551
|
Dailidiene D, Bertoli MT, Miciuleviciene J, Mukhopadhyay AK, Dailide G, Pascasio MA, Kupcinskas L, Berg DE. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob Agents Chemother 2002; 46:3940-6. [PMID: 12435699 PMCID: PMC132778 DOI: 10.1128/aac.46.12.3940-3946.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tetracycline is useful in combination therapies against the gastric pathogen Helicobacter pylori. We found 6 tetracycline-resistant (Tet(r)) strains among 159 clinical isolates (from El Salvador, Lithuania, and India) and obtained the following four results: (i) 5 of 6 Tet(r) isolates contained one or two nucleotide substitutions in one part of the primary tetracycline binding site in 16S rRNA (AGA(965-967) [Escherichia coli coordinates] changed to gGA, AGc, guA, or gGc [lowercase letters are used to represent the base changes]), whereas the sixth (isolate Ind75) retained AGA(965-967); (ii) PCR products containing mutant 16S ribosomal DNA (rDNA) alleles transformed recipient strains to Tet(r) phenotypes, but transformants containing alleles with single substitutions (gGA and AGc) were less resistant than their Tet(r) parents; (iii) each of 10 Tet(r) mutants of reference strain 26695 (in which mutations were induced with metronidazole, a mutagenic anti-H. pylori agent) contained the normal AGA(965-967) sequence; and (iv) transformant derivatives of Ind75 and of one of the Tet(r) 26695 mutants that had acquired mutant rDNA alleles were resistant to tetracycline at levels higher than those to which either parent strain was resistant. Thus, tetracycline resistance in H. pylori results from an accumulation of changes that may affect tetracycline-ribosome affinity and/or other functions (perhaps porins or efflux pumps). We suggest that the rarity of tetracycline resistance among clinical isolates reflects this need for multiple mutations and perhaps also the deleterious effects of such mutations on fitness. Formally equivalent mutations with small but additive effects are postulated to contribute importantly to traits such as host specificity and virulence and to H. pylori's great genetic diversity.
Collapse
Affiliation(s)
- Daiva Dailidiene
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
552
|
Abstract
We present models describing the acquisition and deletion of novel sequences in populations of microorganisms. We infer that most novel sequences are neutral. Thus, sequence duplications and gene transfer between organisms sharing the same environment are rarely expected to generate adaptive functions. Two classes of models are considered: (1) a homogeneous population with constant size, and (2) an island model in which the population is subdivided into patches that are in contact through slow migration. Distributions of gene frequencies are derived in a Moran model with overlapping generations. We find that novel, neutral or near-neutral coding sequences in microorganisms will not be fixed globally because they offer large target sizes for mutations and because the populations are so large. At most, such genes may have a transient presence in only a small fraction of the population. Consequently, a microbial population is expected to have a very large diversity of transient neutral gene content. Only sequences that are under strong selection, globally or in individual patches, can be expected to persist. We suggest that genome size is maintained in microorganisms by a quasi-steady state mechanism in which random fluctuations in the effective acquisition and deletion rates result in genome sizes that vary from patch to patch. We assign the genomic identity of a global population to those genes that are required for the participation of patches in the genetic sweeps that maintain the genomic coherence of the population. In contrast, we stress the influence of sequence loss on the isolation and the divergence (speciation) of novel patches from a global population.
Collapse
Affiliation(s)
- Otto G Berg
- Department of Molecular Evolution, Uppsala University EBC, Norbyvagen 18C, SE-75236 Uppsala, Sweden.
| | | |
Collapse
|
553
|
Bull JJ, Levin BR, DeRouin T, Walker N, Bloch CA. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol 2002; 2:35. [PMID: 12453306 PMCID: PMC138797 DOI: 10.1186/1471-2180-2-35] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 11/26/2002] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In 1982 Smith and Huggins showed that bacteriophages could be at least as effective as antibiotics in preventing mortality from experimental infections with a capsulated E. coli (K1) in mice. Phages that required the K1 capsule for infection were more effective than phages that did not require this capsule, but the efficacies of phages and antibiotics in preventing mortality both declined with time between infection and treatment, becoming virtually ineffective within 16 hours. RESULTS We develop quantitative microbiological procedures that (1) explore the in vivo processes responsible for the efficacy of phage and antibiotic treatment protocols in experimental infections (the Resistance Competition Assay, or RCA), and (2) survey the therapeutic potential of phages in vitro (the Phage Replication Assay or PRA). We illustrate the application and utility of these methods in a repetition of Smith and Huggins' experiments, using the E. coli K1 mouse thigh infection model, and applying treatments of phages or streptomycin. CONCLUSIONS 1) The Smith and Huggins phage and antibiotic therapy results are quantitatively and qualitatively robust. (2) Our RCA values reflect the microbiological efficacies of the different phages and of streptomycin in preventing mortality, and reflect the decline in their efficacy with a delay in treatment. These results show specifically that bacteria become refractory to treatment over the term of infection. (3) The K1-specific and non-specific phages had similar replication rates on bacteria grown in broth (based on the PRA), but the K1-specific phage had markedly greater replication rates in mouse serum.
