551
|
Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 2002; 158:507-17. [PMID: 12147675 PMCID: PMC2173837 DOI: 10.1083/jcb.200202130] [Citation(s) in RCA: 378] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 05/22/2002] [Accepted: 06/24/2002] [Indexed: 11/22/2022] Open
Abstract
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.
Collapse
Affiliation(s)
- Sean P Cregan
- Ottawa Health Research Institute, Department of Neuroscience, University of Ottawa, Ontario, Canada, K1H 8M5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297:259-63. [PMID: 12114629 DOI: 10.1126/science.1072221] [Citation(s) in RCA: 1389] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.
Collapse
Affiliation(s)
- Seong-Woon Yu
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Farr TD, Whishaw IQ. Quantitative and qualitative impairments in skilled reaching in the mouse (Mus musculus) after a focal motor cortex stroke. Stroke 2002; 33:1869-75. [PMID: 12105368 DOI: 10.1161/01.str.0000020714.48349.4e] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Skilled reaching movements are an important aspect of human motor behavior but are impaired after motor system stroke. The purpose of this study was to document skilled movements in mice before and after a focal motor cortex stroke for the purpose of developing a mouse model of human stroke. METHODS Male C57/BL6 mice were trained to reach with a forelimb for food pellets and then given a motor cortex stroke, induced by pial stripping, contralateral to their preferred reaching limb. Reaching success and the movements used in reaching were analyzed by frame-by-frame inspection of presurgical and postsurgical video records. RESULTS Reaching success was severely impaired after the stroke. Improvement in success over 2 postsurgical weeks was moderate. Analysis of 10 movement components comprising reaches pre- and postsurgically indicated that most of the rotatory movements of the limb used for aiming, advancing, pronating, and supinating the paw were impaired. When successful reaches did occur, body movements that compensated for the impairments in limb rotatory movements aided them. CONCLUSIONS The results indicate that skilled reaching in the mouse is impaired by focal motor cortex stroke and they suggest that the mouse, and the skilled reaching task, provides an excellent model for studying impairments, compensation, and recovery after motor system stroke.
Collapse
Affiliation(s)
- Tracy D Farr
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
554
|
Cole KK, Perez-Polo JR. Poly(ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H(2)O(2) injury. J Neurochem 2002; 82:19-29. [PMID: 12091461 DOI: 10.1046/j.1471-4159.2002.00935.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxic reactive oxygen species (ROS) such as hydrogen peroxide, nitric oxide, superoxide, and the hydroxyl radical are generated in a variety of neuropathological conditions and cause significant DNA damage. We determined the effects of 3-aminobenzamide (AB), an inhibitor of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), on cell death in differentiated PC12 cells, a model of sympathetic neurons, after H(2) O(2) injury. Exposure to 0.5 mm H(2) O(2) resulted in a significant decrease in intracellular NAD(H), NADP(H), and ATP levels. This injury resulted in the death of 90% of the cells with significant necrosis early (2 h) after injury and increased apoptosis (12-24 h after injury), as measured by PS exposure and the presence of cytoplasmic oligonucleosomal fragments. Treatment with 2.5 mm AB restored pyridine nucleotide and ATP levels and ameliorated cell death (65% versus 90%) by decreasing the extent of both necrosis and apoptosis. Interestingly, we observed that H(2) O(2) -induced injury caused a delayed cell death exhibiting features of apoptosis but in which caspase-3 like activity was absent. Moreover, pretreatment with AB restored caspase-3-like activity. Our results suggest that apoptosis and necrosis are both triggered by PARP overactivation, and that maintenance of cellular energy levels after injury by inhibiting PARP shifts cell death from necrosis to apoptosis.
Collapse
Affiliation(s)
- Kasie K Cole
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0652, USA
| | | |
Collapse
|
555
|
Ying W, Chen Y, Alano CC, Swanson RA. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J Cereb Blood Flow Metab 2002; 22:774-9. [PMID: 12142562 DOI: 10.1097/00004647-200207000-00002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP1), contributes to cell death during ischemia/reperfusion when extensively activated by DNA damage. The cell death resulting from PARP1 activation is linked to NAD+ depletion and energy failure, but the intervening steps are not well understood. Because glycolysis requires cytosolic NAD+, the authors tested whether PARP1 activation impairs glycolytic flux and whether substrates that bypass glycolysis can rescue cells after PARP1 activation. PARP1 was activated in mouse cortical astrocyte and astrocyte-neuron cocultures with the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Studies using the 2-deoxyglucose method confirmed that glycolytic flux was reduced by more than 90% in MNNG-treated cultures. The addition of 5 mmol/L of alpha-ketoglutarate, 5 mmol/L pyruvate, or other mitochondrial substrates to the cultures after MNNG treatment reduced cell death from approximately 70% to near basal levels, while PARP inhibitors and excess glucose had negligible effects. The mitochondrial substrates significantly reduced cell death, with delivery delayed up to 2 hours after MNNG washout. The findings suggest that impaired glycolytic flux is an important factor contributing to PARP1-mediated cell death. Delivery of alternative substrates may be a promising strategy for delayed treatment of PARP1-mediated cell death in ischemia and other disorders.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco and Veterans Affairs Medical Center, USA
| | | | | | | |
Collapse
|
556
|
Gahm C, Holmin S, Mathiesen T. Nitric Oxide Synthase Expression after Human Brain Contusion. Neurosurgery 2002. [DOI: 10.1227/00006123-200206000-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
557
|
Gahm C, Holmin S, Mathiesen T. Nitric oxide synthase expression after human brain contusion. Neurosurgery 2002; 50:1319-26. [PMID: 12015851 DOI: 10.1097/00006123-200206000-00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2001] [Accepted: 01/30/2002] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Nitric oxide is a universal mediator of biological effects in the brain, and it has been implicated in the pathophysiological processes of traumatic brain injury. Experimental studies have indicated posttraumatic up-regulation of the three different isoforms of nitric oxide synthase (NOS) (i.e., inducible NOS [iNOS], endothelial NOS, and neuronal NOS) after brain trauma. This study was undertaken to investigate the cellular sources and tissue compartments of nitric oxide produced by human patients undergoing surgical treatment for contusional brain injuries. METHODS Contused brain tissue specimens from eight consecutive patients who underwent surgical treatment for brain contusions 3 hours to 5 days after trauma were evaluated in immunohistochemical analyses. Double-staining assays were used to define which cells produced the different isoforms. RESULTS Increases in iNOS-positive cells were detectable within 6 hours after trauma, with a peak at 8 to 23 hours. Expression of iNOS after trauma was detected in neurons, macrophages, neutrophils, astrocytes, and oligodendrocytes. The cellular sources of iNOS differed at different times after trauma. No detectable difference in the expression of the neuronal or endothelial isoforms was observed for trauma patients, compared with control subjects. CONCLUSION iNOS expression was up-regulated in a time-dependent manner in human brain tissue obtained from patients undergoing surgical treatment for contusional trauma. Our human data largely parallel experimental findings in rats, indicating that such trauma models are relevant for experimental studies and treatment trials.
Collapse
Affiliation(s)
- Caroline Gahm
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
558
|
Zhang Y, Poirier GG, Bürkle A. In-situ analysis of cellular poly(ADP-ribose) production in scrapie-infected mouse neuroblastoma cells. THE HISTOCHEMICAL JOURNAL 2002; 34:357-63. [PMID: 12769268 DOI: 10.1023/a:1023398130945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are characterized by formation of the disease-associated isoform of prion protein (PrP(Sc)), which arises from a normal isoform termed PrP(c) by a post-translational conversion process occurring in an autocatalytic fashion. Oxidative stress has been proposed as a pathogenetic mechanism in TSEs and increased lipid peroxidation has recently been described in prion-infected cell cultures, suggesting an intrinsic link between the presence of prions and oxidative stress. We investigated if poly(ADP-ribose) formation can be detected in cultured cells upon prion infection, as this NAD+-consuming and DNA strand break-activated nuclear enzymatic reaction has the potential to cause rapid and lethal NAD+ depletion in cells under severe oxidative stress. Poly(ADP-ribose) production was analysed by immunofluorescence in freshly scrapie-infected Neuro2a-D11 mouse neuroblastoma cells, which had been confirmed by immunocytochemistry to produce PrP(Sc), and in uninfected controls. No spontaneous poly(ADP-ribose) specific signals were observed in infected or in uninfected cells, while both cell types readily reacted to H2O2 treatment with poly(ADP-ribose) synthesis in a dose-dependent manner, with no obvious difference in staining intensity at any dose tested. In summary, our data reveal that replication of scrapie agent in neuroblastoma cells can proceed without detectable stimulation of the cellular poly(ADP-ribosyl)ation system.
