551
|
Groff AF, Sanchez-Gomez DB, Soruco MML, Gerhardinger C, Barutcu AR, Li E, Elcavage L, Plana O, Sanchez LV, Lee JC, Sauvageau M, Rinn JL. In Vivo Characterization of Linc-p21 Reveals Functional cis-Regulatory DNA Elements. Cell Rep 2016; 16:2178-2186. [PMID: 27524623 PMCID: PMC5014909 DOI: 10.1016/j.celrep.2016.07.050] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
The Linc-p21 locus, encoding a long non-coding RNA, plays an important role in p53 signaling, cell-cycle regulation, and tumor suppression. However, despite extensive study, confusion exists regarding its mechanism of action: is activity driven by the transcript acting in trans, in cis, or by an underlying functional enhancer? Here, using a knockout mouse model and a massively parallel enhancer assay, we delineate the functional elements at this locus. We observe that, even in tissues with no detectable Linc-p21 transcript, deletion of the locus significantly affects local gene expression, including of the cell-cycle regulator Cdkn1a. To characterize this RNA-independent regulatory effect, we systematically interrogated the underlying DNA sequence for enhancer activity at nucleotide resolution and confirmed the existence of multiple enhancer elements. Together, these data suggest that, in vivo, the cis-regulatory effects mediated by Linc-p21, in the presence or absence of transcription, are due to DNA enhancer elements.
Collapse
Affiliation(s)
- Abigail F Groff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diana B Sanchez-Gomez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcela M L Soruco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - A Rasim Barutcu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lara Elcavage
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Olivia Plana
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lluvia V Sanchez
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - James C Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Martin Sauvageau
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
552
|
Chen LL. Linking Long Noncoding RNA Localization and Function. Trends Biochem Sci 2016; 41:761-772. [PMID: 27499234 DOI: 10.1016/j.tibs.2016.07.003] [Citation(s) in RCA: 774] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/23/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed the regulatory potential of many long noncoding RNAs (lncRNAs). Most lncRNAs, like mRNAs, are transcribed by RNA polymerase II and are capped, polyadenylated, and spliced. However, the subcellular fates of lncRNAs are distinct and the mechanisms of action are diverse. Investigating the mechanisms that determine the subcellular fate of lncRNAs has the potential to provide new insights into their biogenesis and specialized functions.
Collapse
Affiliation(s)
- Ling-Ling Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
553
|
Yang N, Fu Y, Zhang H, Sima H, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget 2016; 6:28151-63. [PMID: 26305675 PMCID: PMC4695050 DOI: 10.18632/oncotarget.4661] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/08/2015] [Indexed: 11/25/2022] Open
Abstract
LincRNA-p21 is a downstream long non-coding RNA (lncRNA) transcript of p53. LincRNA-p21 serves as a repressor in p53-dependent transcriptional responses and participates in diverse biological processes, including apoptosis, cell cycle, metabolism and pluripotency. However, the role of lincRNA-p21 in human hepatocellular carcinoma remains to be defined. Here in this work, we demonstrated that lincRNA-p21 acted as a tumor suppressive lncRNA in human hepatocellular carcinoma. We firstly found the downregulation of lincRNA-p21 level in human hepatocellular carcinoma tissues, and showed that low expression of lincRNA-p21 was associated with high disease stage and predicted poor survival. Further we showed that lincRNA-p21 knockdown promoted proliferation and colony formation of HepG2, Huh7 and Bel-7042 cells in vitro, while lincRNA-p21 overexpression obtained oppose results. Using tumor xenograft experiments, we also demonstrated that lincRNA-p21 inhibited HepG2 cell growth in vivo and lincRNA-p21 contributed to sorafenib-induced growth regression of HepG2 cell in vivo. Further mechanism analysis revealed that lincRNA-p21 promoted ER stress both in vitro and in vivo, which facilitated apoptosis of hepatocellular carcinoma cells. Finally, we demonstrated that ER stress accounted for lincRNA-p21 effects on apoptosis, proliferation and in vivo growth of hepatocellular carcinoma. These findings implicate that lincRNA-p21 is a potential prognostic factor and therapeutic target for human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ning Yang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Fu
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haibin Zhang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui Sima
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Nan Zhu
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guangshun Yang
- Hepatobiliary Surgery Department V, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
554
|
Yu CY, Kuo HC. The Trans-Spliced Long Noncoding RNA ts RMST Impedes Human Embryonic Stem Cell Differentiation Through WNT5A-Mediated Inhibition of the Epithelial-to-Mesenchymal Transition. Stem Cells 2016; 34:2052-2062. [DOI: 10.1002/stem.2386] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The trans-spliced noncoding RNA RMST (tsRMST) is an emerging regulatory lncRNA in the human pluripotency circuit. Previously, we found that tsRMST represses lineage-specific transcription factors through the PRC2 complex and NANOG in human pluripotent stem cells (hESCs). Here, we demonstrate that tsRMST also modulates noncanonical Wnt signaling to suppress the epithelial-to-mesenchymal transition (EMT) and in vitro differentiation of embryonic stem cells (ESCs). Our results demonstrate that disruption of tsRMST expression in hESCs results in the upregulation of WNT5A, EMT, and lineage-specific genes/markers. Furthermore, we found that the PKC inhibitors Go6983 and Go6976 inhibited the effects of WNT5A, indicating that WNT5A promotes the EMT and in vitro differentiation although conventional and novel PKC activation in hESCs. Finally, we showed that either antiserum neutralization of WNT5A or Go6983 treatment in tsRMST knockdown cells decreased the expression of mesenchymal and lineage-specific markers. Together, these findings indicate that tsRMST regulates Wnt and EMT signaling pathways in hESCs by repressing WNT5A, which is a potential EMT inducer for promoting in vitro differentiation of hESCs through PKC activation. Our findings provide further insights into the role of trans-spliced RNA and WNT5A in hESC differentiation, in which EMT plays an important role.
Collapse
Affiliation(s)
- Chun-Ying Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
555
|
Tichon A, Gil N, Lubelsky Y, Havkin Solomon T, Lemze D, Itzkovitz S, Stern-Ginossar N, Ulitsky I. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun 2016. [PMID: 27406171 DOI: 10.1101/033423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD-an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways.
Collapse
Affiliation(s)
- Ailone Tichon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Havkin Solomon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lemze
- Department of Molecular Cell Biology,Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology,Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
556
|
A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun 2016; 7:12209. [PMID: 27406171 PMCID: PMC4947167 DOI: 10.1038/ncomms12209] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. The human genome contains thousands of long noncoding RNAs which have been preserved by evolution, through their functions are poorly described. Here the authors show that NORAD binds the Pumilo homologues PUM1 and PUM2 to regulate mRNA levels of genes involved in chromosome segregation.
