551
|
Cautivo KM, Steer CA, Molofsky AB. Immune outposts in the adventitia: One foot in sea and one on shore. Curr Opin Immunol 2020; 64:34-41. [PMID: 32339862 DOI: 10.1016/j.coi.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Advances in microscopy, genetically modified mice, and single-cell RNA sequencing have begun to deconvolute the composition and function of tissue immune niches. Here we discuss the evidence that the adventitia, the outermost layer of larger blood vessels, is a conserved niche and tissue immune outpost for multiple immune cells, including group 2 innate lymphoid cells (ILC2) and subsets of tissue-resident memory T cells, macrophages, and dendritic cells. We also describe the unique non-immune composition at adventitial regions, including fibroblast-like stromal cell subsets, lymphatic and blood endothelial cells, and neurons, and review how immune-stromal crosstalk impacts regional tissue immunity, organ adaptation, and disease.
Collapse
Affiliation(s)
- Kelly M Cautivo
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA
| | - Catherine A Steer
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA
| | - Ari B Molofsky
- University of California San Francisco, Departments of Laboratory Medicine, San Francisco, CA, 94143, USA; Diabetes Center, San Francisco, CA, 94143, USA.
| |
Collapse
|
552
|
Manzoor S, Mariappan N, Zafar I, Wei CC, Ahmad A, Surolia R, Foote JB, Agarwal A, Ahmad S, Athar M, Antony VB, Ahmad A. Cutaneous lewisite exposure causes acute lung injury. Ann N Y Acad Sci 2020; 1479:210-222. [PMID: 32329907 DOI: 10.1111/nyas.14346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Lewisite is a strong vesicating and chemical warfare agent. Because of the rapid transdermal absorption, cutaneous exposure to lewisite can also elicit severe systemic injury. Lewisite (2.5, 5.0, and 7.5 mg/kg) was applied to the skin of Ptch1+/- /SKH-1 mice and acute lung injury (ALI) was assessed after 24 hours. Arterial blood gas measurements showed hypercapnia and hypoxemia in the lewisite-exposed group. Histological evaluation of lung tissue revealed increased levels of proinflammatory neutrophils and a dose-dependent increase in structural changes indicative of injury. Increased inflammation was also confirmed by altered expression of cytokines, including increased IL-33, and a dose-dependent elevation of CXCL1, CXCL5, and GCSF was observed in the lung tissue. In the bronchoalveolar lavage fluid of lewisite-exposed animals, there was a significant increase in HMGB1, a damage-associated molecular pattern molecule, as well as elevated CXCL1 and CXCL5, which coincided with an influx of neutrophils to the lungs. Complete blood cell analysis revealed eosinophilia and altered neutrophil-lymphocyte ratios as a consequence of lewisite exposure. Mean platelet volume and RBC distribution width, which are predictors of lung injury, were also increased in the lewisite group. These data demonstrate that cutaneous lewisite exposure causes ALI and may contribute to mortality in exposed populations.
Collapse
Affiliation(s)
- Shajer Manzoor
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nithya Mariappan
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chih-Chang Wei
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ranu Surolia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy B Foote
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B Antony
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
553
|
Wang J, Sun L, Nie Y, Duan S, Zhang T, Wang W, Ye RD, Hou S, Qian F. Protein Kinase C δ (PKCδ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway. Front Physiol 2020; 11:367. [PMID: 32390869 PMCID: PMC7188947 DOI: 10.3389/fphys.2020.00367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal interstitial lung disease characterized by consistent pulmonary inflammation. Although protein kinase C delta (PKCδ) is involved in broad scope cellular response, the role of PKCδ in IPF is complicated and has not been fully defined yet. Here, we reported that PKCδ deficiency (PKCδ-/-) aggravated bleomycin (BLM)-induced pulmonary fibrosis and inflammation. Upon challenge with BLM, the pulmonary capillary permeability, immune cell infiltration, inflammatory cytokine production, and collagen deposition were enhanced in PKCδ-/- mice compared to that in PKCδ+/+ mice. In response to poly(I:C) stimulation, PKCδ deficient macrophages displayed an increased production of IL-1β, IL-6, TNF-α, and IL-33, which were associated with an enhanced NF-κB activation. Furthermore, we found that PKCδ could directly bind to and phosphorylate A20, an inhibitory protein of NF-κB signal. These results suggested that PKCδ may inhibit the NF-κB signaling pathway via enhancing the stability and activity of A20, which in turn attenuates pulmonary fibrosis, suggesting that PKCδ is a promising target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jun Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shixin Duan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Wang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Shangwei Hou
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
554
|
Lokau J, Garbers C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev 2020; 55:94-108. [PMID: 32386776 DOI: 10.1016/j.cytogfr.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
555
|
Valeff N, Juriol L, Quadrana F, Muzzio DO, Zygmunt M, Quiroga MF, Ventimiglia MS, Jensen F. Expression of IL-33 Receptor Is Significantly Up-Regulated in B Cells During Pregnancy and in the Acute Phase of Preterm Birth in Mice. Front Immunol 2020; 11:446. [PMID: 32292403 PMCID: PMC7118206 DOI: 10.3389/fimmu.2020.00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Interleukin-33 (IL-33) is a mucosal alarmin belonging to the IL-1 cytokine family and is now recognized to have a key role in innate and adaptive immunity, contributing to tissue homeostasis and response to environmental stresses. In addition, IL-33 has also been shown to work as a positive regulator that initiates and maintains a Th2 immune response. In the context of pregnancy, it has been recently demonstrated that upon certain stress conditions, such as an infection induced inflammation, IL-33 is released from the uterine mucosa and triggers decidual B cells to produce anti-inflammatory molecules, which in turn restore immune homeostasis and prevents the development of preterm birth. In this study we therefore performed a detailed characterization of IL-33 receptor (Il1rl1 or ST2) expression in B cells during normal pregnancy, as well as in a mouse model of preterm birth. We observed that splenic B cells significantly up-regulate the expression of Il1rl1 during pregnancy and identified the B1 B cell population as the main ST2-expressing B cell subset. A further kinetic analysis showed that percentages of ST2-expressing B1 B cells are significantly augmented on days 12 and 14 of pregnancy, both in the spleen and peritoneal cavity of pregnant mice, and then drop toward the end of pregnancy to the levels observed in non-pregnant animals. Furthermore, using a mouse model of LPS-induced preterm birth, we demonstrated that not only are the percentages of ST2-expressing B1 B cells significantly enlarged in the spleen during the acute phase of preterm birth, but decidual B cells also significantly up-regulate ST2 expression as compared to term-pregnant mice. Overall, our results suggest a functional role of ST2 expression in B cells during pregnancy and reinforce the importance of the IL-33/ST2 axis in B cells as a critical mechanism to control inflammation-induced preterm birth.
Collapse
Affiliation(s)
- Natalin Valeff
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Lorena Juriol
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Florencia Quadrana
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Damián Oscar Muzzio
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Research Laboratory, Department of Obstetrics and Gynecology, University of Greifswald, Greifswald, Germany
| | - Maria Florencia Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Silvia Ventimiglia
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina
| | - Federico Jensen
- Laboratory for Immunology of Pregnancy, Center for Pharmacological and Botanical Studies (CEFYBO-CONICET-UBA), Buenos Aires, Argentina.,Institute of Health Sciences, National University Arturo Jauretche, Buenos Aires, Argentina
| |
Collapse
|
556
|
Desbois AC, Cacoub P, Leroyer AS, Tellier E, Garrido M, Maciejewski-Duval A, Comarmond C, Barete S, Arock M, Bruneval P, Launay JM, Fouret P, Blank U, Rosenzwajg M, Klatzmann D, Jarraya M, Cluzel P, Koskas F, Kaplanski G, Saadoun D. Immunomodulatory role of Interleukin-33 in large vessel vasculitis. Sci Rep 2020; 10:6405. [PMID: 32286393 PMCID: PMC7156501 DOI: 10.1038/s41598-020-63042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/25/2020] [Indexed: 01/19/2023] Open
Abstract
The mechanisms regulating inflammation in large vessels vasculitis (LVV) are poorly understood. Interleukin 33 (IL-33) has been shown to license innate and adaptive immunity by enhancing Th2 cytokines production. We aimed to examine the role of IL-33 in the immunomodulation of T cell activation in LVV. T cell homeostasis and cytokines production were determined in peripheral blood from 52 patients with giant cell arteritis (GCA) and 50 healthy donors (HD), using Luminex assay, flow cytometry, quantitative RT-PCR and by immunofluorescence analysis in inflammatory aorta lesions. We found increased level of IL-33 and its receptor ST2/IL-1R4 in the serum of patient with LVV. Endothelial cells were the main source of IL-33, whereas Th2 cells, Tregs and mast cells (MC) express ST2 in LVV vessels. IL-33 had a direct immunomodulatory impact by increasing Th2 and Tregs. IL-33 and MC further enhanced Th2 and regulatory responses by inducing a 6.1 fold increased proportion of Tregs (p = 0.008). Stimulation of MC by IL-33 increased indoleamine 2 3-dioxygenase (IDO) activity and IL-2 secretion. IL-33 mRNA expression was significantly correlated with the expression of IL-10 and TGF-β within aorta inflammatory lesions. To conclude, our findings suggest that IL-33 may exert a critical immunoregulatory role in promoting Tregs and Th2 cells in LVV.