Collapse
Affiliation(s)
- Yonghua Zhang
- School of Clinical Medical Sciences-Gerontology, Institute for Ageing and Health, University of Newcastle upon Tyne, Wolfson Research Centre, NGH, Westgate Road, Newcastle-upon-Tyne NE4 6BE, UK
| | | | | |
Collapse
|
559
|
Giovannelli L, Cozzi A, Guarnieri I, Dolara P, Moroni F. Comet assay as a novel approach for studying DNA damage in focal cerebral ischemia: differential effects of NMDA receptor antagonists and poly(ADP-ribose) polymerase inhibitors. J Cereb Blood Flow Metab 2002; 22:697-704. [PMID: 12045668 DOI: 10.1097/00004647-200206000-00008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The single-cell gel electrophoresis (comet assay) was used to evaluate the possibility of detecting single-strand breaks of brain DNA in the early phase of ischemia. Four hours after occlusion of the middle cerebral artery (MCAO) in rats, the percentage of DNA migrating into the comet tail (indicating the presence of breaks) increased from 11.4 +/- 4.70 to 34.7 +/- 9.2 (means +/- SD) in the caudate and from 9.9 +/- 4.3 to 42.8 +/- 14.1 in the cortex. Interestingly, a subpopulation of cells exhibiting higher resistance to the ischemic insult was present in the caudate putamen, but not in the cortex. Administration of MK801, an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist, (1 mg/kg subcutaneously, 10 minutes before MCAO), reduced the ischemia-induced DNA breaks and the infarct volume, suggesting that excessive stimulation of NMDA receptors contributes to the formation of both DNA damage and infarct volume. In contrast, DPQ, an inhibitor of poly(ADP-ribose) polymerase (PARP) (10 mg/kg intraperitoneally, 2 hours before and 1 hour after MCAO), reduced the infarct volume but not DNA damage, suggesting that the neuroprotective actions of PARP inhibitors occur at a later step of the processes leading to postischemic neuronal death.
Collapse
Affiliation(s)
- Lisa Giovannelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
560
|
Liu PK, Robertson CS, Valadka A. The association between neuronal nitric oxide synthase and neuronal sensitivity in the brain after brain injury. Ann N Y Acad Sci 2002; 962:226-41. [PMID: 12076978 PMCID: PMC2751793 DOI: 10.1111/j.1749-6632.2002.tb04071.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injury to the central nervous system is the leading cause of disability in the United States. Neuronal death is one of the causes of disability. Among patients who survive this type of injury, various degrees of recovery in brain function are observed. The molecular basis of functional recovery is poorly understood. Clinical observations and research using experimental injury models have implicated several metabolites in the cascade of events that lead to neuronal degeneration. The levels of intracellular ATP (energy source) and pH are decreased, whereas levels of extracellular glutamate, intracellular calcium ions, and oxidative damage to RNA/DNA, protein, and lipid are increased. These initiating events can be associated with energy failure and mitochondrial dysfunction, resulting in functional or structural brain damage. The injured brain is known to express immediate early genes. Recent studies show that reactive oxygen species (ROS) cause lesions in genes from which mRNA is transcribed as part of the endogenous neuroprotective response. Although degenerating proteins and lipids may contribute to necrosis significantly after severe injury, abnormalities in genetic material, if not repaired, disturb cellular function at every level by affecting replication, transcription, and translation. These lesions include abnormal nucleic acids, known as oxidative lesions of DNA (ODLs) or of RNA (ORLs). In this review, we focus on our current understanding of the various effects of neuronal nitric oxide synthase on the formation of modified bases in DNA and RNA that are induced in the brain after injury, and how ODLs and ORLs affect cell function.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
561
|
Gonzalez C, Ménissier De Murcia J, Janiak P, Bidouard JP, Beauvais C, Karray S, Garchon HJ, Lévi-Strauss M. Unexpected sensitivity of nonobese diabetic mice with a disrupted poly(ADP-Ribose) polymerase-1 gene to streptozotocin-induced and spontaneous diabetes. Diabetes 2002; 51:1470-6. [PMID: 11978644 DOI: 10.2337/diabetes.51.5.1470] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that consumes NAD in response to DNA strand breaks. Its excessive activation seems particularly deleterious to pancreatic beta-cells, as exemplified by the complete resistance of PARP-1-deficient mice to the toxic diabetes induced by streptozotocin. Because of the possible implication of this enzyme in type 1 diabetes, many human trials using nicotinamide, an inhibitor of PARP-1, have been conducted either in patients recently diagnosed or in subjects highly predisposed to this disease. To analyze the role of this enzyme in murine type 1 diabetes, we introgressed a disrupted PARP-1 allele onto the autoimmune diabetes-prone nonobese diabetic (NOD) mouse strain. We showed that these mice were protected neither from spontaneous nor from cyclophosphamide-accelerated diabetes. Surprisingly they were also highly sensitive to the diabetes induced by a single high dose of streptozotocin, standing in sharp contrast with C57BL/6 mice that bear the same inactivated PARP-1 allele. Our results suggest that NOD mice are characterized not only by their immune dysfunction but also by a peculiarity of their islets leading to a PARP-1-independent mechanism of streptozotocin-induced beta-cell death.
Collapse
Affiliation(s)
- Cristina Gonzalez
- Institut National de la Santé et de la Recherche Médicale, Unité 25, Hôpital Necker, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
562
|
Haskó G, Mabley JG, Németh ZH, Pacher P, Deitch EA, Szabó C. Poly(ADP-ribose) polymerase is a regulator of chemokine production: relevance for the pathogenesis of shock and inflammation. Mol Med 2002; 8:283-289. [PMID: 12359959 DOI: 10.1007/bf03402154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2002] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chemokines are key regulators of leukocyte traffic in various forms of inflammation and reperfusion injury. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the up-regulation of a variety of proinflammatory signal transduction pathways and associated genes. MATERIALS AND METHODS We tested whether the expression of the chemokines macrophage inflammatory protein (MIP)-1alpha and MIP-2 are under the control of PARP during inflammation. RESULTS Pharmacologic inhibition of PARP and genetic deletion of PARP suppressed the expression of MIP-1a and MIP-2 protein and mRNA in immunostimulated cultured murine macrophages and fibroblasts. PARP inhibition also suppressed the activation of NF-kappaB, a key transcription factor known to be involved in the generation of chemokines in immunostimulated cells. In vivo, in various models of local and systemic inflammation, including dextran sodium sulfate-induced colitis and endotoxic shock, pharmacologic inhibition of PARP suppressed the expression of MIP-1alpha and MIP-2. These effects were associated with a marked suppression of the inflammatory response, including an attenuation of neutrophil infiltration into inflamed organs. CONCLUSIONS A combination approach of pharmacologic inhibition and genetic deletion revealed that the major isoform of PARP (PARP-1) plays a predominant, but not exclusive, role in the regulation of chemokine production in vivo. Suppression of chemokine expression may be a novel mode of anti-inflammatory action of PARP inhibition.
Collapse
Affiliation(s)
- György Haskó
- Inotek Pharmaceuticals Corporation, Beverly, Massachusetts 01915, USA
| | | | | | | | | | | |
Collapse
|
563
|
Goldfarb RD, Marton A, Szabó E, Virág L, Salzman AL, Glock D, Akhter I, McCarthy R, Parrillo JE, Szabó C. Protective effect of a novel, potent inhibitor of poly(adenosine 5'-diphosphate-ribose) synthetase in a porcine model of severe bacterial sepsis. Crit Care Med 2002; 30:974-80. [PMID: 12006790 DOI: 10.1097/00003246-200205000-00004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine whether activation of the nuclear enzyme poly(adenosine 5'-diphosphate [ADP]-ribose) synthetase (PARS) contributes to mortality rate, myocardial dysfunction, and cardiovascular collapse in a porcine model of sepsis induced by implantation of an infected clot. DESIGN Prospective, random animal study. SETTING Research laboratory at Rush Presbyterian St. Luke's Medical Center. SUBJECTS Twenty pigs were chronically instrumented with intracardiac transducers to measure left ventricular pressure, sonomicrometer crystals in the left ventricle to measure short axis diameter, an ultrasonic flow meter to measure cardiac output, and catheters in the pulmonary artery and aorta to measure blood pressures and collect samples. INTERVENTIONS By using a randomized study design, we administered either the novel potent PARS inhibitor PJ34 (10 mg/kg for 1 hr, 2 mg x kg(-1) x hr(-1) for 96 hrs) or vehicle to pigs immediately before intraperitoneal implantation of Escherichia coli 0111.B4 (2.3 +/- 0.1 x 10(10) colony-forming units/kg)-laden fibrin clots to produce peritonitis and bacteremia. MEASUREMENTS AND MAIN RESULTS In vehicle-treated pigs, 12% survival was recorded at 24 hrs, whereas 83% and 66% survival was recorded in the PJ34-treated animals at 24 and 96 hrs, respectively (p <.05). PJ34 treatment attenuated bacteremia-induced increases in systemic and pulmonary vascular resistances. In controls, peritonitis induced rapid increase in plasma tumor necrosis factor-alpha. PJ34 treatment significantly attenuated this cytokine response. The formation of peroxynitrite and the activation of PARS were confirmed in hearts and lungs of the septic pigs by the immunohistochemical detection of nitrotyrosine and poly(ADP-ribose), respectively. Inhibition of PARS with PJ34 abolished poly(ADP-ribose) formation in septic animals. CONCLUSIONS Treatment with a potent PARS inhibitor improved survival and cardiovascular status and attenuated an important mediator component of the inflammatory response in a lethal porcine model of sepsis.
