551
|
Song J, Hegge JW, Mauk MG, Chen J, Till JE, Bhagwat N, Azink LT, Peng J, Sen M, Mays J, Carpenter EL, van der Oost J, Bau HH. Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonaute with applications in cancer diagnostics. Nucleic Acids Res 2020; 48:e19. [PMID: 31828328 PMCID: PMC7038991 DOI: 10.1093/nar/gkz1165] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Detection of disease-associated, cell-free nucleic acids in body fluids enables early diagnostics, genotyping and personalized therapy, but is challenged by the low concentrations of clinically significant nucleic acids and their sequence homology with abundant wild-type nucleic acids. We describe a novel approach, dubbed NAVIGATER, for increasing the fractions of Nucleic Acids of clinical interest Via DNA-Guided Argonaute from Thermus thermophilus (TtAgo). TtAgo cleaves specifically guide-complementary DNA and RNA with single nucleotide precision, greatly increasing the fractions of rare alleles and, enhancing the sensitivity of downstream detection methods such as ddPCR, sequencing, and clamped enzymatic amplification. We demonstrated 60-fold enrichment of the cancer biomarker KRAS G12D and ∼100-fold increased sensitivity of Peptide Nucleic Acid (PNA) and Xenonucleic Acid (XNA) clamp PCR, enabling detection of low-frequency (<0.01%) mutant alleles (∼1 copy) in blood samples of pancreatic cancer patients. NAVIGATER surpasses Cas9-based assays (e.g. DASH, Depletion of Abundant Sequences by Hybridization), identifying more mutation-positive samples when combined with XNA-PCR. Moreover, TtAgo does not require targets to contain any specific protospacer-adjacent motifs (PAM); is a multi-turnover enzyme; cleaves ssDNA, dsDNA and RNA targets in a single assay; and operates at elevated temperatures, providing high selectivity and compatibility with polymerases.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jorrit W Hegge
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Junman Chen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Jacob E Till
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Bhagwat
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lotte T Azink
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Jing Peng
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Moen Sen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jazmine Mays
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University,The Netherlands
| | - Haim H Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| |
Collapse
|
552
|
Pillon MC, Goslen KH, Gordon J, Wells ML, Williams JG, Stanley RE. It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly. J Biol Chem 2020; 295:5857-5870. [PMID: 32220933 DOI: 10.1074/jbc.ra119.011193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
The ribosome biogenesis factor Las1 is an essential endoribonuclease that is well-conserved across eukaryotes and a newly established member of the higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain-containing nuclease family. HEPN nucleases participate in diverse RNA cleavage pathways and share a short HEPN nuclease motif (RφXXXH) important for RNA cleavage. Most HEPN nucleases participate in stress-activated RNA cleavage pathways; Las1 plays a fundamental role in processing pre-rRNA. Underscoring the significance of Las1 function in the cell, mutations in the human LAS1L (LAS1-like) gene have been associated with neurological dysfunction. Two juxtaposed HEPN nuclease motifs create Las1's composite nuclease active site, but the roles of the individual HEPN motif residues are poorly defined. Here using a combination of in vivo experiments in Saccharomyces cerevisiae and in vitro assays, we show that both HEPN nuclease motifs are required for Las1 nuclease activity and fidelity. Through in-depth sequence analysis and systematic mutagenesis, we determined the consensus HEPN motif in the Las1 subfamily and uncovered its canonical and specialized elements. Using reconstituted Las1 HEPN-HEPN' chimeras, we defined the molecular requirements for RNA cleavage. Intriguingly, both copies of the Las1 HEPN motif were important for nuclease function, revealing that both HEPN motifs participate in coordinating the RNA within the Las1 active site. We also established that conformational flexibility of the two HEPN domains is important for proper nuclease function. The results of our work reveal critical information about how dual HEPN domains come together to drive Las1-mediated RNA cleavage.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Kevin H Goslen
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
553
|
Li G, Wang X, Liu Y, Lv X, Li G, Zhao C, Wang D, Huang X, Hu X. WITHDRAWN: Porcine reproductive and respiratory syndrome virus (PRRSV) inhibition with engineered Cas13d. J Genet Genomics 2020:S1673-8527(20)30048-5. [PMID: 32299732 PMCID: PMC7118647 DOI: 10.1016/j.jgg.2020.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100093, China; College of Biological Sciences, China Agricultural University, Beijing, 100093, China
| | - Xinjie Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yajing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xinyuan Lv
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100093, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100093, China; College of Biological Sciences, China Agricultural University, Beijing, 100093, China
| | - Dandan Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100093, China; College of Biological Sciences, China Agricultural University, Beijing, 100093, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100093, China; College of Biological Sciences, China Agricultural University, Beijing, 100093, China.
| |
Collapse
|
554
|
McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 2020; 11:1281. [PMID: 32152313 PMCID: PMC7062760 DOI: 10.1038/s41467-020-15053-x] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing and transcriptional regulation. In this review, we discuss multiplexed CRISPR technologies and describe methods for the assembly, expression and processing of synthetic guide RNA arrays in vivo. Applications that benefit from multiplexed CRISPR technologies, including cellular recorders, genetic circuits, biosensors, combinatorial genetic perturbations, large-scale genome engineering and the rewiring of metabolic pathways, are highlighted. We also offer a glimpse of emerging challenges and emphasize experimental considerations for future studies.
Collapse
Affiliation(s)
- Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Lucie Studená
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
555
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
556
|
Zhou C, Hu X, Tang C, Liu W, Wang S, Zhou Y, Zhao Q, Bo Q, Shi L, Sun X, Zhou H, Yang H. CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Natl Sci Rev 2020; 7:835-837. [PMID: 34692105 PMCID: PMC8288881 DOI: 10.1093/nsr/nwaa033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Summary
RNA-targeting CRISPR system Cas13 offers an efficient approach for manipulating RNA transcripts in vitro. In this perspective, we provide a proof-of-concept demonstration that Cas13-mediated Vegfa knockdown in vivo could prevent the development of laser-induced CNV in mouse model of Age-related macular degeneration.
