma cells. Without IgA, B. thetaiotaomicron elicits a more robust innate immune response and reacts to this response by inducing genes that metabolize host oxidative products. IgA reduces intestinal proinflammatory signaling and bacterial epitope expression, thereby balancing suppression of the oxidative burst with the antibody's negative impact on bacterial fitness. These results underscore the adaptive immune system's critical role in establishing a sustainable host-microbial relationship. Immunoselection of bacterial epitope expression may contribute to the remarkable strain-level diversity in this ecosystem.
Collapse
|
567
|
Joller N, Spörri R, Hilbi H, Oxenius A. Induction and protective role of antibodies inLegionella pneumophila infection. Eur J Immunol 2007; 37:3414-23. [DOI: 10.1002/eji.200737591] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
568
|
Hardenberg G, Planelles L, Schwarte CM, van Bostelen L, Le Huong T, Hahne M, Medema JP. Specific TLR ligands regulate APRIL secretion by dendritic cells in a PKR-dependent manner. Eur J Immunol 2007; 37:2900-11. [PMID: 17899538 DOI: 10.1002/eji.200737210] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A proliferation inducing ligand (APRIL) and B cell activating factor belonging to the TNF family (BAFF/BLyS) have been implicated in IgA class switch recombination in thymus-independent (TI) B cell responses. Dendritic cells (DC) are thought to regulate Ig class switching in TI B cell responses by providing B cells with cytokines, including APRIL and BAFF. We therefore set out to analyze the regulation of APRIL and BAFF expression by human monocyte-derived DC (moDC). We observed that moDC produce and secrete APRIL, but could not detect expression of BAFF. Importantly, stimulation with the Toll-like receptor ligands CpG and poly I:C specifically induced APRIL production, while other Toll-like receptor ligands were ineffective. The increase in APRIL was dependent on translation, but surprisingly not transcription. Instead, enhanced APRIL production and secretion resulted from activation of protein kinase receptor (PKR), as it was completely inhibited by the specific inhibitor of PKR, 2-aminopurine. This suggests that the specific induction of APRIL by CpG and poly I:C, and the signal integration by PKR, are regulated by translational modification and hint at a role for APRIL in the TI B cell response to viral infections.
Collapse
Affiliation(s)
- Gijs Hardenberg
- Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
569
|
Fritz JH, Le Bourhis L, Magalhaes JG, Philpott DJ. Innate immune recognition at the epithelial barrier drives adaptive immunity: APCs take the back seat. Trends Immunol 2007; 29:41-9. [PMID: 18054284 DOI: 10.1016/j.it.2007.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 01/07/2023]
Abstract
Innate immune recognition of microbe-associated molecular patterns by multiple families of pattern-recognition molecules such as Toll-like receptors and Nod-like receptors instructs the innate and adaptive immune system to protect the host from pathogens while also acting to establish a beneficial mutualism with commensal organisms. Although this task has been thought to be performed mainly by specialized antigen-presenting cells such as dendritic cells, recent observations point to the idea that innate immune recognition by stromal cells has important implications for the regulation of mucosal homeostasis as well as for the initiation of innate and adaptive immunity.
Collapse
Affiliation(s)
- Jörg H Fritz
- University of Toronto, Department of Immunology, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
570
|
Abstract
PURPOSE OF REVIEW The aim of this article is to describe the immune geography of IgA induction by commensal intestinal bacteria and the underlying mechanisms of cytokine and costimulatory signalling between dendritic cells, B cells and T cells. RECENT FINDINGS Intestinal dendritic cells sample commensal intestinal bacteria that penetrate the epithelial layer and induce IgA+ B cells to seed the mucosa with IgA plasma cells. Constitutive secretion of retinoic acid by intestinal dendritic cells directs the specificity of the IgA class switch and homing receptor expression in Peyer's patch B cells. In-vivo experiments have shown that TGF-beta is a vital cytokine for IgA induction in vivo, and the tumour necrosis factor family members BAFF and APRIL provide key costimulatory signals. After transport through the epithelial layer secretory IgA limits penetration of commensal bacteria back through the epithelium and shapes the density of different bacterial species in the intestinal lumen. SUMMARY Production of IgA is an important adaptation to the presence of commensal intestinal bacteria and induction of the response is compartmentalized within the intestinal mucosal immune system. This compartmentalization allows a vigorous mucosal immune response to commensals without needing the systemic immune system to be tolerant of these organisms.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada.
| | | |
Collapse
|
571
|
Abstract
Immunoglobulin A (IgA) confers mucosal protection against bacteria in the intestine. In this issue, He et al. (2007) find that bacterial molecules promote IgA(2) generation via the cytokine APRIL, produced by intestinal epithelial and dendritic cells.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Medicine, McMaster University Medical Centre, Hamilton, Ontario, Canada.
| | | |
Collapse
|
572
|
|