Collapse
|
564
|
Ecder T, Melnikov VY, Stanley M, Korular D, Lucia MS, Schrier RW, Edelstein CL. Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int 2002; 61:1220-30. [PMID: 11918728 DOI: 10.1046/j.1523-1755.2002.00250.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Apoptosis is a characteristic feature of human autosomal-dominant polycystic kidney disease (ADPKD). The Han:Sprague-Dawley (SPRD) rat model closely resembles human ADPKD and presents an opportunity to investigate the apoptotic pathway in the pathogenesis of this disease. METHODS Han:SPRD rats were studied during the early stages of ADPKD (newborn, 2 and 6 weeks old). Apoptotic cells were detected by the TUNEL (Tdt-mediated dUTP nick end-labeling) assay. Caspase-3 activity was measured using the fluorescent substrate DEVD-AMC and cleavage of poly (ADP-ribose) polymerase [PARP]. Expression of pro- and anti-apoptotic B-cell lymphoma (Bcl-2) proteins was detected on Western blot analysis. RESULTS TUNEL (+) cells, caspase-3 activity and caspase-mediated PARP breakdown were significantly increased in 2-week-old heterozygous (Cy/+) and homozygous (Cy/Cy) rat kidneys compared to normal littermate controls. In Cy/+ rat kidneys, decreased expression of anti-apoptotic Bcl-XL coincided with increased caspase-3 activity at 2 weeks of age while expression of Bcl-2, another anti-apoptotic protein, increased at 6 weeks of age. In Cy/Cy rat kidneys, decreased expression of Bcl-XL and increased expression of Bcl-2 was present at 2 weeks of age. Pro-apoptotic Bax and Bad expression was unchanged at 2 weeks of age in both Cy/+ and Cy/Cy rat kidneys. CONCLUSIONS Activation of caspase-3 and dysregulation of the balance between pro- and anti-apoptotic Bcl-2 family members, specifically a down-regulation of anti-apoptotic Bcl-XL, correlates with increased apoptosis in polycystic Han:SPRD rat kidneys.
Collapse
Affiliation(s)
- Tevfik Ecder
- Department of Medicine, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
565
|
Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157:149-60. [PMID: 11927607 PMCID: PMC2173263 DOI: 10.1083/jcb.200109079] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) promotes vascular permeability (VP) and neovascularization, and is required for development. We find that VEGF-stimulated Src activity in chick embryo blood vessels induces the coupling of focal adhesion kinase (FAK) to integrin alpha(v)beta5, a critical event in VEGF-mediated signaling and biological responsiveness. In contrast, FAK is constitutively associated with beta1 and beta3 integrins in the presence or absence of growth factors. In cultured endothelial cells, VEGF, but not basic fibroblast growth factor, promotes the Src-mediated phosphorylation of FAK on tyrosine 861, which contributes to the formation of a FAK/alpha(v)beta5 signaling complex. Moreover, formation of this FAK/alpha(v)beta5 complex is significantly reduced in pp60c-src-deficient mice. Supporting these results, mice deficient in either pp60c-src or integrin beta5, but not integrin beta3, have a reduced VP response to VEGF. This FAK/alpha(v)beta5 complex was also detected in epidermal growth factor-stimulated epithelial cells, suggesting a function for this complex outside the endothelium. Our findings indicate that Src can coordinate specific growth factor and extracellular matrix inputs by recruiting integrin alpha(v)beta5 into a FAK-containing signaling complex during growth factor-mediated biological responses.
Collapse
Affiliation(s)
- Brian P Eliceiri
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
566
|
Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 2002; 33:1101-6. [PMID: 11935067 DOI: 10.1161/01.str.0000014203.65693.1e] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerase (PARP-1; Enzyme Commission 2.4.30) is a nuclear DNA repair enzyme that mediates early neuronal ischemic injury. Using novel 3-dimensional, fast spin-echo-based diffusion-weighted imaging, we compared acute (21 hours) and long-term (3 days) ischemic volume after middle cerebral artery (MCA) occlusion in PARP-1-null mutants (PARP-/-) versus genetically matched wild-type mice (WT mice). PARP-/- mice were also treated with viral transfection of wild-type PARP-1 to determine whether protection from MCA occlusion is lost with restoration of the gene product. METHODS Halothane-anesthetized mice were treated with reversible MCA occlusion via intraluminal suture technique. Ischemic volumes were delineated by diffusion-weighted imaging with high spatial and temporal resolution during MCA occlusion and reperfusion. Recombinant Sindbis virus carrying beta-galactosidase (lacZ) or PARP-1 was injected into ipsilateral striatum, then animals underwent MCA occlusion 3 days later. Infarction volume was measured at 22 hours of reperfusion (2,3,5-triphenyltetrazolium chloride histology). RESULTS Reduction in regional water apparent diffusion coefficient (ADC) during occlusion or secondary ADC decline during reperfusion was not different between groups. Ischemic volume was smaller early in occlusion in PARP-/- versus WT mice and remained less at 21 hours of reperfusion. Ischemic volume then increased from 1 to 2 days in all mice, then stabilized without further change. Ischemic damage was smaller in PARP-/- than in WT mice at 3 days. Transfection of PARP-1 into PARP-/- mice increased stroke damage relative to lacZ-injected PARP-/- and increased damage to that of the WT mice. Intraischemic laser-Doppler flowmetry and physiological variables were not different among groups. CONCLUSIONS PARP-1 deficiency provides both early and prolonged protection from experimental focal stroke. The mechanism is not linked to preservation of ADC and mitigation of secondary energy depletion during early reperfusion.
Collapse
Affiliation(s)
- Shozo Goto
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University Schools of Medicine, Baltimore, Md 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
567
|
Johnston MV. Excitotoxicity in neonatal hypoxia. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:229-34. [PMID: 11754516 DOI: 10.1002/mrdd.1032] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates is a disorder of excessive neuronal excitation that includes seizures, abnormal EEG activity, and delayed failure of oxidative metabolism with elevated levels of lactic acid in the brain. Evidence from experimental models and clinical investigation indicates that HIE is triggered by a profound disruption in the function of glutamate synapses so that re-uptake of glutamate from the synapse is impaired and post-synaptic membranes containing glutamate receptors are depolarized. Severe hypoxemia preferentially depolarizes neuronal membranes, while ischemia probably has greater impact on the activity of glial glutamate re-uptake. Together, severe hypoxia and ischemia trigger a delayed cascade of events that may result in cell death by necrosis and/or apoptosis. Apoptosis is far more prominent in the neonate than in the adult and activation of cysteine proteases such as caspase-3 is a very important pathway in excitotoxic neonatal injury. Understanding the complex molecular networks triggered by an excitotoxic insult in the neonate provides insight into patterns of selective neuronal vulnerability and potential therapeutic strategies.
Collapse
Affiliation(s)
- M V Johnston
- Division of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA.
| |
Collapse
|
568
|
Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci U S A 2002; 99:3270-5. [PMID: 11854472 PMCID: PMC122508 DOI: 10.1073/pnas.052712399] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1, EC ), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Excessive activation of PARP-1 by cellular insults depletes its substrate beta-nicotinamide adenine dinucleotide and ATP, leading to cell death. PARP-1-deficient (PARP-1-/-) mice are protected from several forms of inflammation. In the present study, we demonstrate in PARP-1-/- glial cells a loss of several stress-activated transcription factors as well as decreased expression of genes for cytokines and cellular adhesion molecules. We also show that augmented expression of some of these genes is independent of PARP-1 catalytic activity. These findings indicate that PARP-1 plays a pivotal role in the initial inflammatory response by modulating transcription of inflammation-linked genes.
Collapse
Affiliation(s)
- Hyo Chol Ha
- Department of Neuroscience and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
569
|
Liaudet L. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness. Curr Opin Clin Nutr Metab Care 2002; 5:175-84. [PMID: 11844985 DOI: 10.1097/00075197-200203000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.