Collapse
Affiliation(s)
- Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
- College of Life Sciences, University of Chinese Academy of Sciences, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
- College of Life Sciences, University of Chinese Academy of Sciences, China
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
- College of Life Sciences, University of Chinese Academy of Sciences, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Fundus Diseases, China
| | - Shaoran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
- Hui-Gene Therapeutics Co., Ltd. China
| | - Yingsi Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Qimeng Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Fundus Diseases, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
- Hui-Gene Therapeutics Co., Ltd. China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Fundus Diseases, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
557
|
Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, Cheng M, Bao Y, Lin W, Jiang J, Yang C, Chen Q, Zhang H, Wang H, Wang X, Deng X, Liao X, Liu Y, Wang Z, Zhang G, Zhou X. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal Chem 2020; 92:4029-4037. [DOI: 10.1021/acs.analchem.9b05597] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Qian Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Huang Zhang
- Guangzhou Double Helix Gene Technology Co., Ltd., Guangzhou International Bio Island Co., Ltd., Guangzhou 510320, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
558
|
CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1460-1469. [PMID: 32160714 PMCID: PMC7056623 DOI: 10.1016/j.omtn.2020.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The CRISPR-Cas9 system has been applied to DNA editing with precision in eukaryotic and prokaryotic systems, but it is unable to edit RNA directly. A recently developed CRISPR-Cas13a system has been shown to be capable of effectively knocking down RNA expression in mammalian and plant cells. In this study, we employ the CRISPR-Cas13a system to achieve reprogrammable inactivation of dengue virus in mammalian cells. Quantitative reverse transcription PCR (qRT-PCR), fluorescence-activated cell sorting (FACS), and plaque assays showed that CRISPR RNA (crRNA) targeting the NS3 region led to the greatest viral inhibition among 10 crRNAs targeting different regions along the dengue viral genomic RNA. Deletions and insertions had also been found adjacent to the NS3 region after NS3-crRNA/Cas13a complex transfection. Our results demonstrate that the CRISPR-Cas13a system is a novel and effective technology to inhibit dengue viral replication, suggesting that such a programmable method may be further developed into a novel therapeutic strategy for dengue and other RNA viruses.
Collapse
|
559
|
Behler J, Hess WR. Approaches to study CRISPR RNA biogenesis and the key players involved. Methods 2020; 172:12-26. [PMID: 31325492 DOI: 10.1016/j.ymeth.2019.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins provide an inheritable and adaptive immune system against phages and foreign genetic elements in many bacteria and archaea. The three stages of CRISPR-Cas immunity comprise adaptation, CRISPR RNA (crRNA) biogenesis and interference. The maturation of the pre-crRNA into mature crRNAs, short guide RNAs that target invading nucleic acids, is crucial for the functionality of CRISPR-Cas defense systems. Mature crRNAs assemble with Cas proteins into the ribonucleoprotein (RNP) effector complex and guide the Cas nucleases to the cognate foreign DNA or RNA target. Experimental approaches to characterize these crRNAs, the specific steps toward their maturation and the involved factors, include RNA-seq analyses, enzyme assays, methods such as cryo-electron microscopy, the crystallization of proteins, or UV-induced protein-RNA crosslinking coupled to mass spectrometry analysis. Complex and multiple interactions exist between CRISPR-cas-encoded specific riboendonucleases such as Cas6, Cas5d and Csf5, endonucleases with dual functions in maturation and interference such as the enzymes of the Cas12 and Cas13 families, and nucleases belonging to the cell's degradosome such as RNase E, PNPase and RNase J, both in the maturation as well as in interference. The results of these studies have yielded a picture of unprecedented diversity of sequences, enzymes and biochemical mechanisms.
Collapse
Affiliation(s)
- Juliane Behler
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
560
|
Gramelspacher MJ, Hou Z, Zhang Y. Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems. Methods 2020; 172:32-41. [PMID: 31228550 PMCID: PMC6923617 DOI: 10.1016/j.ymeth.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022] Open
Abstract
The majority of bacteria and archaea rely on CRISPR-Cas systems for RNA-guided, adaptive immunity against mobile genetic elements. The Cas9 family of type II CRISPR-associated DNA endonucleases generates programmable double strand breaks in the CRISPR-complementary DNA targets flanked by the PAM motif. Nowadays, CRISPR-Cas9 provides a set of powerful tools for precise genome manipulation in eukaryotes and prokaryotes. Recently, a few Cas9 orthologs have been reported to possess intrinsic CRISPR-guided, sequence-specific ribonuclease activities. These discoveries fundamentally expanded the targeting capability of CRISPR-Cas9 systems, and promise to provide new CRISPR tools to manipulate specific cellular RNA transcripts. Here we present a detailed method for the biochemical characterization of Cas9's RNA-targeting potential.
Collapse
Affiliation(s)
- Max J Gramelspacher
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
561
|
Smargon AA, Shi YJ, Yeo GW. RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 2020; 22:143-150. [PMID: 32015437 PMCID: PMC8008746 DOI: 10.1038/s41556-019-0454-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Deployment of RNA-guided DNA endonuclease CRISPR-Cas technology has led to radical advances in biology. As the functional diversity of CRISPR-Cas and parallel systems is further explored, RNA manipulation is emerging as a powerful mode of CRISPR-based engineering. In this Perspective, we chart progress in the RNA-targeting CRISPR-Cas (RCas) field and illustrate how continuing evolution in scientific discovery translates into applications for RNA biology and insights into mysteries, obstacles, and alternative technologies that lie ahead.
Collapse
Affiliation(s)
- Aaron A Smargon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yilan J Shi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
562
|
Fry LE, Peddle CF, Barnard AR, McClements ME, MacLaren RE. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int J Mol Sci 2020; 21:ijms21030777. [PMID: 31991730 PMCID: PMC7037314 DOI: 10.3390/ijms21030777] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
RNA editing aims to treat genetic disease through altering gene expression at the transcript level. Pairing site-directed RNA-targeting mechanisms with engineered deaminase enzymes allows for the programmable correction of G>A and T>C mutations in RNA. This offers a promising therapeutic approach for a range of genetic diseases. For inherited retinal degenerations caused by point mutations in large genes not amenable to single-adeno-associated viral (AAV) gene therapy such as USH2A and ABCA4, correcting RNA offers an alternative to gene replacement. Genome editing of RNA rather than DNA may offer an improved safety profile, due to the transient and potentially reversible nature of edits made to RNA. This review considers the current site-directing RNA editing systems, and the potential to translate these to the clinic for the treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Lewis E. Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Caroline F. Peddle
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
563
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
564
|
Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat Commun 2020; 11:267. [PMID: 31937772 PMCID: PMC6959245 DOI: 10.1038/s41467-019-14135-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022] Open
Abstract
The ability to detect low numbers of microbial cells in food and clinical samples is highly valuable but remains a challenge. Here we present a detection system (called ‘APC-Cas’) that can detect very low numbers of a bacterial pathogen without isolation, using a three-stage amplification to generate powerful fluorescence signals. APC-Cas involves a combination of nucleic acid-based allosteric probes and CRISPR-Cas13a components. It can selectively and sensitively quantify Salmonella Enteritidis cells (from 1 to 105 CFU) in various types of samples such as milk, showing similar or higher sensitivity and accuracy compared with conventional real-time PCR. Furthermore, APC-Cas can identify low numbers of S. Enteritidis cells in mouse serum, distinguishing mice with early- and late-stage infection from uninfected mice. Our method may have potential clinical applications for early diagnosis of pathogens. The detection of pathogens in food and clinical samples remains a challenge. Here, Shen et al. present a detection system, involving a combination of nucleic acid-based allosteric probes and CRISPR-Cas13a components, that can detect very low numbers of a bacterial pathogen in milk and serum samples without isolation.