Collapse
Affiliation(s)
- Anne-Claire Desbois
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - Patrice Cacoub
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - Aurélie S Leroyer
- Aix-Marseille Univ; INSERM, Vascular Research Center of Marseille, UMR-S 1076, 13385, Marseille, France
| | - Edwige Tellier
- Aix-Marseille Univ; INSERM, Vascular Research Center of Marseille, UMR-S 1076, 13385, Marseille, France
| | - Marlène Garrido
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
| | - Anna Maciejewski-Duval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
| | - Cloé Comarmond
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - Stéphane Barete
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - Michel Arock
- Laboratoire de biotechnologies et pharmacologie génétique appliquée, CNRS UMR 8147, ENS - Ecole normale supérieure de Cachan, Cachan, France
- AP-HP, Hôpital Pitié-Salpétrière, Laboratoire d'Hématologie Biologique, Paris, France
| | - Patrick Bruneval
- Laboratoire d'anatomopathologie, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Pierre Fouret
- Laboratoire d'anatomopathologie; Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - Ulrich Blank
- Inserm U1149, CNRS ERL8252, Faculté de Médecine Site X. Bichat, Paris, France
| | - Michelle Rosenzwajg
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France
| | - Mohamed Jarraya
- Banque des tissus Humains, Hôpital saint Louis, Paris, France
| | - Philippe Cluzel
- Service de radiologie vasculaire, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - Fabien Koskas
- Service de Chirurgie vasculaire, Groupe Hospitalier Pitié-Salpétrière, Paris, France
| | - Gilles Kaplanski
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France
- APHM, CHU Conception, Service de Médecine Interne, Marseille, France
| | - David Saadoun
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3), F-75005, Paris, France.
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, AP-HP, F-75651, Paris, France.
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, F-75013, Paris, France.
- Centre national de références Maladies Autoimmunes et systémiques rares et Maladies Autoinflammatoires rares, Paris, France.
| |
Collapse
|
557
|
Jevtovic A, Pantic J, Jovanovic I, Milovanovic M, Stanojevic I, Vojvodic D, Arsenijevic N, Lukic ML, Radosavljevic GD. Interleukin-33 pretreatment promotes metastatic growth of murine melanoma by reducing the cytotoxic capacity of CD8 + T cells and enhancing regulatory T cells. Cancer Immunol Immunother 2020; 69:1461-1475. [PMID: 32285171 DOI: 10.1007/s00262-020-02522-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Interleukin-33 (IL-33) regulates innate and acquired immune response to pathogens, self-antigens and tumors. IL-33 effects on tumors depend on the dose and mode of administration along with the type of malignancy. We studied the effects of IL-33 on the development of primary and metastatic melanoma induced by B16-F1 cell line in C57BL/6 mice. Intraperitoneally applied IL-33 restricts primary tumor growth. When administered intranasally 3 days prior to the intravenous injection of the tumor cells, IL-33 promoted growth of B16-F1 melanoma metastases, while B16-F10 gave massive metastases independently of IL-33. To mimic natural dissemination, we next used a limited number (5 × 104) of B16-F1 cells intravenously followed by application of IL-33 intraperitoneally. IL-33 increased the size of metastases (10.96 ± 3.96 mm2) when compared to the control group (0.86 ± 0.39 mm2), without changing incidence and number of metastases. IL-33 increased expression of ST2 on both tumor and immune cells in metastases. Also, IL-33 enhanced eosinophils and anti-tumor NK cells in the lung. The striking finding was reduced cytotoxicity of CD8+ T cells derived from metastatic lung of IL-33 injected mice. IL-33 reduced the percentage of TNF-α+ and IFN-γ+ CD8+ T cells while increasing the frequency of CD8+ T cells that express inhibitory molecules (PD-1, KLRG-1 and CTLA-4). There was a significant accumulation of CD11b+Gr-1+ myeloid suppressor cells and FoxP3+, IL-10+ and CTLA-4+ regulatory T cells in the metastatic lung of IL-33 injected mice. The relevance of IL-33 for melanoma metastases was also documented in a significantly increased level of serum IL-33 in stage III melanoma patients.
Collapse
Affiliation(s)
- Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.,Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000, Kragujevac, Serbia.
| |
Collapse
|
558
|
Interleukin-33 Signaling Controls the Development of Iron-Recycling Macrophages. Immunity 2020; 52:782-793.e5. [PMID: 32272082 PMCID: PMC7237885 DOI: 10.1016/j.immuni.2020.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.
Collapse
|
559
|
Azmeh R, Greydanus DE, Agana MG, Dickson CA, Patel DR, Ischander MM, Lloyd RD. Update in Pediatric Asthma: Selected Issues. Dis Mon 2020; 66:100886. [PMID: 31570159 DOI: 10.1016/j.disamonth.2019.100886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a complex condition that affects 14% of the world's children and the approach to management includes both pharmacologic as well as non-pharmacologic strategies including attention to complex socioeconomic status phenomena. After an historical consideration of asthma, allergic and immunologic aspects of asthma in children and adolescents are presented. Concepts of socioeconomic aspects of asthma are considered along with environmental features and complications of asthma disparities. Also reviewed are links of asthma with mental health disorders, sleep disturbances and other comorbidities. A stepwise approach to asthma management is discussed that includes pharmacologic and non-pharmacologic strategies in the pediatric population. The role of immunotherapy and use of various immunomodulators are considered as well.
Collapse
Affiliation(s)
- Roua Azmeh
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Marisha G Agana
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Cheryl A Dickson
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States; Health Equity and Community Affairs, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, United States
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Mariam M Ischander
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Robert D Lloyd
- Pacific Northwest University of Health Sciences College of Osteopathic Medicine, Yakima, Washington, United States
| |
Collapse
|
560
|
Wu Y, Lai AC, Chi P, Thio CL, Chen W, Tsai C, Lee YL, Lukacs NW, Chang Y. Pulmonary IL-33 orchestrates innate immune cells to mediate respiratory syncytial virus-evoked airway hyperreactivity and eosinophilia. Allergy 2020; 75:818-830. [PMID: 31622507 DOI: 10.1111/all.14091] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is epidemiologically linked to asthma. During RSV infection, IL-33 is elevated and promotes immune cell activation, leading to the development of asthma. However, which immune cells are responsible for triggering airway hyperreactivity (AHR), inflammation and eosinophilia remained to be clarified. We aimed to elucidate the individual roles of IL-33-activated innate immune cells, including ILC2s and ST2+ myeloid cells, in RSV infection-triggered pathophysiology. METHODS The role of IL-33/ILC2 axis in RSV-induced AHR inflammation and eosinophilia were evaluated in the IL-33-deficient and YetCre-13 Rosa-DTA mice. Myeloid-specific, IL-33-deficient or ST2-deficient mice were employed to examine the role of IL-33 and ST2 signaling in myeloid cells. RESULTS We found that IL-33-activated ILC2s were crucial for the development of AHR and airway inflammation, during RSV infection. ILC2-derived IL-13 was sufficient for RSV-driven AHR, since reconstitution of wild-type ILC2 rescued RSV-driven AHR in IL-13-deficient mice. Meanwhile, myeloid cell-derived IL-33 was required for airway inflammation, ST2+ myeloid cells contributed to exacerbation of airway inflammation, suggesting the importance of IL-33 signaling in these cells. Local and peripheral eosinophilia is linked to both ILC2 and myeloid IL-33 signaling. CONCLUSIONS This study highlights the importance of IL-33-activated ILC2s in mediating RSV-triggered AHR and eosinophilia. In addition, IL-33 signaling in myeloid cells is crucial for airway inflammation.
Collapse
Affiliation(s)
- Yi‐Hsiu Wu
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Po‐Yu Chi
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Wei‐Yu Chen
- Institute for Translational Research in Biomedicine Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Ching‐Hui Tsai
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | | | - Ya‐Jen Chang
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| |
Collapse
|
561
|
Opinc A, Sarnik J, Brzezińska O, Makowski M, Lewandowska-Polak A, Makowska J. Interleukin-33/suppression of tumorigenicity 2 (IL-33/ST2) axis in idiopathic inflammatory myopathies and its association with laboratory and clinical parameters: a pilot study. Rheumatol Int 2020; 40:1133-1141. [PMID: 32222805 PMCID: PMC7256085 DOI: 10.1007/s00296-020-04554-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Idiopathic inflammatory myopathies (IIM) are rare connective tissue diseases, which can lead to internal organ involvement. IL-33/ST2 pathway is involved in the pathogenesis of numerous diseases including autoimmune disorders. IL-33 fulfils cardioprotective function, while soluble ST2 (sST2) is a decoy receptor that reduces protective impact of IL-33. The aim of the study was to evaluate the concentrations of sST2 and IL-33 in sera of patients with IIM and evaluate its associations with the clinical course of the disease. Patients with IIM as well as age- and sex-matched healthy controls were recruited. Concentrations of sST2 and IL-33 were assessed with ELISA in sera of both patients and controls. Patients were asked to fill in the questionnaires concerning clinical symptoms and physical functioning. Concentrations of sST2 and IL-33 were correlated with the results of laboratory tests and clinical symptoms. Concentrations of sST2 were significantly higher in IIM group than in healthy subjects (median sST2 in IIM 26.51 vs in healthy controls 21.39; p = 0.03). In the majority of patients, IL-33 concentrations did not exceed the detection limit. Anti-SRP-positive patients presented significantly higher concentrations of sST2 as compared to anti-SRP-negative patients (p = 0.04). In patients with anti-Ro52 antibodies, sST2 concentrations were significantly lower than in anti-Ro52-negative patients (p = 0.02). Concentrations of sST2 correlated with the degree of disability evaluated with Health Assessment Questionnaire. sST2 is increased in patients with IIM and its concentration correlates with the degree of disability. In patients with anti-SRP antibodies, levels of sST2 are exceptionally high.