Collapse
Affiliation(s)
- Lucas Liaudet
- Critical Care Division, Department of Internal Medicine, University Hospital, Lausanne, Switzerland.
| |
Collapse
|
570
|
Mazzon E, Dugo L, De SA, Li JH, Caputi AP, Zhang J, Cuzzocrea S. Beneficial effects of GPI 6150, an inhibitor of poly(ADP-ribose) polymerase in a rat model of splanchnic artery occlusion and reperfusion. Shock 2002; 17:222-7. [PMID: 11900342 DOI: 10.1097/00024382-200203000-00011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate the effects of GPI 6150, a new poly(ADP-ribose) polymerase (PARP) inhibitor, in the pathogenesis of splanchnic artery occlusion (SAO) shock. SAO shock was induced in rats by clamping both the superior mesenteric artery and the celiac trunk for 45 min, followed by reperfusion. At 60 min after reperfusion, SAO-shocked rats developed a significant fall in mean arterial blood pressure, significant increase of tissue myeloperoxidase activity (111 +/- 4.3 U/100 mg wet tissue vs. 28 +/- 3.2 U/100 mg wet tissue of sham-operated rats), and marked histological injury to the distal ileum and a significant mortality (0% survival at 2 h after reperfusion). Immuno-histochemical examination demonstrated a marked increase in the immunoreactivity to PARP, P-selectin, and intercellular adhesion molecule (ICAM-1) in the necrotic ileum. GPI 6150 treatment significantly improved mean arterial blood pressure, prevented the infiltration of neutrophils (72 +/- 3.6 U/100 mg wet tissue) into the reperfused intestine, improved the histological status of the reperfused tissues, markedly reduced the intensity of P-selectin and ICAM-1 in tissue section from SAO-shocked rats, and improved survival. In conclusion, our study demonstrates that GPI 6150 exerts multiple protective effects in splanchnic artery occlusion/reperfusion shock.
Collapse
Affiliation(s)
- Emanuela Mazzon
- Department of Biomorphology, School of Medicine, University of Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
571
|
Kiuchi K, Yoshizawa K, Shikata N, Matsumura M, Tsubura A. Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice. Exp Eye Res 2002; 74:383-92. [PMID: 12014919 DOI: 10.1006/exer.2001.1127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies, it was found that a single systemic administration of N-methyl-N-nitrosourea (MNU) to rats and mice resulted in the retinal degeneration in all treated animals over a 7 day period. Retinal degeneration was due to photoreceptor cell apoptosis that was identical to the apoptosis seen in human retinitis pigmentosa (RP). In the present study, nicotinamide (NAM), a water-soluble B-group vitamin (vitamin B(3)), suppressed photoreceptor cell loss in a dose-dependent manner when administered immediately after MNU treatment. In rats, a dose of NAM >or=25 mg kg(-1) completely suppressed photoreceptor cell loss, and 10 mg kg(-1) partially suppressed photoreceptor cell loss. In mice, doses of 1000 and >or=100 mg kg(-1) were needed for complete and partial suppression, respectively. Thus, rats were more responsive to NAM than mice. The retinoprotective effect of 1000 mg kg(-1) NAM lasted throughout the long-term (35 days) observation period, with no apparent toxicity. Also, in rats, 1000 mg kg(-1) NAM completely suppressed photoreceptor cell loss when administered up to 4 hr after MNU treatment, and partially suppressed photoreceptor cell loss when administered 6 hr after MNU treatment. In mice, administration of NAM 2-6 hr after MNU resulted in partial suppression. NAM did not reduce levels of 7-methyldeoxyguanosine DNA adduct, but did reduce photoreceptor cell apoptosis. Although the mechanism of action underlying this retinoprotection remains to be clarified, NAM may be a potential therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Katsuji Kiuchi
- Department of Pathology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|
572
|
Affiliation(s)
- Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Spain.
| |
Collapse
|
573
|
Mellström B, Ceña V, Lamas M, Perales C, Gonzalez C, Naranjo JR. Gas1 is induced during and participates in excitotoxic neuronal death. Mol Cell Neurosci 2002; 19:417-29. [PMID: 11906213 DOI: 10.1006/mcne.2001.1092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have performed differential screening to identify genes participating in NMDA-induced neuronal death. The gas1 (growth arrest-specific gene 1) gene, whose product is known to inhibit cell cycle progression, was induced in cultured corticohippocampal neurons committed to die after a brief exposure to NMDA. Overexpression of Gas1 in cultured hippocampal neurons and in human neuroblastoma NB69 cells produced a marked reduction in the number of viable cells. Furthermore, gas1 antisense oligodeoxynucleotide or antisense mRNA protected hippocampal neurons or NB69 cells from neuronal death. Importantly, Gas1-induced neuronal death was attenuated by coexpression of the human Bcl-2 protein or the baculoviral caspase inhibitor OpIAP2. While Gas1 does not directly interact with Bcl-2, OpIAP2 coimmunoprecipitates with Gas1. In addition, induction of gas1 also occurred in rat brain in two models of excitotoxicity: delayed neuronal death after intraperitoneal kainate injection and neuronal death in hippocampal slices after ischemia. These results indicate that Gas1 is induced by activation of glutamate receptors and is part of the gene expression program directing neuronal death after mild excitotoxic insults.
Collapse
Affiliation(s)
- Britt Mellström
- Departamento de Biologia Molecular y Celular, Centro Nacional de Biotecnologia, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
574
|
Farkas B, Magyarlaki M, Csete B, Nemeth J, Rabloczky G, Bernath S, Literáti Nagy P, Sümegi B. Reduction of acute photodamage in skin by topical application of a novel PARP inhibitor. Biochem Pharmacol 2002; 63:921-32. [PMID: 11911844 DOI: 10.1016/s0006-2952(01)00929-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ultraviolet (UV) components of sunlight induce damage to the DNA in skin cells, which is considered to be the initiating step in the harmful biological effects of UV radiation. Repair of DNA damage results in the formation of single-strand DNA breaks, which activate the nuclear poly(ADP-ribose) polymerase (PARP). Overactivation of PARP worsens the oxidative cell damage and impairs the energy metabolism, raising the possibility that moderation of PARP activation following DNA damage may protect skin cells from UV radiation. The topical effects of the novel PARP inhibitor O-(3-pyperidino-2-hydroxy-1-propyl) pyridine-3-carboxylic acid amidoxime monohydrochloride (BGP-15M) were investigated on UV-induced skin damage in a hairless mouse model. For evaluation of the UV-induced acute photodamage to the skin and the potential protective effect of BGP-15M, DNA injury was detected by measuring the formation of single-strand DNA breaks and counting the resulting sunburn (apoptotic) cells. The ADP-ribosylation of PARP was assessed by Western blot analysis and then quantified. In addition, the UV-induced immunosuppression was investigated by the immunostaining of tumor necrosis factor alpha and interleukin-10 expressions in epidermal cells. The signs of inflammation were examined clinically and histochemically. Besides its primary effect in decreasing the activity of nuclear PARP, topically applied BGP-15M proved to be protective against solar and artificial UV radiation-induced acute skin damage. The DNA injury was decreased (P<0.01). An inhibition of immunosuppression was observed by down-regulation of the epidermal production of cytokines IL-10 and TNFalpha. In the mouse skin, clinical or histological signs of UV-induced inflammation could not be observed. These data suggest that BGP-15M directly interferes with UV-induced cellular processes and modifies the activity of PARP. The effects provided by topical application of the new PARP-regulator BGP-15M indicate that it may be a novel type of agent in photoprotection of the skin.
Collapse
Affiliation(s)
- Beatrix Farkas
- Department of Dermatology, Faculty of Medicine, University of Pecs, Kodaly u. 20, H-7624, Pecs, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
575
|
Pacher P, Liaudet L, Bai P, Virag L, Mabley JG, Haskó G, Szabó C. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther 2002; 300:862-867. [PMID: 11861791 DOI: 10.1124/jpet.300.3.862] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) by oxidant-mediated DNA damage is an important pathway of cell dysfunction and tissue injury in conditions associated with oxidative stress. Increased oxidative stress is a major factor implicated in the cardiotoxicity of doxorubicin (DOX), a widely used antitumor anthracycline antibiotic. Thus, we hypothesized that the activation of PARP may contribute to the DOX-induced cardiotoxicity. Using a dual approach of PARP-1 suppression, by genetic deletion or pharmacological inhibition with the phenanthridinone PARP inhibitor PJ34, we now demonstrate the role of PARP in the development of cardiac dysfunction induced by DOX. PARP-1+/+ and PARP-1-/- mice received a single injection of DOX (25 mg/kg i.p). Five days after DOX administration, left ventricular performance was significantly depressed in PARP-1+/+ mice, but only to a smaller extent in PARP-1-/- ones. Similar experiments were conducted in BALB/c mice treated with PJ34 or vehicle. Treatment with a PJ34 significantly improved cardiac dysfunction and increased the survival of the animals. In addition PJ34 significantly reduced the DOX-induced increase in the serum lactate dehydrogenase and creatine kinase activities but not metalloproteinase activation in the heart. Thus, PARP activation contributes to the cardiotoxicity of DOX. PARP inhibitors may exert protective effects against the development of severe cardiac complications associated with the DOX treatment.