Collapse
|
565
|
Wang SR, Wu LY, Huang HY, Xiong W, Liu J, Wei L, Yin P, Tian T, Zhou X. Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nat Commun 2020; 11:91. [PMID: 31900392 PMCID: PMC6941951 DOI: 10.1038/s41467-019-13765-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Prokaryotes use repetitive genomic elements termed CRISPR (clustered regularly interspaced short palindromic repeats) to destroy invading genetic molecules. Although CRISPR systems have been widely used in DNA and RNA technology, certain adverse effects do occur. For example, constitutively active CRISPR systems may lead to a certain risk of off-target effects. Here, we introduce post-synthetic masking and chemical activation of guide RNA (gRNA) to controlling CRISPR systems. An RNA structure profiling probe (2-azidomethylnicotinic acid imidazolide) is used. Moreover, we accomplish conditional control of gene editing in live cells. This proof-of-concept study demonstrates promising potential of chemical activation of gRNAs as a versatile tool for chemical biology.
Collapse
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China
- Sauvage Center for Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Ling-Yu Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China
| | - Hai-Yan Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China
| | - Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lai Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
566
|
Kalinina NO, Khromov A, Love AJ, Taliansky ME. CRISPR Applications in Plant Virology: Virus Resistance and Beyond. PHYTOPATHOLOGY 2020; 110:18-28. [PMID: 31433273 DOI: 10.1094/phyto-07-19-0267-ia] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genes (Cas) is a prokaryotic adaptive immune system which has been reprogrammed into a precise, simple, and efficient gene targeting technology. This emerging technology is revolutionizing various areas of life sciences, medicine, and biotechnology and has raised significant interest among plant biologists, both in basic science and in plant protection and breeding. In this review, we describe the basic principles of CRISPR/Cas systems, and how they can be deployed to model plants and crops for the control, monitoring, and study of the mechanistic aspects of plant virus infections. We discuss how Cas endonucleases can be used to engineer plant virus resistance by directly targeting viral DNA or RNA, as well as how they can inactivate host susceptibility genes. Additionally, other applications of CRISPR/Cas in plant virology such as virus diagnostics and imaging are reviewed. The review also provides a systemic comparison between CRISPR/Cas technology and RNA interference approaches, the latter of which has also been used for development of virus-resistant plants. Finally, we outline challenges to be solved before CRISPR/Cas can produce virus-resistant crop plants which can be marketed.
Collapse
Affiliation(s)
- Natalia O Kalinina
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Prospect Nauki 6, Pushchino, Moscow Region, 142290, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Andrey Khromov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Prospect Nauki 6, Pushchino, Moscow Region, 142290, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| | - Michael E Taliansky
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Prospect Nauki 6, Pushchino, Moscow Region, 142290, Russia
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
567
|
Schultenkämper K, Brito LF, Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem 2020; 67:7-21. [DOI: 10.1002/bab.1901] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Luciana F. Brito
- Department of Biotechnology and Food ScienceNTNUNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
568
|
Yue H, Huang R, Shan Y, Xing D. Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. J Mater Chem B 2020; 8:11096-11106. [DOI: 10.1039/d0tb01914c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The constructed Cas13a/crRNA complex is delivered into cytoplasm by PBP via endocytosis, followed by endosomal escape based on biodegradation of the PBP, and efficiently knocked down Mcl-1 at transcriptional level for breast cancer therapy.
Collapse
Affiliation(s)
- Huahua Yue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yuanyue Shan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| |
Collapse
|
569
|
Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, Lu Y. Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. J Am Chem Soc 2019; 142:207-213. [PMID: 31800219 DOI: 10.1021/jacs.9b09211] [Citation(s) in RCA: 413] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Beyond its extraordinary genome editing ability, the CRISPR-Cas systems have opened a new era of biosensing applications due to its high base resolution and isothermal signal amplification. However, the reported CRISPR-Cas sensors are largely only used for the detection of nucleic acids with limited application for non-nucleic-acid targets. To realize the full potential of the CRISPR-Cas sensors and broaden their applications for detection and quantitation of non-nucleic-acid targets, we herein report CRISPR-Cas12a sensors that are regulated by functional DNA (fDNA) molecules such as aptamers and DNAzymes that are selective for small organic molecule and metal ion detection. The sensors are based on the Cas12a-dependent reporter system consisting of Cas12a, CRISPR RNA (crRNA), and its single-stranded DNA substrate labeled with a fluorophore and quencher at each end (ssDNA-FQ), and fDNA molecules that can lock a DNA activator for Cas12a-crRNA, preventing the ssDNA cleavage function of Cas12a in the absence of the fDNA targets. The presence of fDNA targets can trigger the unlocking of the DNA activator, which can then activate the cleavage of ssDNA-FQ by Cas12a, resulting in an increase of the fluorescent signal detectable by commercially available portable fluorimeters. Using this method, ATP and Na+ have been detected quantitatively under ambient temperature (25 °C) using a simple and fast detection workflow (two steps and <15 min), making the fDNA-regulated CRISPR system suitable for field tests or point-of-care diagnostics. Since fDNAs can be obtained to recognize a wide range of targets, the methods demonstrated here can expand this powerful CRISPR-Cas sensor system significantly to many other targets and thus provide a new toolbox to significantly expand the CRISPR-Cas system into many areas of bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | | | | | | | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | | |
Collapse
|
570
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67-83. [DOI: 10.1038/s41579-019-0299-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
571
|
Chen Q, Tian T, Xiong E, Wang P, Zhou X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal Chem 2019; 92:573-577. [PMID: 31849223 DOI: 10.1021/acs.analchem.9b04403] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a basic technique used in analytical and clinical investigations. However, conventional ELISA is still not sensitive enough to detect ultralow concentrations of biomarkers for the early diagnosis of cancer, cardiovascular risk, neurological disorders, and infectious diseases. Herein we show a mechanism utilizing the CRISPR/Cas13a-based signal export amplification strategy, which double-amplifies the output signal by T7 RNA polymerase transcription and CRISPR/Cas13a collateral cleavage activity. This process is termed the CRISPR/Cas13a signal amplification linked immunosorbent assay (CLISA). The proposed method was validated by detecting an inflammatory factor, human interleukin-6 (human IL-6), and a tumor marker, human vascular endothelial growth factor (human VEGF), which achieved limit of detection (LOD) values of 45.81 fg/mL (2.29 fM) and 32.27 fg/mL (0.81 fM), respectively, demonstrating that CLISA is at least 102-fold more sensitive than conventional ELISA.