Collapse
Affiliation(s)
- Aleksandra Opinc
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland
| | - Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland
| | - Marcin Makowski
- Departament of Intensive Care, Cardiology, Medical University of Lodz, ul Pomorska 251, 92-213 Łódź, Poland
| | - Anna Lewandowska-Polak
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, ul. Pieniny 30, 92-115 Łódź, Poland
| |
Collapse
|
562
|
Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or
de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Dermatlogy, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| |
Collapse
|
563
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
564
|
Oliva S, Azouz NP, Stronati L, Rothenberg ME. Recent advances in potential targets for eosinophilic esophagitis treatments. Expert Rev Clin Immunol 2020; 16:421-428. [PMID: 32163308 DOI: 10.1080/1744666x.2020.1742110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Diagnostic and therapeutic strategies in eosinophilic esophagitis (EoE) are constantly evolving. Recently, the improved understanding of EoE pathogenesis has led to identification of a variety of other potential targets that have never been considered before.Areas covered: In September 2019, we performed structured literature searches in Medline and PubMed, Cochrane meta-analyses, and abstracts of international congresses to review new potential therapeutic approaches for EoE.Expert opinion: The advent of omics disciplines has been helping in finding new molecular targets in EoE pathogenesis and may provide future guidance for deep phenotyping of the disease and therefore facilitate the possibility of personalized medicine. Interestingly, these new treatments should be focused on the restoration of epithelial barrier dysfunction, downregulation of specific molecular pathways of eosinophilic inflammation, and finally, prevention of esophageal remodeling. In this review, we highlight the most recent insights in EoE pathogenesis, which open new pathways for developing new therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Maternal and Child Health Department, Sapienza - University of Rome, Rome, Italy.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza-University of Rome, Rome, Italy
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
565
|
Kudo-Saito C, Miyamoto T, Imazeki H, Shoji H, Aoki K, Boku N. IL33 Is a Key Driver of Treatment Resistance of Cancer. Cancer Res 2020; 80:1981-1990. [PMID: 32156776 DOI: 10.1158/0008-5472.can-19-2235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/10/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Recurrence and treatment resistance are major causes of cancer-associated death. There has been a growing interest in better understanding epithelial-mesenchymal transition, stemness of cancer cells, and exhaustion and dysfunction of the immune system for which numerous genomic, proteomic, microenvironmental, and immunologic mechanisms have been demonstrated. However, practical treatments for such patients have not yet been established. Here we identified IL33 as a key driver of polyploidy, followed by rapid proliferation after treatment. IL33 induction transformed tumor cells into polyploid giant cells, showing abnormal cell cycle without cell division accompanied by Snail deregulation and p53 inactivation; small progeny cells were generated in response to treatment stress. Simultaneously, soluble IL33 was released from tumor cells, leading to expansion of receptor ST2-expressing cells including IL17RB+GATA3+ cells, which promoted tumor progression and metastasis directly and indirectly via induction of immune exhaustion and dysfunction. Blocking IL33 with a specific mAb in murine IL33+ metastatic tumor models abrogated negative consequences and successfully elicited antitumor efficacy induced by other combined treatments. Ex vivo assays using tumor tissues and peripheral blood mononuclear cells of patients with cancer validated the clinical relevancy of these findings. Together, these data suggest that targeting the IL33-ST2 axis is a promising strategy for diagnosis and treatment of patients likely to be resistant to treatments in the clinical settings. SIGNIFICANCE: These findings indicate that the functional role of IL33 in cancer polyploidy contributes to intrinsic and extrinsic mechanisms underlying treatment failure.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Miyamoto
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
566
|
Kobari S, Kusakabe T, Momota M, Shibahara T, Hayashi T, Ozasa K, Morita H, Matsumoto K, Saito H, Ito S, Kuroda E, Ishii KJ. IL-33 Is Essential for Adjuvant Effect of Hydroxypropyl-β-Cyclodexrin on the Protective Intranasal Influenza Vaccination. Front Immunol 2020; 11:360. [PMID: 32210964 PMCID: PMC7069475 DOI: 10.3389/fimmu.2020.00360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023] Open
Abstract
Vaccine adjuvants are traditionally used to augment and modulate the immunogenicity of vaccines, although in many cases it is unclear which specific molecules contribute to their stimulatory activity. We previously reported that both subcutaneous and intranasal administration of hydroxypropyl-β-cyclodextrin (HP-β-CD), a pharmaceutical excipient widely used to improve solubility, can act as an effective adjuvant for an influenza vaccine. However, the mechanisms by which mucosal immune pathway is critical for the intranasal adjuvant activity of HP-β-CD have not been fully delineated. Here, we show that intranasally administered HP-β-CD elicits a temporary release of IL-33 from alveolar epithelial type 2 cells in the lung; notably, IL-33 expression in these cells is not stimulated following the use of other vaccine adjuvants. The experiments using gene deficient mice suggested that IL-33/ST2 signaling is solely responsible for the adjuvant effect of HP-β-CD when it is administered intranasally. In contrast, the subcutaneous injection of HP-β-CD and the intranasal administration of alum, as a damage-associated molecular patterns (DAMPs)-inducing adjuvant, or cholera toxin, as a mucosal adjuvant, enhanced humoral immunity in an IL-33-independent manner, suggesting that the IL-33/ST2 pathway is unique to the adjuvanticity of intranasally administered HP-β-CD. Furthermore, the release of IL-33 was involved in the protective immunity against influenza virus infection which is induced by the intranasal administration of HP-β-CD-adjuvanted influenza split vaccine. In conclusion, our results suggest that an understanding of administration route- and tissue-specific immune responses is crucial for the design of unique vaccine adjuvants.
Collapse
Affiliation(s)
- Shingo Kobari
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Takato Kusakabe
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takayuki Shibahara
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Tomoya Hayashi
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Ozasa
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Etsushi Kuroda
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
567
|
Just Another Needle in a Haystack? Can a Single Cytokine Improve Medical Care in Biliary Atresia? J Pediatr Gastroenterol Nutr 2020; 70:278-279. [PMID: 31899734 DOI: 10.1097/mpg.0000000000002613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
568
|
Yue Y, Lian J, Wang T, Luo C, Yuan Y, Qin G, Zhang B, Zhang Y. Interleukin-33-nuclear factor-κB-CCL2 signaling pathway promotes progression of esophageal squamous cell carcinoma by directing regulatory T cells. Cancer Sci 2020; 111:795-806. [PMID: 31883400 PMCID: PMC7060484 DOI: 10.1111/cas.14293] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is currently one of the most fatal cancers. However, there is no effective treatment. Increasing evidence suggests that interleukin (IL)-33 has a significant role in tumor progression and metastasis. Currently, the underlying cellular and molecular mechanism of IL-33 in promoting esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we investigated whether IL-33 could induce the epithelial-mesenchymal transition (EMT) in ESCC. Interleukin-33 expression was examined in ESCC and corresponding adjacent normal tissues by immunohistochemistry and quantitative real-time PCR experiments. Elevated IL-33 levels were observed in ESCC tissues. Further in vitro experiments were undertaken to elucidate the effect of IL-33 on migration and invasion in KYSE-450 and Eca-109 esophageal cancer cells. Knockdown of IL-33 decreased the metastasis and invasion capacity in esophageal cancer cells, whereas IL-33 overexpression showed the opposite effect. We then screened CCL2 which is a downstream molecule of IL-33, and proved that IL-33 could promote tumor development and metastasis by recruiting regulatory T cells (Tregs) through CCL2, and IL-33 regulated the expression of CCL2 through transforming growth factor-β in Treg cells. Knockdown of IL-33 decreased the development of human ESCC xenografts in BALB/c nude mice. Collectively, we found that the IL-33/nuclear factor-κB/CCL2 pathway played an essential role in human ESCC progress. Hence, IL-33 should be considered as an effective therapy target for ESCC.
Collapse
Affiliation(s)
- Ying Yue
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Clinical LaboratoryThe Seventh People's Hospital of ZhengzhouZhengzhouChina
| | - Jingyao Lian
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tian Wang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chenghan Luo
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yiqiang Yuan
- Clinical LaboratoryThe Seventh People's Hospital of ZhengzhouZhengzhouChina
| | - Guohui Qin
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Zhang
- Department of Hematology/OncologySchool of MedicineNorthwestern UniversityChicagoILUSA
| | - Yi Zhang
- Biotherapy CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory for Tumor Immunology and BiotherapyZhengzhouChina
| |
Collapse
|
569
|
Cao S, Zhu L, Zhu C, Feng J, Yin J, Lu J, Xu Y, Yang H, Huang Y, Zhang Q. Helicobacter hepaticus infection-induced IL-33 promotes hepatic inflammation and fibrosis through ST2 signaling pathways in BALB/c mice. Biochem Biophys Res Commun 2020; 525:654-661. [PMID: 32122655 DOI: 10.1016/j.bbrc.2020.02.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022]
Abstract
It has been documented that Helicobacter hepaticus (H. hepaticus) infection is linked to hepatic inflammation and fibrosis. Interleukin 33 (IL-33) is a cytokine involved in inflammatory and fibrotic diseases, but its relevance to H. hepaticus infection-induced liver inflammation and fibrosis is unknown. In this study, we found that the expression of IL-33 in mice liver was significantly induced by H. hepaticus infection at 24 weeks post infection (WPI). Immunohistochemistry analysis revealed that IL-33 was transferred from the nucleus to the cytoplasm due to infection. The quantitation of inflammatory cytokine and histopathology evaluation showed that IL-33 knockdown attenuated the H. hepaticus-induced hepatic inflammation and fibrosis. More importantly, H. hepaticus promoted the expression of the IL-33 receptor ST2 on cell surfaces, and the expression of ST2 then activated the expression nuclear factor-κB (p65), α-SMA, and Erk1/2. These observations provide novel insights into the pathogenic mechanism of hepatic inflammation and fibrosis during H. hepaticus infection.
Collapse
Affiliation(s)
- Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chen Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Feng
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Shanghai Lab Animal Research Center, Shanghai, 201203, China
| | - Jun Yin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jin Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, 214064, China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, 214064, China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haitao Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, 214064, China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, 214064, China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
570
|
Matsushita K, Tanaka H, Yasuda K, Adachi T, Fukuoka A, Akasaki S, Koida A, Kuroda E, Akira S, Yoshimoto T. Regnase-1 degradation is crucial for IL-33- and IL-25-mediated ILC2 activation. JCI Insight 2020; 5:131480. [PMID: 31990689 DOI: 10.1172/jci.insight.131480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a critical innate source of type 2 cytokines in allergic inflammation. Although ILC2s are recognized as a critical cell population in the allergic inflammation, the regulatory mechanism(s) of ILC2s are less well understood. Here, we show that Regnase-1, an immune regulatory RNAse that degrades inflammatory mRNAs, negatively regulates ILC2 function and that IκB kinase (IKK) complex-mediated Regnase-1 degradation is essential for IL-33- and IL-25-induced ILC2 activation. ILC2s from Regnase-1AA/AA mice expressing a Regnase-1 S435A/S439A mutant resistant to IKK complex-mediated degradation accumulated Regnase-1 protein in response to IL-33 and IL-25. IL-33- and IL-25-stimulated Regnase-1AA/AA ILC2s showed reduced cell proliferation and type 2 cytokine (IL-5, IL-9, and IL-13) production and increased cell death. In addition, Il2ra and Il1rl1, but not Il5, Il9, or Il13, mRNAs were destabilized in IL-33-stimulated Regnase-1AA/AA ILC2s. In vivo, Regnase-1AA/AA mice showed attenuated acute type 2 pulmonary inflammation induced by the instillation of IL-33, IL-25, or papain. Furthermore, the expulsion of Nippostrongylus brasiliensis was significantly delayed in Regnase-1AA/AA mice. These results demonstrate that IKK complex-mediated Regnase-1 degradation is essential for ILC2-mediated type 2 responses both in vitro and in vivo. Therefore, controlling Regnase-1 degradation is a potential therapeutic target for ILC2-contributed allergic disorders.