Collapse
Affiliation(s)
- P Pacher
- Inotek Corporation, Beverly, Massachusetts 01915, USA
| | | | | | | | | | | | | |
Collapse
|
576
|
Los M, Mozoluk M, Ferrari D, Stepczynska A, Stroh C, Renz A, Herceg Z, Wang ZQ, Schulze-Osthoff K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 2002; 13:978-88. [PMID: 11907276 PMCID: PMC99613 DOI: 10.1091/mbc.01-05-0272] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.
Collapse
Affiliation(s)
- Marek Los
- Department of Immunology and Cell Biology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjáti K, Szabó C. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br J Pharmacol 2002; 135:1347-1350. [PMID: 11906946 PMCID: PMC1573277 DOI: 10.1038/sj.bjp.0704627] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Revised: 01/15/2002] [Accepted: 01/23/2002] [Indexed: 01/21/2023] Open
Abstract
Recent work has demonstrated the production of reactive oxygen and nitrogen species in the vasculature of aging animals. Oxidant induced cell injury triggers the activation of nuclear enzyme poly(ADP ribose) polymerase (PARP) leading to endothelial dysfunction in various pathophysiological conditions (reperfusion, shock, diabetes). Here we studied whether the loss of endothelial function in aging rats is dependent upon the PARP pathway within the vasculature. Young (3 months-old) and aging (22 months-old) Wistar rats were treated for 2 months with vehicle or the PARP inhibitor PJ34. In the vehicle-treated aging animals there was a significant loss of endothelial function, as measured by the relaxant responsiveness of vascular rings to acetylcholine. Treatment with PJ34, a potent PARP inhibitor, restored normal endothelial function. There was no impairment of the contractile function and endothelium-independent vasodilatation in aging rats. Furthermore, we found no deterioration in the myocardial contractile function in aging animals. Thus, intraendothelial PARP activation may contribute to endothelial dysfunction associated with aging.
Collapse
Affiliation(s)
- Pál Pacher
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| | - Jon G Mabley
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| | - Francisco G Soriano
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| | - Lucas Liaudet
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| | - Katalin Komjáti
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| | - Csaba Szabó
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, Massachusetts, MA 01915, U.S.A
| |
Collapse
|
578
|
Abstract
The therapeutic window with the neuroprotectant nicotinamide (NAm) was tested in a model of stroke. Either 2, 4 or 6 h after the onset of transient (2 h) focal cerebral ischemia, Wistar rats received either saline or NAm (500 mg/kg). Sensory and motor behavioral scores and weight of the animals were obtained before surgery, and 2 h, 3 and 7 days after stroke onset. Cerebral infarct volumes were measured on day 7 after sacrifice. NAm given 4 or 6 h after stroke onset significantly (p<0.05) reduced the cerebral infarction and improved the behavioral scores, respectively, compared to saline-injected animals. There was a non-significant improvement in weight gained by NAm-treated rats at 3 and 7 days following stroke compared to the saline-injected controls.
Collapse
Affiliation(s)
- Issam A Ayoub
- Neurophysiology Laboratory, Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
579
|
Valenzuela MT, Guerrero R, Núñez MI, Ruiz De Almodóvar JM, Sarker M, de Murcia G, Oliver FJ. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 2002; 21:1108-16. [PMID: 11850828 DOI: 10.1038/sj.onc.1205169] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Revised: 10/29/2001] [Accepted: 11/07/2001] [Indexed: 11/09/2022]
Abstract
The tumour suppressor protein p53 plays a key role in the cell's decision to arrest the cell cycle or undergo apoptosis following a genotoxic insult. p53 is stabilized and activated after DNA damage, however the cascade of events signalling from DNA lesions to p53 stabilization and activation is still controversial. Poly (ADP-ribosylation) of different nuclear acceptors by PARP-1 is an early event when a single strand DNA lesion is produced. We present here evidences that interplay between PARP-1 and p53 is dependent on the type of damage induced to DNA. Primary mouse embryonic fibroblasts derived from parp-1 -/- mice exhibited decreased p53 accumulation and activation following gamma-irradiation compared to parp-1 proficient cells. On the other hand, treatment with the single alkylating agent 2'-methyl-2'-nitrose-urea (MNU), resulted in the rapid and sustained accumulation and activation of p53 in parp-1-deficient cells, while very little accumulation was observed in parp-1 +/+ cells. After IR, the turnover of the p53 inhibitory protein MDM-2 is perturbed and the level of phosphorylation of p53 at serine-15 is blunted in parp-1 -/- cells. PARP-1 is determinant in the cytotoxic response to alkylating agents but only partially contributes to radiation-induced cell killing, as determined by colony forming assay. Altogether, these results suggest that PARP-1 participates in the p53 response following irradiation, resides upstream of p53 and indirectly modulates the level of phosphorylation of key substrates in this pathway while treatment with MNU results in an enhanced p53-mediated response in parp-1-null cells.
Collapse
Affiliation(s)
- M Teresa Valenzuela
- Unidad Mixta de Investigaciones Médicas, Hospital Universitario San Cecilio, Facultad de Medicina, Universidad de Granada, 18012-Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
580
|
Wang F, Corbett D, Osuga H, Osuga S, Ikeda JE, Slack RS, Hogan MJ, Hakim AM, Park DS. Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J Cereb Blood Flow Metab 2002; 22:171-82. [PMID: 11823715 DOI: 10.1097/00004647-200202000-00005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests that cyclin-dependent kinases participate in neuronal death induced by multiple stresses in vitro. However, their role in cell death paradigms in vivo is not well characterized. Accordingly, the authors examined whether cyclin-dependent kinase inhibition resulted in functionally relevant and sustained neuroprotection in a model of global ischemia. Intracerebroventricular administration of the cyclin-dependent kinase inhibitor flavopiridol, immediately or at 4 hours postreperfusion after a global insult, reduced injury in the CA1 of the hippocampus when examined 7 days after reperfusion. No significant protection was observed when flavopiridol was administered 8 hours after reperfusion. The tumor-suppressor retinoblastoma protein, a substrate of cyclin-dependent kinase, was phosphorylated on a cyclin-dependent kinase consensus site after the global insult; this phosphorylation was inhibited by flavopiridol administration. Importantly, flavopiridol had no effect on core body temperature, suggesting that the mechanism of neuroprotection was through cyclin-dependent kinase inhibition but not through hypothermia. Furthermore, inhibition of cyclin-dependent kinases improved spatial learning behavior as assessed by the Morris water maze 7 to 9 days after reperfusion. However, the histologic protection observed at day 7 was absent 28 days after reperfusion. These results indicate that cyclin-dependent kinase inhibition provides an extended period of morphologic and functional neuroprotection that may allow time for other neuroprotective modalities to be introduced.
Collapse
Affiliation(s)
- Fuhu Wang
- Neuroscience Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
581
|
Nargi-Aizenman JL, Simbulan-Rosenthal CM, Kelly TA, Smulson ME, Griffin DE. Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. Virology 2002; 293:164-71. [PMID: 11853409 DOI: 10.1006/viro.2001.1253] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a chromatin-associated enzyme that is activated by DNA strand breaks and catalyzes the transfer of ADP-ribose groups from NAD to itself and other nuclear proteins. Although caspase-mediated PARP-1 cleavage occurs during almost all forms of apoptosis, the contribution of PARP-1 activation and cleavage to this cell death process remains unclear. Using immortalized fibroblasts from wild-type (PARP-1(+/+)) and PARP-1 knockout (PARP-1(-/-)) mice, and a mouse neuroblastoma cell line (N18), the role that poly(ADP-ribosyl)ation plays in Sindbis virus (SV)-induced apoptosis was examined. Robust PARP-1 activation occurred in SV-infected cells prior to morphologic changes associated with apoptotic cell death and PARP-1 activity ceased simultaneously with caspase-3 activation and PARP-1 proteolysis. PARP-1 activity was maximal before detectable DNA fragmentation, but was absent when DNA damage was most intense. SV and staurosporine-induced cell death was delayed in fibroblasts lacking PARP-1 activity, suggesting that PARP-1 activation contributes to apoptotic cell death induced by these stimuli. SV replication was not affected by lack of PARP-1 activity, but DNA fragmentation and caspase-3 activation were delayed and occurred at lower levels in PARP-1-deficient fibroblasts. Early virus-induced PARP-1 activation may represent a novel way by which cells signal to the nucleus to regulate protein function by poly(ADP-ribosyl)ation in response to virus infection.