Collapse
Affiliation(s)
- J J Bull
- Section of Integrative Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-1023, USA
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Terry DeRouin
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Nina Walker
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Craig A Bloch
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| |
Collapse
|
554
|
Ganusov VV, Brilkov AV. Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture. J Theor Biol 2002; 219:193-205. [PMID: 12413875 DOI: 10.1006/jtbi.2002.3101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
What determines the stability of plasmid-bearing cells in natural and laboratory conditions? In order to answer this question in a quantitative manner, we need tools allowing the estimation of parameters governing plasmid loss in different environments. In the present work, we have developed two methods for the estimation of the instability parameters of plasmid-bearing cells growing in chemostat. These instability parameters are: (i) selection coefficient (or cost of the plasmid)alpha and (ii) the probability of plasmid loss at cell division tau(0). We have found that generally selection coefficient alpha changes during elimination of plasmid-bearing cells due to changes in substrate concentration; hence, methods which assume constancy of alpha are intrinsically imprecise. Instead, one can estimate selection coefficient at the beginning and the end of cultivation when the substrate concentration is approximately constant. Applying developed techniques to two sets of experimental data, we have found that (i) the cost of the plasmid pBR322 depended on the dilution rate in chemostat and was higher at low dilutions; (ii) high levels of plasmid gene expression led to a high cost of the plasmid pPHL-7; (iii) the probability of plasmid loss was lower at high levels of plasmid gene expression and independent of the dilution rate. We have also discussed the application of our results to understanding the basic biology of bacterial plasmids.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
555
|
Wichelhaus TA, Böddinghaus B, Besier S, Schäfer V, Brade V, Ludwig A. Biological cost of rifampin resistance from the perspective of Staphylococcus aureus. Antimicrob Agents Chemother 2002; 46:3381-5. [PMID: 12384339 PMCID: PMC128759 DOI: 10.1128/aac.46.11.3381-3385.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance determinants that interfere with normal physiological processes in the bacterial cell usually cause a reduction in biological fitness. Fitness assays revealed that 17 of 18 in vitro-selected chromosomal mutations within the rpoB gene accounting for rifampin resistance in Staphylococcus aureus were associated with a reduction in the level of fitness. There was no obvious correlation between the level of resistance to rifampin and the level of fitness loss caused by rpoB mutations. Among 23 clinical rifampin-resistant S. aureus isolates from six countries, only seven different rpoB genotypes could be identified, whereby the mutation 481His-->Asn was present in 21 (91%) of these 23 isolates. The mutation 481His-->Asn, in turn, which confers low-level rifampin resistance on its own, was not shown to be associated with a cost of resistance in vitro. The restriction to distinct mutations that confer rifampin resistance in vivo, as demonstrated here, appears to be determined by the Darwinian fitness of the organisms.
Collapse
Affiliation(s)
- Thomas A Wichelhaus
- Institut für Medizinische Mikrobiologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
556
|
Massey RC, Peacock SJ. Antibiotic-resistant sub-populations of the pathogenic bacterium Staphylococcus aureus confer population-wide resistance. Curr Biol 2002; 12:R686-7. [PMID: 12401183 DOI: 10.1016/s0960-9822(02)01205-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ruth C Massey
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Level 4, John Radcliffe Hospital, UK.
| | | |
Collapse
|
557
|
Martínez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 2002; 15:647-79. [PMID: 12364374 PMCID: PMC126860 DOI: 10.1128/cmr.15.4.647-679.2002] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infections have been the major cause of disease throughout the history of human populations. With the introduction of antibiotics, it was thought that this problem should disappear. However, bacteria have been able to evolve to become antibiotic resistant. Nowadays, a proficient pathogen must be virulent, epidemic, and resistant to antibiotics. Analysis of the interplay among these features of bacterial populations is needed to predict the future of infectious diseases. In this regard, we have reviewed the genetic linkage of antibiotic resistance and bacterial virulence in the same genetic determinants as well as the cross talk between antibiotic resistance and virulence regulatory circuits with the aim of understanding the effect of acquisition of resistance on bacterial virulence. We also discuss the possibility that antibiotic resistance and bacterial virulence might prevail as linked phenotypes in the future. The novel situation brought about by the worldwide use of antibiotics is undoubtedly changing bacterial populations. These changes might alter the properties of not only bacterial pathogens, but also the normal host microbiota. The evolutionary consequences of the release of antibiotics into the environment are largely unknown, but most probably restoration of the microbiota from the preantibiotic era is beyond our current abilities.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología. Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain.
