551
|
Bezlotoxumab. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2018. [DOI: 10.1097/ipc.0000000000000571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
552
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
553
|
Roshan N, Hammer KA, Riley TV. Non-conventional antimicrobial and alternative therapies for the treatment of Clostridium difficile infection. Anaerobe 2018; 49:103-111. [DOI: 10.1016/j.anaerobe.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
|
554
|
Hopkins RJ, Wilson RB. Treatment of recurrent Clostridium difficile colitis: a narrative review. Gastroenterol Rep (Oxf) 2018; 6:21-28. [PMID: 29479439 PMCID: PMC5806400 DOI: 10.1093/gastro/gox041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a gram-positive, spore-forming, obligate anaerobic bacillus that was originally isolated from the stool of a healthy neonate in 1935. In high-income countries, C. difficile is the most common cause of infectious diarrhoea in hospitalized patients. The incidence of C. difficile infection in the USA has increased markedly since 2000, with hospitalizations for C. difficile infections in non-pregnant adults doubling between 2000 and 2010. Between 20% and 35% of patients with C. difficile infection will fail initial antibiotic treatment and, of these, 40-60% will have a second recurrence. Recurrence of C. difficile infection after initial treatment causes substantial morbidity and is a major burden on health care systems. In this article, current treatments for recurrent C. difficile infection are reviewed and future directions explored. These include the use of antibiotics, probiotics, donor faecal transplants, anion resins, secondary bile acids or anti-toxin antibodies.
Collapse
Affiliation(s)
- Roy J Hopkins
- Department of Upper GI Surgery, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Robert B Wilson
- Department of Upper GI Surgery, Liverpool Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
555
|
Rees WD, Steiner TS. Adaptive immune response toClostridium difficileinfection: A perspective for prevention and therapy. Eur J Immunol 2018; 48:398-406. [DOI: 10.1002/eji.201747295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022]
Affiliation(s)
- William D. Rees
- Department of Medicine; University of British Columbia; Vancouver BC Canada
| | | |
Collapse
|
556
|
Navalkele BD, Chopra T. Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics 2018; 12:11-21. [PMID: 29403263 PMCID: PMC5779312 DOI: 10.2147/btt.s127099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridium difficile infection (CDI) is the most common health care-acquired infection associated with high hospital expenditures. The incidence of subsequent recurrent CDI increases with prior episodes of CDI, 15%–35% risk after primary CDI to 35%–65% risk after the first recurrent episode. Recurrent CDI is one of the most challenging and a very difficult to treat infections. Standard guidelines provide recommendations on treatment of primary CDI. However, treatment choices for recurrent CDI are limited. Recent research studies have focused on the discovery of newer alternatives for prevention of recurrent CDI targeting prime virulence factors involved in C. difficile pathogenesis. Bezlotoxumab is a human monoclonal antibody directed against C. difficile toxin B. Multiple in vitro and in vivo animal studies have demonstrated direct binding of bezlotoxumab to C. difficile toxin B preventing intestinal epithelial damage and colitis. Furthermore, this monoclonal antibody mediates early reconstitution of gut microbiota preventing risk of recurrent CDI. Randomized placebo-controlled trials showed concomitant administration of a single intravenous dose of 10 mg/kg of bezlotoxumab, in patients on standard-of-care therapy for CDI, had no substantial effect on clinical cure rates but significantly reduced the incidence of recurrent CDI (~40%). It shows efficacy against multiple strains, including the epidemic BI/NAP1/027 strain. Bezlotoxumab is a US Food and Drug administration-approved, safe and well-tolerated drug with low risk of serious adverse events and drug–drug interactions. Bezlotoxumab has emerged as a novel dynamic adjunctive therapy for prevention of recurrent CDI. Further studies on real-world experience with bezlotoxumab and its impact in reducing rates of recurrent CDI are needed.
Collapse
Affiliation(s)
- Bhagyashri D Navalkele
- Internal Medicine and Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Teena Chopra
- Internal Medicine and Infectious Diseases, Infection Prevention and Epidemiology, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
557
|
Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, Ko WC, Paredes-Sabja D, Huang IH. Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Front Microbiol 2018; 8:2635. [PMID: 29387044 PMCID: PMC5776096 DOI: 10.3389/fmicb.2017.02635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming anaerobic human gastrointestinal pathogen. C. difficile infection (CDI) is a major health concern worldwide, with symptoms ranging from diarrhea to pseudomembranous colitis, toxic megacolon, sepsis, and death. CDI onset and progression are mostly caused by intestinal dysbiosis and exposure to C. difficile spores. Current treatment strategies include antibiotics; however, antibiotic use is often associated with high recurrence rates and an increased risk of antibiotic resistance. Medium-chain fatty acids (MCFAs) have been revealed to inhibit the growth of multiple human bacterial pathogens. Components of coconut oil, which include lauric acid, have been revealed to inhibit C. difficile growth in vitro. In this study, we demonstrated that lauric acid exhibits potent antimicrobial activities against multiple toxigenic C. difficile isolates in vitro. The inhibitory effect of lauric acid is partly due to reactive oxygen species (ROS) generation and cell membrane damage. The administration of lauric acid considerably reduced biofilm formation and preformed biofilms in a dose-dependent manner. Importantly, in a mouse infection model, lauric acid pretreatment reduced CDI symptoms and proinflammatory cytokine production. Our combined results suggest that the naturally occurring MCFA lauric acid is a novel C. difficile inhibitor and is useful in the development of an alternative or adjunctive treatment for CDI.
Collapse
Affiliation(s)
- Hsiao-Ting Yang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Zhen Jiang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Center of Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
558
|
Galpérine T, Guery B. Exploring ways to improve CDI outcomes. Med Mal Infect 2018; 48:10-17. [PMID: 29336930 DOI: 10.1016/j.medmal.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is an anaerobic spore-forming Gram-positive bacillus recognized as an evolving international health problem. Metronidazole and vancomycin were - until recently - the only drugs available to treat C. difficile infection (CDI). Better knowledge of the pathophysiology and the development of new drugs completely modified the management of initial episodes and recurrences of CDI. Fidaxomicin significantly reduced recurrences compared with vancomycin. New drugs are also currently evaluated (cadazolid, surotomycin, ridinilazole, rifaximin). Gut microbiota homeostasis was clearly shown to be a key determinant in recurrences as demonstrated by the development of gut microbiota transplantation and alternative microbiota substitution. Passive immunotherapy and vaccinal approaches are also currently being evaluated. In conclusion, CDI treatment has evolved with the development of new therapeutic pathways which now need to be implemented in international guidelines.
Collapse
Affiliation(s)
- T Galpérine
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| | - B Guery
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland.
| | -
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| |
Collapse
|
559
|
Petrosillo N. Tackling the recurrence of Clostridium difficile infection. Med Mal Infect 2018; 48:18-22. [PMID: 29336928 DOI: 10.1016/j.medmal.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
The pathogenesis of recurrent Clostridium difficile infection (CDI) is still poorly understood. The risk of recurrence is approximately 20% after an initial CDI episode and dramatically increases with subsequent CDI recurrences. Several factors may play a role in recurrent CDI (rCDI), including conditions influencing germination, metabolic pathways that influence toxin production of C. difficile, and the microbiota composition offering protection against colonization and disease caused by C. difficile. Paradoxically, the currently recommended treatment for acute symptomatic CDI, i.e. metronidazole or vancomycin, can cause modification of the intestinal flora. Indeed, administration of anti-CDI antibiotics leads to suppression of C. difficile, along with collateral damage of the protective intestinal microbiota and opening of a "window of vulnerability" for recurrence. Host factors also have a prominent role, including innate and acquired humoral immunity, i.e. passive antibodies administration or active vaccination as a prevention strategy. They play a crucial role in the protection against severe and recurrent CDI. The assessment of risk factors of recurrence and modeling prediction scores could help in preventing the troublesome experience of CDI recurrence. Six studies have methodologically assessed prediction scores for rCDI. However, the definition of recurrence was heterogeneous, external validation was often not performed, and immunological factors were often not considered. There is a need for further studies on the pathophysiology of recurrence to design models for prediction that are sound and applicable in clinical practice.