Collapse
Affiliation(s)
- Jennifer L Nargi-Aizenman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
582
|
Chu D, Qiu J, Grafe M, Fabian R, Kent TA, Rassin D, Nesic O, Werrbach-Perez K, Perez-Polo R. Delayed cell death signaling in traumatized central nervous system: hypoxia. Neurochem Res 2002; 27:97-106. [PMID: 11926281 DOI: 10.1023/a:1014858707218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There are two different ways for cells to die: necrosis and apoptosis. Cell death has traditionally been described as necrotic or apoptotic based on morphological criteria. There are controversy about the respective roles of apoptosis and necrosis in cell death resulting from trauma to the central nervous system (CNS). An evaluation of work published since 1997 in which electron microscopy was applied to ascertain the role of apoptosis and necrosis in: spinal cord injury, stroke, and hypoxia/ischemia (H/I) showed evidence for necrosis and apoptosis based on DNA degradation, presence of histones in cytoplasm, and morphological evidence in spinal cord. In the aftermath of stroke, many of the biochemical markers for apoptosis were present but the morphological determinations suggested that necrosis is the major source of post-traumatic cell death. This was not the case in H/I where both biochemical assays and the morphological studies gave more consistent results in a manner similar to the spinal cord injury studies. After H/I, major factors affecting cell death outcomes are DNA damage and repair processes, expression of bcl-like gene products and inflammation-triggered cytokine production.
Collapse
Affiliation(s)
- Danielle Chu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
583
|
Abstract
Increasing evidence suggests that cyclin-dependent kinases (CDKs), enzymes that normally regulate cell cycle progression, may also participate in the death of neurons. This has led to the proposal that CDKs may serve as a therapeutic target for neuropathological conditions such as stroke. This brief review will serve to examine the evidence supporting the role of CDKs in neuronal death, and will evaluate the potential of CDK inhibitors as a neuroprotective strategy for ischemic injury.
Collapse
Affiliation(s)
- Michael O'Hare
- Neuroscience Research Institute, University of Ottawa, Faculty of Medicine, 451 Smyth, K1H 8M5, Ottawa, ON, Canada
| | | | | |
Collapse
|
584
|
Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabó E, Szabó C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 2002; 51:514-521. [PMID: 11812763 DOI: 10.2337/diabetes.51.2.514] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with diabetes exhibit a high incidence of diabetic cardiomyopathy and vascular complications, which underlie the development of retinopathy, nephropathy, and neuropathy and increase the risk of hypertension, stroke, and myocardial infarction. There is emerging evidence that the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) importantly contributes to the development of endothelial dysfunction in a streptozotocin-induced model of diabetes. We investigated the role of PARP activation in the pathogenesis of cardiac dysfunction in streptozotocin-induced and genetic (nonobese diabetic) models of diabetes in rats and mice. Development of diabetes was accompanied by hyperglycemia, cardiac PARP activation, a selective loss of endothelium-dependent vasodilation in the thoracic aorta, and an early diastolic dysfunction of the heart. Treatment with a novel potent phenanthridinone-based PARP inhibitor, PJ34, starting 1 week after the onset of diabetes, restored normal vascular responsiveness and significantly improved cardiac dysfunction, despite the persistence of severe hyperglycemia. The beneficial effect of PARP inhibition persisted even after several weeks of discontinuation of the treatment. Thus, PARP activation plays a central role in the pathogenesis of diabetic cardiovascular (cardiac as well as endothelial) dysfunction. PARP inhibitors may exert beneficial effects against the development of cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Pal Pacher
- Inotek Corporation, Beverly, Massachusetts 01915, USA
| | | | | | | | | | | |
Collapse
|
585
|
Grusch M, Polgar D, Gfatter S, Leuhuber K, Huettenbrenner S, Leisser C, Fuhrmann G, Kassie F, Steinkellner H, Smid K, Peters GJ, Jayaram HN, Klepal W, Szekeres T, Knasmüller S, Krupitza G. Maintenance of ATP favours apoptosis over necrosis triggered by benzamide riboside. Cell Death Differ 2002; 9:169-178. [PMID: 11840167 DOI: 10.1038/sj.cdd.4400937] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Revised: 07/31/2001] [Accepted: 08/01/2001] [Indexed: 11/09/2022] Open
Abstract
A new synthetic drug, benzamide riboside (BR) exhibited strong oncolytic activity against leukemic cells in the 5-10 microM range. Higher BR-concentrations (20 microM) predominantly induced necrosis which correlated with DNA strand breaks and subsequent depletion of ATP- and dATP levels. Replenishment of the ATP pool by addition of adenosine prevented necrosis and favoured apoptosis. This effect was not a pecularity of BR-treatment, but was reproduced with high concentrations of all trans-retinoic acid (120 microM) and cyanide (20 mM). Glucose was also capable to suppress necrosis and to favour apoptosis of HL-60 cells, which had been treated with necrotic doses of BR and cyanide. Apoptosis eliminates unwanted cells without affecting the microenvironment, whereas necrosis causes severe inflammation of surrounding tissues due to spillage of cell fluids into the peri-cellular space. Thus, the monitoring and maintenance of cellular energy pools during therapeutic drug treatment may help to minimize nonspecific side effects and to improve attempted drug effects.
Collapse
Affiliation(s)
- M Grusch
- Institute of Clinical Pathology, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 2002; 45:73-85. [PMID: 11846617 DOI: 10.1006/phrs.2001.0935] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are defined as cell signaling enzymes that catalyze the transfer of ADP-ribose units from NAD(+)to a number of acceptor proteins. PARP-1, the best characterized member of the PARP family, that presently includes six members, is an abundant nuclear enzyme implicated in cellular responses to DNA injury provoked by genotoxic stress (oxygen radicals, ionizing radiations and monofunctional alkylating agents). Due to its involvement either in DNA repair or in cell death, PARP-1 is regarded as a double-edged regulator of cellular functions. In fact, when the DNA damage is moderate, PARP-1 participates in the DNA repair process. Conversely, in the case of massive DNA injury, elevated PARP-1 activation leads to rapid NAD(+)/ATP consumption and cell death by necrosis. Excessive PARP-1 activity has been implicated in the pathogenesis of numerous clinical conditions such as stroke, myocardial infarction, shock, diabetes and neurodegenerative disorders. PARP-1 could therefore be considered as a potential target for the development of pharmacological strategies to enhance the antitumor efficacy of radio- and chemotherapy or to treat a number of clinical conditions characterized by oxidative or NO-induced stress and consequent PARP-1 activation. Moreover, the discovery of novel functions for the multiple members of the PARP family might lead in the future to additional clinical indications for PARP inhibitors.
Collapse
Affiliation(s)
- Lucio Tentori
- Pharmacology Section, Department of Neuroscience, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | | | | |
Collapse
|
587
|
Cuzzocrea S, McDonald MC, Mazzon E, Dugo L, Serraino I, Threadgill M, Caputi AP, Thiemermann C. Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase, in a rodent model of lung injury. Biochem Pharmacol 2002; 63:293-304. [PMID: 11841805 DOI: 10.1016/s0006-2952(01)00864-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the tissue injury associated with ischaemia--reperfusion injury and inflammation. The aim of the present study was to evaluate the effects of a novel and potent inhibitor of PARP activity on neutrophil recruitment in the acute inflammation induced by zymosan-activated plasma. Intra-thoracic administration of zymosan-activated plasma leads to an increase in neutrophil infiltration of the lung at 24hr. The potent PARP inhibitor 5-aminoisoquinolinone (5-AIQ) reduced the degree of lung injury and attenuated the expression of P-selectin and ICAM-1 as well as the recruitment of neutrophils into the injured lung. The up-regulation/expression of P-selectin and ICAM-1 in human endothelial cells exposed to oxidative stress (peroxynitrite) or to a pro-inflammatory cytokine (tumor necrosis factor alpha, TNFalpha) was also attenuated by 5-AIQ. These findings provide the first evidence that the activation of PARS participates in neutrophil-mediated lung injury by regulating the expression of P-selectin and ICAM-1.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Institute of Pharmacology, University of Messina, Policlinico Universitario, Via C. Valeria-Gazzi, I-98100, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
588
|
Abstract
Mutations in mitochondrial genes encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes have been implicated in a wide range of neuromuscular diseases. MtDNA base substitution and rearrangement mutations generally inactivate one or more tRNA or rRNA genes and can cause myopathy, cardiomyopathy, cataracts, growth retardation, diabetes, etc. nDNA mutations can cause Leigh syndrome, cardiomyopathy, and nephropathy, due to defects in oxidative phosphorylation (OXPHOS) enzyme complexes; cartilage-hair hypoplasia (CHH) and mtDNA depletion syndrome, through defects in mitochondrial nucleic acid metabolism; and ophthalmoplegia with multiple mtDNA deletions, caused by adenine nucleotide translocator-1 (ANT1) mutations. Mouse models have been prepared that recapitulate a number of these diseases. The mtDNA 16S rRNA chloramphenicol (CAP) resistance mutation was introduced into the mouse female germline and caused cataracts and rod and cone abnormalities in chimeras and neonatal lethal myopathy and cardiomyopathy in mutant animals. A mtDNA deletion was introduced into the mouse germline and caused myopathy, cardiomyopathy, and nephropathy. Conditional inactivation of the nDNA mitochondrial transcription factor (Tfam) gene in the heart resulted in neonatal lethal cardiomyopathy, while its inactivation in the pancreatic beta-cells caused diabetes. The ATP/ADP ratio was implicated in mitochondrial diabetes through transgenic modification of the beta-cell ATP-sensitive K(+) channel (K(ATP)). Mutational inactivation of the mouse Ant1 gene resulted in myopathy, cardiomyopathy, and multiple mtDNA deletions in association with elevated reactive oxygen species (ROS) production. Inactivation of uncoupler proteins (Ucp) 1-3 revealed that mitochondrial Delta Psi regulated ROS production. The role of mitochondrial ROS toxicity in disease and aging was confirmed by inactivating glutathione peroxidase (GPx1), resulting in growth retardation, and by total and partial inactivation of Mn superoxide dismutase (MnSOD; Sod2), resulting in neonatal lethal dilated cardiomyopathy and accelerated apoptosis in aging, respectively. The importance of mitochondrial ROS in degenerative diseases and aging was confirmed by treating Sod2 -/- mice and C. elegans with catalytic antioxidant drugs.