| | | |
Collapse
|
558
|
Maisnier-Patin S, Berg OG, Liljas L, Andersson DI. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 2002; 46:355-66. [PMID: 12406214 DOI: 10.1046/j.1365-2958.2002.03173.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most chromosomal mutations that cause antibiotic resistance impose fitness costs on the bacteria. This biological cost can often be reduced by compensatory mutations. In Salmonella typhimurium, the nucleotide substitution AAA42 --> AAC in the rpsL gene confers resistance to streptomycin. The resulting amino acid substitution (K42N) in ribosomal protein S12 causes an increased rate of ribosomal proofreading and, as a result, the rate of protein synthesis, bacterial growth and virulence are decreased. Eighty-one independent lineages of the low-fitness, K42N mutant were evolved in the absence of antibiotic to ameliorate the costs. From the rate of fixation of compensated mutants and their fitness, the rate of compensatory mutations was estimated to be > or = 10-7 per cell per generation. The size of the population bottleneck during evolution affected fitness of the adapted mutants: a larger bottleneck resulted in higher average fitness. Only four of the evolved lineages contained streptomycin-sensitive revertants. The remaining 77 lineages contained mutants that were still fully streptomycin resistant, had retained the original resistance mutation and also acquired compensatory mutations. Most of the compensatory mutations, resulting in at least 35 different amino acid substitutions, were novel single-nucleotide substitutions in the rpsD, rpsE, rpsL or rplS genes encoding the ribosomal proteins S4, S5, S12 and L19 respectively. Our results show that the deleterious effects of a resistance mutation can be compensated by an unexpected variety of mutations.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Bacteriology, Swedish Insitute for Infectious Disease Control, Solna, Sweden
| | | | | | | |
Collapse
|
559
|
Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 2002; 70:4955-60. [PMID: 12183541 PMCID: PMC128294 DOI: 10.1128/iai.70.9.4955-4960.2002] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The usefulness of isoniazid (INH), a key component of short-course chemotherapy of tuberculosis, is threatened by the emergence of drug-resistant strains of Mycobacterium tuberculosis with mutations in the katG gene. It is shown here that the most commonly occurring KatG mutation, where Ser 315 is replaced by Thr (S315T), is associated with clinically significant levels of INH resistance. In contrast to another resistant isolate, in which Pro replaces Thr 275, the S315T mutant produces active catalase-peroxidase and is virulent in the mouse model of the disease, indicating that a significant loss of bacterial fitness does not result from this frequent mutation. The implications of this finding for the transmission and reactivation of multidrug-resistant strains of M. tuberculosis are severe.
Collapse
Affiliation(s)
- Alexander S Pym
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
560
|
Abstract
Antibiotic resistance is a clinical and socioeconomical problem that is here to stay. Resistance can be natural or acquired. Some bacterial species, such as Pseudomonas aeruginosa, show a high intrinsic resistance to a number of antibiotics whereas others are normally highly antibiotic susceptible such as group A streptococci. Acquired resistance evolve via genetic alterations in the microbes own genome or by horizontal transfer of resistance genes located on various types of mobile DNA elements. Mutation frequencies to resistance can vary dramatically depending on the mechanism of resistance and whether or not the organism exhibits a mutator phenotype. Resistance usually has a biological cost for the microorganism, but compensatory mutations accumulate rapidly that abolish this fitness cost, explaining why many types of resistances may never disappear in a bacterial population. Resistance frequently occurs stepwise making it important to identify organisms with low level resistance that otherwise may constitute the genetic platform for development of higher resistance levels. Self-replicating plasmids, prophages, transposons, integrons and resistance islands all represent DNA elements that frequently carry resistance genes into sensitive organisms. These elements add DNA to the microbe and utilize site-specific recombinases/integrases for their integration into the genome. However, resistance may also be created by homologous recombination events creating mosaic genes where each piece of the gene may come from a different microbe. The selection with antibiotics have informed us much about the various genetic mechanisms that are responsible for microbial evolution.
Collapse
Affiliation(s)
- B Henriques Normark
- Swedish Institute of Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
561
|
Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci U S A 2002; 99:6434-9. [PMID: 11972035 PMCID: PMC122966 DOI: 10.1073/pnas.082188899] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2001] [Indexed: 11/18/2022] Open
Abstract
Antibiotic use is known to promote the development of antibiotic resistance, but substantial controversy exists about the impact of agricultural antibiotic use (AAU) on the subsequent emergence of antibiotic-resistant bacteria among humans. AAU for animal growth promotion or for treatment or control of animal diseases generates reservoirs of antibiotic-resistant (AR) bacteria that contaminate animal food products. Mathematical models are an important tool for understanding the potential medical consequences of this increased exposure. We have developed a mathematical model to evaluate factors affecting the prevalence of human commensal AR bacteria that cause opportunistic infections (e.g., enterococci). Our analysis suggests that AAU hastens the appearance of AR bacteria in humans. Our model indicates that the greatest impact occurs very early in the emergence of resistance, when AR bacteria are rare, possibly below the detection limits of current surveillance methods.