Collapse
Affiliation(s)
- N Petrosillo
- Clinical and Research Department for Infectious Diseases, National Institute for Infectious Diseases L. Spallanzani, Via Portuense 292, 00149 Rome, Italy.
| |
Collapse
|
560
|
Letourneau JJ, Stroke IL, Hilbert DW, Sturzenbecker LJ, Marinelli BA, Quintero JG, Sabalski J, Ma L, Diller DJ, Stein PD, Webb ML. Identification and initial optimization of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB). Bioorg Med Chem Lett 2018; 28:756-761. [PMID: 29331267 DOI: 10.1016/j.bmcl.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 1-5 the most potent of which was compound 1 (IC50 = 0.77 µM). In silico docking of an early analog offered suggestions for structural modification which resulted in the design and synthesis of highly potent analogs 13j(IC50 = 1 nM) and 13 l(IC50 = 7 nM) which were chosen as leads for further optimization.
Collapse
Affiliation(s)
- Jeffrey J Letourneau
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA.
| | - Ilana L Stroke
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - David W Hilbert
- Femeris Women's Health Research Center, Genesis Biotechnology Group, 2000 Waterview Drive, Hamilton, NJ 08691, USA
| | - Laurie J Sturzenbecker
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Brett A Marinelli
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Jorge G Quintero
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Joan Sabalski
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Linh Ma
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - David J Diller
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Philip D Stein
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Maria L Webb
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| |
Collapse
|
561
|
Wang-Lin SX, Balthasar JP. Pharmacokinetic and Pharmacodynamic Considerations for the Use of Monoclonal Antibodies in the Treatment of Bacterial Infections. Antibodies (Basel) 2018; 7:antib7010005. [PMID: 31544858 PMCID: PMC6698815 DOI: 10.3390/antib7010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
Antibiotic-resistant bacterial pathogens are increasingly implicated in hospital- and community-acquired infections. Recent advances in monoclonal antibody (mAb) production and engineering have led to renewed interest in the development of antibody-based therapies for treatment of drug-resistant bacterial infections. Currently, there are three antibacterial mAb products approved by the Food and Drug Administration (FDA) and at least nine mAbs are in clinical trials. Antibacterial mAbs are typically developed to kill bacteria or to attenuate bacterial pathological activity through neutralization of bacterial toxins and virulence factors. Antibodies exhibit distinct pharmacological mechanisms from traditional antimicrobials and, hence, cross-resistance between small molecule antimicrobials and antibacterial mAbs is unlikely. Additionally, the long biological half-lives typically found for mAbs may allow convenient dosing and vaccine-like prophylaxis from infection. However, the high affinity of mAbs and the involvement of the host immune system in their pharmacological actions may lead to complex and nonlinear pharmacokinetics and pharmacodynamics. In this review, we summarize the pharmacokinetics and pharmacodynamics of the FDA-approved antibacterial mAbs and those are currently in clinical trials. Challenges in the development of antibacterial mAbs are also discussed.
Collapse
Affiliation(s)
- Shun Xin Wang-Lin
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
562
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
563
|
Segal BH. Role of Immunoglobulin Therapy to Prevent and Treat Infections. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018. [PMCID: PMC7123824 DOI: 10.1007/978-3-319-77674-3_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunoglobulins have been used widely in medicine for a variety of diseases including infectious diseases. While the main clinical applications of immunoglobulin therapy concern their use as replacement for patients with primary immunodeficiencies, or as treatment for autoimmune and inflammatory disorders, their role in infectious disease is limited largely to viral and toxin neutralization and replacement therapy in patients with immunoglobulin deficiencies. Many aspects of the therapeutic regimen of immunoglobulins even in the established indications remain open. Recently, due to the worldwide surge of immunosuppression caused by AIDS, organ transplantation, cancer, and autoimmune therapies, as well as the emergence of multidrug-resistant bacteria, there has been renewed interest in the use of antibody preparation to prevent infections in high-risk groups. Knowing the limitations of the current anti-infective armamentarium, approaches that target the host through manipulations to augment the host immune response provide a helpful aid to conventional treatment options. A substantial body of evidence has demonstrated that strategies aiming to support or stimulate immune response could be feasible approaches that would benefit immunocompromised patients. In the present chapter, we present contemporary indications of immunoglobulin administration for therapy and prophylaxis of infections in the immunocompromised population.
Collapse
Affiliation(s)
- Brahm H. Segal
- Departments of Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York USA
| |
Collapse
|
564
|
Fitzpatrick F, Skally M, Brady M, Burns K, Rooney C, Wilcox MH. European Practice for CDI Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:117-135. [PMID: 29383667 DOI: 10.1007/978-3-319-72799-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clostridium difficile infection (CDI) remains a significant cause of morbidity and mortality worldwide. Historically, two antibiotics (metronidazole and vancomycin) and a recent third (fidaxomicin) have been used routinely for CDI treatment; convincing data are now available showing that metronidazole is the least efficacious agent. The European Society of Clinical Microbiology and Infectious Diseases CDI treatment guidelines outline the treatment options for a variety of CDI clinical scenarios, including use of the more traditional anti-CDI therapies (e.g., metronidazole, vancomycin), the role of newer anti-CDI agents (e.g., fidaxomicin), indications for surgical intervention and for non-antimicrobial management (e.g., faecal microbiota transplantation, FMT). A 2017 survey of 20 European countries found that while the majority (n = 14) have national CDI guidelines that provide a variety of recommendations for CDI treatment, only five have audited guideline implementation. A variety of restrictions are in place in 13 (65%) countries prior to use of new anti-CDI treatments, including committee/infection specialist approval or economic review/restrictions. Novel anti-CDI agents are being evaluated in Phase III trials; it is not yet clear what will be the roles of these agents. Prophylaxis is an optimum approach to reduce the impact of CDI especially in high-risk populations; monoclonal antibodies, antibiotic blocking approaches and multiple vaccines are currently in advanced clinical trials. The treatment of recurrent CDI is particularly troublesome, and several different live bio therapeutics are being developed, in addition to FMT.
Collapse
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland.
| | - Mairead Skally
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Melissa Brady
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
- Health Protection Surveillance Centre, Dublin, Ireland
| | - Christopher Rooney
- Microbiology, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Mark H Wilcox
- Microbiology, Leeds Teaching Hospitals and University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals and University of Leeds, Leeds, UK.
| |
Collapse
|
565
|
Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med 2018; 24:10-19. [DOI: 10.1038/nm.4465] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
|
566
|
Abstract
Clostridium difficile is the most frequent cause of nosocomial antibiotic-associated diarrhea. The incidence of C. difficile infection (CDI) has been rising worldwide with subsequent increases in morbidity, mortality, and health care costs. Asymptomatic colonization with C. difficile is common and a high prevalence has been found in specific cohorts, e.g., hospitalized patients, adults in nursing homes and in infants. However, the risk of infection with C. difficile differs significantly between these cohorts. While CDI is a clear indication for therapy, colonization with C. difficile is not believed to be a direct precursor for CDI and therefore does not require treatment. Antibiotic therapy causes alterations of the intestinal microbial composition, enabling C. difficile colonization and consecutive toxin production leading to disruption of the colonic epithelial cells. Clinical symptoms of CDI range from mild diarrhea to potentially life-threatening conditions like pseudomembranous colitis or toxic megacolon. While antibiotics are still the treatment of choice for CDI, new therapies have emerged in recent years such as antibodies against C. difficile toxin B and fecal microbial transfer (FMT). This specific therapy for CDI underscores the role of the indigenous bacterial composition in the prevention of the disease in healthy individuals and its role in the pathogenesis after alteration by antibiotic treatment. In addition to the pathogenesis of CDI, this review focuses on the colonization of C. difficile in the human gut and factors promoting CDI.