Collapse
|
557
|
Zhou WQ, Wang P, Shao QP, Wang J. Lipopolysaccharide promotes pulmonary fibrosis in acute respiratory distress syndrome (ARDS) via lincRNA-p21 induced inhibition of Thy-1 expression. Mol Cell Biochem 2016; 419:19-28. [PMID: 27392907 DOI: 10.1007/s11010-016-2745-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 06/15/2016] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a common clinical disorder characterized by pulmonary edema leading to acute lung damage and arterial hypoxemia. Pulmonary fibrosis is a progressive, fibrotic lung disorder, whose pathogenesis in ARDS remains speculative. LincRNA-p21 was a novel regulator of cell proliferation, apoptosis and DNA damage response. This study aims to investigate the effects and mechanism of lincRNA-p21 on pulmonary fibrosis in ARDS. Purified 10 mg/kg LPS was dropped into airways of C57BL/6 mice. Expression levels of lincRNA-p21 and Thy-1 were measured by real-time PCR or western blotting. Proliferation of lung fibroblasts was analyzed by BrdU incorporation assay. Lung and BAL collagen contents were estimated using colorimetric Sircol assay. LincRNA-p21 expression was time-dependently increased and Thy-1 expression was time-dependently reduced in a mouse model of ARDS and in LPS-treated lung fibroblasts. Meanwhile, lung fibroblast proliferation was also time-dependently elevated in LPS-treated lung fibroblasts. In addition, lung fibroblast proliferation could be promoted by lincRNA-p21 overexpression and LPS treatment, however, the elevated lung fibroblast proliferation was further abrogated by Thy-1 overexpression or lincRNA-p21 interference. And Thy-1 interference could elevate cell viability of lung fibroblasts and rescue the reduction of lung fibroblast proliferation induced by lincRNA-p21 interference. Moreover, lincRNA-p21 overexpression dramatically inhibited acetylation of H3 and H4 at the Thy-1 promoter and Thy-1 expression levels in HLF1 cells. Finally, lincRNA-p21 interference rescued LPS-induced increase of lung and BAL collagen contents. LincRNA-p21 could lead to pulmonary fibrosis in ARDS by inhibition of the expression of Thy-1.
Collapse
Affiliation(s)
- Wen-Qin Zhou
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Peng Wang
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Qiu-Ping Shao
- Department of Emergency Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
| | - Jian Wang
- Department of Respiratory Medicine, Affiliated People's Hospital, Jiangsu University, 8, Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
558
|
Noncoding RNAs Regulating p53 and c-Myc Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:337-65. [DOI: 10.1007/978-981-10-1498-7_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
559
|
Mukherjee J, Ohba S, See WL, Phillips JJ, Molinaro AM, Pieper RO. PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells. Int J Cancer 2016; 139:99-111. [PMID: 26874904 PMCID: PMC6615049 DOI: 10.1002/ijc.30041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
The M2 isoform of pyruvate kinase (PK) is upregulated in most cancers including glioblastoma. Although PKM2 has been reported to use dual kinase activities to regulate cell growth, it also interacts with phosphotyrosine (pY)-containing peptides independently of its kinase activity. The potential for PKM2 to use the binding of pY-containing proteins to control tumor growth has not been fully examined. We here describe a novel mechanism by which PKM2 interacts in the nucleus with the RNA binding protein HuR to regulate HuR sub-cellular localization, p27 levels, cell cycle progression and glioma cell growth. Suppression of PKM2 in U87, T98G and LN319 glioma cells resulted in increased p27 levels, defects in entry into mitosis, increased centrosome number, and decreased cell growth. These effects could be reversed by shRNA targeting p27. The increased levels of p27 in PKM2 knock-down cells were caused by a loss of the nuclear interaction between PKM2 and HuR, and a subsequent cytoplasmic re-distribution of HuR, which in turn led to increased cap-independent p27 mRNA translation. Consistent with these results, the alterations in p27 mRNA translation, cell cycle progression and cell growth caused by PKM2 suppression could be reversed in vitro and in vivo by suppression of HuR or p27 levels, or by introduction of forms of PKM2 that could bind pY, regardless of their kinase activity. These results define a novel mechanism by which PKM2 regulates glioma cell growth, and also define a novel set of potential therapeutic targets along the PKM2-HuR-p27 pathway.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Shigeo Ohba
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Wendy L See
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Joanna J Phillips
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Annette M Molinaro
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Russell O Pieper
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| |
Collapse
|
560
|
Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res 2016; 366:509-521. [PMID: 27365087 DOI: 10.1007/s00441-016-2451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) were once regarded as nonfunctional by-products of transcription but their effects are now gradually being elucidated. Evidence suggests that lncRNAs play crucial roles in cell biology, especially in regulating gene expression. However, because of the diversity and complexity of their regulatory mechanisms, our knowledge of the function of lncRNAs represents only the tip of the iceberg. Recent studies have shown that lncRNAs are capable of regulating cell differentiation and pluripotency. Thus, we consider it to be an appropriate time to review the progress in understanding the role of lncRNAs in these two biological processes. In this review, the biological characteristics and regulatory mechanisms of lncRNAs at the chromatin remodeling level, transcriptional level and post-transcriptional level are described and recent advances in our comprehension of the role of lncRNAs in cell differentiation and pluripotency are discussed.
Collapse
|
561
|
Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27307117 DOI: 10.1002/wrna.1372] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
The RNA-binding protein HuR (human antigen R) associates with numerous transcripts, coding and noncoding, and controls their splicing, localization, stability, and translation. Through its regulation of target transcripts, HuR has been implicated in cellular events including proliferation, senescence, differentiation, apoptosis, and the stress and immune responses. In turn, HuR influences processes such as cancer and inflammation. HuR function is primarily regulated through posttranslational modifications that alter its subcellular localization and its ability to bind target RNAs; such modifications include phosphorylation, methylation, ubiquitination, NEDDylation, and proteolytic cleavage. In this review, we describe the modifications that impact upon HuR function on gene expression programs and disease states. WIREs RNA 2017, 8:e1372. doi: 10.1002/wrna.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
562
|
Hart RP, Goff LA. Long noncoding RNAs: Central to nervous system development. Int J Dev Neurosci 2016; 55:109-116. [PMID: 27296516 DOI: 10.1016/j.ijdevneu.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022] Open
Abstract
The development of the central nervous system (CNS) is a complex orchestration of stem cells, transcription factors, growth/differentiation factors, and epigenetic control. Noncoding RNAs have been identified, classified, and studied for their functional roles in many systems including the CNS. In particular, the class of long noncoding RNAs (lncRNAs) has generated both enthusiasm and skepticism due to the unexpected discovery, the diversity of mechanisms, and the lower level of expression than found in protein-coding RNAs. Here we describe evidence supporting the role of lncRNAs in driving CNS-specific differentiation. It is clear that lncRNAs exhibit a functional diversity that makes their study and compartmentalization more challenging than other classes of noncoding RNAs. We predict, however, that lncRNAs will be essential for the characterization of discrete neuronal cell types in the age of single-cell transcriptomics and that these regulatory RNAs contribute to the multitude of functional mechanisms during CNS differentiation that will rival the diversities of protein-based mechanisms.