Collapse
Affiliation(s)
- David L Smith
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
562
|
Abstract
The need to stem the growing problem of antimicrobial resistance has prompted multiple, sometimes conflicting, calls for changes in the use of antimicrobial agents. One source of disagreement concerns the major mechanisms by which antibiotics select resistant strains. For infections like tuberculosis, in which resistance can emerge in treated hosts through mutation, prevention of antimicrobial resistance in individual hosts is a primary method of preventing the spread of resistant organisms in the community. By contrast, for many other important resistant pathogens, such as penicillin-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium resistance is mediated by the acquisition of genes or gene fragments by horizontal transfer; resistance in the treated host is a relatively rare event. For these organisms, indirect, population-level mechanisms of selection account for the increase in the prevalence of resistance. These mechanisms can operate even when treatment has a modest, or even negative, effect on an individual host's colonization with resistant organisms.
Collapse
Affiliation(s)
- Marc Lipsitch
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachussetts 02115, USA.
| | | |
Collapse
|
563
|
Abstract
Parasite resistance is sometimes associated with fitness costs. Costs of resistance are fundamentally important in epidemiology, and in the ecology and evolution of host-parasite interactions. The cost of resistance is often envisioned as the cost of re-allocating limiting resources to resistance machinery from other traits. This popular paradigm has resulted in a spate of research that assumes a fitness cost to resistance. We comment on this trend and propose a working framework of various resistance means and mechanisms. Within these means and mechanisms, we suggest that many are not likely to incur significant fitness costs.
Collapse
Affiliation(s)
- Mark C Rigby
- Dept of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
564
|
Gravesen A, Jydegaard Axelsen AM, Mendes da Silva J, Hansen TB, Knøchel S. Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl Environ Microbiol 2002; 68:756-64. [PMID: 11823216 PMCID: PMC126701 DOI: 10.1128/aem.68.2.756-764.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Accepted: 11/15/2001] [Indexed: 11/20/2022] Open
Abstract
Bacteriocin-producing starter cultures have been suggested as natural food preservatives; however, development of resistance in the target organism is a major concern. We investigated the development of resistance in Listeria monocytogenes to the two major bacteriocins pediocin PA-1 and nisin A, with a focus on the variations between strains and the influence of environmental conditions. While considerable strain-specific variations in the frequency of resistance development and associated fitness costs were observed, the influence of environmental stress seemed to be bacteriocin specific. Pediocin resistance frequencies were determined for 20 strains and were in most cases ca. 10(-6). However, two strains with intermediate pediocin sensitivity had 100-fold-higher pediocin resistance frequencies. Nisin resistance frequencies (14 strains) were in the range of 10(-7) to 10(-2). Strains with intermediate nisin sensitivity were among those with the highest frequencies. Environmental stress in the form of low temperature (10 degrees C), reduced pH (5.5), or the presence of NaCl (6.5%) did not influence the frequency of pediocin resistance development; in contrast, the nisin resistance frequency was considerably reduced (<5 x 10(-8)). Pediocin resistance in all spontaneous mutants was very stable, but the stability of nisin resistance varied. Pediocin-resistant mutants had fitness costs in the form of reduction down to 44% of the maximum specific growth rate of the wild-type strain. Nisin-resistant mutants had fewer and less-pronounced growth rate reductions. The fitness costs were not increased upon applying environmental stress (5 degrees C, 6.5% NaCl, or pH 5.5), indicating that the bacteriocin-resistant mutants were not more stress sensitive than the wild-type strains. In a saveloy-type meat model at 5 degrees C, however, the growth differences seemed to be negligible. The applicational perspectives of the results are discussed.
Collapse
Affiliation(s)
- A Gravesen
- Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
565
|
Björkholm B, Sjölund M, Falk PG, Berg OG, Engstrand L, Andersson DI. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A 2001; 98:14607-12. [PMID: 11717398 PMCID: PMC64729 DOI: 10.1073/pnas.241517298] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Accepted: 10/01/2001] [Indexed: 12/16/2022] Open
Abstract
Among the several factors that affect the appearance and spread of acquired antibiotic resistance, the mutation frequency and the biological cost of resistance are of special importance. Measurements of the mutation frequency to rifampicin resistance in Helicobacter pylori strains isolated from dyspeptic patients showed that approximately 1/4 of the isolates had higher mutation frequencies than Enterobacteriaceae mismatch-repair defective mutants. This high mutation frequency could explain why resistance is so frequently acquired during antibiotic treatment of H. pylori infections. Inactivation of the mutS gene had no substantial effect on the mutation frequency, suggesting that MutS-dependent mismatch repair is absent in this bacterium. Furthermore, clarithromycin resistance conferred a biological cost, as measured by a decreased competitive ability of the resistant mutants in mice. In clinical isolates this cost could be reduced, indicating that compensation is a clinically relevant phenomenon that could act to stabilize resistant bacteria in a population.