Collapse
Affiliation(s)
- Holger Schäffler
- Division of Gastroenterology, Department of Medicine II, University of Rostock, Rostock, Germany
| | - Anne Breitrück
- Extracorporeal Immunomodulation Unit, Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
567
|
Schmidt-Hieber M, Bierwirth J, Buchheidt D, Cornely OA, Hentrich M, Maschmeyer G, Schalk E, Vehreschild JJ, Vehreschild MJGT. Diagnosis and management of gastrointestinal complications in adult cancer patients: 2017 updated evidence-based guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Hematol 2018; 97:31-49. [PMID: 29177551 PMCID: PMC5748412 DOI: 10.1007/s00277-017-3183-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022]
Abstract
Cancer patients frequently suffer from gastrointestinal complications. In this manuscript, we update our 2013 guideline on the diagnosis and management of gastrointestinal complications in adult cancer patients by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). An expert group was put together by the AGIHO to update the existing guideline. For each sub-topic, a literature search was performed in PubMed, Medline, and Cochrane databases, and strengths of recommendation and the quality of the published evidence for major therapeutic strategies were categorized using the 2015 European Society for Clinical Microbiology and Infectious Diseases (ESCMID) criteria. Final recommendations were approved by the AGIHO plenary conference. Recommendations were made with respect to non-infectious and infectious gastrointestinal complications. Strengths of recommendation and levels of evidence are presented. A multidisciplinary approach to the diagnosis and management of gastrointestinal complications in cancer patients is mandatory. Evidence-based recommendations are provided in this updated guideline.
Collapse
Affiliation(s)
- M Schmidt-Hieber
- Clinic for Hematology, Oncology, Tumor Immunology and Palliative Care, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - J Bierwirth
- Deutsches Beratungszentrum für Hygiene, BZH GmbH, Freiburg, Germany
| | - D Buchheidt
- 3rd Department of Internal Medicine - Hematology and Oncology - Mannheim University Hospital, University of Heidelberg, Heidelberg, Germany
| | - O A Cornely
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Clinical Trials Centre Cologne, ZKS Köln, University of Cologne, Cologne, Germany
| | - M Hentrich
- Department III for Internal Medicine, Hematology and Oncology, Rotkreuzklinikum München, Munich, Germany
| | - G Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Ernst-von-Bergmann Klinikum, Potsdam, Germany
| | - E Schalk
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - J J Vehreschild
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- 1st Department of Internal Medicine, University of Cologne, Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
- 1st Department of Internal Medicine, Hospital of the University of Cologne, Kerpener Str. 62, 50937, Köln, Germany.
| |
Collapse
|
568
|
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18:46-61. [PMID: 29063907 PMCID: PMC6369690 DOI: 10.1038/nri.2017.106] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.
Collapse
Affiliation(s)
- Lenette L Lu
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
569
|
Gosch M, Wicklein S. [Antibodies as treatment option in older adults]. Z Gerontol Geriatr 2017; 51:152-156. [PMID: 29264687 DOI: 10.1007/s00391-017-1352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/30/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies are already used for many different clinical indications. Besides oncology and rheumatology, denosumab is the only antibody that is currently prescribed in older adults with osteoporosis; however, apart from osteoporosis there might be more possible indications for the use of antibodies in chronic diseases and geriatric syndromes. Particularly, with respect to sarcopenia the transition to "doping for older adults" seems to be fluent. The present review provides an overview on the newest developments and prospective options.
Collapse
Affiliation(s)
- M Gosch
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland.
| | - S Wicklein
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland
| |
Collapse
|
570
|
Gagneux-Brunon A, Lucht F, Launay O, Berthelot P, Botelho-Nevers E. Les vaccins dans la prévention des infections associées aux soins. JOURNAL DES ANTI-INFECTIEUX 2017. [PMCID: PMC7148680 DOI: 10.1016/j.antinf.2017.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Les infections associées aux soins (IAS) constituent un véritable problème de santé publique. Escherichia coli, Staphylococcus aureus, Clostridium difficile sont les plus souvent à l’origine des IAS. L’antibiorésistance fréquente complique encore la prise en charge et des impasses thérapeutiques existent à présent. Les mesures d’hygiène hospitalière bien qu’essentielles sont insuffisantes pour diminuer drastiquement les IAS. Ainsi, des stratégies alternatives à l’antibiothérapie s’avèrent nécessaires pour prévenir et traiter les IAS. Parmi celles-ci, la vaccination et l’immunisation passive sont probablement les plus prometteuses. Nous avons fait une mise au point sur les vaccins disponibles et en développement clinique pour lutter contre les IAS, chez les patients à risque d’IAS et les soignants. L’intérêt de la vaccination grippale et rotavirus chez les patients pour prévenir ces IAS virales a été examiné. Le développement d’un vaccin anti-S. aureus, déjà émaillé de 2 échecs est complexe. Toutefois, ces échecs ont permis d’améliorer les connaissances sur l’immunité anti-S. aureus. La mise à disposition d’un vaccin préventif anti-C. difficile semble plus proche. Pour les autres bactéries gram négatif responsables d’IAS, le développement est moins avancé. La vaccination des patients à risques d’IAS pose également des problèmes de réponse vaccinale qu’il faudra résoudre pour utiliser cette stratégie. Ainsi, la vaccination des soignants, de par l’effet de groupe permet également de prévenir les IAS. Nous faisons ici le point sur l’intérêt de la vaccination des soignants contre la rougeole, la coqueluche, la grippe, la varicelle, l’hépatite B pour réduire les IAS avec des vaccins déjà disponibles.
Collapse
|
571
|
Choice of treatment in Clostridium difficile-associated diarrhoea: Clinical practice guidelines or risk classifications. Enferm Infecc Microbiol Clin 2017; 35:613-616. [PMID: 29179981 DOI: 10.1016/j.eimc.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
|
572
|
Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, Chang HJ, Coward S, Goodman KJ, Xu H, Madsen K, Mason A, Wong GKS, Jovel J, Patterson J, Louie T. Effect of Oral Capsule- vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 2017; 318:1985-1993. [PMID: 29183074 PMCID: PMC5820695 DOI: 10.1001/jama.2017.17077] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Fecal microbiota transplantation (FMT) is effective in preventing recurrent Clostridium difficile infection (RCDI). However, it is not known whether clinical efficacy differs by route of delivery. OBJECTIVE To determine whether FMT by oral capsule is noninferior to colonoscopy delivery in efficacy. DESIGN, SETTING, AND PARTICIPANTS Noninferiority, unblinded, randomized trial conducted in 3 academic centers in Alberta, Canada. A total of 116 adult patients with RCDI were enrolled between October 2014 and September 2016, with follow-up to December 2016. The noninferiority margin was 15%. INTERVENTIONS Participants were randomly assigned to FMT by capsule or by colonoscopy at a 1:1 ratio. MAIN OUTCOMES AND MEASURES The primary outcome was the proportion of patients without RCDI 12 weeks after FMT. Secondary outcomes included (1) serious and minor adverse events, (2) changes in quality of life by the 36-Item Short Form Survey on a scale of 0 (worst possible quality of life) to 100 (best quality of life), and (3) patient perception on a scale of 1 (not at all unpleasant) to 10 (extremely unpleasant) and satisfaction on a scale of 1 (best) to 10 (worst). RESULTS Among 116 patients randomized (mean [SD] age, 58 [19] years; 79 women [68%]), 105 (91%) completed the trial, with 57 patients randomized to the capsule group and 59 to the colonoscopy group. In per-protocol analysis, prevention of RCDI after a single treatment was achieved in 96.2% in both the capsule group (51/53) and the colonoscopy group (50/52) (difference, 0%; 1-sided 95% CI, -6.1% to infinity; P < .001), meeting the criterion for noninferiority. One patient in each group died of underlying cardiopulmonary illness unrelated to FMT. Rates of minor adverse events were 5.4% for the capsule group vs 12.5% for the colonoscopy group. There was no significant between-group difference in improvement in quality of life. A significantly greater proportion of participants receiving capsules rated their experience as "not at all unpleasant" (66% vs 44%; difference, 22% [95% CI, 3%-40%]; P = .01). CONCLUSIONS AND RELEVANCE Among adults with RCDI, FMT via oral capsules was not inferior to delivery by colonoscopy for preventing recurrent infection over 12 weeks. Treatment with oral capsules may be an effective approach to treating RCDI. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT02254811.