Collapse
Affiliation(s)
- Qian Chen
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Tian Tian
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Erhu Xiong
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Po Wang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Xiaoming Zhou
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
572
|
Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF, Wu H, Carmichael GG, Chen LL. Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems. Mol Cell 2019; 76:981-997.e7. [PMID: 31757757 DOI: 10.1016/j.molcel.2019.10.024] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Visualizing the location and dynamics of RNAs in live cells is key to understanding their function. Here, we identify two endonuclease-deficient, single-component programmable RNA-guided and RNA-targeting Cas13 RNases (dCas13s) that allow robust real-time imaging and tracking of RNAs in live cells, even when using single 20- to 27-nt-long guide RNAs. Compared to the aptamer-based MS2-MCP strategy, an optimized dCas13 system is user friendly, does not require genetic manipulation, and achieves comparable RNA-labeling efficiency. We demonstrate that the dCas13 system is capable of labeling NEAT1, SatIII, MUC4, and GCN4 RNAs and allows the study of paraspeckle-associated NEAT1 dynamics. Applying orthogonal dCas13 proteins or combining dCas13 and MS2-MCP allows dual-color imaging of RNAs in single cells. Further combination of dCas13 and dCas9 systems allows simultaneous visualization of genomic DNA and RNA transcripts in living cells.
Collapse
Affiliation(s)
- Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Si-Qi Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Huang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Gordon G Carmichael
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
573
|
|
574
|
Awwad DA. Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biol Methods Protoc 2019; 4:bpz017. [PMID: 32161809 PMCID: PMC6994087 DOI: 10.1093/biomethods/bpz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) makeup a considerable part of the non-coding human genome and had been well-established as crucial players in an array of biological processes. In spite of their abundance and versatile roles, their functional characteristics remain largely undiscovered mainly due to the lack of suitable genetic manipulation tools. The emerging CRISPR/Cas9 technology has been widely adapted in several studies that aim to screen and identify novel lncRNAs as well as interrogate the functional properties of specific lncRNAs. However, the complexity of lncRNAs genes and the regulatory mechanisms that govern their transcription, as well as their unique functionality pose several limitations the utilization of classic CRISPR methods in lncRNAs functional studies. Here, we overview the unique characteristics of lncRNAs transcription and function and the suitability of the CRISPR toolbox for applications in functional characterization of lncRNAs. We discuss some of the novel variations to the classic CRISPR/Cas9 system that have been tailored and applied previously to study several aspects of lncRNAs functionality. Finally, we share perspectives on the potential applications of various CRISPR systems, including RNA-targeting, in the direct editing and manipulation of lncRNAs.
Collapse
Affiliation(s)
- Dahlia A Awwad
- Center of X-Ray Determination of Structure of Matter (CXDS), Helmi Institute of Biomedical Research, Zewail City of Science and Technology, Giza, Cairo, Egypt
| |
Collapse
|
575
|
Watanabe S, Cui B, Kiga K, Aiba Y, Tan XE, Sato'o Y, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, Li FY, Azam AH, Nakada Y, Sasahara T, Cui L. Composition and Diversity of CRISPR-Cas13a Systems in the Genus Leptotrichia. Front Microbiol 2019; 10:2838. [PMID: 31921024 PMCID: PMC6914741 DOI: 10.3389/fmicb.2019.02838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, previously known as CRISPR-C2c2, is the most recently identified RNA-guided RNA-targeting CRISPR-Cas system that has the unique characteristics of both targeted and collateral single-stranded RNA (ssRNA) cleavage activities. This system was first identified in Leptotrichia shahii. Here, the complete whole genome sequences of 11 Leptotrichia strains were determined and compared with 18 publicly available Leptotrichia genomes in regard to the composition, occurrence and diversity of the CRISPR-Cas13a, and other CRISPR-Cas systems. Various types of CRISPR-Cas systems were found to be unevenly distributed among the Leptotrichia genomes, including types I-B (10/29, 34.4%), II-C (1/29, 2.6%), III-A (6/29, 15.4%), III-D (6/29, 15.4%), III-like (3/29, 7.7%), and VI-A (11/29, 37.9%), while 8 strains (20.5%) had no CRISPR-Cas system at all. The Cas13a effectors were found to be highly divergent with amino acid sequence similarities ranging from 61% to 90% to that of L. shahii, but their collateral ssRNA cleavage activities leading to impediment of bacterial growth were conserved. CRISPR-Cas spacers represent a sequential achievement of former intruder encounters, and the retained spacers reflect the evolutionary phylogeny or relatedness of strains. Analysis of spacer contents and numbers among Leptotrichia species showed considerable diversity with only 4.4% of spacers (40/889) were shared by two strains. The organization and distribution of CRISPR-Cas systems (type I-VI) encoded by all registered Leptotrichia species revealed that effector or spacer sequences of the CRISPR-Cas systems were very divergent, and the prevalence of types I, III, and VI was almost equal. There was only one strain carrying type II, while none carried type IV or V. These results provide new insights into the characteristics and divergences of CRISPR-Cas systems among Leptotrichia species.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Bintao Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Moriyuki Kawauchi
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tanit Boonsiri
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yusuke Taki
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Fen-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Aa Haeruman Azam
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yumi Nakada
- Division of Clinical Laboratory, Tottori University Hospital, Tottori, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
576
|
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable Inhibition and Detection of RNA Viruses Using Cas13. Mol Cell 2019; 76:826-837.e11. [PMID: 31607545 PMCID: PMC7422627 DOI: 10.1016/j.molcel.2019.09.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022]
Abstract
The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.