Collapse
Affiliation(s)
- Kazufumi Matsushita
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroki Tanaka
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takumi Adachi
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayumi Fukuoka
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shoko Akasaki
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and
| | - Atsuhide Koida
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Yoshimoto
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, and.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
571
|
Lippens L, Van Bockstal M, De Jaeghere EA, Tummers P, Makar A, De Geyter S, Van de Vijver K, Hendrix A, Vandecasteele K, Denys H. Immunologic impact of chemoradiation in cervical cancer and how immune cell infiltration could lead toward personalized treatment. Int J Cancer 2020; 147:554-564. [PMID: 32017078 DOI: 10.1002/ijc.32893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
We investigated the potential of tumor-infiltrating immune cells (ICs) as predictive or prognostic biomarkers for cervical cancer patients. In total, 38 patients treated with (chemo)radiotherapy and subsequent surgery were included in the current study. This unique treatment schedule makes it possible to analyze IC markers in pretreatment and posttreatment tissue specimens and their changes during treatment. IC markers for T cells (CD3, CD4, CD8 and FoxP3), macrophages (CD68 and CD163) and B cells (CD20), as well as IL33 and PD-L1, were retrospectively analyzed via immunohistochemistry. Patients were grouped in the low score or high score group based on the amount of positive cells on immunohistochemistry. Correlations to pathological complete response (pCR), cause-specific survival (CSS) and metastasis development during follow-up were evaluated. In analysis of pretreatment biopsies, significantly more pCR was seen for patients with CD8 = CD3, CD8 ≥ CD4, positive IL33 tumor cell (TC) scores, IL33 IC < TC and PD-L1 TC ≥5%. Besides patients with high CD8 scores, also patients with CD8 ≥ CD4, CD163 ≥ CD68 or PD-L1 IC ≥5% had better CSS. In the analysis of posttreatment specimens, less pCR was observed for patients with high CD8 or CD163 scores. Patients with decreasing CD8 or CD163 scores between pretreatment and posttreatment samples showed more pCR, whereas those with increasing CD8 or decreasing IL33 IC scores showed a worse CSS. Meanwhile, patients with an increasing CD3 score or stable/increasing PD-L1 IC score showed more metastasis during follow-up. In this way, the intratumoral IC landscape is a promising tool for prediction of outcome and response to (chemo)radiotherapy.
Collapse
Affiliation(s)
- Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Mieke Van Bockstal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Philippe Tummers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Amin Makar
- Gynecology, Department of Human Structure and Repair, Gent University Hospital, Ghent, Belgium
| | - Sofie De Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Pathology, Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Vandecasteele
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Radiation Therapy, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
572
|
Emerging Roles of Interleukin-33-responsive Kidney Group 2 Innate Lymphoid Cells in Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21041544. [PMID: 32102434 PMCID: PMC7073188 DOI: 10.3390/ijms21041544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-33, a member of the IL-1 family of cytokines, is involved in innate and adaptive immune responses. IL-33 triggers pleiotropic immune functions in multiple types of immune cells, which express the IL-33 receptor, ST2. Recent studies have revealed the potential applications of IL-33 for treating acute kidney injury in preclinical animal models. However, IL-33 and IL-33-responding immune cells are reported to exhibit both detrimental and beneficial roles. The IL-33-mediated immunomodulatory functions have been investigated using loss-of-function approaches, such as IL33-deficient mice, IL-33 antagonists, or administration of exogenous IL-33 recombinant protein. This review will discuss the key findings on IL-33-mediated activation of kidney resident group 2 innate lymphoid cells (ILC2s) and summarize the current understanding of the differential functions of endogenous IL-33 and exogenous IL-33 and their potential implications in treating acute kidney injury.
Collapse
|
573
|
Correlation of plasma soluble suppression of tumorigenicity-2 level with the severity and stability of coronary atherosclerosis. Coron Artery Dis 2020; 31:628-635. [PMID: 32040025 DOI: 10.1097/mca.0000000000000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Soluble growth stimulation expressed gene 2 (sST2) is the receptor of interleukin (IL)-33. We hypothesized the IL-33/ST2 pathway may be closely related to the progression of coronary atherosclerotic lesions. METHODS We analyzed 262 patients, including 63 with stable angina pectoris (SAP), 97 with acute coronary syndrome (ACS), and 102 control subjects. Plasma sST2 levels were determined using ELISA. Gensini scores were calculated. Patients with ACS and SAP were further divided according to the complexity of atherosclerotic lesions (simple/complex). Statistical analysis was performed on all data. RESULTS The plasma sST2 levels were significantly higher in patients with coronary artery disease (CAD) than in the control group, and were significantly higher in ACS patients with complex lesions than in those with simple lesions. There were no correlations between plasma sST2 level and both the number of culprit vessels and Gensini score. Multivariate stepwise regression analysis revealed that angiographically detected complex lesions were independently correlated with plasma sST2 level. Logistic regression analyses showed that sST2 was an independent factor of both CAD and the lesion type (simple/complex) of ACS. For the diagnosis of ACS and complex lesions, the area under the receiver operating characteristic curve of sST2 was 0.651. CONCLUSIONS The plasma sST2 level was not correlated with the stenosis severity of coronary atherosclerosis. A relationship between the plasma sST2 level and the morphology of complex lesions was found for the first time, especially in ACS patients. It may be a new marker for assessing the stability and complexity of atherosclerotic plaques.
Collapse
|
574
|
An Z, Flores-Borja F, Irshad S, Deng J, Ng T. Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. Front Immunol 2020; 10:3111. [PMID: 32117199 PMCID: PMC7010811 DOI: 10.3389/fimmu.2019.03111] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue resident and respond rapidly toward the environmental signals from surrounding tissues and other immune cells. The pleiotropic function of ILCs in diverse contexts underpins its importance in the innate arm of immune system in human health and disease. ILCs derive from common lymphoid progenitors but lack adaptive antigen receptors and functionally act as the innate counterpart to T-cell subsets. The classification of different subtypes is based on their distinct transcription factor requirement for development as well as signature cytokines that they produce. The discovery and subsequent characterization of ILCs over the past decade have mainly focused on the regulation of inflammation, tissue remodeling, and homeostasis, whereas the understanding of the multiple roles and mechanisms of ILCs in cancer is still limited. Emerging evidence of the potent immunomodulatory properties of ILCs in early host defense signifies a major advance in the use of ILCs as promising targets in cancer immunotherapy. In this review, we will decipher the non-exclusive roles of ILCs associated with both protumor and antitumor activities. We will also dissect the heterogeneity, plasticity, genetic evidence, and dysregulation in different cancer contexts, providing a comprehensive understanding of the complexity and diversity. These will have implications for the therapeutic targeting in cancer.
Collapse
Affiliation(s)
- Zhengwen An
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sheeba Irshad
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
| | - Tony Ng
- KCL Breast Cancer Now Research Unit, Guys Cancer Centre, King's College London, London, United Kingdom
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
575
|
Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, Chang X, Jin Z, Li J, Zhu Z, Liu B, Su L. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene 2020; 39:1414-1428. [PMID: 31659258 PMCID: PMC7018661 DOI: 10.1038/s41388-019-1078-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 01/25/2023]
Abstract
Gastric cancer (GC) is characterized by extensive local invasion, distant metastasis and poor prognosis. In most cases, GC progression is associated with aberrant expression of cytokines or activation of signaling cascades mediated by tumor-stroma interactions. However, the mechanisms by which these interactions contribute to GC progression are poorly understood. In this study, we find that IL-33 and its receptor ST2L are upregulated in the human GC and served as prognostic markers for poor survival of GC patients. In a co-culture model with GC cells and cancer-associated fibroblasts (CAFs), we further demonstrate that CAFs-derived IL-33 enhances the migration and invasion of GC cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK1/2-SP1-ZEB2 pathway in a ST2L-dependent manner. Furthermore, the secretion of IL-33 by CAFs can be induced by the proinflammatory cytokines TNF-α that is released by GC cells via TNFR2-NF-κB-IRF-1 pathway. Additionally, silencing of IL-33 expression in CAFs or ST2L expression in GC cells inhibits the peritoneal dissemination and metastatic potential of GC cells in nude mice. Taken together, these results characterize a critical role of the interaction between epithelial-stroma mediated by the TNF-α/IL-33/ST2L signaling in GC progression, and provide a rationale for targeting this pathway to treat GC metastasis.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
- Department of Urology, Center for Organ Transplantation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xiongyan Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhenjia Yu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Tao Pan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Xinyu Chang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhijian Jin
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Jianfang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Zhenggang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China.