Collapse
Affiliation(s)
- Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Brandi Roach
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Marisela Silva
- Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Beck
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Rioux
- Division of Gastroenterology, Department of Medicine, University of Victoria, Victoria, British Columbia, Canada
| | - Gilaad G. Kaplan
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Stephanie Coward
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Karen J. Goodman
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Huiping Xu
- Department of Biostatistics, Indiana University, Indianapolis
| | - Karen Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Mason
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- BGI-Shenzhen, Shenzhen, China
| | - Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Louie
- Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
573
|
Kroh HK, Chandrasekaran R, Zhang Z, Rosenthal K, Woods R, Jin X, Nyborg AC, Rainey GJ, Warrener P, Melnyk RA, Spiller BW, Lacy DB. A neutralizing antibody that blocks delivery of the enzymatic cargo of Clostridium difficile toxin TcdB into host cells. J Biol Chem 2017; 293:941-952. [PMID: 29180448 DOI: 10.1074/jbc.m117.813428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
Clostridium difficile infection is the leading cause of hospital-acquired diarrhea and is mediated by the actions of two toxins, TcdA and TcdB. The toxins perturb host cell function through a multistep process of receptor binding, endocytosis, low pH-induced pore formation, and the translocation and delivery of an N-terminal glucosyltransferase domain that inactivates host GTPases. Infection studies with isogenic strains having defined toxin deletions have established TcdB as an important target for therapeutic development. Monoclonal antibodies that neutralize TcdB function have been shown to protect against C. difficile infection in animal models and reduce recurrence in humans. Here, we report the mechanism of TcdB neutralization by PA41, a humanized monoclonal antibody capable of neutralizing TcdB from a diverse array of C. difficile strains. Through a combination of structural, biochemical, and cell functional studies, involving X-ray crystallography and EM, we show that PA41 recognizes a single, highly conserved epitope on the TcdB glucosyltransferase domain and blocks productive translocation and delivery of the enzymatic cargo into the host cell. Our study reveals a unique mechanism of C. difficile toxin neutralization by a monoclonal antibody, which involves targeting a process that is conserved across the large clostridial glucosylating toxins. The PA41 antibody described here provides a valuable tool for dissecting the mechanism of toxin pore formation and translocation across the endosomal membrane.
Collapse
Affiliation(s)
- Heather K Kroh
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Ramyavardhanee Chandrasekaran
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Zhifen Zhang
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Xiaofang Jin
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | | | | | | | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Benjamin W Spiller
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, and
| | - D Borden Lacy
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212-2637
| |
Collapse
|
574
|
Lübbert C, Nitschmann S. [Bezlotoxumab for the secondary prevention of Clostridium difficile infection : MODIFY I and MODIFY II studies]. Internist (Berl) 2017; 58:639-642. [PMID: 28470456 DOI: 10.1007/s00108-017-0240-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C Lübbert
- Fachbereich Infektions- und Tropenmedizin, Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Department für Innere Medizin, Neurologie und Dermatologie, Universitätsklinikum Leipzig, Leipzig, Deutschland.
| | | |
Collapse
|
575
|
Melander RJ, Zurawski DV, Melander C. Narrow-Spectrum Antibacterial Agents. MEDCHEMCOMM 2017; 9:12-21. [PMID: 29527285 PMCID: PMC5839511 DOI: 10.1039/c7md00528h] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
While broad spectrum antibiotics play an invaluable role in the treatment of bacterial infections, there are some drawbacks to their use, namely selection for and spread of resistance across multiple bacterial species, and the detrimental effect they can have upon the host microbiome. If the causitive agent of the infection is known, the use of narrow-spectrum antibacterial agents has the potential to mitigate some of these issues. This review outlines the advantages and challenges of narrow-spectrum antibacterial agents, discusses the progress that has been made toward developing diagnostics to enable their use, and describes some of the narrow-spectrum antibacterial agents currently being investigated against some of the most clinically important bacteria including Clostridium difficile, Mycobacterium tuberculosis and several ESKAPE pathogens.
Collapse
Affiliation(s)
- Roberta J. Melander
- Department of Chemistry
, North Carolina State University
,
Raleigh
, NC
, USA
.
| | - Daniel V. Zurawski
- Wound Infections Department
, Bacterial Diseases Branch
, Walter Reed Army Institute of Research
,
Silver Spring
, MD
, USA
| | - Christian Melander
- Department of Chemistry
, North Carolina State University
,
Raleigh
, NC
, USA
.
| |
Collapse
|
576
|
Gentry CA, Giancola SE, Thind S, Kurdgelashvili G, Skrepnek GH, Williams RJ. A Propensity-Matched Analysis Between Standard Versus Tapered Oral Vancomycin Courses for the Management of Recurrent Clostridium difficile Infection. Open Forum Infect Dis 2017; 4:ofx235. [PMID: 29255732 DOI: 10.1093/ofid/ofx235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background This study was conducted to compare clinical outcomes of oral vancomycin courses without taper versus oral vancomycin courses with taper for treatment of recurrent Clostridium difficile infection (CDI). Methods This investigation was a multicenter, retrospective, propensity score-matched analysis study using a Veterans Health Administration national clinical administrative database. Adult patients who were treated for recurrent CDI from any Veterans Affairs Medical Center between June 1, 2011 and October 31, 2016 were included if they were treated with oral vancomycin with or without a tapering regimen. The 2 groups were matched by next-nearest approach from a propensity score formula derived from independent variables associated with the selection of a taper regimen. Results Propensity score matching resulted in 2 well-matched groups consisting of 226 episodes of patients treated with a vancomycin taper regimen and 678 episodes treated by vancomycin regimen without taper. No difference was found for the primary outcome of 180-day recurrence (59 of 226 [26.1%] for taper regimens versus 161 of 678 [23.8%], P = .48). A secondary outcome of 90-day all-cause mortality met statistical significance, favoring a taper regimen (5.31% vs 9.29%, P = .049); however, secondary outcomes of 90-day recurrence and 180-day all-cause mortality were not different. Conclusions Vancomycin taper regimens did not provide benefit over vancomycin regimens without taper in preventing additional CDI recurrence in patients with first or second recurrent episodes in this propensity score-matched analysis.
Collapse
Affiliation(s)
| | | | | | | | - Grant H Skrepnek
- Department of Pharmacy: Clinical and Administrative Sciences, University of Oklahoma College of Pharmacy, Oklahoma City
| | | |
Collapse
|
577
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
578
|
Couture-Cossette A, Carignan A, Ilangumaran S, Valiquette L. Bezlotoxumab for the prevention of Clostridium difficile recurrence. Expert Opin Biol Ther 2017; 17:1439-1445. [PMID: 28805081 DOI: 10.1080/14712598.2017.1363886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clostridium difficile infection is a major economic and clinical burden, due to its high frequency of recurrence. Currently recommended treatments are not efficient for prevention and may contribute to the risk of recurrent infection. In recent years, research has focused on strategies to lessen this risk. Bezlotoxumab is a monoclonal antibody that prevents recurrences of C. difficile infection through the antagonism of toxin B. Areas covered: In this review, the authors discuss the burden of C. difficile infection and its recurrences, the mechanisms underlying the recurrences, and current C. difficile treatments. They subsequently analyze the strategic therapeutic rationale for bezlotoxumab use, as well as the supporting clinical evidence. Expert opinion: Bezlotoxumab is an attractive solution for reducing the unacceptable level of recurrence that occurs with the currently recommended C. difficile treatments and other alternative therapies under consideration. Even though bezlotoxumab has not been tested in large-scale trials exclusively in cases of already established recurrent C.difficile infection (rCDI), it has an advantage over current treatments in that it does not interfere with the patient's gut flora while directly neutralizing the key virulence factor. Although cost remains an important factor against its widespread use, simpler administration, fewer side-effects, and better social acceptability justify its consideration for treating rCDI.