Collapse
Affiliation(s)
- B Björkholm
- Swedish Institute for Infectious Disease Control, 17182 Solna, Sweden
| | | | | | | | | | | |
Collapse
|
566
|
Massey RC, Buckling A, Peacock SJ. Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr Biol 2001; 11:1810-4. [PMID: 11719226 DOI: 10.1016/s0960-9822(01)00507-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial antibiotic resistance is often associated with a fitness cost in the absence of the antibiotic [1,2]. We have examined a resistance mechanism in Staphylococcus aureus that negates these costs. Exposure to gentamicin both in vitro and in vivo has been reported to result in the emergence of a gentamicin-resistant small colony variant (SCV)[3-8]. We show that the emergence of SCVs following exposure to gentamicin results from a rapid switch and that bacteria exposed to cycles of gentamicin followed by antibiotic-free medium repeatedly switched between a resistant SCV and a sensitive parental phenotype (revertants). The fitness of revertants relative to S. aureus with stable gentamicin resistance was greater in drug-free media, which suggests that S. aureus has evolved an inducible and reversible resistance mechanism that circumvents a permanent cost to fitness.
Collapse
Affiliation(s)
- R C Massey
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | | | | |
Collapse
|
567
|
Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42:619-30. [PMID: 11722730 DOI: 10.1046/j.1365-2958.2001.02647.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-term antibiotic treatment offers a rare opportunity to study the evolution of bacteria within the same individual. The appearance of new variants has been suggested to take place via the selection of enhanced resistance in compartments of the body in which the antibiotic concentration is low. Laboratory models of protected compartments have elegantly demonstrated their potential in selecting novel variants. However, comparable data from patients have been rare. In this study, extended antibiotic therapy in a single patient suffering from multiple infected liver cysts has provided the opportunity to observe and analyse the molecular evolution of antibiotic resistance. Each isolate has the same basic ompC gene sequence that is distinct from other Escherichia coli isolates, which suggests that they derive from the same founder population. However, the isolates differ in their auxotrophic markers, in the pI values of their dominant beta-lactamase activities and in the mutations in the promoter region of the ampC gene leading to increased expression of the AmpC enzyme. The data provide strong evidence for a single focal infection expanding via parallel pathways of evolution to give a range of antibiotic-resistant isolates. These data suggest that the infected cysts provide numerous protected environments that are the foci for the separate development of distinct variants.
Collapse
Affiliation(s)
- A S Low
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
568
|
Abstract
The emergence of antifungal drug resistance is inevitable. Here I discuss antibiotic resistance in the context of the adaptive potential of fungi and I propose an approach to predicting the evolution of antifungal resistance using experimental evolution of DNA sequences and microbial populations. Prediction is based on determination of evolutionary potential at two levels, the gene and the genome. At the level of the gene, evolutionary potential depends on the sequence space of candidate resistance genes defined by the fitness effects of all possible mutations in all possible combinations. At the level of the genome, evolutionary potential depends on the adaptive landscape defined by the fitness effects of all possible interactions among alleles constituting the genotype.
Collapse
Affiliation(s)
- L E Cowen
- Department of Botany, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|
569
|
Goldstein AL, McCusker JH. Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 2001; 159:499-513. [PMID: 11606528 PMCID: PMC1461844 DOI: 10.1093/genetics/159.2.499] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae, a close relative of the pathogenic Candida species, is an emerging opportunistic pathogen. An isogenic series of S. cerevisiae strains, derived from a human clinical isolate, were used to examine the role of evolutionarily conserved pathways in fungal survival in a mouse host. As is the case for the corresponding Candida albicans and Cryptococcus neoformans mutants, S. cerevisiae purine and pyrimidine auxotrophs were severely deficient in survival, consistent with there being evolutionary conservation of survival traits. Resistance to the antifungal drug 5-fluorocytosine was not deleterious and appeared to be slightly advantageous in vivo. Of mutants in three amino acid biosynthetic pathways, only leu2 mutants were severely deficient in vivo. Unlike the glyoxylate cycle, respiration was very important for survival; however, the mitochondrial genome made a respiration-independent contribution to survival. Mutants deficient in pseudohyphal formation were tested in vivo; flo11Delta mutants were phenotypically neutral while flo8Delta, tec1Delta, and flo8Delta tec1Delta mutants were slightly deficient. Because of its ease of genetic manipulation and the immense S. cerevisiae database, which includes the best annotated eukaryotic genome sequence, S. cerevisiae is a superb model system for the identification of gene products important for fungal survival in the mammalian host environment.