Collapse
Affiliation(s)
- Ronald P Hart
- Department of Cell Biology & Neuroscience, and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Loyal A Goff
- McKusick-Nathans Institute for Genetic Medicine & Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21025, USA
| |
Collapse
|
563
|
Li H, Zhu H, Ge J. Long Noncoding RNA: Recent Updates in Atherosclerosis. Int J Biol Sci 2016; 12:898-910. [PMID: 27314829 PMCID: PMC4910607 DOI: 10.7150/ijbs.14430] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/20/2016] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs belong to a class of noncoding RNAs longer than 200 nucleotides with the epigenetic regulation potential. As a novel molecular regulator, lncRNAs are often dysregulated in various pathological conditions and display multiple functions in a wide range of biological processes. Given that recent studies have indicated that lncRNAs are involved in atherosclerosis-related smooth muscle cell, endothelial cell, macrophage and lipid metabolism regulation, it is pertinent to understand the potential function of lncRNAs in atherosclerosis development. This review will highlight the recent updates of lncRNAs in atherogenesis and also discuss their potential roles as novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Li
- 1. Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongming Zhu
- 2. Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junbo Ge
- 1. Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.; 3. Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
564
|
A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate. Cell Rep 2016; 15:2588-96. [DOI: 10.1016/j.celrep.2016.05.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
|
565
|
Murphy MB, Medvedev AE. Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity. J Leukoc Biol 2016; 99:839-50. [PMID: 26965636 PMCID: PMC6608019 DOI: 10.1189/jlb.2ru1215-575r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Sensing of microbial pathogens and endogenous "alarmins" by macrophages and dendritic cells is reliant on pattern recognition receptors, including membrane-associated TLRs, cytosolic nucleotide-binding and oligomerization domain leucine-rich repeat-containing receptors, retinoic acid-inducible gene I-like receptors, and absent in melanoma 2-like receptors. Engagement of TLRs elicits signaling pathways that activate inflammatory genes whose expression is regulated by chromatin-modifying complexes and transcription factors. Long noncoding RNAs have emerged as new regulators of inflammatory mediators in the immune system. They are expressed in macrophages, dendritic cells, neutrophils, NK cells, and T- and B-lymphocytes and are involved in immune cell differentiation and activation. Long noncoding RNAs act via repression or activation of transcription factors, modulation of stability of mRNA and microRNA, regulation of ribosome entry and translation of mRNAs, and controlling components of the epigenetic machinery. In this review, we focus on recent advances in deciphering the mechanisms by which long noncoding RNAs regulate TLR-driven responses in macrophages and dendritic cells and discuss the involvement of long noncoding RNAs in endotoxin tolerance, autoimmune, and inflammatory diseases. The dissection of the role of long noncoding RNAs will improve our understanding of the mechanisms of regulation of inflammation and may provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Michael B Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
566
|
Ayupe AC, Tahira AC, Camargo L, Beckedorff FC, Verjovski-Almeida S, Reis EM. Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol 2016; 12:877-92. [PMID: 26151857 DOI: 10.1080/15476286.2015.1062960] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) that map to intragenic regions of the human genome with the same (intronic lncRNAs) or opposite orientation (antisense lncRNAs) relative to protein-coding mRNAs have been largely dismissed from biochemical and functional characterization due to the belief that they are mRNA precursors, byproducts of RNA splicing or simply transcriptional noise. In this work, we used a custom microarray to investigate aspects of the biogenesis, processing, stability, evolutionary conservation, and cellular localization of ∼ 6,000 intronic lncRNAs and ∼ 10,000 antisense lncRNAs. Most intronic (2,903 of 3,427, 85%) and antisense lncRNAs (4,945 of 5,214, 95%) expressed in HeLa cells showed evidence of 5' cap modification, compatible with their transcription by RNAP II. Antisense lncRNAs (median t1/2 = 3.9 h) were significantly (p < 0.0001) more stable than mRNAs (median t1/2 = 3.2 h), whereas intronic lncRNAs (median t1/2 = 2.1 h) comprised a more heterogeneous class that included both stable (t1/2 > 3 h) and unstable (t1/2 < 1 h) transcripts. Intragenic lncRNAs display evidence of evolutionary conservation, have little/no coding potential and were ubiquitously detected in the cytoplasm. Notably, a fraction of the intronic and antisense lncRNAs (13 and 15%, respectively) were expressed from loci at which the corresponding host mRNA was not detected. The abundances of a subset of intronic/antisense lncRNAs were correlated (r ≥ |0.8|) with those of genes encoding proteins involved in cell division and DNA replication. Taken together, the findings of this study contribute novel biochemical and genomic information regarding intronic and antisense lncRNAs, supporting the notion that these classes include independently transcribed RNAs with potentials for exerting regulatory functions in the cell.
Collapse
Affiliation(s)
- Ana C Ayupe
- a Departamento de Bioquímica ; Instituto de Química ; Universidade de São Paulo ; Sao Paulo , Brazil
| | | | | | | | | | | |
Collapse
|
567
|
Jain S, Thakkar N, Chhatai J, Pal Bhadra M, Bhadra U. Long non-coding RNA: Functional agent for disease traits. RNA Biol 2016; 14:522-535. [PMID: 27229269 DOI: 10.1080/15476286.2016.1172756] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have attracted the attention of researchers with their involvement in all facets of life. LncRNAs are transcripts of more than 200 nucleotides which lack defined protein coding potential. Although they do not code for proteins, a large number of them are involved in regulating gene expression and translation. The presence of numerous lncRNAs in the human genome has prompted us to investigate the contribution of these molecules to human biology and medicine. In this review, we present the potential role of lncRNAs interlinked to different human diseases and genetic disorders. We also describe their role in cellular differentiation and aging and discuss their potential importance as biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- Sriyans Jain
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Nirav Thakkar
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Jagamohan Chhatai
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Manika Pal Bhadra
- b Centre for Chemical Biology , Indian Institute for Chemical Technology , Hyderabad , India
| | - Utpal Bhadra
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| |
Collapse
|
568
|
Qin D, Xu C. Study strategies for long non-coding RNAs and their roles in regulating gene expression. Cell Mol Biol Lett 2016. [PMID: 26204411 DOI: 10.1515/cmble-2015-0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.
Collapse
|
569
|
Li J, Tian H, Yang J, Gong Z. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis. DNA Cell Biol 2016; 35:459-70. [PMID: 27213978 DOI: 10.1089/dna.2015.3187] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The revolutionary findings in nonprotein-coding part of human genome analysis have revealed a large number of RNA transcripts longer than 200 nucleotides that lack coding protein function, termed long noncoding RNAs (lncRNAs). Recently, accumulating shreds of evidence suggest that lncRNAs are widely distributed in human genome and deeply involved in cellular activities such as cell growth, proliferation, and apoptosis. Generally, lncRNAs regulate cell behaviors by targeting cell cycle-associated cyclins, cyclin-dependent kinases (CDKs), and/or CDK inhibitors. Specifically, lncRNAs serve as scaffolds or guides for chromatin-modifying complexes and act as signals in response to DNA damage. In addition, lncRNAs function as protein decoys and microRNA decoys, as well as interveners in cell division by modulating oncogenes and/or tumor suppressors. In this review, we mainly focus on the current understanding of the molecular mechanisms, how lncRNAs influence cellular processes and cancer progression. Finally, we also prospect the limitations of lncRNAs in cell behaviors and the novel roles of lncRNAs in epigenetic regulations.