Collapse
Affiliation(s)
- Antoine Couture-Cossette
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| | - Alex Carignan
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| | - Subburaj Ilangumaran
- b Department of Pediatrics, Immunology Division , Université de Sherbrooke , Québec , Canada
| | - Louis Valiquette
- a Department of Microbiology and Infectious Diseases , Université de Sherbrooke , Québec , Canada
| |
Collapse
|
579
|
Mikamo H, Aoyama N, Sawata M, Fujimoto G, Dorr MB, Yoshinari T. The effect of bezlotoxumab for prevention of recurrent Clostridium difficile infection (CDI) in Japanese patients. J Infect Chemother 2017; 24:123-129. [PMID: 29097028 DOI: 10.1016/j.jiac.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022]
Abstract
Recurrent Clostridium difficile infection is considered as a significant health care burden. The global study (MODIFY II) of antibody treatment (bezlotoxumab) for the prevention of recurrent C. difficile infection includes Japanese patients (95 subjects); The aim of this subgroup analysis is to report the data obtained from Japanese patients. Patients with C. difficile infection receiving standard of care antibiotic treatment and a single infusion of bezlotoxumab 10 mg/kg, actoxumab 10 mg/kg + bezlotoxumab 10 mg/kg or placebo. Recurrent C. difficile infection through Week 12 was evaluated. In the Full Analysis Set (93 subjects), 91% were older than 65 years of age and 93% were hospitalized at the time of study entry. The standard of care antibiotic for C. difficile infection was metronidazole for 57 subjects and vancomycin for 36 subjects. The recurrent C. difficile infection rate was 46% in the placebo, 21% in the bezlotoxumab (p = 0.0197) and 28% in the actoxumab + bezlotoxumab group. No additive recurrent C. difficile infection-reducing effect with the addition of actoxumab was demonstrated. There were no events representing safety concern in bezlotoxumab. Among 54 clinical isolates of C. difficile as a baseline culture in Japanese patients, the common ribotypes were 052 (28%), 018 (19%), 002 (15%) and 369 (9%). It showed distinctly different distribution from that in the United States and Europe. The superior effect of bezlotoxumab 10 mg/kg in the prevention of recurrent C. difficile infection suggests that the agent will be useful in the rapidly aging Japanese society.
Collapse
Affiliation(s)
- Hiroshige Mikamo
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | | | | | | | - Mary Beth Dorr
- Clinical Development, Merck & Co., Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
580
|
Asempa TE, Nicolau DP. Clostridium difficile infection in the elderly: an update on management. Clin Interv Aging 2017; 12:1799-1809. [PMID: 29123385 PMCID: PMC5661493 DOI: 10.2147/cia.s149089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The burden of Clostridium difficile infection (CDI) is profound and growing. CDI now represents a common cause of health care–associated diarrhea, and is associated with significant morbidity, mortality, and health care costs. CDI disproportionally affects the elderly, possibly explained by the following risk factors: age-related impairment of the immune system, increasing antibiotic utilization, and frequent health care exposure. In the USA, recent epidemiological studies estimate that two out of every three health care–associated CDIs occur in patients 65 years or older. Additionally, the elderly are at higher risk for recurrent CDI. Existing therapeutic options include metronidazole, oral vancomycin, and fidaxomicin. Choice of agent depends on disease severity, history of recurrence, and, increasingly, the drug cost. Bezlotoxumab, a recently approved monoclonal antibody targeting C. difficile toxin B, offers an exciting advancement into immunologic therapies. Similarly, fecal microbiota transplantation is gaining popularity as an effective option mainly for recurrent CDI. The challenge of decreasing CDI burden in the elderly involves adopting preventative strategies, optimizing initial treatment, and decreasing the risk of recurrence. Expanded strategies are certainly needed to improve outcomes in this high-risk population. This review considers available data from prospective and retrospective studies as well as case reports to illustrate the merits and gaps in care related to the management of CDI in the elderly.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
581
|
D'Ostroph AR, So TY. Treatment of pediatric Clostridium difficile infection: a review on treatment efficacy and economic value. Infect Drug Resist 2017; 10:365-375. [PMID: 29089778 PMCID: PMC5655036 DOI: 10.2147/idr.s119571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The incidence of Clostridium difficile infection (CDI) in pediatric patients continues to rise. Most of the pediatric recommendations for CDI treatment are extrapolated from the literature and guidelines for adults. The American Academy of Pediatrics recommends oral metronidazole as the first-line treatment option for an initial CDI and the first recurrence if they are mild to moderate in severity. Oral vancomycin is recommended to be used for severe CDI and the second recurrent infection. Additional pulsed regimen of oral vancomycin, which is tapered, may increase efficacy in refractory patients. However, there is lack of large studies evaluating the use of fidaxomicin in pediatrics to know whether it could be a safe and effective treatment option for difficult-to-treat patients. Fidaxomicin is associated with higher total drug costs compared to metronidazole and vancomycin, but the literature supports its use due to a lower rate of CDI recurrence, which may result in cost savings. Further studies are warranted to evaluate the use of fidaxomicin in patients <18 years old and to understand its role in the standard of care for pediatric patients with CDI.
Collapse
Affiliation(s)
- Amanda R D'Ostroph
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill
| | - Tsz-Yin So
- Department of Pharmacy, Moses H Cone Memorial Hospital, Greensboro, NC, USA
| |
Collapse
|
582
|
Cataldo MA, Granata G, Petrosillo N. Clostridium difficile infection: new approaches to prevention, non-antimicrobial treatment, and stewardship. Expert Rev Anti Infect Ther 2017; 15:1027-1040. [PMID: 28980505 DOI: 10.1080/14787210.2017.1387535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite the large amount of scientific publications exploring the epidemiology and the clinical management of Clostridium difficile (CD) infection, some issues remain unsolved or need further studies. The aim of this review is to give an update on the hot topics on CD prevention, including stewardship programs, and on the non-microbiological treatment of CD infection. Areas covered: This article will review the importance of minimizing the CD spore shedding in the healthcare environment for potentially reducing CD transmission. Moreover, antimicrobial stewardship programs aimed to reduce CD incidence will be reviewed. Finally, new strategies for reducing CD infection recurrence will be described. Expert commentary: Besides the basic infection control and prevention practices, including hand hygiene, contact isolation and environmental cleaning, in the prevention of CD infection other issues should be addressed including minimizing the spread of CD in the healthcare setting, and implementing the best strategy for reducing CD infection occurrence, including tailored antimicrobial stewardship programs. Regarding new advancements in treatment and management of CDI episodes, non-antimicrobial approaches seem to be promising in reducing and managing recurrent CD infection.
Collapse
Affiliation(s)
- Maria Adriana Cataldo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Guido Granata
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| | - Nicola Petrosillo
- a Clinical and Research Department , National Institute for Infectious Diseases 'L. Spallanzani' , Rome , Italy
| |
Collapse
|
583
|
Prabhu VS, Cornely OA, Golan Y, Dubberke ER, Heimann SM, Hanson ME, Liao J, Pedley A, Dorr MB, Marcella S. Thirty-Day Readmissions in Hospitalized Patients Who Received Bezlotoxumab With Antibacterial Drug Treatment for Clostridium difficile Infection. Clin Infect Dis 2017; 65:1218-1221. [PMID: 30060024 PMCID: PMC5848255 DOI: 10.1093/cid/cix523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Clinical Trials Registration NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II).