Collapse
Affiliation(s)
- Catherine A Freije
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| | - Cameron Myhrvold
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Chloe K Boehm
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Aaron E Lin
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Amber Carter
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA
| | - Hayden C Metsky
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Cynthia Y Luo
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Omar O Abudayyeh
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan L Yozwiak
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Feng Zhang
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA
| | - Pardis C Sabeti
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA; PhD Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, USA; Department of Immunology and Infectious Disease, T.H. Chan Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
577
|
Shao YT, Ma L, Zhang TH, Xu TR, Ye YC, Liu Y. The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges. Curr Top Med Chem 2019; 19:2143-2157. [PMID: 31456522 DOI: 10.2174/1568026619666190828162217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
KRAS is a member of the murine sarcoma virus oncogene-RAS gene family. It plays an important role in the prevention, diagnosis and treatment of tumors during tumor cell growth and angiogenesis. KRAS is the most commonly mutated oncogene in human cancers, such as pancreatic cancers, colon cancers, and lung cancers. Detection of KRAS gene mutation is an important indicator for tracking the status of oncogenes, highlighting the developmental prognosis of various cancers, and the efficacy of radiotherapy and chemotherapy. However, the efficacy of different patients in clinical treatment is not the same. Since RNA interference (RNAi) technologies can specifically eliminate the expression of specific genes, these technologies have been widely used in the field of gene therapy for exploring gene function, infectious diseases and malignant tumors. RNAi refers to the phenomenon of highly specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA), which is highly conserved during evolution. There are three classical RNAi technologies, including siRNA, shRNA and CRISPR-Cas9 system, and a novel synthetic lethal interaction that selectively targets KRAS mutant cancers. Therefore, the implementation of individualized targeted drug therapy has become the best choice for doctors and patients. Thus, this review focuses on the current status, future perspective and associated challenges in silencing of KRAS with RNAi technology.
Collapse
Affiliation(s)
- Yu-Ting Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tie-Hui Zhang
- The First People's Hospital of Heishan County, Jinzhou city, Liaoning, Jinzhou 121400, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuan-Chao Ye
- Department of Internal Medicine, Gastroenterology and Hepatology, University of Iowa, Iowa City, IA 52242, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
578
|
Mahas A, Aman R, Mahfouz M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol 2019; 20:263. [PMID: 31791381 PMCID: PMC6886189 DOI: 10.1186/s13059-019-1881-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CRISPR-Cas systems endow bacterial and archaeal species with adaptive immunity mechanisms to fend off invading phages and foreign genetic elements. CRISPR-Cas9 has been harnessed to confer virus interference against DNA viruses in eukaryotes, including plants. In addition, CRISPR-Cas13 systems have been used to target RNA viruses and the transcriptome in mammalian and plant cells. Recently, CRISPR-Cas13a has been shown to confer modest interference against RNA viruses. Here, we characterized a set of different Cas13 variants to identify those with the most efficient, robust, and specific interference activities against RNA viruses in planta using Nicotiana benthamiana. RESULTS Our data show that LwaCas13a, PspCas13b, and CasRx variants mediate high interference activities against RNA viruses in transient assays. Moreover, CasRx mediated robust interference in both transient and stable overexpression assays when compared to the other variants tested. CasRx targets either one virus alone or two RNA viruses simultaneously, with robust interference efficiencies. In addition, CasRx exhibits strong specificity against the target virus and does not exhibit collateral activity in planta. CONCLUSIONS Our data establish CasRx as the most robust Cas13 variant for RNA virus interference applications in planta and demonstrate its suitability for studying key questions relating to virus biology.
Collapse
Affiliation(s)
- Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
579
|
Zhang Z, Wang Q, Liu Q, Zheng Y, Zheng C, Yi K, Zhao Y, Gu Y, Wang Y, Wang C, Zhao X, Shi L, Kang C, Liu Y. Dual-Locking Nanoparticles Disrupt the PD-1/PD-L1 Pathway for Efficient Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905751. [PMID: 31709671 DOI: 10.1002/adma.201905751] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual-locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described. DLNP has a core-shell structure, in which the CRISPR/Cas13a system (plasmid DNA, pDNA) is encapsulated inside the core with a dual-responsive polymer layer. This polymer layer endows the DLNP with enhanced stability during blood circulation or in normal tissues and facilitates cellular internalization of the CRISPR/Cas13a system and activation of gene editing upon entry into tumor tissue. After carefully screening and optimizing the CRISPR RNA (crRNA) sequence that targets programmed death-ligand 1 (PD-L1), DLNP demonstrates the effective activation of T-cell-mediated antitumor immunity and the reshaping of immunosuppressive tumor microenvironment (TME) in B16F10-bearing mice, resulting in significantly enhanced antitumor effect and improved survival rate. Further development by replacing the specific crRNA of target genes can potentially make DLNP a universal platform for the rapid development of safe and efficient cancer immunotherapies.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qixue Wang
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunxiong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kaikai Yi
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Gu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chun Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhi Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunsheng Kang
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
580
|
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:33-41. [PMID: 31666940 PMCID: PMC6806369 DOI: 10.1016/j.cr.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022]
Abstract
Genome editing technology holds great promise for genome manipulation and gene therapy. While widespread utilization, genome editing has been used to unravel the roles of specific genes in differentiation and pluripotency of stem cells, and reinforce the stem cell-based applications. In this review, we summarize the advances of genome editing technology, as well as the derivative technologies from CRISPR/Cas system, which show tremendous potential in various fields. We also highlight the key findings in the studies of stem cells and regeneration by genome editing technology.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
581
|
Khan H, Khan A, Liu Y, Wang S, Bibi S, Xu H, Liu Y, Durrani S, Jin L, He N, Xiong T. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2. CHINESE CHEM LETT 2019; 30:2201-2204. [PMID: 32288403 PMCID: PMC7129497 DOI: 10.1016/j.cclet.2019.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Canine parvovirus type 2 (CPV-2) infection is the most lethal disease of dogs with higher mortality in puppies worldwide. In today's world, dogs are an integral part of our communities as well as dogs breeding and rearing has become a lucrative business. Therefore, a fast, accurate, portable, and cost-effective CPV-2 detection method with the ability for on-site detection is highly desired. In this study, we for the first time proposed a nanosystem for CPV-2 DNA detection with RNA-guided RNA endonuclease Cas13a, which upon activation results in collateral RNA degradation. We expressed LwCas13a in prokaryotic expression system and purified it through nickel column. Activity of Cas13a was verified by RNA-bound fluorescent group while using a quenched fluorescent probe as signals. Further Cas13a was combined with Recombinase polymerase amplification (RPA) and T7 transcription to establish molecular detection system termed specific high-sensitivity enzymatic reporter un-locking (SHERLOCK) for sensitive detection of CPV-2 DNA. This nanosystem can detect 100 amol/L CPV-2 DNA within 30 min. The proposed nanosystem exhibited high specificity when tested for CPV-2 and other dog viruses. This CRISPR-Cas13a mediated sensitive detection approach can be of formidable advantage during CPV-2 outbreaks because it is time-efficient, less laborious and does not involve the use of sophisticated instruments.