Collapse
Affiliation(s)
- Jingqiu Li
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| | - Haihua Tian
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China .,3 Department of Laboratory Medicine, Ningbo Kangning Hospital , Ningbo, China
| | - Jie Yang
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| | - Zhaohui Gong
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine , Ningbo, China .,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine , Ningbo, China
| |
Collapse
|
570
|
Noh JH, Kim KM, Abdelmohsen K, Yoon JH, Panda AC, Munk R, Kim J, Curtis J, Moad CA, Wohler CM, Indig FE, de Paula W, Dudekula DB, De S, Piao Y, Yang X, Martindale JL, de Cabo R, Gorospe M. HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev 2016; 30:1224-39. [PMID: 27198227 PMCID: PMC4888842 DOI: 10.1101/gad.276022.115] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/14/2016] [Indexed: 01/06/2023]
Abstract
Noh et al. found two RNA-binding proteins (RBPs)—HuR and GRSF1—that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.
Collapse
Affiliation(s)
- Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rachel Munk
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jessica Curtis
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christopher A Moad
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Christina M Wohler
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Wilson de Paula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
571
|
Zhou N, Si Z, Li T, Chen G, Zhang Z, Qi H. Long non-coding RNA CCAT2 functions as an oncogene in hepatocellular carcinoma, regulating cellular proliferation, migration and apoptosis. Oncol Lett 2016; 12:132-138. [PMID: 27347113 PMCID: PMC4906942 DOI: 10.3892/ol.2016.4580] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2016] [Indexed: 12/30/2022] Open
Abstract
An increasing number of studies have demonstrated that the dysregulation of long non-coding RNAs (lncRNAs) may serve an important role in tumor progression. Previous studies have reported that the lncRNA, colon cancer associated transcript 2 (CCAT2), was highly expressed in various tumors. However, the function of CCAT2 in hepatocellular carcinoma (HCC) has not yet been elucidated. The aim of the present study was to identify novel oncogene lncRNAs and investigate their physiological function and mechanism in HCC. Using reverse transcription-quantitative polymerase chain reaction, it was observed that CCAT2 was upregulated in HCC tissues and human HCC cell lines. Furthermore, the impacts of CCAT2 on cell proliferation, migration and apoptosis were analyzed using cell migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assay analysis respectively. The overexpression of CCAT2 using a synthesized vector significantly promoted cell migration and proliferation, and inhibited apoptosis of HCC cells in vitro. The suppression of CCAT2 expression resulted in opposing effects. To the best of our knowledge, the present study is the first to demonstrate that CCAT2 functions as a oncogene in HCC. Further investigation is required to clarify the molecular mechanisms of this lncRNA in HCC development.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhongzhou Si
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Guangshun Chen
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhongqiang Zhang
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Haizhi Qi
- Department of Organ Transplantation and General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
572
|
Long Non-coding RNAs in the Cytoplasm. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:73-80. [PMID: 27163185 PMCID: PMC4880952 DOI: 10.1016/j.gpb.2016.03.005] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
An enormous amount of long non-coding RNAs (lncRNAs) transcribed from eukaryotic genome are important regulators in different aspects of cellular events. Cytoplasm is the residence and the site of action for many lncRNAs. The cytoplasmic lncRNAs play indispensable roles with multiple molecular mechanisms in animal and human cells. In this review, we mainly talk about functions and the underlying mechanisms of lncRNAs in the cytoplasm. We highlight relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications. We also elaborate the perspectives of cytoplasmic lncRNA studies.
Collapse
|
573
|
Lorenzen JM, Thum T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 2016; 12:360-73. [PMID: 27140855 DOI: 10.1038/nrneph.2016.51] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription of a large part of the human genome results in RNA transcripts that have limited or no protein-coding potential. These include long noncoding RNAs (lncRNAs), which are defined as being ≥200 nucleotides long. Unlike microRNAs, which have been extensively studied, little is known about the functional role of lncRNAs. However, studies over the past 5 years have shown that lncRNAs interfere with tissue homeostasis and have a role in pathological processes, including in the kidney and heart. The developmental expression of the microRNA sponge H19, for example, is altered in the kidneys of embryos carried by hyperglycaemic mothers, and the lncRNA Malat1 regulates hyperglycaemia-induced inflammation in endothelial cells. Putative roles for other lncRNAs have been identified in conditions such as heart failure, cardiac autophagy, hypertension, acute kidney injury, glomerular diseases, acute allograft rejection and renal cell carcinoma. This Review outlines our current understanding of the role and function of lncRNAs in kidney and cardiovascular disease as novel important regulators and potential therapeutic entry points of disease progression.
Collapse
Affiliation(s)
- Johan M Lorenzen
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| |
Collapse
|
574
|
Kim TK, Shiekhattar R. Diverse regulatory interactions of long noncoding RNAs. Curr Opin Genet Dev 2016; 36:73-82. [PMID: 27151434 DOI: 10.1016/j.gde.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Studies in the past decade indicate that a large number of lncRNAs are enriched in the nucleus and originate from transcriptionally active regulatory elements. These lncRNAs associate with transcription factors and chromatin regulatory elements to fine-tune the transcriptional output of protein coding genes. Importantly, lncRNAs display exquisite tissue specificity in their expression. Understanding how lncRNAs associate with their protein or nucleic acid partners and how they modulate gene expression provides insight into their scope of biological function. This review discusses notable functional properties and mechanisms of action of lncRNAs that have resulted from recent progress made in the field.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
575
|
Riccardi S, Bergling S, Sigoillot F, Beibel M, Werner A, Leighton-Davies J, Knehr J, Bouwmeester T, Parker CN, Roma G, Kinzel B. MiR-210 promotes sensory hair cell formation in the organ of corti. BMC Genomics 2016; 17:309. [PMID: 27121005 PMCID: PMC4848794 DOI: 10.1186/s12864-016-2620-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background Hearing loss is the most common sensory defect afflicting several hundred million people worldwide. In most cases, regardless of the original cause, hearing loss is related to the degeneration and death of hair cells and their associated spiral ganglion neurons. Despite this knowledge, relatively few studies have reported regeneration of the auditory system. Significant gaps remain in our understanding of the molecular mechanisms underpinning auditory function, including the factors required for sensory cell regeneration. Recently, the identification of transcriptional activators and repressors of hair cell fate has been augmented by the discovery of microRNAs (miRNAs) associated with hearing loss. As miRNAs are central players of differentiation and cell fate, identification of miRNAs and their gene targets may reveal new pathways for hair cell regeneration, thereby providing new avenues for the treatment of hearing loss. Results In order to identify new genetic elements enabling regeneration of inner ear sensory hair cells, next-generation miRNA sequencing (miRSeq) was used to identify the most prominent miRNAs expressed in the mouse embryonic inner ear cell line UB/OC-1 during differentiation towards a hair cell like phenotype. Based on these miRSeq results eight most differentially expressed miRNAs were selected for further characterization. In UB/OC-1, miR-210 silencing in vitro resulted in hair cell marker expression, whereas ectopic expression of miR-210 resulted in new hair cell formation in cochlear explants. Using a lineage tracing mouse model, transdifferentiation of supporting epithelial cells was identified as the likely mechanism for this new hair cell formation. Potential miR-210 targets were predicted in silico and validated experimentally using a miR-trap approach. Conclusion MiRSeq followed by ex vivo validation revealed miR-210 as a novel factor driving transdifferentiation of supporting epithelial cells to sensory hair cells suggesting that miR-210 might be a potential new factor for hearing loss therapy. In addition, identification of inner ear pathways regulated by miR-210 identified potential new drug targets for the treatment of hearing loss. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2620-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Riccardi