Collapse
Affiliation(s)
- Vimalanand S Prabhu
- Economic and Data Sciences, Center for Real World and Observational Studies, Merck & Co., Inc., Kenilworth, New Jersey
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Department of Internal Medicine, Clinical Trials Centre Cologne, University of Cologne, Germany
| | - Yoav Golan
- Department of Medicine, Geographic Medicine and Infectious Diseases, Tufts University School of Medicine, Boston, Massachusetts
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri
| | | | - Mary E Hanson
- Global Scientific and Medical Publications, Infectious Diseases & Vaccines
| | - Jane Liao
- Statistical Programming for Center for Outcomes Research Excellence
| | | | | | - Stephen Marcella
- Outcomes Research, Center for Outcomes Research Excellence, Acute Hospital & Specialty Care, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
584
|
Cobo J, Merino E, Martínez C, Cózar-Llistó A, Shaw E, Marrodán T, Calbo E, Bereciartúa E, Sánchez-Muñoz LA, Salavert M, Pérez-Rodríguez MT, García-Rosado D, Bravo-Ferrer JM, Gálvez-Acebal J, Henríquez-Camacho C, Cuquet J, Pino-Calm B, Torres L, Sánchez-Porto A, Fernández-Félix BM. Prediction of recurrent clostridium difficile infection at the bedside: the GEIH-CDI score. Int J Antimicrob Agents 2017; 51:393-398. [PMID: 28939450 DOI: 10.1016/j.ijantimicag.2017.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023]
Abstract
Recurrence of Clostridium difficile infection (CDI) has major consequences for both patients and the health system. The ability to predict which patients are at increased risk of recurrent CDI makes it possible to select candidates for treatment with new drugs and therapies (including fecal microbiota transplantation) that have proven to reduce the incidence of recurrence of CDI. Our objective was to develop a clinical prediction tool, the GEIH-CDI score, to determine the risk of recurrence of CDI. Predictors of recurrence of CDI were investigated using logistic regression in a prospective cohort of 274 patients diagnosed with CDI. The model was calibrated using the Hosmer-Lemeshow test. The tool comprises four factors: age (70-79 years and ≥80 years), history of CDI during the previous year, direct detection of toxin in stool, and persistence of diarrhea on the fifth day of treatment. The functioning of the GEIH-CDI score was validated in a prospective cohort of 183 patients. The area under the ROC curve was 0.72 (0.65-0.79). Application of the tool makes it possible to select patients at high risk (>50%) of recurrence and patients at low risk (<10%) of recurrence. GEIH-CDI score may be useful for clinicians treating patients with CDI.
Collapse
Affiliation(s)
- Javier Cobo
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.
| | - Esperanza Merino
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Alicante, ISABIAL-FISABIO, Alicante, Spain
| | - Cristina Martínez
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Cózar-Llistó
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Evelyn Shaw
- Servicio de Enfermedades infecciosas, Hospital Universitario de Bellvitge, IDIBELL, Barcelona, Spain
| | - Teresa Marrodán
- Servicio de Microbiología Clínica, Hospital de León, León, Spain
| | - Esther Calbo
- Servicio de Medicina Interna, Unidad de Control de la Infección, Hospital Universitario MútuaTerrasssa, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elena Bereciartúa
- Unidad de Enfermedades infecciosas, Hospital Universitario Cruces, Bilbao, Spain
| | - Luis A Sánchez-Muñoz
- Servicio de Medicina Interna, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Miguel Salavert
- Unidad de Enfermedades infecciosas, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - M Teresa Pérez-Rodríguez
- Unidad de Patología Infecciosa, Servicio de Medicina Interna, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Dácil García-Rosado
- Sección de Infecciones, Servicio de Medicina Interna Hospital universitario de Canarias, Vigo, Tenerife, Spain
| | | | - Juan Gálvez-Acebal
- Instituto de Biomedicina de Sevilla, IBiS/Hospital universitario Virgen Macarena/Unidad de Enfermedades infecciosas/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | - Jordi Cuquet
- Proceso de Infecciones, Servicio de Medicina Interna, Hospital General de Granollers, Barcelona, Spain
| | - Berta Pino-Calm
- Servicio de Microbiología, Hospital Nuestra Señora de Candelaria, Sta, Cruz de Tenerife, Spain
| | - Luis Torres
- Servicio de Microbiología, Hospital San Jorge de Huesca, Huesca, Spain
| | - Antonio Sánchez-Porto
- Unidad de Enfermedades infecciosas y Microbiología, Hospital del SAS de La Línea de la Concepción, Cádiz, Spain
| | - Borja M Fernández-Félix
- Unidad de Bioestadística Clínica, Hospital Universitario Ramón y Cajal, Madrid, Spain; IRYCIS, CIBER Epidemiología y Salud Pública (CIBERESP)
| | | |
Collapse
|
585
|
Affiliation(s)
- Mark L Lang
- a Department of Microbiology and Immunology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Binu Shrestha
- a Department of Microbiology and Immunology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
586
|
Kufel WD, Devanathan AS, Marx AH, Weber DJ, Daniels LM. Bezlotoxumab: A Novel Agent for the Prevention of Recurrent Clostridium difficile Infection. Pharmacotherapy 2017; 37:1298-1308. [PMID: 28730660 DOI: 10.1002/phar.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the past decade, the incidence and severity of Clostridium difficile infection (CDI) have significantly increased, leading to a rise in CDI-associated hospitalizations, health care costs, and mortality. Although treatment options exist for CDI, recurrence is frequent following treatment. Furthermore, patients with at least one CDI recurrence are at an increased risk of developing additional recurrences. A novel approach to the prevention of recurrent CDI is the use of monoclonal antibodies directed against the toxins responsible for CDI as an adjunct to antibiotic treatment. Bezlotoxumab, a human monoclonal antibody that binds and neutralizes C. difficile toxin B, is the first therapeutic agent to receive United States Food and Drug Administration approval for the prevention of CDI recurrence. Clinical studies have demonstrated superior efficacy of bezlotoxumab in adults receiving antibiotic therapy for CDI compared with antibiotic therapy alone for the prevention of CDI recurrence. Bezlotoxumab was well tolerated in clinical trials, with the most common adverse effects being nausea, vomiting, fatigue, pyrexia, headache, and diarrhea. The demonstrated efficacy, safety, and characteristics of bezlotoxumab present an advance in prevention of CDI recurrence.
Collapse
Affiliation(s)
- Wesley D Kufel
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina.,Department of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Aaron S Devanathan
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina.,Department of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Ashley H Marx
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina.,Department of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - David J Weber
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lindsay M Daniels
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina.,Department of Practice Advancement and Clinical Education, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| |
Collapse
|
587
|
Shin JH, Warren CA. Collateral damage during antibiotic treatment of C. difficile infection in the aged host: Insights into why recurrent disease happens. Gut Microbes 2017; 8:504-510. [PMID: 28453386 PMCID: PMC5628656 DOI: 10.1080/19490976.2017.1323616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile infection (CDI) is one of the most common causes of healthcare-associated infections but an even bigger problem for the aging population. Advanced age leads to higher incidence, higher mortality, and higher recurrences. In our study, recently published in the Journal of Infectious Diseases, we investigated the effect of aging on CDI using a mouse model. We were able to demonstrate that aging leads to worse clinical outcomes, as well as lead to changes in microbiota composition and lower antibody production against C. difficile toxin A, but not toxin B. An association between advanced age and lower antibody production against C. difficile is a new finding which would explain the effect of aging on CDI outcome. Vancomycin, an anti-C. difficile antibiotic, led to similar changes in antibody response, suggesting a connection between microbiome and antibody response in the context of aging, which would require a much more nuanced look at the treatment of CDI.
Collapse
Affiliation(s)
- Jae Hyun Shin
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health
| | - Cirle A. Warren
- University of Virginia School of Medicine, Department of Medicine, Division of Infectious Diseases and International Health
| |
Collapse
|
588
|
Henderson M, Bragg A, Fahim G, Shah M, Hermes-DeSantis ER. A Review of the Safety and Efficacy of Vaccines as Prophylaxis for Clostridium difficile Infections. Vaccines (Basel) 2017; 5:E25. [PMID: 28869502 PMCID: PMC5620556 DOI: 10.3390/vaccines5030025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 01/03/2023] Open
Abstract
This review aims to evaluate the literature on the safety and efficacy of novel toxoid vaccines for the prophylaxis of Clostridium difficile infections (CDI) in healthy adults. Literature searches for clinical trials were performed through MEDLINE, ClinicalTrials.gov, and Web of Science using the keywords bacterial vaccines, Clostridium difficile, and vaccine. English-language clinical trials evaluating the efficacy and/or safety of Clostridium difficile toxoid vaccines that were completed and had results posted on ClinicalTrials.gov or in a published journal article were included. Six clinical trials were included. The vaccines were associated with mild self-reported adverse reactions, most commonly injection site reactions and flu-like symptoms, and minimal serious adverse events. Five clinical trials found marked increases in antibody production in vaccinated participants following each dose of the vaccine. Clinical trials evaluating C. difficile toxoid vaccines have shown them to be well tolerated and relatively safe. Surrogate markers of efficacy (seroconversion and geometric mean antibody levels) have shown significant immune responses to a vaccination series in healthy adults, indicating that they have the potential to be used as prophylaxis for CDI. However, more research is needed to determine the clinical benefits of the vaccines.