Collapse
Affiliation(s)
- Haroon Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Su Wang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Sumaira Bibi
- Bio Resources Conservation Institute, National Agriculture Research Centre, Islamabad 350000, Pakistan
| | - Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Samran Durrani
- Laboratory of Biointerface & Biomaterials, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- National Center for International Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
582
|
Bruch R, Baaske J, Chatelle C, Meirich M, Madlener S, Weber W, Dincer C, Urban GA. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905311. [PMID: 31663165 DOI: 10.1002/adma.201905311] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Indexed: 05/17/2023]
Abstract
Noncoding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated with many different diseases, such as cancer, dementia, and cardiovascular conditions. The key for effective treatment is an accurate initial diagnosis at an early stage, improving the patient's survival chances. In this work, the first clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a-powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs is introduced. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a is realized without any nucleic acid amplification. With a readout time of 9 min and an overall process time of less than 4 h, a limit of detection of 10 pm is achieved, using a measuring volume of less than 0.6 µL. Furthermore, the feasibility of the biosensor platform to detect miR-19b in serum samples of children, suffering from brain cancer, is demonstrated. The validation of the obtained results with a standard quantitative real-time polymerase chain reaction method shows the ability of the electrochemical CRISPR-powered system to be a low-cost, easily scalable, and target amplification-free tool for nucleic acid based diagnostics.
Collapse
Affiliation(s)
- Richard Bruch
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
| | - Julia Baaske
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Claire Chatelle
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Mailin Meirich
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Molecular Neuro-Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestraße 18, 79104, Freiburg, Germany
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, 79110, Freiburg, Germany
- Department of Bioengineering, Royal School of Mines, Imperial College London, SW7 2AZ, London, UK
| | - Gerald Anton Urban
- Department of Microsystems Engineering (IMTEK), Laboratory for Sensors, University of Freiburg, Georges-Koehler Allee 103, 79110, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg, Germany
| |
Collapse
|
583
|
Pei Y, Lu M. Programmable RNA manipulation in living cells. Cell Mol Life Sci 2019; 76:4861-4867. [PMID: 31367845 PMCID: PMC11105762 DOI: 10.1007/s00018-019-03252-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
RNAs are responsible for mediating genetic information flow within the cell. RNA splicing, modification, trafficking, translation, and stability are all controlled at the transcript level. However, biological tools to study and manipulate them in a programmable fashion are currently limited. In this review, we summarize recent advances regarding available RNA-targeting systems discovered so far, including CRISPR-based technologies-Cas9 and Cas13, and programmable RNA-binding proteins-PUF and PPR. These tools allow transcript-specific manipulation in gene expression.
Collapse
Affiliation(s)
- Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mingxing Lu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| |
Collapse
|
584
|
Taylor J, Lee SC. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Genes Chromosomes Cancer 2019; 58:889-902. [PMID: 31334570 PMCID: PMC6852509 DOI: 10.1002/gcc.22784] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of RNA splicing more than 40 years ago, our comprehension of the molecular events orchestrating constitutive and alternative splicing has greatly improved. Dysregulation of pre-mRNA splicing has been observed in many human diseases including neurodegenerative diseases and cancer. The recent identification of frequent somatic mutations in core components of the spliceosome in myeloid malignancies and functional analysis using model systems has advanced our knowledge of how splicing alterations contribute to disease pathogenesis. In this review, we summarize our current understanding on the mechanisms of how mutant splicing factors impact splicing and the resulting functional and pathophysiological consequences. We also review recent advances to develop novel therapeutic approaches targeting splicing catalysis and splicing regulatory proteins, and discuss emerging technologies using oligonucleotide-based therapies to modulate pathogenically spliced isoforms.
Collapse
Affiliation(s)
- Justin Taylor
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Leukemia Service, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Stanley C. Lee
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkNew York
| |
Collapse
|
585
|
Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11:937-956. [PMID: 31768221 PMCID: PMC6851009 DOI: 10.4252/wjsc.v11.i11.937] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The identification of new and even more precise technologies for modifying and manipulating the genome has been a challenge since the discovery of the DNA double helix. The ability to modify selectively specific genes provides a powerful tool for characterizing gene functions, performing gene therapy, correcting specific genetic mutations, eradicating diseases, engineering cells and organisms to achieve new and different functions and obtaining transgenic animals as models for studying specific diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has recently revolutionized genome engineering. The application of this new technology to stem cell research allows disease models to be developed to explore new therapeutic tools. The possibility of translating new systems of molecular knowledge to clinical research is particularly appealing for addressing degenerative diseases. In this review, we describe several applications of CRISPR/Cas9 to stem cells related to degenerative diseases. In addition, we address the challenges and future perspectives regarding the use of CRISPR/Cas9 as an important technology in the medical sciences.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy.
| | - Michela Serena
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Laboratory of Molecular Biology, Verona 37134, Italy
| |
Collapse
|
586
|
|
587
|
Li Y, Peng N. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Front Microbiol 2019; 10:2471. [PMID: 31708910 PMCID: PMC6824031 DOI: 10.3389/fmicb.2019.02471] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas systems adapt “memories” via spacers from viruses and plasmids to develop adaptive immunity against mobile genetic elements. Mature CRISPR RNAs guide CRISPR-associated nucleases to site-specifically cleave target DNA or RNA, providing an efficient genome engineering tool for organisms of all three kingdoms. Cas9, Cas12, and Cas13 are single proteins with multiple domains that are the most widely used CRISPR nucleases of the Class 2 system. However, these CRISPR endonucleases are large in size, leading to difficulty for manipulation and toxicity for cells. Most archaeal genomes and half of the bacterial genomes encode different types of CRISPR-Cas systems. Therefore, developing endogenous CRISPR-Cas systems-based genome editing will simplify manipulations and increase editing efficiency in prokaryotic cells. Here, we review the current applications and discuss the prospects of using endogenous CRISPR nucleases for genome engineering and CRISPR-based antimicrobials.