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Sebastian Bergling
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Frederic Sigoillot
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Cambridge, USA
| | - Martin Beibel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Annick Werner
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Juliet Leighton-Davies
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Judith Knehr
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Tewis Bouwmeester
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Christian N Parker
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Bernd Kinzel
- Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
576
|
Tran NT, Su H, Khodadadi-Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC, Zhao X. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep 2016; 17:887-900. [PMID: 27118388 DOI: 10.15252/embr.201541970] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/30/2016] [Indexed: 01/16/2023] Open
Abstract
Antisense RNAs regulate the transcription and translation of the corresponding sense genes. Here, we report that an antisense RNA, AS-RBM15, is transcribed in the opposite direction within exon 1 of RBM15 RBM15 is a regulator of megakaryocyte (MK) differentiation and is also involved in a chromosome translocation t(1;22) in acute megakaryocytic leukemia. MK terminal differentiation is enhanced by up-regulation of AS-RBM15 expression and attenuated by AS-RBM15 knockdown. At the molecular level, AS-RBM15 enhances RBM15 protein translation in a CAP-dependent manner. The region of the antisense AS-RBM15 RNA, which overlaps with the 5'UTR of RBM15, is sufficient for the up-regulation of RBM15 protein translation. In addition, we find that transcription of both RBM15 and AS-RBM15 is activated by the transcription factor RUNX1 and repressed by RUNX1-ETO, a leukemic fusion protein. Therefore, AS-RBM15 is a regulator of megakaryocyte differentiation and may play a regulatory role in leukemogenesis.
Collapse
Affiliation(s)
- Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shan Lin
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Li Zhang
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin M Pawlik
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | | | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
577
|
Abstract
Tumor suppresser gene TP53 is one of the most frequently deleted
or mutated genes in gastrointestinal cancers. As a transcription factor, p53
regulates a number of important protein coding genes to control cell cycle, cell
death, DNA damage/repair, stemness, differentiation and other key cellular
functions. In addition, p53 is also able to activate the expression of a number
of small non-coding microRNAs (miRNAs) through direct binding to the promoter
region of these miRNAs. Many miRNAs have been identified to be potential tumor
suppressors by regulating key effecter target mRNAs. Our understanding of the
regulatory network of p53 has recently expanded to include long non-coding RNAs
(lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer
biology. With our increased understanding of the important functions of these
non-coding RNAs and their relationship with p53, we are gaining exciting new
insights into the biology and function of cells in response to various growth
environment changes. In this review we summarize the current understanding of
the ever expanding involvement of non-coding RNAs in the p53 regulatory network
and its implications for our understanding of gastrointestinal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| | - Ning Zhang
- Department of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, USA
| |
Collapse
|
578
|
Latorre E, Carelli S, Raimondi I, D'Agostino V, Castiglioni I, Zucal C, Moro G, Luciani A, Ghilardi G, Monti E, Inga A, Di Giulio AM, Gorio A, Provenzani A. The Ribonucleic Complex HuR-MALAT1 Represses CD133 Expression and Suppresses Epithelial-Mesenchymal Transition in Breast Cancer. Cancer Res 2016; 76:2626-36. [PMID: 27197265 DOI: 10.1158/0008-5472.can-15-2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a core process underlying cell movement during embryonic development and morphogenesis. Cancer cells hijack this developmental program to execute a multi-step cascade, leading to tumorigenesis and metastasis. CD133 (PROM1), a marker of cancer stem cells, has been shown to facilitate EMT in various cancers, but the regulatory networks controlling CD133 gene expression and function in cancer remain incompletely delineated. In this study, we show that a ribonucleoprotein complex including the long noncoding RNA MALAT1 and the RNA-binding protein HuR (ELAVL1) binds the CD133 promoter region to regulate its expression. In luminal nonmetastatic MCF-7 breast cancer cells, HuR silencing was sufficient to upregulate N-cadherin (CDH2) and CD133 along with a migratory and mesenchymal-like phenotype. Furthermore, we found that in the basal-like metastatic cell line MDA-MB-231 and primary triple-negative breast cancer tumor cells, the repressor complex was absent from the CD133-regulatory region, but was present in the MCF-7 and primary ER+ tumor cells. The absence of the complex from basal-like cells was attributed to diminished expression of MALAT1, which, when overexpressed, dampened CD133 levels. In conclusion, our findings suggest that the failure of a repressive complex to form or stabilize in breast cancer promotes CD133 upregulation and an EMT-like program, providing new mechanistic insights underlying the control of prometastatic processes. Cancer Res; 76(9); 2626-36. ©2016 AACR.
Collapse
Affiliation(s)
- Elisa Latorre
- Laboratory of Genomic Screening, Center for Integrative Biology, University of Trento, Trento, Italy. Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy.
| | - Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Vito D'Agostino
- Laboratory of Genomic Screening, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Ilaria Castiglioni
- Laboratory of Genomic Screening, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Chiara Zucal
- Laboratory of Genomic Screening, Center for Integrative Biology, University of Trento, Trento, Italy
| | | | | | - Giorgio Ghilardi
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy. San Paolo Hospital, Milan, Italy
| | - Eleonora Monti
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy. San Paolo Hospital, Milan, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Anna Maria Di Giulio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Center for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
579
|
H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR. Mol Cell Biol 2016; 36:1332-41. [PMID: 26884465 DOI: 10.1128/mcb.01030-15] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
The disruption of the intestinal epithelial barrier function occurs commonly in various pathologies, but the exact mechanisms responsible are unclear. The H19 long noncoding RNA (lncRNA) regulates the expression of different genes and has been implicated in human genetic disorders and cancer. Here, we report that H19 plays an important role in controlling the intestinal epithelial barrier function by serving as a precursor for microRNA 675 (miR-675). H19 overexpression increased the cellular abundance of miR-675, which in turn destabilized and repressed the translation of mRNAs encoding tight junction protein ZO-1 and adherens junction E-cadherin, resulting in the dysfunction of the epithelial barrier. Increasing the level of the RNA-binding protein HuR in cells overexpressing H19 prevented the stimulation of miR-675 processing from H19, promoted ZO-1 and E-cadherin expression, and restored the epithelial barrier function to a nearly normal level. In contrast, the targeted deletion of HuR in intestinal epithelial cells enhanced miR-675 production in the mucosa and delayed the recovery of the gut barrier function after exposure to mesenteric ischemia/reperfusion. These results indicate that H19 interacts with HuR and regulates the intestinal epithelial barrier function via the H19-encoded miR-675 by altering ZO-1 and E-cadherin expression posttranscriptionally.