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, People's Republic of China.
| |
Collapse
|
576
|
Samadi N, Klems M, Heiden D, Bauer R, Kitzmüller C, Weidmann E, Ret D, Ondracek AS, Duschl A, Horejs‐Hoeck J, Untersmayr E. Nitrated food proteins induce a regulatory immune response associated with allergy prevention after oral exposure in a Balb/c mouse food allergy model. Allergy 2020; 75:412-422. [PMID: 31444907 PMCID: PMC7064937 DOI: 10.1111/all.14030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Food allergy is associated with a high personal health and economic burden. For immunomodulation toward tolerance, food compounds could be chemically modified, for example, by posttranslational protein nitration, which also occurs via diet-derived nitrating agents in the gastrointestinal tract. OBJECTIVE We sought to analyze the effect of pretreatment with nitrated food proteins on the immune response in a mouse food allergy model and on human monocyte-derived dendritic cells (moDCs) and PBMCs. METHODS The model allergen ovalbumin (OVA) was nitrated in different nitration degrees, and the secondary structures of proteins were determined by circular dichroism (CD). Allergy-preventive treatment with OVA, nitrated OVA (nOVA), and maximally nitrated OVA (nOVAmax) were performed before mice were immunized with or without gastric acid-suppression medication. Antibody levels, regulatory T-cell (Treg) numbers, and cytokine levels were evaluated. Human moDCs or PBMCs were incubated with proteins and evaluated for expression of surface markers, cytokine production, and proliferation of Th2 as well as Tregs. RESULTS In contrast to OVA and nOVA, the conformation of nOVAmax was substantially changed. nOVAmax pretreated mice had decreased IgE as well as IgG1 and IgG2a levels and Treg numbers were significantly elevated, while cytokine levels remained at baseline level. nOVAmax induced a regulatory DC phenotype evidenced by a decrease of the activation marker CD86 and an increase in IL-10 production and was associated with a higher proliferation of memory Tregs. CONCLUSION Oral pretreatment with highly nitrated proteins induces a tolerogenic immune response in the food allergy model and in human immune cells.
Collapse
Affiliation(s)
- Nazanin Samadi
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Martina Klems
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Denise Heiden
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Renate Bauer
- Department of Biosciences University of Salzburg Salzburg Austria
| | - Claudia Kitzmüller
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Eleonore Weidmann
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Davide Ret
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Anna S. Ondracek
- Anna Spiegel Research Center Medical University of Vienna Vienna Austria
| | - Albert Duschl
- Department of Biosciences University of Salzburg Salzburg Austria
| | | | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
577
|
Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY) 2020; 12:1685-1703. [PMID: 32003751 PMCID: PMC7053587 DOI: 10.18632/aging.102707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022]
Abstract
IL-33 is an important member of the IL-1 family which has pleiotropic activities in innate and adaptive immune responses. Recently, some researchers have focused on the function of cellular immunity in the development of tumor. The biological role of IL-33 in glioma is poorly understood. In this study, we showed that glioma cells and tissues expressed higher levels of IL-33 and its receptor ST2 compared to normal brain. Clinically, IL-33 expression was associated with poor survival in patients with glioma. Administration of human IL-33 enhanced cell migration, invasion, epithelial to mesenchymal transition and stemness. Anti-ST2 blocked these effects of IL-33 on tumor. Mechanistically, IL-33 activated JNK signaling pathway via ST2 and increased the expression of key transcription factors that controlled the process of EMT and stemness. Moreover, IL-33 prevented temozolomide induced tumor apoptosis. Anti-ST2 or knockdown IL-33 increased the sensitivity of tumor to temozolomide. Thus, targeting the IL-33/ST2 axis may offer an opportunity to the treatment of glioma patients.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Mingli Liu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Qingbin Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China
| | - Quan Liu
- Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruiyan Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing 100050, China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| |
Collapse
|
578
|
Chen L, Wang G, Qiao X, Wang X, Liu J, Niu X, Zhong M. Downregulated miR-524-5p Participates in the Tumor Microenvironment of Ameloblastoma by Targeting the Interleukin-33 (IL-33)/Suppression of Tumorigenicity 2 (ST2) Axis. Med Sci Monit 2020; 26:e921863. [PMID: 31990904 PMCID: PMC6998793 DOI: 10.12659/msm.921863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Ameloblastoma (AB) is a common odontogenic epithelial tumor, with locally invasive behavior and high recurrence. In this study, we hypothesized that miR-524-5p could be involved in the tumor microenvironment by targeting interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) in AB. Material/Methods The microRNA (miRNA) expression profile of AB tissues and normal oral mucosa tissues (NOM; 6 paired samples) was analyzed. The miRNAs with fold change ≥2 and P<0.05 were considered to be differentially expressed. Among them, downregulated miR-524-5p was verified by real-time qPCR. Potential targets of miR-524-5p were predicted by bioinformatics analysis. The expression levels of target genes were detected using real-time qPCR and Western blot, respectively. Immunohistochemistry analysis of target genes was performed, and we also assessed the correlation between miR-524-5p and its target. Results Microarray analysis results first indicated miR-524-5p is a downregulated miRNA in AB tissues. Real-time qPCR results confirmed the expression pattern of miR-524-5p in AB tissues. Moreover, IL-33 and its receptor ST2 were significantly overexpressed. As shown in immunohistochemistry results, IL-33 was positively expressed in lymphocytes and plasma cells, suggesting that IL-33/ST2 participates in tumor immune responses in the tumor microenvironment. Correlation analysis suggested that miR-524-5p expression was negatively correlated with IL-33/ST2. Conclusions Our findings reveal that downregulated miR-524-5p can participate in the tumor microenvironment of AB by targeting the IL-33/ST2 axis.
Collapse
Affiliation(s)
- Lijie Chen
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guannan Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xue Qiao
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiaobin Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jinwen Liu
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xing Niu
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China (mainland).,Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
579
|
Abstract
There are multiple proinflammatory pathways in the pathogenesis of asthma. These include both innate and adaptive inflammation, in addition to inflammatory and physiologic responses mediated by eicosanoids. An important component of the innate allergic immune response is ILC2 activated by interleukin (IL)-33, thymic stromal lymphopoietin, and IL-25 to produce IL-5 and IL-13. In terms of the adaptive T-lymphocyte immunity, CD4+ Th2 and IL-17-producing cells are critical in the inflammatory responses in asthma. Last, eicosanoids involved in asthma pathogenesis include prostaglandin D2 and the cysteinyl leukotrienes that promote smooth muscle constriction and inflammation that propagate allergic responses.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, VUMC, T-1218 MCN, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | - Mark A Aronica
- Department of Pathobiology, Respiratory Institute, Cleveland Clinic Lerner College of Medicine, CWRU, 9500 Euclid Avenue, NB2-85, Cleveland, OH 44195, USA
| |
Collapse
|
580
|
Rekima A, Bonnart C, Macchiaverni P, Metcalfe J, Tulic MK, Halloin N, Rekima S, Genuneit J, Zanelli S, Medeiros S, Palmer DJ, Prescott S, Verhasselt V. A role for early oral exposure to house dust mite allergens through breast milk in IgE-mediated food allergy susceptibility. J Allergy Clin Immunol 2020; 145:1416-1429.e11. [PMID: 31954775 DOI: 10.1016/j.jaci.2019.12.912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.
Collapse
Affiliation(s)
- Akila Rekima
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chrystelle Bonnart
- Institut National de la Santé et de la Recherche Médicale, U1220, Toulouse, France
| | | | - Jessica Metcalfe
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Meri K Tulic
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Institut National de la Santé et de la Recherche Médicale, U1065, Mediterranean Centre for Molecular Medicine, Team 12, Nice, France; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Nicolas Halloin
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samah Rekima
- Institut Biologie Valrose, Université Côte d'Azur, Institut National de la Santé et de la Recherche Medicale, Centre National de la Recherche Scientifique, Nice, France
| | - Jon Genuneit
- inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Samantha Zanelli
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samara Medeiros
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debra J Palmer
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Susan Prescott
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Perth Childrens Hospital, Perth, Australia; School of Medicine, University of Western Australia, Crawley, Australia
| | - Valerie Verhasselt
- School of Molecular Sciences, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ.
| |
Collapse
|
581
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
582
|
IL-33 Exacerbates Endometriotic Lesions via Polarizing Peritoneal Macrophages to M2 Subtype. Reprod Sci 2020; 27:869-876. [PMID: 32046466 DOI: 10.1007/s43032-019-00090-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
In endometriosis, M2 macrophages (MΦ) are dominant and promote the development of endometriosis lesions. However, the factor(s) which induces M2 MΦ are unknown. In the present study, we focused on interleukin (IL)-33, known as an alarmin and investigated its expression and its role in endometriosis, especially from the point of the relevance with MΦ. The expression of IL-33 in endometriosis lesions was examined by immunohistochemistry. The cystic fluid of ovarian cysts/tumors was obtained and used to measure IL-33 concentration. Endometriotic stromal cells (ESC) and MΦ derived from patients were used for in vitro experiments. IL-33 was detected in the epithelium and stromal cells of endometriotic lesions. The mean IL-33 concentration in the cystic fluid of endometriomas was significantly higher than that in non-endometriomas (2.2 ng/ml vs. 0.02 ng/ml, P < 0.01). IL-1β induced IL-33 mRNA expression in ESC via p38 MAPK activation. With IL-33 stimulation, peritoneal MΦ polarized to M2 MΦ and produced IL-1β mRNA with a 2.2-fold increase, which was negated with soluble ST2, a decoy receptor of IL-33. IL-33, derived from endometriotic lesions, stimulated MΦ to produce IL-1β, which results in increasing IL-33 production in ESC. This cycle may continue to exacerbate the endometriotic lesions.