Collapse
Affiliation(s)
- Mackenzie Henderson
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Amanda Bragg
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Germin Fahim
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
- Pharmacy Department, Monmouth Medical Center, Long Branch, NJ 07740, USA.
| | - Monica Shah
- Pharmacy Department, Monmouth Medical Center, Long Branch, NJ 07740, USA.
| | - Evelyn R Hermes-DeSantis
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
- Pharmacy Department, Robert Wood Johnson University Hospital, New Brunswick, NJ 08901, USA.
| |
Collapse
|
589
|
Prediction of Recurrent Clostridium Difficile Infection Using Comprehensive Electronic Medical Records in an Integrated Healthcare Delivery System. Infect Control Hosp Epidemiol 2017; 38:1196-1203. [PMID: 28835289 DOI: 10.1017/ice.2017.176] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Predicting recurrent Clostridium difficile infection (rCDI) remains difficult. METHODS We employed a retrospective cohort design. Granular electronic medical record (EMR) data had been collected from patients hospitalized at 21 Kaiser Permanente Northern California hospitals. The derivation dataset (2007-2013) included data from 9,386 patients who experienced incident CDI (iCDI) and 1,311 who experienced their first CDI recurrences (rCDI). The validation dataset (2014) included data from 1,865 patients who experienced incident CDI and 144 who experienced rCDI. Using multiple techniques, including machine learning, we evaluated more than 150 potential predictors. Our final analyses evaluated 3 models with varying degrees of complexity and 1 previously published model. RESULTS Despite having a large multicenter cohort and access to granular EMR data (eg, vital signs, and laboratory test results), none of the models discriminated well (c statistics, 0.591-0.605), had good calibration, or had good explanatory power. CONCLUSIONS Our ability to predict rCDI remains limited. Given currently available EMR technology, improvements in prediction will require incorporating new variables because currently available data elements lack adequate explanatory power. Infect Control Hosp Epidemiol 2017;38:1196-1203.
Collapse
|
590
|
Manthey C, Eckmann L, Fuhrmann V. Therapy for Clostridium difficile infection – any news beyond Metronidazole and Vancomycin? Expert Rev Clin Pharmacol 2017; 10:1239-1250. [DOI: 10.1080/17512433.2017.1362978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C.F. Manthey
- I. Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - V. Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
591
|
Nanayakkara D, Nanda N. Clostridium difficile infection in solid organ transplant recipients. Curr Opin Organ Transplant 2017; 22:314-319. [PMID: 28542111 DOI: 10.1097/mot.0000000000000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Clostridium difficile infection (CDI) is a major healthcare-associated infection that causes significant morbidity and an economic impact in the United States. In this review, we provide an overview of Clostridium difficile infection in solid organ transplant recipients with an emphasis on recent literature. RECENT FINDINGS C. difficile in solid organ transplant population has unique risk factors. Fecal microbiota transplantation has shown favorable results in treatment of recurrent C. difficile in this population. Preliminary data from animal studies suggests excellent efficacy with immunization against C. difficile toxins. SUMMARY Over the last decade, number of individuals receiving solid organ transplants has increased exponentially making peri-transplant complications a common occurrence.C. difficile is a frequent cause of morbidity in solid organ transplant recipients. Early and accurate diagnosis of C. difficile requires a stepwise approach. Differentiating between asymptomatic carriage and infection is a diagnostic challenge. Microbial diversity is inversely proportional to risk of C. difficile infection. Antimicrobial stewardship programs help to retain microbial diversity in individuals susceptible to CDI. Recurrent or relapsing C. difficile infection require fecal microbiota transplantation for definitive cure.
Collapse
Affiliation(s)
- Deepa Nanayakkara
- Section of Infectious Diseases, Department of Internal Medicine, University of Southern California, California, USA
| | | |
Collapse
|
592
|
Clostridium difficile disease: Diagnosis, pathogenesis, and treatment update. Surgery 2017; 162:325-348. [DOI: 10.1016/j.surg.2017.01.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
|
593
|
Abstract
PURPOSE OF THE REVIEW Review tests available for detection of Clostridium difficile (C. Diff) induced disease, including when such tests should be done in children and how they should be interpreted. RECENT FINDINGS Multiple tests are available for detecting disease due to C. diff. These include colonoscopy and stool analysis. Colonoscopy with biopsy is the most sensitive test for detecting the presence of colitis. The toxins produced by the C. diff. (toxin A, toxin B, and binary toxin) are the agents that cause injury and disease. Only toxin producing C. diff. Strains will cause disease. Binary toxin by itself is not thought to produce disease. Binary toxin causes disease in humans when present with toxin A and B producing bacteria, and has been implicated with fulminant life threatening disease. Stool analyses vary in sensitivity and specificity depending on the assay used. The presence of toxin producing strains of C diff. in the stool does not equate with disease. The presence of a toxin-producing bacteria or toxins (A or B) only equates with disease if diarrhea or a diseased colon (toxic megacolon, ileus, and sepsis) is present. Nucleic acid amplification testing (NAAT), when used in the stool from patients with diarrhea, appears to be the most efficient study to detect the gene that encodes for toxin A and B and thus to diagnose C. diff.-induced disease. Infants have a high carriage rate of C. diff. and are believed not to develop disease from it or its toxins. Infants should not be tested for C. difficile. The NAAT is most specific when done on patients with diarrhea with liquid stools. Testing for C. difficile should only be done on patients with diarrhea. One can assume that a patient who has no diarrhea and is not ill does not have C. diff.-induced disease. Treatment should be limited to patients with diarrhea who test positive for C. diff. toxin (A or B) or toxin-producing bacteria. Direct testing for binary toxin is not commercially available. Binary toxin is only thought to cause disease in humans when C. diff. toxin (A and B)-producing bacteria are present.
Collapse
Affiliation(s)
- Randolph McConnie
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Rush University Children's Hospital, Chicago, IL, USA.
- Departments of Pediatrics and Internal Medicine, Rush Medical College, 1725 W Harrison St #710, Chicago, IL, 60612, USA.
| | - Arthur Kastl
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
594
|
Darkoh C, Deaton M, DuPont HL. Nonantimicrobial drug targets for Clostridium difficile infections. Future Microbiol 2017; 12:975-985. [PMID: 28759258 DOI: 10.2217/fmb-2017-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is a major public health problem worldwide. Treatment has become complicated due to the emergence of strains with increased toxigenicity and sporulation rate, together with rampant antibiotics use that disrupts colonization resistance of the colonic microbiota. As a result, there is a critical need for nonantibiotic treatments. Therapies based on inhibiting the toxins, bacterial structures responsible for colonization, virulence and restoration of the gut microbiota are the most important nonantibiotic targets to combat CDI. This report outlines these targets and how they could become the focus of future therapeutic agents. Inhibiting colonization and virulence factors during CDI will disrupt pathogen persistence and decrease exposure to the inflammatory toxins, allowing the immune system to clear the infection.