Collapse
|
580
|
Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016; 29:452-463. [PMID: 27070700 PMCID: PMC4831138 DOI: 10.1016/j.ccell.2016.03.010] [Citation(s) in RCA: 2393] [Impact Index Per Article: 265.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
Genome-wide cancer mutation analyses are revealing an extensive landscape of functional mutations within the noncoding genome, with profound effects on the expression of long noncoding RNAs (lncRNAs). While the exquisite regulation of lncRNA transcription can provide signals of malignant transformation, we now understand that lncRNAs drive many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein, and RNA. Recent advancements in surveying lncRNA molecular mechanisms are now providing the tools to functionally annotate these cancer-associated transcripts, making these molecules attractive targets for therapeutic intervention in the fight against cancer.
Collapse
Affiliation(s)
- Adam M Schmitt
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
581
|
Ultraconserved region-containing Transformer 2β4 controls senescence of colon cancer cells. Oncogenesis 2016; 5:e213. [PMID: 27043659 PMCID: PMC4848834 DOI: 10.1038/oncsis.2016.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/23/2023] Open
Abstract
Ultraconserved regions (UCRs) are >200 bp genomic segments with perfect human-to-rodent sequence identity. Transcribed UCRs constitute a new category of noncoding RNAs whose functions remain poorly understood. The human transformer 2β (TRA2B) gene contains a 419-bp UCR spanning the 276-bp exon 2 and its neighboring introns. TRA2B exon 2 has premature stop codons, whereas an exon 2-containing splice variant (TRA2β4) was expressed preferentially in the nuclei of human colon cancer cells. TRA2β4 knockdown p53-independently stimulated CDKN1A transcription and increased p21, resulting in the appearance of senescent cells. Biotin pull-down and RNA immunoprecipitation assays revealed that TRA2β4 interacted with Sp1 through a Sp1-binding sequence (485-GGGG-488) in a stem-loop structure of exon 2. Mutation of this sequence (485-AAGG-488) disrupted the stem-loop structure, blocked the interaction with Sp1 and increased CDKN1A transcription. Overexpression of TRA2β4 significantly decreased CDKN1A mRNA levels and accelerated cell growth, but the introduction of the mutation in the Sp1-binding sequence completely canceled these effects. Taken together, TRA2β4 may sequester Sp1 from occupying promoters of target genes including CDKN1A, promoting cell growth by interrupting the senescence-related gene expression program. This novel function of TRA2β4 may uncover an oncogenic function of transcribed UCRs.
Collapse
|
582
|
Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y, Chen Y. The Emerging Function and Mechanism of ceRNAs in Cancer. Trends Genet 2016; 32:211-224. [PMID: 26922301 PMCID: PMC4805481 DOI: 10.1016/j.tig.2016.02.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
Complex diseases, such as cancer, are often associated with aberrant gene expression at both the transcriptional and post-transcriptional level. Over the past several years, competing endogenous RNAs (ceRNAs) have emerged as an important class of post-transcriptional regulators that alter gene expression through a miRNA-mediated mechanism. Recent studies in both solid tumors and hematopoietic malignancies showed that ceRNAs have significant roles in cancer pathogenesis by altering the expression of key tumorigenic or tumor-suppressive genes. Characterizing the identity, function, and mechanism of the ceRNAs will not only further our fundamental understanding of RNA-mediated cancer pathogenesis, but may also shed light on the development of new RNA-based therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dandan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonghao Yu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
583
|
Li F, Wen X, Zhang H, Fan X. Novel Insights into the Role of Long Noncoding RNA in Ocular Diseases. Int J Mol Sci 2016; 17:478. [PMID: 27043545 PMCID: PMC4848934 DOI: 10.3390/ijms17040478] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022] Open
Abstract
Recent advances have suggested that long noncoding RNAs (lncRNAs) are differentially expressed in ocular tissues and play a critical role in the pathogenesis of different types of eye diseases. Here, we summarize the functions and mechanisms of known aberrantly-expressed lncRNAs and present a brief overview of relevant reports about lncRNAs in such ocular diseases as glaucoma, proliferative vitreoretinopathy (PVR), diabeticretinopathy (DR), and ocular tumors. We intend to highlight comprehensive studies that provide detailed data about the mechanisms of lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. Although our understanding of lncRNAs is still in its infancy, these examples may provide helpful insights into the methods by which lncRNAs interfere with ocular diseases.
Collapse
Affiliation(s)
- Fang Li
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Xuyang Wen
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200025, China.
| |
Collapse
|
584
|
Ballantyne MD, McDonald RA, Baker AH. lncRNA/MicroRNA interactions in the vasculature. Clin Pharmacol Ther 2016; 99:494-501. [PMID: 26910520 PMCID: PMC4881297 DOI: 10.1002/cpt.355] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) have gained widespread attention for their role in diverse vascular processes including angiogenesis, apoptosis, proliferation, and migration. Despite great understanding of miRNA expression and function, knowledge of long noncoding RNA (lncRNA) molecular mechanisms still remains limited. The influence of miRNA on lncRNA function, and the converse, is now beginning to emerge. lncRNA may regulate miRNA function by acting as endogenous sponges to regulate gene expression and miRNA have been shown to bind and regulate lncRNA stability. A detailed understanding of the molecular and cellular effects of lncRNA‐miRNA‐mediated interactions in vascular pathophysiology could pave the way for new diagnostic markers and therapeutic approaches, but first there is a requirement for a more detailed understanding of the impact of such regulatory networks.
Collapse
Affiliation(s)
- M D Ballantyne
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK.,Institute of Cardiovascular and Medical Science, British Heart Foundation Glasgow, Glasgow, UK
| | - R A McDonald
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - A H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
585
|
HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling. Sci Rep 2016; 6:23521. [PMID: 27009634 PMCID: PMC4806364 DOI: 10.1038/srep23521] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/09/2016] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC.