Collapse
Affiliation(s)
- Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
588
|
Jiang W, Singh J, Allen A, Li Y, Kathiresan V, Qureshi O, Tangprasertchai N, Zhang X, Parameshwaran HP, Rajan R, Qin PZ. CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS OMEGA 2019; 4:17140-17147. [PMID: 31656887 PMCID: PMC6811856 DOI: 10.1021/acsomega.9b01469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
Cas12a (also known as "Cpf1") is a class 2 type V-A CRISPR-associated nuclease that can cleave double-stranded DNA at specific sites. The Cas12a effector enzyme comprises a single protein and a CRISPR-encoded small RNA (crRNA) and has been used for genome editing and manipulation. Work reported here examined in vitro interactions between the Cas12a effector enzyme and DNA duplexes with varying states of base-pairing between the two strands. The data revealed that in the absence of complementarity between the crRNA guide and the DNA target-strand, Cas12a binds duplexes with unpaired segments. These off-target duplexes were bound at the Cas12a site responsible for RNA-guided double-stranded DNA binding but were not cleaved due to the lack of RNA/DNA hybrid formation. Such promiscuous binding was attributed to increased DNA flexibility induced by the unpaired segment present next to the protospacer-adjacent-motif. The results suggest that target discrimination of Cas12a can be influenced by flexibility of the DNA. As such, in addition to the linear sequence, flexibility and other physical properties of the DNA should be considered in Cas12a-based genome engineering applications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Jaideep Singh
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Aleique Allen
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Yue Li
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Venkatesan Kathiresan
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Omair Qureshi
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Narin Tangprasertchai
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Xiaojun Zhang
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Hari Priya Parameshwaran
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rakhi Rajan
- Department
of Chemistry and Biochemistry, Price Family Foundation Institute of
Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Peter Z. Qin
- Department of Chemistry andDepartment of
Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
- E-mail: . Phone: (213) 821-2461. Fax: (213) 740-2701
| |
Collapse
|
589
|
Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K, Kang C. The CRISPR-Cas13a Gene-Editing System Induces Collateral Cleavage of RNA in Glioma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901299. [PMID: 31637166 PMCID: PMC6794629 DOI: 10.1002/advs.201901299] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Indexed: 05/24/2023]
Abstract
RNA is rarely used as a therapeutic target due to its flexible structure and instability. CRISPR-Cas13a is a powerful tool for RNA knockdown, and the potential application of CRISPR-Cas13a in cancer cells should be further studied. In this study, overexpression of LwCas13a by lentivirus in glioma cells reveals that crRNA-EGFP induces a "collateral effect" after knocking down the target gene in EGFP-expressing cells. EGFRvIII is a unique EGFR mutant subtype in glioma, and the CRISPR-Cas13a system induces death in EGFRvIII-overexpressing glioma cells. Bulk and single-cell RNA sequencing analysis in U87-Cas13a-EGFRvIII cells confirm the collateral effect of the CRISPR-Cas13a system. Furthermore, CRISPR-Cas13a inhibits the formation of glioma intracranial tumors in mice. The results demonstrate the collateral effect of the CRISPR-Cas13a system in cancer cells and the powerful tumor-eliminating potential of this system.
Collapse
Affiliation(s)
- Qixue Wang
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Xing Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijing100050China
| | - Junhu Zhou
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Chao Yang
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Guangxiu Wang
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Yanli Tan
- Department of PathologyMedical College of Hebei UniversityBaodingHebei071000China
| | - Ye Wu
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Sijing Zhang
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Kaikai Yi
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| | - Chunsheng Kang
- Tianjin Medical University General HospitalTianjin Neurological InstituteKey Laboratory of Post‐neurotrauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education and Tianjin CityDepartment of NeurosurgeryTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
590
|
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 2019; 14:2986-3012. [PMID: 31548639 PMCID: PMC6956564 DOI: 10.1038/s41596-019-0210-2] [Citation(s) in RCA: 858] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Rapid detection of nucleic acids is integral to applications in clinical diagnostics and biotechnology. We have recently established a CRISPR-based diagnostic platform that combines nucleic acid pre-amplification with CRISPR-Cas enzymology for specific recognition of desired DNA or RNA sequences. This platform, termed specific high-sensitivity enzymatic reporter unlocking (SHERLOCK), allows multiplexed, portable, and ultra-sensitive detection of RNA or DNA from clinically relevant samples. Here, we provide step-by-step instructions for setting up SHERLOCK assays with recombinase-mediated polymerase pre-amplification of DNA or RNA and subsequent Cas13- or Cas12-mediated detection via fluorescence and colorimetric readouts that provide results in <1 h with a setup time of less than 15 min. We also include guidelines for designing efficient CRISPR RNA (crRNA) and isothermal amplification primers, as well as discuss important considerations for multiplex and quantitative SHERLOCK detection assays.
Collapse
Affiliation(s)
- Max J Kellner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeremy G Koob
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan S Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Omar O Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
591
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
592
|
Toro N, Mestre MR, Martínez-Abarca F, González-Delgado A. Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems. Front Microbiol 2019; 10:2160. [PMID: 31572350 PMCID: PMC6753606 DOI: 10.3389/fmicb.2019.02160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 12/04/2022] Open
Abstract
Type VI CRISPR-Cas systems contain a single effector nuclease (Cas13) that exclusively targets single-stranded RNA. It remains unknown how these systems acquire spacers. It has been suggested that type VI systems with adaptation modules can acquire spacers from RNA bacteriophages, but sequence similarities suggest that spacers may provide immunity to DNA phages. We searched databases for Cas13 proteins with linked RTs. We identified two different type VI-A systems with adaptation modules including an RT-Cas1 fusion and Cas2 proteins. Phylogenetic reconstruction analyses revealed that these adaptation modules were recruited by different effector Cas13a proteins, possibly from RT-associated type III-D systems within the bacterial classes Alphaproteobacteria and Clostridia. These type VI-A systems are predicted to acquire spacers from RNA molecules, paving the way for future studies investigating their role in bacterial adaptive immunity and biotechnological applications.
Collapse
Affiliation(s)
- Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
593
|
Dedow LK, Bailey-Serres J. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:1927-1938. [PMID: 31329953 DOI: 10.1093/pcp/pcz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein-RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.
Collapse
|
594
|
Jing X, Xie B, Chen L, Zhang N, Jiang Y, Qin H, Wang H, Hao P, Yang S, Li X. Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Res 2019; 46:e90. [PMID: 29860393 PMCID: PMC6125684 DOI: 10.1093/nar/gky433] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
In contrast to genome editing, which introduces genetic changes at the DNA level, disrupting or editing gene transcripts provides a distinct approach to perturbing a genetic system, offering benefits complementary to classic genetic approaches. To develop a new toolset for manipulating RNA, we first implemented a member of the type VI CRISPR systems, Cas13a from Leptotrichia shahii (LshCas13a), in Schizosaccharomyces pombe, an important model organism employed by biologists to study key cellular mechanisms conserved from yeast to humans. This approach was shown to knock down targeted endogenous gene transcripts with different efficiencies. Second, we engineered an RNA editing system by tethering an inactive form of LshCas13a (dCas13) to the catalytic domain of human adenosine deaminase acting on RNA type 2 (hADAR2d), which was shown to be programmable with crRNA to target messenger RNAs and precisely edit specific nucleotide residues. We optimized system parameters using a dual-fluorescence reporter and demonstrated the utility of the system in editing randomly selected endogenous gene transcripts. We further used it to restore the transposition of retrotransposon Tf1 mutants in fission yeast, providing a potential novel toolset for retrovirus manipulation and interference.