Collapse
Affiliation(s)
- Charles Darkoh
- Department of Epidemiology, Human Genetics, & Environmental Sciences, Center For Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Microbiology & Infectious Diseases Program, Houston, TX 77030, USA
| | - Magdalena Deaton
- Department of Epidemiology, Human Genetics, & Environmental Sciences, Center For Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Herbert L DuPont
- Department of Epidemiology, Human Genetics, & Environmental Sciences, Center For Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, USA.,Baylor College of Medicine, Departments of Molecular Virology & Microbiology & Medicine, Houston, TX 77030, USA
| |
Collapse
|
595
|
Kroh HK, Chandrasekaran R, Rosenthal K, Woods R, Jin X, Ohi MD, Nyborg AC, Rainey GJ, Warrener P, Spiller BW, Lacy DB. Use of a neutralizing antibody helps identify structural features critical for binding of Clostridium difficile toxin TcdA to the host cell surface. J Biol Chem 2017; 292:14401-14412. [PMID: 28705932 DOI: 10.1074/jbc.m117.781112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a clinically significant pathogen that causes mild-to-severe (and often recurrent) colon infections. Disease symptoms stem from the activities of two large, multidomain toxins known as TcdA and TcdB. The toxins can bind, enter, and perturb host cell function through a multistep mechanism of receptor binding, endocytosis, pore formation, autoproteolysis, and glucosyltransferase-mediated modification of host substrates. Monoclonal antibodies that neutralize toxin activity provide a survival benefit in preclinical animal models and prevent recurrent infections in human clinical trials. However, the molecular mechanisms involved in these neutralizing activities are unclear. To this end, we performed structural studies on a neutralizing monoclonal antibody, PA50, a humanized mAb with both potent and broad-spectrum neutralizing activity, in complex with TcdA. Electron microscopy imaging and multiangle light-scattering analysis revealed that PA50 binds multiple sites on the TcdA C-terminal combined repetitive oligopeptides (CROPs) domain. A crystal structure of two PA50 Fabs bound to a segment of the TcdA CROPs helped define a conserved epitope that is distinct from previously identified carbohydrate-binding sites. Binding of TcdA to the host cell surface was directly blocked by either PA50 mAb or Fab and suggested that receptor blockade is the mechanism by which PA50 neutralizes TcdA. These findings highlight the importance of the CROPs C terminus in cell-surface binding and a role for neutralizing antibodies in defining structural features critical to a pathogen's mechanism of action. We conclude that PA50 protects host cells by blocking the binding of TcdA to cell surfaces.
Collapse
Affiliation(s)
- Heather K Kroh
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Ramyavardhanee Chandrasekaran
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Xiaofang Jin
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Melanie D Ohi
- the Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232-8240
| | | | | | | | - Benjamin W Spiller
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, and
| | - D Borden Lacy
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212-2637
| |
Collapse
|
596
|
Villafuerte Gálvez JA, Kelly CP. Bezlotoxumab: anti-toxin B monoclonal antibody to prevent recurrence of Clostridium difficile infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28636484 DOI: 10.1080/17474124.2017.1344551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) is the most common nosocomial infection in the U.S. 25% of CDI patients go on to develop recurrent CDI (rCDI) following current standard of care (SOC) therapy, leading to morbidity, mortality and economic loss. The first passive immunotherapy drug targeting C.difficile toxin B (bezlotoxumab) has been approved recently by the FDA and EMA for prevention of rCDI. Areas covered: A body of key studies was selected and reviewed by the authors. The unmet needs in CDI care were ascertained with emphasis in rCDI, including the epidemiology, pathophysiology and current management. The current knowledge about the immune response to C. difficile toxins and how this knowledge led to the development and the clinical use of bezlotoxumab is described. Current and potential future competitors to the drug were examined. Expert commentary: A single 10 mg/kg intravenous infusion of bezlotoxumab has been shown to decrease rCDI by ~40% (absolute reduction ~10%) in patients being treated for primary CDI or rCDI with SOC antibiotics. Targeting C.difficile toxins by passive immunotherapy is a novel mechanism for prevention of C.difficile infection. Bezlotoxumab will be a valuable adjunctive therapy to reduce the burden of CDI.
Collapse
Affiliation(s)
- Javier A Villafuerte Gálvez
- a Department of Medicine , Harvard Medical School , Boston , MA
- b Department of Medicine - Division of Hematology and Oncology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Ciarán P Kelly
- a Department of Medicine , Harvard Medical School , Boston , MA
- c Department of Medicine - Division of Gastroenterology , Beth Israel Deaconess Medical Center , Boston , MA , USA
| |
Collapse
|
597
|
Gerding DN. The Challenging Conundrum of Diagnosing and Managing Clostridium difficile Infection. Mayo Clin Proc Innov Qual Outcomes 2017; 1:5-7. [PMID: 30225396 PMCID: PMC6135016 DOI: 10.1016/j.mayocpiqo.2017.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Dale N. Gerding
- Correspondence: Address to: Dale N. Gerding, MD, Research Service, Edward Hines Jr VA Medical Center, 5000 S 5th Ave, Bldg 1, Room C347, Hines, IL 60141.
| |
Collapse
|
598
|
Abstract
Clostridium difficile infection (CDI) is facilitated by alteration of the microbiome following antibiotic administration. Antimicrobial therapy directed against the pathogen can treat CDI. Unfortunately, ∼20% of successfully treated patients will suffer recurrence. Bezlotoxumab, a human monoclonal antibody, binds to C. difficile toxin B (TcdB), reducing recurrence presumably by limiting epithelial damage and facilitating microbiome recovery.
Collapse
Affiliation(s)
| | - Vincent B Young
- University of Michigan Medical School, Ann Arbor, MI 48103, USA.
| |
Collapse
|
599
|
Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep 2017. [PMID: 28623367 PMCID: PMC5473923 DOI: 10.1038/s41598-017-03982-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The increased incidence of antibiotic resistant 'superbugs' has amplified the use of broad spectrum antibiotics worldwide. An unintended consequence of antimicrobial treatment is disruption of the gastrointestinal microbiota, resulting in susceptibility to opportunistic pathogens, such as Clostridium difficile. Paradoxically, treatment of C. difficile infections (CDI) also involves antibiotic use, leaving patients susceptible to re-infection. This serious health threat has led to an urgent call for the development of new therapeutics to reduce or replace the use of antibiotics to treat bacterial infections. To address this need, we have developed colostrum-derived antibodies for the prevention and treatment of CDI. Pregnant cows were immunised to generate hyperimmune bovine colostrum (HBC) containing antibodies that target essential C. difficile virulence components, specifically, spores, vegetative cells and toxin B (TcdB). Mouse infection and relapse models were used to compare the capacity of HBC to prevent or treat primary CDI as well as prevent recurrence. Administration of TcdB-specific colostrum alone, or in combination with spore or vegetative cell-targeted colostrum, prevents and treats C. difficile disease in mice and reduces disease recurrence by 67%. C. difficile-specific colostrum should be re-considered as an immunotherapeutic for the prevention or treatment of primary or recurrent CDI.
Collapse
Affiliation(s)
- Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bliss A Cunningham
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kate E Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Shelley A Lyon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Meagan L James
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
600
|
[Individualized treatment strategies for Clostridium difficile infections]. Internist (Berl) 2017; 58:675-681. [PMID: 28589214 DOI: 10.1007/s00108-017-0268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Upon hospitalization, up to 15.5% of patients are already colonized with a toxigenic Clostridium difficile strain (TCD). The rate of asymptomatic colonization is 0-3% in healthy adults and up to 20-40% in hospitalized patients. The incidence and mortality of C. difficile infection (CDI) has significantly increased during recent years. Mortality lies between 3 and 14%. CDI is generally caused by intestinal dysbiosis, which can be triggered by various factors, including antibiotics or immune suppressants. If CDI occurs, ongoing antibiotic therapy should be discontinued. The choice of treatment is guided by the clinical situation: Mild courses of CDI should be treated with metronidazole. Oral vancomycin is suitable as a first-line therapy of mild CDI occurring during pregnancy and lactation, as well as in cases of intolerance or allergy to metronidazole. Severe courses should be treated with vancomycin. Recurrence should be treated with vancomycin or fidaxomicin. Multiple recurrences should be treated with vancomycin or fidaxomicin; if necessary, a vancomycin taper regimen may also be used. An alternative is fecal microbiota transplant (FMT), with healing rates of more than 80%. Bezlotoxumab is the first available monoclonal antibody which neutralizes the C. difficile toxin B, and in combination with an antibiotic significantly reduces the rate of a new C. difficile infection compared to placebo. A better definition of clinical and microbiota-associated risk factors and the ongoing implementation of molecular diagnostics are likely to lead to optimized identification of patients at risk, and an increasing individualization of prophylactic and therapeutic approaches.
Collapse
|