Collapse
|
583
|
Hasan A, Kochumon S, Al-Ozairi E, Tuomilehto J, Al-Mulla F, Ahmad R. Correlation Profile of Suppression of Tumorigenicity 2 and/or Interleukin-33 with Biomarkers in the Adipose Tissue of Individuals with Different Metabolic States. Diabetes Metab Syndr Obes 2020; 13:3839-3859. [PMID: 33116731 PMCID: PMC7586022 DOI: 10.2147/dmso.s251978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The suppression of tumorigenicity 2 (ST2) has two main splice variants including a membrane bound (ST2) form, which activates the myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, and a secreted soluble form (sST2), which acts as a decoy receptor for ST2 ligand, interleukin (IL)-33. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D). In humans, adipose tissue IL-33 displays distinct correlation profiles with glycated hemoglobin, ST2, and other immunometabolic mediators, depending on the glycemic health of the individuals. We determined whether adipose tissue ST2 displays distinct correlation profiles with immunometabolic mediators and whether ST2 and/or IL-33 are correlated with intracellular signaling molecules. PATIENTS AND METHODS A total of 91 adults with normal glycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissues were isolated and mRNA expression of biomarkers was measured. RESULTS In individuals with normal glycemia, adipose tissue ST2 was directly correlated with chemokine (C-C motif) ligand (CCL)-2, CCL5, IL-12, fibrinogen-like protein 2 (FGL2) and interferon regulatory factor (IRF)-4, but inversely correlated with cytochrome C oxidase subunit 7A1. IL-33 and ST2 were directly correlated with tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, and nuclear factor of activated T-cells 5 (NFAT5). In individuals with prediabetes, ST2 was inversely correlated with IL-5, whereas IL-33 but not ST2 was directly correlated with MyD88 and NF-κB. In individuals with T2D, ST2 was directly correlated with CCL2, IL-1β, and IRF5. IL-33 and ST2 were directly correlated with MyD88, TRAF6, and NF-κB. CONCLUSION Adipose tissue ST2 and IL-33 show different correlation profiles with various immunometabolic biomarkers depending on the metabolic state of the individuals. Therefore, targeting the IL-33/ST2 axis might form the basis for novel therapies to combat metabolic disorders.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Correspondence: Amal Hasan Email
| | - Shihab Kochumon
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Medical Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Kuwait City, Kuwait
| | - Jaakko Tuomilehto
- Research Division, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Public Health, University of Helsinki, Helsinki, Finland
- National School of Public Health, Madrid, Spain
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Functional Genomics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
584
|
Sendler M, van den Brandt C, Glaubitz J, Wilden A, Golchert J, Weiss FU, Homuth G, De Freitas Chama LL, Mishra N, Mahajan UM, Bossaller L, Völker U, Bröker BM, Mayerle J, Lerch MM. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology 2020; 158:253-269.e14. [PMID: 31593700 DOI: 10.1053/j.gastro.2019.09.040] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis starts with primarily sterile local inflammation that induces systemic inflammatory response syndrome, followed by compensatory anti-inflammatory response syndrome (CARS). We investigated the mechanisms of these processes in mice and human serum. METHODS We induced severe acute pancreatitis by partial duct ligation with caerulein stimulation or intraperitoneal injection of l-arginine in mice with deletion of interleukin (IL)12B, NLRP3, or IL18 and in mice given MCC950, a small molecule inhibitor of the NLRP3-inflammasome. Pancreata were collected from mice and analyzed by histology, and cytokine levels were measured in serum samples. We measured activation of adaptive immune responses in mice with pancreatitis by flow cytometry analysis of T cells (CD25 and CD69) isolated from the spleen. Differentiation of T-helper (Th1) cells, Th2 cells, and T-regulatory cells was determined by nuclear staining for TBET, GATA3, and FOXP3. We performed transcriptome analysis of mouse lymph nodes and bone marrow-derived macrophages after incubation with acini. We measured levels of cytokines in serum samples from patients with mild and severe acute pancreatitis. RESULTS Activation of the adaptive immune response in mice was initiated by macrophage-derived, caspase 1-processed cytokines and required activation of NLRP3 (confirmed in serum samples from patients with pancreatitis). Spleen cells from mice with pancreatitis had increases in Th2 cells but not in Th1 cells. Bone marrow-derived macrophages secreted IL1B and IL18, but not IL12, after co-incubation with pancreatic acini. T-cell activation and severity of acute pancreatitis did not differ significantly between IL12B-deficient and control mice. In contrast, NLRP3- or IL18-deficient mice had reduced activation of T cells and no increase in Th2 cell-mediated responses compared with control mice. The systemic type 2 immune response was mediated by macrophage-derived cytokines of the IL1 family. Specifically, IL18 induced a Th2 cell-mediated response in the absence of IL12. MCC950 significantly reduced neutrophil infiltration, T-cell activation, and disease severity in mice. CONCLUSIONS In mice with severe pancreatitis, we found systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome developed in parallel. Infiltrating macrophages promote inflammation and simultaneously induce a Th2 cell-mediated response via IL18. Inhibition of NLRP3 reduces systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome and might be used to treat patients with severe pancreatitis.
Collapse
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany.
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | | | - Neha Mishra
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Ujjwal Mukund Mahajan
- Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Lukas Bossaller
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institutes for Genetics and Functional Genomics, University Medicine, University of Greifswald, Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der Ludwig Maximilian University München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
585
|
Jacquet A, Robinson C. Proteolytic, lipidergic and polysaccharide molecular recognition shape innate responses to house dust mite allergens. Allergy 2020; 75:33-53. [PMID: 31166610 DOI: 10.1111/all.13940] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
House dust mites (HDMs) are sources of an extensive repertoire of allergens responsible for a range of allergic conditions. Technological advances have accelerated the identification of these allergens and characterized their putative roles within HDMs. Understanding their functional bioactivities is illuminating how they interact with the immune system to cause disease and how interrelations between them are essential to maximize allergic responses. Two types of allergen bioactivity, namely proteolysis and peptidolipid/lipid binding, elicit IgE and stimulate bystander responses to unrelated allergens. Much of this influence arises from Toll-like receptor (TLR) 4 or TLR2 signalling and, in the case of protease allergens, the activation of additional pleiotropic effectors with strong disease linkage. Of related interest is the interaction of HDM allergens with common components of the house dust matrix, through either their binding to allergens or their autonomous modulation of immune receptors. Herein, we provide a contemporary view of how proteolysis, lipid-binding activity and interactions with polysaccharides and polysaccharide molecular recognition systems coordinate the principal responses which underlie allergy. The power of the catalytically competent group 1 HDM protease allergen component is demonstrated by a review of disclosures surrounding the efficacy of novel inhibitors produced by structure-based design.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC) Chulalongkorn University Bangkok Thailand
| | - Clive Robinson
- Institute for Infection and Immunity St George's, University of London London UK
| |
Collapse
|
586
|
Dysregulation of Intestinal Microbiota Elicited by Food Allergy Induces IgA-Mediated Oral Dysbiosis. Infect Immun 2019; 88:IAI.00741-19. [PMID: 31611274 PMCID: PMC6921656 DOI: 10.1128/iai.00741-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/28/2019] [Indexed: 01/15/2023] Open
Abstract
Food allergy is a life-threatening response to specific foods, and microbiota imbalance (dysbiosis) in gut is considered a cause of this disease. Meanwhile, the host immune response also plays an important role in the disease. Notably, interleukin 33 (IL-33) released from damaged or necrotic intestinal epithelial cells facilitates IL-2-producing CD4 helper T (Th2) responses. However, causal relationships between the gut and oral dysbiosis and food allergy remain unknown. Food allergy is a life-threatening response to specific foods, and microbiota imbalance (dysbiosis) in gut is considered a cause of this disease. Meanwhile, the host immune response also plays an important role in the disease. Notably, interleukin 33 (IL-33) released from damaged or necrotic intestinal epithelial cells facilitates IL-2-producing CD4 helper T (Th2) responses. However, causal relationships between the gut and oral dysbiosis and food allergy remain unknown. In this study, we analyzed effects of gut and oral dysbiosis on development of food allergy. A murine model of food allergy was established via ovalbumin (OVA) injection in BALB/c mice. Viable fecal bacteria were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). il33 expression in colon-26 mouse colon cells stimulated by isolated fecal bacteria was quantified by real-time PCR. Intestinal T cells from the mice were analyzed by flow cytometry. Salivary IgA levels were quantified by enzyme-linked immunosorbent assay (ELISA), and IgA-bound oral bacteria were detected by flow cytometry. Among fecal bacteria, the abundance of Citrobacter sp. increased in the feces of allergic mice and induced il33 expression in colon-26 cells. Orally administered Citrobacter koseri JCM1658 exacerbated systemic allergic symptoms and reduced intestinal Th17 cells. Salivary IgA and IgA-bound oral bacteria increased in the allergic mice. Based on the results described above, food allergy induced both gut and oral dysbiosis. Citrobacter sp. aggravated allergy symptoms by inducing IL-33 release from intestinal epithelial cells.
Collapse
|
587
|
Hatzioannou A, Banos A, Sakelaropoulos T, Fedonidis C, Vidali MS, Köhne M, Händler K, Boon L, Henriques A, Koliaraki V, Georgiadis P, Zoidakis J, Termentzi A, Beyer M, Chavakis T, Boumpas D, Tsirigos A, Verginis P. An intrinsic role of IL-33 in T reg cell-mediated tumor immunoevasion. Nat Immunol 2019; 21:75-85. [PMID: 31844326 PMCID: PMC7030950 DOI: 10.1038/s41590-019-0555-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Regulatory T (Treg) cells accumulate into tumors hindering the success of cancer immunotherapy. Yet, therapeutic targeting of Treg cells shows limited efficacy or leads to autoimmunity. The molecular mechanisms that guide Treg cell stability in tumors, remain elusive. Herein, we identify a cell-intrinsic role of the alarmin IL-33 in the functional stability of Treg cells. Specifically, IL-33-deficient Treg cells demonstrated attenuated suppressive properties in vivo and facilitated tumor regression in an ST2 (IL-33 receptor)-independent fashion. Upon activation, Il33–/– Treg cells exhibited epigenetic reprogramming with increased chromatin accessibility of the Ifng locus leading to elevated interferon-γ (IFN-γ) production in an NF-κB–T-bet-dependent manner. IFN-γ was essential for Treg cell defective function since its ablation restored Il33–/– Treg cell suppressive properties. Importantly, genetic ablation of Il33 potentiated the therapeutic effect of immunotherapy. Our findings reveal a novel and therapeutically important intrinsic role of IL-33 in Treg cell stability in cancer.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Aggelos Banos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Theodore Sakelaropoulos
- Applied Bioinformatics Laboratories and Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Constantinos Fedonidis
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria-Sophia Vidali
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Maren Köhne
- Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Kristian Händler
- PRECISE, Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | | | - Ana Henriques
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Vasiliki Koliaraki
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Panagiotis Georgiadis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Aikaterini Termentzi
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Marc Beyer
- Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany.,PRECISE, Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
| | - Dimitrios Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories and Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece. .,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
588
|
The Impact of Interleukin (IL)-33 Gene Polymorphisms and Environmental Factors on Risk of Asthma in the Iranian Population. Lung 2019; 198:105-112. [PMID: 31820077 DOI: 10.1007/s00408-019-00301-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Airway epithelial cells secrete Interleukin-33 in response to the different allergens. Several single nucleotide polymorphisms (SNP) of this cytokine have been reported to be involved in the development of asthma. We conducted this study to evaluate the impact of the two most common SNPs of the IL-33 gene (rs1342326 and rs3939286) and environmental factors on the susceptibility to asthma in the Iranian population. SUBJECTS AND METHODS In this study, we enrolled 126 asthmatics patients and 300 age, sex-matched controls. Genotyping was performed by real-time PCR using the TaqMan SNP genotyping assay. Moreover, total serum IgE level, eosinophil count, and skin prick test were accomplished and complete history was taken from all the participants. RESULTS The frequencies of mutant genotypes in both SNPs were significantly higher in asthmatics than controls. C/C genotype of rs1342326 [OR (95% CI) 2.50 (1.33-4.69)] and A/A genotype of rs3939286 [OR (95% CI) 2.18 (1.05-4.52)] were associated with higher risk of asthma development. While A/C+C/C genotype of rs1342326 was more prevalent in mild asthma [OR (95% CI) 2.36 (1.14-4.89)], G/A+A/A genotype of rs3939286 was associated with increased risk of moderate and severe asthma [OR (95% CI) 2.53 (1.30-4.94)]. CONCLUSION This study revealed that both IL-33 SNPs were associated with an increased risk of asthma. The rs1342326 was associated with atopic, mild and adult-onset asthma and a higher level of eosinophils in peripheral blood. However, rs3939286 was more frequent in moderate and severe asthma. Moreover, rs3939286 was associated with non-atopic and childhood-onset asthma.