Collapse
Affiliation(s)
- Xinyun Jing
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longxian Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yiyi Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hang Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
595
|
Quan J, Langelier C, Kuchta A, Batson J, Teyssier N, Lyden A, Caldera S, McGeever A, Dimitrov B, King R, Wilheim J, Murphy M, Ares LP, Travisano KA, Sit R, Amato R, Mumbengegwi DR, Smith JL, Bennett A, Gosling R, Mourani PM, Calfee CS, Neff NF, Chow ED, Kim PS, Greenhouse B, DeRisi JL, Crawford ED. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res 2019; 47:e83. [PMID: 31114866 PMCID: PMC6698650 DOI: 10.1093/nar/gkz418] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of deadly microbes with resistance to previously life-saving drug therapies is a dire threat to human health. Detection of low abundance pathogen sequences remains a challenge for metagenomic Next Generation Sequencing (NGS). We introduce FLASH (Finding Low Abundance Sequences by Hybridization), a next-generation CRISPR/Cas9 diagnostic method that takes advantage of the efficiency, specificity and flexibility of Cas9 to enrich for a programmed set of sequences. FLASH-NGS achieves up to 5 orders of magnitude of enrichment and sub-attomolar gene detection with minimal background. We provide an open-source software tool (FLASHit) for guide RNA design. Here we applied it to detection of antimicrobial resistance genes in respiratory fluid and dried blood spots, but FLASH-NGS is applicable to all areas that rely on multiplex PCR.
Collapse
Affiliation(s)
- Jenai Quan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Charles Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alison Kuchta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joshua Batson
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Noam Teyssier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Saharai Caldera
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Ryan King
- Chan Zuckerberg Initiative, Redwood City, CA 94063, USA
| | - Jordan Wilheim
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maxwell Murphy
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Davis R Mumbengegwi
- Multidisciplinary Research Centre, University of Namibia, Windhoek 93Q5+48, Namibia
| | - Jennifer L Smith
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Adam Bennett
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peter M Mourani
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Norma F Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Advanced Technology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peter S Kim
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Emily D Crawford
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
596
|
A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 2019; 10:3672. [PMID: 31413315 PMCID: PMC6694116 DOI: 10.1038/s41467-019-11648-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Besides genome editing, CRISPR-Cas12a has recently been used for DNA detection applications with attomolar sensitivity but, to our knowledge, it has not been used for the detection of small molecules. Bacterial allosteric transcription factors (aTFs) have evolved to sense and respond sensitively to a variety of small molecules to benefit bacterial survival. By combining the single-stranded DNA cleavage ability of CRISPR-Cas12a and the competitive binding activities of aTFs for small molecules and double-stranded DNA, here we develop a simple, supersensitive, fast and high-throughput platform for the detection of small molecules, designated CaT-SMelor (CRISPR-Cas12a- and aTF-mediated small molecule detector). CaT-SMelor is successfully evaluated by detecting nanomolar levels of various small molecules, including uric acid and p-hydroxybenzoic acid among their structurally similar analogues. We also demonstrate that our CaT-SMelor directly measured the uric acid concentration in clinical human blood samples, indicating a great potential of CaT-SMelor in the detection of small molecules. Bacterial allosteric transcription factors can sense and respond to a variety of small molecules. Here the authors present CaT-SMelor which uses Cas12a and allosteric transcription factors to detect small molecules in the nanomolar range.
Collapse
|
597
|
Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M, Arkin AP, Fellmann C, Doudna JA. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 2019; 8:e49110. [PMID: 31397669 PMCID: PMC6711708 DOI: 10.7554/elife.49110] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.
Collapse
Affiliation(s)
- Gavin J Knott
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brady F Cress
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jun-Jie Liu
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brittney W Thornton
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Basem Al-Shayeb
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Benjamin A Adler
- UC Berkeley-UCSF Graduate Program in BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
| | - Marco J Lobba
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael Xu
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Adam P Arkin
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Christof Fellmann
- Gladstone InstitutesSan FranciscoUnited States
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Doudna
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Gladstone InstitutesSan FranciscoUnited States
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3)University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
598
|
Moon SB, Kim DY, Ko JH, Kim JS, Kim YS. Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends Biotechnol 2019; 37:870-881. [PMID: 30846198 DOI: 10.1016/j.tibtech.2019.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
CRISPR technology is a two-component gene editing system in which the effector protein induces genetic alterations with the aid of a gene targeting guide RNA. Guide RNA can be produced through chemical synthesis, in vitro transcription, or intracellular transcription. Guide RNAs can be engineered to have chemical modifications, alterations in the spacer length, sequence modifications, fusion of RNA or DNA components, and incorporation of deoxynucleotides. Engineered guide RNA can improve genome editing efficiency and target specificity, regulation of biological toxicity, sensitive and specific molecular imaging, multiplexing, and editing flexibility. Therefore, engineered guide RNA will enable more specific, efficient, and safe gene editing, ultimately improving the clinical benefits of gene therapy.
Collapse
Affiliation(s)
- Su Bin Moon
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Do Yon Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
599
|
Engreitz J, Abudayyeh O, Gootenberg J, Zhang F. CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/8/a035386. [PMID: 31371352 DOI: 10.1101/cshperspect.a035386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA molecules perform diverse functions in mammalian cells, including transferring genetic information from DNA to protein and playing diverse regulatory roles through interactions with other cellular components. Here, we discuss how clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies for directed perturbations of DNA and RNA are revealing new insights into RNA regulation. First, we review the fundamentals of CRISPR-Cas enzymes and functional genomics tools that leverage these systems. Second, we explore how these new perturbation technologies are transforming the study of regulation of and by RNA, focusing on the functions of DNA regulatory elements and long noncoding RNAs (lncRNAs). Third, we highlight an emerging class of RNA-targeting CRISPR-Cas enzymes that have the potential to catalyze studies of RNA biology by providing tools to directly perturb or measure RNA modifications and functions. Together, these tools enable systematic studies of RNA function and regulation in mammalian cells.
Collapse
Affiliation(s)
- Jesse Engreitz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02139
| | - Omar Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jonathan Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
600
|
Abstract
The prokaryote-derived CRISPR-Cas genome editing systems have transformed our ability to manipulate, detect, image and annotate specific DNA and RNA sequences in living cells of diverse species. The ease of use and robustness of this technology have revolutionized genome editing for research ranging from fundamental science to translational medicine. Initial successes have inspired efforts to discover new systems for targeting and manipulating nucleic acids, including those from Cas9, Cas12, Cascade and Cas13 orthologues. Genome editing by CRISPR-Cas can utilize non-homologous end joining and homology-directed repair for DNA repair, as well as single-base editing enzymes. In addition to targeting DNA, CRISPR-Cas-based RNA-targeting tools are being developed for research, medicine and diagnostics. Nuclease-inactive and RNA-targeting Cas proteins have been fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions. Collectively, the new advances are considerably improving our understanding of biological processes and are propelling CRISPR-Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|