Collapse
Affiliation(s)
- A L Goldstein
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
570
|
Courvalin P, Trieu-Cuot P. Minimizing potential resistance: the molecular view. Clin Infect Dis 2001; 33 Suppl 3:S138-46. [PMID: 11524711 DOI: 10.1086/321840] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The major contribution of molecular biology to the study of antibiotic resistance has been the elucidation of nearly all biochemical mechanisms of resistance and the routes for dissemination of genetic information among bacteria. In this review, we consider the potential contribution of molecular biology to counteracting the evolution of resistant bacteria. In particular, we emphasize the fact that fundamental approaches have had direct practical effects on minimizing potential resistance: by improving interpretation of resistance phenotypes, by providing more adequate human therapy, by fostering more prudent use of antibiotics, and by allowing the rational design of new drugs that evade existing resistance mechanisms or address unexploited targets.
Collapse
Affiliation(s)
- P Courvalin
- Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
| | | |
Collapse
|
571
|
Kristinsson KG. Mathematical models as tools for evaluating the effectiveness of interventions: a comment on Levin. Clin Infect Dis 2001; 33 Suppl 3:S174-9. [PMID: 11524716 DOI: 10.1086/321845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Possible interventions to minimize resistance rates are numerous and can involve reduction and/or change in antimicrobial use, infection control, and vaccinations. As mathematical models are becoming more realistic they can be useful to quantitatively evaluate the relative contribution of individual risk factors and for the planning of future intervention strategies. The fitness cost associated with resistance is an important parameter and small differences can have a profound effect on the results. The mathematical models presented for communities predicted that even with cessation of antibiotic use, the decline in resistance frequency would be slow. This contrasts with successful interventions in Finland and Iceland. Future models have to include important variables such as herd immunity and take into account the heterogeneity of open communities. Provision of susceptible strains from areas with low resistance rates to areas with high resistance rates can have a profound effect on the success of interventions to minimize resistance.
Collapse
Affiliation(s)
- K G Kristinsson
- Department of Microbiology, National University Hospital, Reykjavik, Iceland.
| |
Collapse
|
572
|
Abstract
I examine the results of studies that used mathematical models of the epidemiology and population genetics of antibiotic treatment and resistance in open communities and in hospitals to explore the following issues: the relationship between antibiotic consumption and the frequency of antibiotic resistance in bacterial populations in communities and in hospitals; methods of controlling the growth, dissemination, and persistence of antibiotic resistance in these settings; the extent to which resistance can be controlled; and the speed with which the effects of control measures will be realized. In open communities, it will take years or even decades to see substantial reductions in the frequency of antibiotic resistance solely as a result of more prudent (reduced) use of antibiotics. However, if we can restrict the input of resistant bacteria into hospitals, through the application of infection control and other measures, it should be possible to reduce the frequency of resistance and even eliminate resistant bacteria from these institutions in short order.
Collapse
Affiliation(s)
- B R Levin
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
573
|
Abstract
Antimicrobial resistance is a growing problem in nearly every infectious disease, but the extent and rate of increase of the problem varies widely with different pathogen-drug combinations. The rate of increase of resistance depends primarily on the availability of resistant variants and the intensity of selection imposed by antimicrobial treatment (appropriately measured). Declines in resistance following antimicrobial control measures are typically faster in hospital-acquired infections than in community-acquired ones, probably owing to the dependence in the latter case on the fitness cost of resistance. Open questions and approaches for testing the hypotheses proposed here are outlined.
Collapse
Affiliation(s)
- M Lipsitch
- Dept of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
574
|
Cars O. The hidden impact of antibacterial resistance in respiratory tract infection. Steering an appropriate course: principles to guide antibiotic choice. Respir Med 2001; 95 Suppl A:S20-5; discussion S26-7. [PMID: 11419671 DOI: 10.1016/s0954-6111(01)90024-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prevalence and degree of antibacterial resistance in common respiratory pathogens are increasing worldwide. The health impact of resistance is not yet fully understood. However, once the impact of resistance becomes measurable, it may be too late to apply interventions to reduce resistance levels and regain previous quality and cost of care. We should address resistance now, before patient care is irreversibly compromised. The association between antibiotic consumption and the prevalence of resistance is widely assumed. However, evidence suggests that there is a more complex. multifactorial relationship between antibiotic use and resistance. It is also assumed that there is an adaptive fitness cost for bacterial resistance mutations. However, in some cases, bacteria are able to acquire 'compensatory genes' negating any negative impact of resistance mutations. Mathematical modeling indicates that the timescale for the emergence of resistance is typically shorter than the decay time following a decline in antibiotic consumption. Against this background, a general principle is proposed: to maximize patient outcome whilst minimizing the potential for selection and spread of resistance. This may be achieved through the use of agents that fulfill defined pharmacodynamic and pharmacokinetic parameters and elicit rapid eradication of the bacterial population, including emerging resistant mutants, from the site of infection. The choice of agent may not be the same in all regions, as selection will depend on local resistance patterns and disease etiology; however, the application of this principle may help to preserve the benefits of antibiotic therapy.