Collapse
|
586
|
Zhang Z, Zhou C, Chang Y, Zhang Z, Hu Y, Zhang F, Lu Y, Zheng L, Zhang W, Li X, Li X. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 2016; 376:62-73. [PMID: 27012187 DOI: 10.1016/j.canlet.2016.03.022] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
The abnormal expression of many long non-coding RNAs (lncRNAs) has been reported in the progression of various tumors, and these lncRNAs can be useful as diagnostic indicators and anti-tumor targets. Therefore, it is important to identify lncRNAs that can be used for the clinical prevention and treatment of colorectal cancer (CRC). Here, we report that cancer susceptibility candidate 11 (CASC11) was upregulated in CRC tissues; increased CASC11 expression in CRC was associated with tumor size, serosal invasion, lymph metastasis, and the tumor-node-metastasis (TNM) stage. Functional experiments showed that CASC11 can promote CRC cell proliferation and metastasis in vitro and in vivo. Furthermore, CASC11 can target heterogeneous ribonucleoprotein K (hnRNP-K) to activate WNT/β-catenin signaling in CRC cells. In addition, we found that c-Myc directly bound to the promoter regions of CASC11 and increased promoter histone acetylation to enhance CASC11 expression. Together, our findings indicate that the novel lncRNA CASC11 may serve as a candidate diagnostic biomarker and a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chang Zhou
- Department of Anatomy and Histology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yaya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zuoyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
587
|
Melissari MT, Grote P. Roles for long non-coding RNAs in physiology and disease. Pflugers Arch 2016; 468:945-58. [DOI: 10.1007/s00424-016-1804-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023]
|
588
|
Montes M, Lund AH. Emerging roles of lncRNAs in senescence. FEBS J 2016; 283:2414-26. [PMID: 26866709 DOI: 10.1111/febs.13679] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/16/2016] [Accepted: 02/09/2016] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a complex stress response that leads to an irreversible state of cell growth arrest. Senescence may be induced by various stimuli such as telomere shortening, DNA damage or oncogenic insult, among others. Senescent cells are metabolically highly active, producing a wealth of cytokines and chemokines that, depending on the context, may have a beneficial or deleterious effect on the organism. Senescence is considered a tightly regulated stress response that is largely governed by the p53/p21 and p16/Rb pathways. Many molecules have been identified as regulators of these two networks, such as transcription factors, chromatin modifiers and non-coding RNAs. The expression level of several long non-coding RNAs is affected during different types of senescence; however, which of these are important for the biological function remains poorly understood. Here we review our current knowledge of the mechanistic roles of lncRNAs affecting the main senescence pathways, and discuss the importance of identifying new regulators.
Collapse
Affiliation(s)
- Marta Montes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
589
|
Kour S, Rath PC. Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 2016; 26:1-21. [PMID: 26655093 DOI: 10.1016/j.arr.2015.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process.
Collapse
Affiliation(s)
- Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
590
|
Abstract
It is increasingly evident that many of the genomic mutations in cancer reside inside regions that do not encode proteins. However, these regions are often transcribed into long noncoding RNAs (lncRNAs). The recent application of next-generation sequencing to a growing number of cancer transcriptomes has indeed revealed thousands of lncRNAs whose aberrant expression is associated with different cancer types. Among the few that have been functionally characterized, several have been linked to malignant transformation. Notably, these lncRNAs have key roles in gene regulation and thus affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review aims to summarize current knowledge of lncRNAs from the cancer perspective. It discusses the strategies that led to the identification of cancer-related lncRNAs and the methodologies and challenges involving the study of these molecules, as well as the imminent applications of these findings to the clinic.
Collapse
|
591
|
Deng K, Wang H, Guo X, Xia J. The cross talk between long, non-coding RNAs and microRNAs in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:111-6. [PMID: 26621794 DOI: 10.1093/abbs/gmv120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant diseases and remains the second leading cause of cancer-related mortality worldwide. Although great effort has been made during the past decades to facilitate the early detection and treatment of gastric cancer, the prognosis is not yet satisfactory and the underlying molecular mechanisms of gastric cancer pathogenesis are not fully understood. Meanwhile, non-coding RNAs have been established as key players in regulating various biological and pathological processes, such as cell-cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. Furthermore, numerous studies have also revealed a complicated interplay among different species of non-coding RNAs; therefore, the cross-regulation between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) has begun to emerge. This lncRNA-miRNA cross talk, which has attracted increasing attention in recent years, is involved in a great number of human diseases including gastric cancer. In this review, we summarize the latest research progress of the interactions between lncRNAs and miRNAs, highlighting their influences on the development and progression of gastric cancer to provide novel approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyuan Deng
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Xiaoqiang Guo
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214002, China
| |
Collapse
|
592
|
Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, Gorospe M. LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res 2016; 44:2378-92. [PMID: 26819413 PMCID: PMC4797289 DOI: 10.1093/nar/gkw017] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
The function of the vast majority of mammalian long noncoding (lnc) RNAs remains unknown. Here, analysis of a highly abundant mammalian lncRNA, OIP5-AS1, known as cyrano in zebrafish, revealed that OIP5-AS1 reduces cell proliferation. In human cervical carcinoma HeLa cells, the RNA-binding protein HuR, which enhances cell proliferation, associated with OIP5-AS1 and stabilized it. Tagging OIP5-AS1 with MS2 hairpins to identify associated microRNAs revealed that miR-424 interacted with OIP5-AS1 and competed with HuR for binding to OIP5-AS1. We further identified a ‘sponge’ function for OIP5-AS1, as high levels of OIP5-AS1 increased HuR-OIP5-AS1 complexes and prevented HuR interaction with target mRNAs, including those that encoded proliferative proteins, while conversely, lowering OIP5-AS1 increased the abundance of HuR complexes with target mRNAs. We propose that OIP5-AS1 serves as a sponge or a competing endogenous (ce)RNA for HuR, restricting its availability to HuR target mRNAs and thereby repressing HuR-elicited proliferative phenotypes.
Collapse
Affiliation(s)
- Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
593
|
Aune TM, Spurlock CF. Long non-coding RNAs in innate and adaptive immunity. Virus Res 2016; 212:146-60. [PMID: 26166759 PMCID: PMC4706828 DOI: 10.1016/j.virusres.2015.07.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) represent a newly discovered class of regulatory molecules that impact a variety of biological processes in cells and organ systems. In humans, it is estimated that there may be more than twice as many lncRNA genes than protein-coding genes. However, only a handful of lncRNAs have been analyzed in detail. In this review, we describe expression and functions of lncRNAs that have been demonstrated to impact innate and adaptive immunity. These emerging paradigms illustrate remarkably diverse mechanisms that lncRNAs utilize to impact the transcriptional programs of immune cells required to fight against pathogens and maintain normal health and homeostasis.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, United States.
| | - Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, United States.
| |
Collapse
|
594
|
Abstract
Solid tumors require angiogenesis to grow beyond 2 mm in size. In most cases, tumor cells undergo angiogenic switch and secrete substances that are required for generation of new capillary sprouting from existing blood vessels. Tumor angiogenesis is driven by a complex interplay between pro-angiogenic (VEGF/VEGFR, PDGF/PDGFR) and anti-angiogenic factors (TSP-1/TSP-2) within the tumor microenvironment. In addition, control of tissue remodeling and degradation by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) contribute to tumor angiogenesis. Furthermore, tumor suppressors or oncogenes that control cellular motility and maintain or promote hypoxia (HIFs and MYC) are also actively playing roles in tumor angiogenesis. Noncoding RNAs (ncRNAs), including microRNAs, are a novel class of regulatory molecules that control the gene expression in a posttranscriptional manner. MicroRNAs regulate important physiological processes, such as proliferation, apoptosis, and differentiation, as well as pathological conditions including oncogenesis. Accumulating evidence suggests that microRNAs directly modulate the process of angiogenesis by targeting important angiogenic factors and signaling molecules. Understanding the molecular mechanism behind the regulation of angiogenesis by microRNAs is important due to their therapeutic potential which may lead to improving outcome for cancer patients. Besides, ncRNAs with a regulatory role in angiogenesis, such as long noncoding RNAs (lncRNAs), have been identified in the genome. However, the mechanisms of the vast majority of lncRNAs are currently unknown. For the few lncRNAs characterized at the functional level, accumulating evidence shows that they play important roles in malignant diseases. The function and mechanism in angiogenesis will be described in this chapter.