Collapse
|
589
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
590
|
Augustine J, Pavlou S, Ali I, Harkin K, Ozaki E, Campbell M, Stitt AW, Xu H, Chen M. IL-33 deficiency causes persistent inflammation and severe neurodegeneration in retinal detachment. J Neuroinflammation 2019; 16:251. [PMID: 31796062 PMCID: PMC6889479 DOI: 10.1186/s12974-019-1625-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Background Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and resides in the nuclei of various cell types. In the neural retina, IL-33 is predominately expressed in Müller cells although its role in health and disease is ill-defined. Müller cell gliosis is a critical response during the acute phase of retinal detachment (RD), and in this study, we investigated if IL-33 was modulatory in the inflammatory and neurodegenerative pathology which is characteristic of this important clinical condition. Methods RD was induced by subretinal injection of sodium hyaluronate into C57BL/6 J (WT) and IL-33−/− mice and confirmed by fundus imaging and optical coherence tomography (OCT). The expression of inflammatory cytokines, complement components and growth factors was examined by RT-PCR. Retinal neurodegeneration, Müller cell activation and immune cell infiltration were assessed using immunohistochemistry. The expression of inflammatory cytokines in primary Müller cells and bone marrow-derived macrophages (BM-DMs) was assessed by RT-PCR and Cytometric Bead Array. Results RD persisted for at least 28 days after the injection of sodium hyaluronate, accompanied by significant cone photoreceptor degeneration. The mRNA levels of CCL2, C1ra, C1s, IL-18, IL-1β, TNFα, IL-33 and glial fibrillary acidic protein (GFAP) were significantly increased at day 1 post-RD, reduced gradually and, with the exception of GFAP and C1ra, returned to the basal levels by day 28 in WT mice. In IL-33−/− mice, RD induced an exacerbated inflammatory response with significantly higher levels of CCL2, IL-1β and GFAP when compared to WT. Sustained GFAP activation and immune cell infiltration was detected at day 28 post-RD in IL-33−/− mice. Electroretinography revealed a lower A-wave amplitude at day 28 post-RD in IL-33−/− mice compared to that in WT RD mice. IL-33−/− mice subjected to RD also had significantly more severe cone photoreceptor degeneration compared to WT counterparts. Surprisingly, Müller cells from IL-33−/− mice expressed significantly lower levels of CCL2 and IL-6 compared with those from WT mice, particularly under hypoxic conditions, whereas IL-33−/− bone marrow-derived macrophages expressed higher levels of inducible nitric oxide synthase, TNFα, IL-1β and CCL2 after LPS + IFNγ stimulation compared to WT macrophages. Conclusion IL-33 deficiency enhanced retinal degeneration and gliosis following RD which was related to sustained subretinal inflammation from infiltrating macrophages. IL-33 may provide a previously unrecognised protective response by negatively regulating macrophage activation following retinal detachment.
Collapse
Affiliation(s)
- Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sofia Pavlou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Imran Ali
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Kevin Harkin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Ema Ozaki
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Chen
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
591
|
Izadi D, Layton TB, Williams L, McCann F, Cabrita M, Espirito Santo AI, Xie W, Fritzsche M, Colin-York H, Feldmann M, Midwood KS, Nanchahal J. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. SCIENCE ADVANCES 2019; 5:eaay0370. [PMID: 31840071 PMCID: PMC6892635 DOI: 10.1126/sciadv.aay0370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Dissecting the molecular landscape of fibrotic disease, a major unmet need, will inform the development of novel treatment strategies to target disease progression and identify desperately needed therapeutic targets. Here, we provide a detailed single-cell analysis of the immune landscape in Dupuytren's disease, a localized fibrotic condition of the hand, and identify a pathogenic signaling circuit between stromal and immune cells. We demonstrate M2 macrophages and mast cells as key cellular sources of tumor necrosis factor (TNF) that promotes myofibroblast development. TNF acts via the inducible TNFR2 receptor and stimulates interleukin-33 (IL-33) secretion by myofibroblasts. In turn, stromal cell IL-33 acts as a potent stimulus for TNF production from immune cells. Targeting this reciprocal signaling pathway represents a novel therapeutic strategy to inhibit the low-grade inflammation in fibrosis and the mechanism that drives chronicity.
Collapse
Affiliation(s)
- David Izadi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Thomas B. Layton
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lynn Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Fiona McCann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Marisa Cabrita
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Weilin Xie
- Department of Inflammation Research, Celgene Corporation, San Diego, CA, USA
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Huw Colin-York
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Marc Feldmann
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim S. Midwood
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jagdeep Nanchahal
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Corresponding author.
| |
Collapse
|
592
|
Konieczny P, Lichawska-Cieslar A, Kwiecinska P, Cichy J, Pietrzycka R, Szukala W, Declercq W, Devos M, Paziewska A, Rumienczyk I, Kulecka M, Mikula M, Fu M, Borowczyk J, Santamaria-Babí LF, Jura J. Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. J Mol Med (Berl) 2019; 97:1669-1684. [PMID: 31786670 DOI: 10.1007/s00109-019-01853-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Current address: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
593
|
Park CS, De T, Xu Y, Zhong Y, Smithberger E, Alarcon C, Gamazon ER, Perera MA. Hepatocyte gene expression and DNA methylation as ancestry-dependent mechanisms in African Americans. NPJ Genom Med 2019; 4:29. [PMID: 31798965 PMCID: PMC6877651 DOI: 10.1038/s41525-019-0102-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
African Americans (AAs) are an admixed population with widely varying proportion of West African ancestry (WAA). Here we report the correlation of WAA to gene expression and DNA methylation in AA-derived hepatocytes, a cell type important in disease and drug response. We perform mediation analysis to test whether methylation is a mediator of the effect of ancestry on expression. GTEx samples and a second cohort are used as validation. One hundred and thirty-one genes are associated with WAA (FDR < 0.10), 28 of which replicate and represent 220 GWAS phenotypes. Among PharmGKB pharmacogenes, VDR, PTGIS, ALDH1A1, CYP2C19, and P2RY1 nominally associate with WAA (p < 0.05). We find 1037 WAA-associated, differentially methylated regions (FDR < 0.05), with hypomethylated genes enriched in drug-response pathways. In conclusion, WAA contributes to variability in hepatocyte expression and DNA methylation with identified genes previously implicated for diseases disproportionately affecting AAs, including cardiovascular (PTGIS, PLAT) and renal (APOL1) disease, and drug response (CYP2C19).
Collapse
Affiliation(s)
- C. S. Park
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - T. De
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Y. Xu
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Translational Data Science, University of Chicago, Chicago, IL USA
| | - Y. Zhong
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - E. Smithberger
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - C. Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - E. R. Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
- Data Science Institute, Vanderbilt University, Nashville, TN USA
- Clare Hall, University of Cambridge, Cambridge, UK
| | - M. A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| |
Collapse
|
594
|
Jarosz J, Papiernik D, Wietrzyk J. IL-33 – positive or negative role in cancer progression? POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin-33 (IL-33) is a IL-1 family member of cytokines which binds the ST2 (suppression of tumorigenicity 2) receptor. This cytokine has a dual function. It may act both as a traditional cytokine and as an intracellular nuclear factor. IL-33 plays a role in many diseases such as: allergy, inflammatory diseases, diabetes and heart diseases. The role of IL-33 in the development of cancer has been intensively studied in recent years and researchers observe both its pro- -and anti-cancer effects. IL-33 promotes the development of tumors by affecting expression of cytokines promoting proliferation, angiogenesis, migration, matrix remodeling, the inhibition of apoptosis and recruitment of individual cells of the immune system. Antitumor action of IL-33 is carried out by recruiting and activating CD8+T lymphocytes, natural killer (NK) cells and by promoting second type immune response by the type 2 innate lymphoid cells (ILC2). Despite numerous studies on the role of IL-33 in the development of cancer, we still do not fully understand the mechanisms by which IL-33 impacts the development and malignancy of various types of cancers. This review summarizes the dual role of IL-33 in the development of the most common cancers in the world to better understand its importance in the carcinogenesis.