Collapse
Affiliation(s)
- O Cars
- Department of Epidemiology, Swedish Institute for Infectious Disease Control, Solna.
| |
Collapse
|
575
|
Cowen LE, Kohn LM, Anderson JB. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 2001; 183:2971-8. [PMID: 11325923 PMCID: PMC95195 DOI: 10.1128/jb.183.10.2971-2978.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Accepted: 02/26/2001] [Indexed: 11/20/2022] Open
Abstract
The dissemination and persistence of drug-resistant organisms in nature depends on the relative fitness of sensitive and resistant genotypes. While resistant genotypes are expected to be at an advantage compared to less resistant genotypes in the presence of drug, resistance may incur a cost; resistant genotypes may be at a disadvantage in the absence of drug. We measured the fitness of replicate experimental populations of the pathogenic yeast Candida albicans founded from a single progenitor cell in a previous study (L. E. Cowen, D. Sanglard, D. Calabrese, C. Sirjusingh, J. B. Anderson, and L. M. Kohn, J. Bacteriol. 182:1515-1522, 2000) and evolved in the presence, and in the absence, of the antifungal agent fluconazole. Fitness was measured both in the presence and in the absence of fluconazole by placing each evolved population in direct competition with the drug-sensitive ancestor and measuring the reproductive output of each competitor in the mixture. Populations evolved in the presence of drug diverged in fitness. Any significant cost of resistance, indicated by reduced fitness in the absence of drug, was eliminated with further evolution. Populations evolved in the absence of drug showed more uniform increases in fitness under both conditions. Fitness in the competition assays was not predicted by measurements of the MICs, doubling times, or stationary-phase cell densities of the competitors in isolation, suggesting the importance of interactions between mixed genotypes in competitions.
Collapse
Affiliation(s)
- L E Cowen
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| | | | | |
Collapse
|
576
|
Nagaev I, Björkman J, Andersson DI, Hughes D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 2001; 40:433-9. [PMID: 11309125 DOI: 10.1046/j.1365-2958.2001.02389.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fusidic acid resistance resulting from mutations in elongation factor G (EF-G) of Staphylococcus aureus is associated with fitness costs during growth in vivo and in vitro. In both environments, these costs can be partly or fully compensated by the acquisition of secondary intragenic mutations. Among clinical isolates of S. aureus, fusidic acid-resistant strains have been identified that carry multiple mutations in EF-G at positions similar to those shown experimentally to cause resistance and fitness compensation. This observation suggests that fitness-compensatory mutations may be an important aspect of the evolution of antibiotic resistance in the clinical environment, and may contribute to a stabilization of the resistant bacteria present in a bacterial population.
Collapse
Affiliation(s)
- I Nagaev
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
577
|
Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother 2001; 45:1-12. [PMID: 11120937 PMCID: PMC90232 DOI: 10.1128/aac.45.1.1-12.2001] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- B Vester
- Department of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark.
| | | |
Collapse
|
578
|
Abstract
The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.
Collapse
Affiliation(s)
- P Upcroft
- Queensland Institute of Medical Research and The Tropical Health Program, Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, The Bancroft Centre, Brisbane, Queensland 4029, Australia.
| | | |
Collapse
|
579
|
Affiliation(s)
- A Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotechnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
580
|
Tucker C, Endo M, Hirono I, Aoki T. Assessment of DNA vaccine potential for juvenile Japanese flounder Paralichthys olivaceus, through the introduction of reporter genes by particle bombardment and histopathology. Vaccine 2000; 19:801-9. [PMID: 11115702 DOI: 10.1016/s0264-410x(00)00233-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic immunisation potential, following DNA bombardment for juvenile Japanese flounder, Paralichthys olivaceus was examined. GFP plasmids bombarded at two pressures, 150 and 300psi were sampled at 1, 7, 14 and 28 days, greater immunofluorescence was observed at the higher bombardment pressure. Histopathology, at 3 h post bombardment showed considerable damage to fish epithelial and dermal tissues when bombarded at pressures greater than 200 psi, with many DNA-coated gold particles present. At 150psi there was little pathology and no DNA-coated particles. Histopathology, up to 28 days again showed little pathology at 150 psi with few DNA-coated particles, whereas at 300 psi there was significant pathology observed with many DNA-coated particles seen in conjunction with the cytoplasm of inflammatory cells. By day 28 epithelial coverage was observed with tissue damage restricted to the dermal layer. Chloramphenicol acetyltransferase (CAT) assay showed long term and stable expression of the CAT protein from day 1 to day 60. The transcription activity of two promoters; pCMV-CAT and pSV2-CAT showed greater activity in the former. It was concluded that DNA vaccination potential for juvenile flounder is a viable option.