Collapse
|
595
|
Wang X, Gao Z, Liao J, Shang M, Li X, Yin L, Pu Y, Liu R. lncRNA UCA1 inhibits esophageal squamous-cell carcinoma growth by regulating the Wnt signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:407-418. [PMID: 27267823 DOI: 10.1080/15287394.2016.1176617] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) is one of the most common tumors worldwide. Recent studies suggested that long noncoding RNAs (lncRNAs) might play a key role in regulating cellular processes and cancer progression. One of the lncRNAs, urothelial carcinoma associated 1 (UCA1), is known to be dysregulated in several cancers, including bladder carcinoma, colorectal, melanoma, breast, gastric, and ESCC. However, contributions of UCA1 to ESCC remain largely undiscovered. In order to understand the role and mechanisms underlying UCA1 in ESCC, the association of UCA1 expression with risk of esophageal cancer development was determined in 106 esophageal cancer tissues of ESCC patients and adjacent normal tissues using real-time reverse-transcription polymerase chain reaction (PCR). The relative expression of UCA1 was significantly reduced in cancer versus adjacent normal tissues suggesting an enhanced risk of esophageal cancer. To investigate the biological functions of UCA1 in ESCC, it was of interest to examine whether overexpression of UCA1 might influence cell proliferation, apoptosis, cell cycle distribution, migration, and invasion in vitro using EC109 cells. Our results demonstrated that UCA1 decreased cell proliferation, migration, invasion, and cell cycle progression of EC109 cells. Further, mRNA microarray analysis of overexpressed UCA1 in EC109 cells revealed that abnormal expression of UCA1 also inhibited the Wnt signaling pathway. Gene levels of DKK1 were elevated while C-myc fell significantly in overexpressed UCA1 EC109 cells. Interestingly, Western blot demonstrated no significant differences in relative expression of CTNNB1 (β-catenin) but marked reduction in β-catenin (active form) levels in both total and nuclear proteins. These results suggest that UCA1 may inhibit ESCC growth by regulating the Wnt signaling pathway. In conclusion, UCA1 may be a novel biomarker involved in ESCC development that may provide a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xianghu Wang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Zhikui Gao
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Juan Liao
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Muhe Shang
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Xiajun Li
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Lihong Yin
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Yuepu Pu
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| | - Ran Liu
- a Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health, Southeast University , Nanjing , China
| |
Collapse
|
596
|
Chen X, Fan S, Song E. Noncoding RNAs: New Players in Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:1-47. [PMID: 27376730 DOI: 10.1007/978-981-10-1498-7_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The world of noncoding RNAs (ncRNAs) has gained widespread attention in recent years due to their novel and crucial potency of biological regulation. Noncoding RNAs play essential regulatory roles in a broad range of developmental processes and diseases, notably human cancers. Regulatory ncRNAs represent multiple levels of structurally and functionally distinct RNAs, including the best-known microRNAs (miRNAs), the complicated long ncRNAs (lncRNAs), and the newly identified circular RNAs (circRNAs). However, the mechanisms by which they act remain elusive. In this chapter, we will review the current knowledge of the ncRNA field, discussing the genomic context, biological functions, and mechanisms of action of miRNAs, lncRNAs, and circRNAs. We also highlight the implications of the biogenesis and gene expression dysregulation of different ncRNA subtypes in the initiation and development of human malignancies.
Collapse
Affiliation(s)
- Xueman Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Siting Fan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China
| | - Erwei Song
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, China.
| |
Collapse
|
597
|
Liu A, Liu S. Noncoding RNAs in Growth and Death of Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:137-72. [DOI: 10.1007/978-981-10-1498-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
598
|
Abstract
Aging is a universal, intrinsic, and time-dependent biological decay that is linked to intricate cellular processes including cellular senescence, telomere shortening, stem cell exhaustion, mitochondrial dysfunction, and deregulated metabolism. Cellular senescence is accepted as one of the core processes of aging at the organism level. Understanding the molecular mechanism underlying senescence could facilitate the development of potential therapeutics for aging and age-related diseases. Recently, the discovery of long non-coding RNAs (lncRNA) provided insights into a novel regulatory layer that can intervene with cellular senescence. Increasing evidence indicates that targeting lncRNAs may impact on senescence pathways. In this review, we will focus on lncRNAs involved in mechanistic pathways governing cellular senescence.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sun Lei
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
- *Correspondence: Sun Lei,
| |
Collapse
|
599
|
Abstract
Long noncoding RNAs (lncRNAs) are noncoding transcripts usually longer than 200 nts that have recently emerged as one of the largest and significantly diverse RNA families. The biological role and functions of lncRNAs are still mostly uncharacterized. Their target-mimetic, sponge/decoy function on microRNAs was recently uncovered. miRNAs are a class of noncoding RNA species (~22 nts) that play a central role in posttranscriptional regulation of protein coding genes by mRNA cleavage, direct translational repression and/or mRNA destabilization. LncRNAs can act as miRNA sponges, reducing their regulatory effect on mRNAs. This function introduces an extra layer of complexity in the miRNA-target interaction network. This chapter focuses on the study of miRNA-lncRNA interactions with either in silico or experimentally supported analyses. The proposed methodologies can be appropriately adapted in order to become the backbone of advanced multistep functional miRNA analyses.
Collapse
Affiliation(s)
- Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece.
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, Volos, Greece.
| |
Collapse
|
600
|
The Working Modules of Long Noncoding RNAs in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:49-67. [PMID: 27376731 DOI: 10.1007/978-981-10-1498-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is clear that RNA is more than just a messenger between gene and protein. The mammalian genome is pervasively transcribed, giving rise to tens of thousands of noncoding transcripts, especially long noncoding RNAs (lncRNAs). Whether all of these large transcripts are functional remains to be elucidated, but it is evident that there are many lncRNAs that seem not to be the "noise" of the transcriptome. Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs in human physiological and pathological processes, and accumulating evidence suggests that most of the functional lncRNAs achieve their biological functions by controlling gene expression. In this chapter, we will organize these studies to provide a detailed description of the involvement of lncRNAs in the major steps of gene expression that include epigenetic regulation, RNA transcription, posttranscriptional RNA processing, protein translation, and posttranslational protein modification and highlight the molecular mechanisms through which lncRNAs function, involving the interactions between lncRNAs and other biological macromolecules.
Collapse
|