Collapse
Affiliation(s)
- D C Wallace
- Center for Molecular Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
589
|
Lee KJ, Sok DE, Kim YB, Kim MR. Protective effect of vegetable extracts on oxidative stress in brain of mice administered with NMDA. Food Res Int 2002; 35:55-63. [DOI: 10.1016/s0963-9969(01)00119-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
590
|
Yenari MA, Iwayama S, Cheng D, Sun GH, Fujimura M, Morita-Fujimura Y, Chan PH, Steinberg GK. Mild hypothermia attenuates cytochrome c release but does not alter Bcl-2 expression or caspase activation after experimental stroke. J Cereb Blood Flow Metab 2002; 22:29-38. [PMID: 11807391 DOI: 10.1097/00004647-200201000-00004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mild hypothermia protects the brain from ischemia, but the underlying mechanisms of this effect are not well known. The authors previously found that hypothermia reduces the density of apoptotic cells, but it is not certain whether temperature alters associated biochemical events. Mitochondrial release of cytochrome c has recently been shown to be a key trigger in caspase activation and apoptosis via the intrinsic pathway. Using a model of transient focal cerebral ischemia, the authors determined whether mild hypothermia altered expression of Bcl-2 family proteins, mitochondrial release of cytochrome c, and caspase activation. Mild hypothermia significantly decreased the amount of cytochrome c release 5 hours after the onset of ischemia, but mitochondrial translocation of Bax was not observed until 24 hours. Mild hypothermia did not alter Bcl-2 and Bax expression, and caspase activation was not observed. The present study provides the first evidence that intraischemic mild hypothermia attenuates the release of cytochrome c in the brain, but does not appear to affect other biochemical aspects of the intrinsic apoptotic pathway. They conclude that necrotic processes may have been interrupted to prevent cytochrome c release, and that the ameliorative effect of mild hypothermia may be a result of maintaining mitochondrial integrity. Furthermore, the authors show it is unlikely that mild hypothermia alters the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Midori A Yenari
- Department of Neurosurgery, Stanford University Medical Center, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
591
|
Aliev G, Smith MA, Seyidova D, Neal ML, Lamb BT, Nunomura A, Gasimov EK, Vinters HV, Perry G, LaManna JC, Friedland RP. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer's disease. Brain Pathol 2002; 12:21-35. [PMID: 11770899 PMCID: PMC8095987 DOI: 10.1111/j.1750-3639.2002.tb00419.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) and stroke are two leading causes of age-associated dementia. A rapidly growing body of evidence indicates that increased oxidative stress from reactive oxygen radicals is associated with the aging process and age-related degenerative disorders such as atherosclerosis, ischemia/reperfusion, arthritis, stroke, and neurodegenerative diseases. New evidence has also indicated that vascular lesions are a key factor in the development of AD. This idea is based on a positive correlation between AD and cardiovascular and cerebrovascular diseases such as arterio- and atherosclerosis and ischemia/reperfusion injury. In this review we consider recent evidence supporting the existence of an intimate relationship between oxidative stress and vascular lesions in the pathobiology of AD. We also consider the opportunities for therapeutic interventions based on the molecular pathways involved with these causal relationships.
Collapse
Affiliation(s)
| | | | | | | | - Bruce T. Lamb
- Genetics, Case Western Reserve University, Cleveland, Ohio
| | - Akihiko Nunomura
- Department of Psychiatry and Neurology, Asahikawa Medical College, Asahikawa, Japan
| | - Eldar K. Gasimov
- Department of Histology and Embryology, Baku Medical University, Baku Azerbaijan
| | - Harry V. Vinters
- Section of Neuropathology, Dept of Pathology and Lab Medicine, and Brain Research Institute, UCLA Medical Center, Los Angeles, Calif
| | | | | | | |
Collapse
|
592
|
Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G. Neuronal survival and cell death signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 513:41-86. [PMID: 12575817 DOI: 10.1007/978-1-4615-0123-7_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuronal viability is maintained through a complex interacting network of signaling pathways that can be perturbed in response to a multitude of cellular stresses. A shift in the balance of signaling pathways after stress or in response to pathology can have drastic consequences for the function or the fate of a neuron. There is significant evidence that acutely injured and degenerating neurons may die by an active mechanism of cell death. This process involves the activation of discrete signaling pathways that ultimately compromise mitochondrial structure, energy metabolism and nuclear integrity. In this review we examine recent evidence pertaining to the presence and activation of anti- and pro-cell death regulatory pathways in nervous system injury and degeneration.
Collapse
Affiliation(s)
- Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Box 356470, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | |
Collapse
|
593
|
Bakondi E, Bai P, Szabó E E, Hunyadi J, Gergely P, Szabó C, Virág L. Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate. J Histochem Cytochem 2002; 50:91-8. [PMID: 11748298 DOI: 10.1177/002215540205000110] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme activated by DNA damage. Activated PARP cleaves NAD(+) into nicotinamide and (ADP-ribose) and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP by reactive oxygen and nitrogen intermediates represents a pathogenetic factor in various forms of inflammation, shock, and reperfusion injury. Using a novel commercially available substrate, 6-biotin-17-nicotinamide-adenine-dinucleotide (bio-NAD(+)), we have developed three applications, enzyme cytochemistry, enzyme histochemistry, and cell ELISA, to detect the activation of PARP in oxidatively stressed cells and tissues. With the novel assay we were able to detect basal and hydrogen peroxide-induced PARP activity in J774 macrophages. We also observed that mitotic cells display remarkably elevated PARP activity. Hydrogen peroxide-induced PARP activation could also be detected in wild-type peritoneal macrophages but not in macrophages from PARP-deficient mice. Application of hydrogen peroxide to the skin of mice also induced bio-NAD(+) incorporation in the keratinocyte nuclei. Hydrogen peroxide-induced PARP activation and its inhibition by pharmacological PARP inhibitors could be detected in J774 cells with the ELISA assay that showed good correlation with the traditional [(3)H]-NAD incorporation method. The bio-NAD(+) assays represent sensitive, specific, and non-radioactive alternatives for detection of PARP activation.