Collapse
Affiliation(s)
- C Tucker
- Laboratory of Genetics and Biochemistry, Tokyo University of Fisheries, Konan 4-5-7, Minato-ku, 108-8477, Tokyo, Japan
| | | | | | | |
Collapse
|
581
|
Morosini MI, Ayala JA, Baquero F, Martínez JL, Blázquez J. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 2000; 44:3137-43. [PMID: 11036037 PMCID: PMC101617 DOI: 10.1128/aac.44.11.3137-3143.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomally mediated AmpC-type beta-lactamases are frequently found among Enterobacteriaceae. Hyperproduction of AmpC beta-lactamase results in high-level resistance to beta-lactam antibiotics. One striking feature of Salmonella is the absence of the structural ampC gene, encoding AmpC beta-lactamase, in contrast with other members in the Enterobacteriaceae family, such as Escherichia, Citrobacter, or Enterobacter. The horizontal acquisition of ampC genes is one of the causes of the increased resistance to extended-spectrum cephalosporins and beta-lactamase inhibitors among gram-negative rods. Nevertheless, despite the high number of beta-lactam-resistant Salmonella isolates so far described, only two strains expressing resistance to cephalosporin and beta-lactamase inhibitors which is mediated by AmpC-type enzymes have been found. In this work, data are provided which support the possibility that the maintenance and expression of the ampC gene may represent an unbearable cost for Salmonella in terms of reduction of some of its lifestyle attributes, such as growth rate and invasiveness. The deleterious AmpC burden can be eliminated by decreasing the production of AmpC when both the regulatory gene, ampR, and ampC are present in Salmonella. Thus, it is suggested that the two genes have to be acquired together by Salmonella, leading to an inducible beta-lactam resistance phenotype. AmpC synthesis did not produce major variations in the peptidoglycan composition of Salmonella.
Collapse
Affiliation(s)
- M I Morosini
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
582
|
Björkman J, Andersson DI. The cost of antibiotic resistance from a bacterial perspective. Drug Resist Updat 2000; 3:237-245. [PMID: 11498391 DOI: 10.1054/drup.2000.0147] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence, spread and stability of antibiotic resistance in a bacterial population will be determined by several factors including (a) the volume of drug use, (b) the rate of formation of resistant mutants, (c) the biological cost of resistance and (d) the rate and extent of the genetic compensation of the costs. Generally, resistance is associated with a cost, suggesting that the frequency of resistant bacteria might decline when the use of antibiotics is decreased. However, evolution to reduce these costs, without a concomitant loss of resistance, can occur and result in a stabilization of the resistant bacteria in the population. The rate and trajectory of this compensatory evolution is dependent on the bacterial species, the specific resistance mutation and the environmental conditions under which evolution occurs. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Johanna Björkman
- Dept. of Bacteriology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | |
Collapse
|
583
|
Affiliation(s)
- J L Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
| | | |
Collapse
|
584
|
Abstract
Multidrug-resistant strains of Mycobacterium tuberculosis are a serious and continuing human health problem. Such strains may contain as many as four or five different mutations, and M. tuberculosis strains that are resistant to both streptomycin and rifampin contain mutations in the rpsL and rpoB genes, respectively. Coexisting mutations of this kind in Escherichia coli have been shown to interact negatively (S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 72:2084-2087, 1975; S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 74:1157-1161, 1977). We investigated this possibility in Mycobacterium smegmatis by analyzing the frequency and nature of spontaneous mutants that are resistant to either streptomycin or rifampin or to both antibiotics. Mutants resistant to streptomycin were isolated from characterized rifampin-resistant mutants of M. smegmatis under selection either for one or for both antibiotics. Similarly, mutants resistant to rifampin were isolated from streptomycin-resistant strains. The second antibiotic resistance mutation occurred at a lower frequency in both cases. Surprisingly, in both cases a very high rate of reversion of the initial antibiotic resistance allele was detected when single antibiotic selection was used; the majority of strains resistant to only one antibiotic were isolated by this process. Determinations of rates of mutation to antibiotic resistance in M. smegmatis showed that the frequencies were enhanced up to 10(4)-fold during stationary phase. If such behavior is also typical of slow-growing pathogenic mycobacteria, these studies suggest that the generation of multiply drug-resistant strains by successive mutations may be a more complex genetic phenomenon than suspected.
Collapse
Affiliation(s)
- P Karunakaran
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | | |
Collapse
|