Collapse
Affiliation(s)
- Joanna Jarosz
- Instytut Immunologii i Terapii Doświadczalnej im. L. Hirszfelda PAN we Wrocławiu
| | | | - Joanna Wietrzyk
- Instytut Immunologii i Terapii Doświadczalnej im. L. Hirszfelda PAN we Wrocławiu
| |
Collapse
|
595
|
Mannucci C, Calapai G, Gangemi S. Commentary: Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. Front Immunol 2019; 10:2666. [PMID: 31798591 PMCID: PMC6868060 DOI: 10.3389/fimmu.2019.02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
596
|
Li X, Fang P, Sun Y, Shao Y, Yang WY, Jiang X, Wang H, Yang X. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biol 2019; 28:101373. [PMID: 31731100 PMCID: PMC6920093 DOI: 10.1016/j.redox.2019.101373] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/15/2022] Open
Abstract
It has been shown that anti-inflammatory cytokines interleukin-35 (IL-35) and IL-10 could inhibit acute endothelial cell (EC) activation, however, it remains unknown if and by what pathways IL-35 and IL-10 could block atherogenic lipid lysophosphatidylcholine (LPC)-induced sustained EC activation; and if mitochondrial reactive oxygen species (mtROS) can differentiate mediation of EC activation from trained immunity (innate immune memory). Using RNA sequencing analyses, biochemical assays, as well as database mining approaches, we compared the effects of IL-35 and IL-10 in LPC-treated human aortic ECs (HAECs). Principal component analysis revealed that both IL-35 and IL-10 could similarly and partially reverse global transcriptome changes induced by LPC. Gene set enrichment analyses showed that while IL-35 and IL-10 could both block acute EC activation, characterized by upregulation of cytokines/chemokines and adhesion molecules, IL-35 is more potent than IL-10 in suppressing innate immune signatures upregulated by LPC. Surprisingly, LPC did not induce the expression of trained tolerance itaconate pathway enzymes but induced trained immunity enzyme expressions; and neither IL-35 nor IL-10 was found to affect LPC-induced trained immunity gene signatures. Mechanistically, IL-35 and IL-10 could suppress mtROS, which partially mediate LPC-induced EC activation and innate immune response. Therefore, anti-inflammatory cytokines could reverse mtROS-mediated acute and innate immune trans-differentiation responses in HAECs, but it could spare metabolic reprogramming and trained immunity signatures, which may not fully depend on mtROS. Our characterizations of anti-inflammatory cytokines in blocking mtROS-mediated acute and prolonged EC activation, and sparing trained immunity are significant for designing novel strategies for treating cardiovascular diseases, other inflammatory diseases, and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaohua Jiang
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Centers for Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
597
|
Krysko O, Teufelberger A, Van Nevel S, Krysko DV, Bachert C. Protease/antiprotease network in allergy: The role of Staphylococcus aureus protease-like proteins. Allergy 2019; 74:2077-2086. [PMID: 30888697 DOI: 10.1111/all.13783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/10/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is being recognized as a major cofactor in atopic diseases such as atopic dermatitis, chronic rhinosinusitis with nasal polyps, and asthma. The understanding of the relationship between S aureus virulence factors and the immune system is continuously improving. Although the precise mechanism of the host's immune response adaptation to the variable secretion profile of S aureus strains continues to be a matter of debate, an increasing number of studies have reported on central effects of S aureus secretome in allergy. In this review, we discuss how colonization of S aureus modulates the innate and adaptive immune response, thereby predisposing the organism to allergic sensitization and disrupting immune tolerance in the airways of patients with asthma and chronic rhinosinusitis with nasal polyps. Next, we provide a critical overview of novel concepts dealing with S aureus in the initiation and persistence of chronic rhinosinusitis with nasal polyps and asthma. The role of the S aureus serine protease-like proteins in the initiation of a type 2 response and the contribution of the IL-33/ST2 signaling axis in allergic responses induced by bacterial allergens are discussed.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Andrea Teufelberger
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Sharon Van Nevel
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine National Research Lobachevsky State University of Nizhny Novgorod Nizhny Novgorod Russian Federation
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair Ghent University Ghent Belgium
- Cancer Research Institute Ghent Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department Head and Skin Ghent University Ghent Belgium
| |
Collapse
|
598
|
Li Y, Yang D, Sun B, Zhang X, Li F, Liu Z, Zheng Y. Discovery of crucial cytokines associated with abdominal aortic aneurysm formation by protein array analysis. Exp Biol Med (Maywood) 2019; 244:1648-1657. [PMID: 31665916 DOI: 10.1177/1535370219885101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As a common disease, abdominal aortic aneurysm (AAA) features permanently progressively dilated abdominal aorta. Various cytokines are implicated in AAA pathogenesis. Clarification of involved cytokines combined with functional analysis may provide new insights into AAA pathogenesis. Using a mouse model, this study analyzed the cytokine profiles in AAA. Cytokines were measured in AAA tissues of saline control or angiotensin II-treated ApoE−/− mice using an antibody array of 200 cytokines, cytokine receptors, and related proteins. Statistical analysis revealed that 21 of 200 proteins were differentially expressed in AAA. These differentially expressed proteins were subjected to function and pathway enrichment analysis, which revealed that leukocyte migration and positive regulation of cell adhesion were the most significant biological processes. Specific signaling pathways, including Janus kinase/signal transducers and activators of transcription and cytokine–cytokine receptor interaction, were prominent in Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Importantly, our data identified cytokines which had not previously been illustrated in AAA pathogenic pathways. Bivariate correlation analysis between these cytokines and protease activity showed that granulocyte colony-stimulating factor (G-CSF), macrophage inflammatory protein 1 g, cardiotrophin 1, milk fat globule-EGF factor 8 protein, interleukin 33, and periostin were positively correlated with matrix metalloprotease 1 (MMP-1), MMP-9, cathepsin B, and cathepsin L. G-CSF was positively correlated with cathepsin L. In conclusion, these results demonstrate that cytokine profile is significantly altered in AAA, and that the newly identified crucial cytokines may function potentially in AAA pathogenesis. Impact statement Various cytokines are known contributors to abdominal aortic aneurysm (AAA) pathologic processes, but the mechanisms underlying the pathogenesis remains unclear. We illustrated the altered cytokine profiles in AAA by high throughput antibody array of 200 cytokines, cytokine receptors and related proteins, as well as bioinformatics analysis of differentially expressed proteins in lesion tissues from AAA mice infused with angiotensin II. Functional analyses of differentially expressed cytokines showed clustering on cell migration and adhesion processes. More importantly, crucial cytokines whose association with AAA formation had not been established were identified. Significant correlations were found between these cytokines and protease activity. This study identifies several crucial markers for further researches on the molecular basis of AAA.
Collapse
Affiliation(s)
- Yuan Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bo Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xu Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
599
|
Rustowska-Rogowska A, Gleń J, Jarząbek T, Rogowski W, Rębała K, Zabłotna M, Czajkowska K, Nowicki R, Kowalczyk A, Sokołowska-Wojdyło M. Interleukin-33 polymorphisms and serum concentrations in mycosis fungoides. Int J Dermatol 2019; 59:345-351. [PMID: 31663123 DOI: 10.1111/ijd.14696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/25/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) skin lesions are characterized by low-grade inflammation, which may be sustained by proinflammatory cytokines as probably interleukin-33 (IL-33). We compared serum concentrations of IL-33 and its receptor ST2 and the frequency of selected IL-33 single nucleotide polymorphisms (SNPs) between patients with MF and healthy controls. METHODS In 88 patients with MF and 66 healthy controls, we analyzed SNPs in the 9894 and 11877 loci of the IL-33 gene. Moreover, we measured serum concentrations of IL-33 and its receptor ST2. RESULTS There were no statistically significant differences in the frequencies of both IL-33 SNPs between patients and controls. Compared with controls, patients with MF had similar IL-33 serum concentrations (P = 0.71) but significantly increased ST2 concentrations (P < 0.001). Patients in MF-IA stage had significantly lower ST2 serum concentrations than those with the remaining MF stages (P = 0.002). The studied variables were not related to pruritus severity. Patients with the C(+) IL-33 11877 SNP had lower ST2 serum concentrations than patients with the C(-) 11877 SNP (P = 0.043). CONCLUSIONS It was published before that the knockout of the ST2 gene after injection of IL-33 is associated with a reduced inflammatory reaction in the skin, as well as that IL-33 plays a role in allergic and neoplastic disorders. Concerning the difference in ST2 concentration between control and MF group, and C IL-33 11877 SNP possibly influencing the ST2 concentration, the role of IL-33/ST2 signaling, needs further studies.
Collapse
Affiliation(s)
- Alicja Rustowska-Rogowska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland.,Medpharma CRL, Nowa Wieś Rzeczna, Poland
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Zabłotna
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Czajkowska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Roman Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Kowalczyk
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, Gdansk, Poland.,Polish Lymphoma Research Group, PLRG, Warsaw, Poland
| |
Collapse
|
600
|
Catalan-Dibene J, McIntyre LL, Zlotnik A. Interleukin 30 to Interleukin 40. J Interferon Cytokine Res 2019; 38:423-439. [PMID: 30328794 DOI: 10.1089/jir.2018.0089] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokines are important molecules that regulate the ontogeny and function of the immune system. They are small secreted proteins usually produced upon activation of cells of the immune system, including lymphocytes and myeloid cells. Many cytokines have been described, and several have been recognized as pivotal players in immune responses and in human disease. In fact, several anticytokine antibodies have proven effective therapeutics, especially in various autoimmune diseases. In the last 15 years, new cytokines have been described, and many remain poorly understood. Among the most recent cytokines discovered are interleukins-30 (IL-30) to IL-40. Several of these are members of other cytokine superfamilies, including several IL-1 superfamily members (IL-33, IL-36, IL-37, and IL-38) as well as several new members of the IL-12 family (IL-30, IL-35, and IL-39). The rest (IL-31, IL-32, IL-34, and IL-40) are encoded by genes that do not belong to any cytokine superfamily. Our aim of this review was to present a concise version of the information available on these novel cytokines to facilitate their understanding by members of the immunological community.
Collapse
Affiliation(s)
- Jovani Catalan-Dibene
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Laura L McIntyre
- 3 Department of Molecular Biology and Biochemistry, University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| | - Albert Zlotnik
- 1 Department of Physiology and Biophysics and University of California , Irvine, Irvine, California.,2 Institute for Immunology, University of California, Irvine, Irvine, California
| |
Collapse
|