Collapse
Affiliation(s)
- Edina Bakondi
- Department of Medical Chemistry, University of Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
594
|
Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci 2001; 13:1683-93. [PMID: 11359520 DOI: 10.1046/j.0953-816x.2001.01542.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunosuppressant drugs, like FK506, and nonimmunosuppressant compounds like, GPI1046 and L685818, are immunophilin ligands that specifically bind to immunophilins, like FK506 binding protein 12 (FKBP12). Several lines of evidence show that these ligands exert neurotrophic properties in neural injury models and in PC12 cells. However, the mechanism of the neurotrophic function of the immunophilin ligands is poorly known. In the present study, we use MPP+ and 6-OHDA toxicity models to examine both neuroprotective and neuroregenerative effects of immunophilin ligands on primary cultures of midbrain dopaminergic neurons. We find that FK506, GPI1046 and L685818 at concentrations from 0.01 to 1 microM partially, but significantly, protect dopaminergic neurons against both MPP+ and 6-OHDA toxicity. By Western blot analysis, we also find that all three compounds prevent tyrosine hydroxylase (TH) loss induced by MPP+ and 6-OHDA treatments. Morphologic analysis of dopaminergic neurons, by immunocytochemistry, shows that MPP+ and 6-OHDA cause the retraction and loss of neuronal processes, while FK506, GPI1046 and L685818 promote regeneration of these processes as indicated by increases in process number and length. To examine if FKBP12 is required for neurotrophic effects of immunophilin ligands, we cultured dopaminergic neurons from FKBP12 knockout mice and find that FK506 still protects dopaminergic neurons against MPP+ toxicity. These results suggest that FKBP12 is not essential for the neurotrophic properties of immunophilin ligands, and immunophilin ligands are a new class of neuroprotective and neuroregenerative agents that may have therapeutic potential in a variety of neurological disorders.
Collapse
Affiliation(s)
- X Guo
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Carnegie 2-214, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
595
|
Ullrich O, Diestel A, Eyüpoglu IY, Nitsch R. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 2001; 3:1035-42. [PMID: 11781564 DOI: 10.1038/ncb1201-1035] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP-NF-kappaB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.
Collapse
Affiliation(s)
- O Ullrich
- Department of Cell- and Neurobiology, Institute of Anatomy. Medical Faculty (Charité), Humboldt-University Berlin, Schumannstrasse 20/21, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
596
|
Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Velena A, Anderson D, Benton B, Wang ZQ, Smith W, Ray R, Smulson ME. PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol 2001; 117:1566-73. [PMID: 11886524 DOI: 10.1046/j.0022-202x.2001.01578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfur mustard is cytotoxic to dermal fibroblasts as well as epidermal keratinocytes. We demonstrated that poly(ADP-ribose) polymerase (PARP) modulates Fas-mediated apoptosis, and other groups and we have shown that PARP plays a role in the modulation of other types of apoptotic and necrotic cell death. We have now utilized primary dermal fibroblasts, immortalized fibroblasts, and keratinocytes derived from PARP(-/-) mice and their wildtype littermates (PARP(+/+)) to determine the contribution of PARP to sulfur mustard toxicity. Following sulfur mustard exposure, primary skin fibroblasts from PARP-deficient mice demonstrated increased internucleosomal DNA cleavage, caspase-3 processing and activity, and annexin V positivity, compared to those derived from PARP(+/+) animals. Conversely, propidium iodide staining, PARP cleavage patterns, and random DNA fragmentation revealed a dose-dependent increase in necrosis in PARP(+/+) but not PARP(-/-) cells. Using immortalized PARP(-/-) fibroblasts stably transfected with the human PARP cDNA or with empty vector alone, we show that PARP inhibits markers of apoptosis in these cells as well. Finally, primary keratinocytes were derived from newborn PARP(+/+) and PARP(-/-) mice and immortalized with the E6 and E7 genes of human papilloma virus. In contrast to fibroblasts, keratinocytes from both PARP(-/-) and PARP(+/+) mice express markers of apoptosis in response to sulfur mustard exposure. The effects of PARP on the mode of cell death in different skin cell types may determine the severity of vesication in vivo, and thus have implications for the design of PARP inhibitors to reduce sulfur mustard pathology.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington DC 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Tong WM, Cortes U, Wang ZQ. Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1552:27-37. [PMID: 11781113 DOI: 10.1016/s0304-419x(01)00035-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage generated either exogenously or endogenously. This post-translational modification is catalyzed by poly(ADP-ribose) polymerase (PARP, PARP-1, EC 2.4.2.30). It is proposed that this protein plays a multifunctional role in many cellular processes, including DNA repair, recombination, cell proliferation and death, as well as genomic stability. Chemical inhibitors of the enzyme, dominant negative or null mutations of PARP-1 cause a high degree of genomic instability in cells. Inhibition of PARP activity by chemical inhibitors renders mice or rats susceptible to carcinogenic agents in various tumor models, indicating a role for PARP-1 in suppressing tumorigenesis. Despite the above observations, PARP-1 knockout mice are generally not prone to the development of tumors. An enhanced tumor development was observed, however, when the PARP-1 null mutation was introduced into severely compromised immune-deficient mice (a mutation in DNA-dependent protein kinase) or mice lacking other DNA repair or chromosomal guardian molecules, such as p53 or Ku80. These studies indicate that PARP-1 functions as a cofactor to suppress tumorigenesis via its role in stabilization of the genome, and/or by interacting with other DNA strand break-sensing molecules. Studies using PARP-1 mutants and chemical inhibitors have started to shed light on the role of this protein and of the specific protein post-translational modification in the control of genomic stability and hence its involvement in cancer.
Collapse
Affiliation(s)
- W M Tong
- International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | |
Collapse
|
598
|
Costantino G, Macchiarulo A, Camaioni E, Pellicciari R. Modeling of poly(ADP-ribose)polymerase (PARP) inhibitors. Docking of ligands and quantitative structure-activity relationship analysis. J Med Chem 2001; 44:3786-94. [PMID: 11689065 DOI: 10.1021/jm010116l] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a nuclear enzyme that has recently emerged as an important player in the mechanisms leading to postischemic neuronal death, and PARP inhibitors have been proposed as potential neuroprotective agents. With the aim of clarifying the structural basis responsible for PARP inhibition, we carried out a computational study on 46 inhibitors available through the literature. Our computational approach is composed of three parts. In the first one, representative PARP inhibitors have been docked into the crystallographic structure of the catalytic domain of PARP by using the Autodock 2.4 program. The docking studies thus carried out have provided an alignment scheme that has been instrumental for superimposing all the remaining inhibitors. Upon the basis of this alignment scheme, a quantitative structure-activity relationship (QSAR) analysis has been carried out after electrostatic and steric interaction energies have been computed with the RECEPTOR program. The QSAR analysis yielded a predictive model able to explain much of the variance of the 46-compound data set. The inspection of the QSAR coefficients revealed that the major driving force for potent inhibition is given by the extension of the contact surface between enzyme and inhibitors while electrostatic energy and hydrogen bonding capability play a minor role. Finally, the projection of the QSAR coefficients back onto the X-ray structure of the catalytic domain of PARP provides insights into the role played by specific amino acid residues. This information will be useful to address the design of new selective and potent PARP inhibitors.
Collapse
Affiliation(s)
- G Costantino
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06127 Perugia, Italy
| | | | | | | |
Collapse
|
599
|
Disruption of Poly(ADP-ribose) Polymerase (PARP) Protects Against Stress-Evoked Immunocompromise. Mol Med 2001. [DOI: 10.1007/bf03401966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
600
|
Wayman N, McDonald MC, Thompson AS, Threadgill MD, Thiemermann C. 5-aminoisoquinolinone, a potent inhibitor of poly (adenosine 5'-diphosphate ribose) polymerase, reduces myocardial infarct size. Eur J Pharmacol 2001; 430:93-100. [PMID: 11698068 DOI: 10.1016/s0014-2999(01)01359-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigates the effects of a novel, water-soluble inhibitor of the activity of poly (adenosine 5'-diphosphate ribose) polymerase, 5-aminoisoquinolinone [5-aminoisoquinolin-1(2H)-one], on (i) poly (adenosine 5'-diphosphate ribose) polymerase activity in rat cardiac myoblasts and (ii) the infarct size caused by regional myocardial ischaemia and reperfusion in the rat. Exposure of H9c2 cells to hydrogen peroxide (H2O2, 1 mM) caused a significant increase in poly (adenosine 5'-diphosphate ribose) polymerase activity and an 80-90% reduction in mitochondrial respiration (cellular injury). Pretreatment of these cells with 5-aminoisoquinolinone (0.003-1 mM) caused a concentration-dependent inhibition of poly (adenosine 5'-diphosphate ribose) polymerase activity (IC50: approximately 4.5 microM, n=6-9) and cell injury (EC50: approximately 4.45 microM, n=9). In a rat model of myocardial infarction, left anterior descending coronary artery occlusion (25 min) and reperfusion (2 h) resulted in an infarct size of 50+/-3%. Administration (1 min before reperfusion) of 5-aminoisoquinolinone reduced myocardial infarct size in a dose-related fashion. Thus, 5-aminoisoquinolinone is a potent inhibitor of poly (adenosine 5'-diphosphate ribose) polymerase activity in cardiac myoblasts and reduces myocardial infarct size in vivo.
Collapse
Affiliation(s)
- N Wayman
- The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, St. Bartholomew's Hospital, Charterhouse Square, EC1M 6BQ, London, UK
| | | | | | | | | |
Collapse
|