551
|
Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 2016; 1647:65-78. [PMID: 27033831 DOI: 10.1016/j.brainres.2016.03.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022]
Abstract
Recent advances in the genetics of amyotrophic lateral sclerosis (ALS) have provided key mechanistic insights to the pathogenesis of this devastating neurodegenerative disease. Among many etiologies for ALS, the identification of mutations and proteinopathies in two RNA binding proteins, TDP-43 (TARDBP or TAR DNA binding protein 43) and its closely related RNA/DNA binding protein FUS (fused in sarcoma), raises the intriguing possibility that perturbations to the RNA homeostasis and metabolism in neurons may contribute to the pathogenesis of these diseases. Although the similarities between TDP-43 and FUS suggest that mutations and proteinopathy involving these two proteins may converge on the same mechanisms leading to neurodegeneration, there is increasing evidence that FUS mutations target distinct mechanisms to cause early disease onset and aggressive progression of disease. This review focuses on the recent advances on the molecular, cellular and genetic approaches to uncover the mechanisms of wild type and mutant FUS proteins during development and in neurodegeneration. These findings provide important insights to understand how FUS mutations may perturb the maintenance of dendrites through fundamental processes in RNA splicing, RNA transport and DNA damage response/repair. These results contribute to the understanding of phenotypic manifestations in neurodegeneration related to FUS mutations, and to identify important directions for future investigations. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Yulei Shang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States; Pathology Service 113B, VA Medical Center, San Francisco, CA, United States.
| |
Collapse
|
552
|
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18. [PMID: 26996412 PMCID: PMC5003744 DOI: 10.1016/j.brainres.2016.02.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/12/2022]
Abstract
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications.
Collapse
|
553
|
Finnen RL, Banfield BW. Alphaherpesvirus Subversion of Stress-Induced Translational Arrest. Viruses 2016; 8:81. [PMID: 26999187 PMCID: PMC4810271 DOI: 10.3390/v8030081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.
Collapse
Affiliation(s)
- Renée L Finnen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Bruce W Banfield
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
554
|
Mack KL, Shorter J. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Front Mol Biosci 2016; 3:8. [PMID: 27014702 PMCID: PMC4791398 DOI: 10.3389/fmolb.2016.00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022] Open
Abstract
Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
555
|
Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network. Brain Res 2016; 1647:79-93. [PMID: 26979993 DOI: 10.1016/j.brainres.2016.02.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
The pathological accumulation of RNA-binding proteins (RBPs) within inclusion bodies is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBP aggregation results in both toxic gain and loss of normal function. Determining the protein binding partners and normal functions of disease-associated RBPs is necessary to fully understand molecular mechanisms of RBPs in disease. Herein, we characterized the protein-protein interactions (PPIs) of RBM45, a RBP that localizes to inclusions in ALS/FTLD. Using immunoprecipitation coupled to mass spectrometry (IP-MS), we identified 132 proteins that specifically interact with RBM45 within HEK293 cells. Select PPIs were validated by immunoblot and immunocytochemistry, demonstrating that RBM45 associates with a number of other RBPs primarily via RNA-dependent interactions in the nucleus. Analysis of the biological processes and pathways associated with RBM45-interacting proteins indicates enrichment for nuclear RNA processing/splicing via association with hnRNP proteins and cytoplasmic RNA translation via eiF2 and eiF4 pathways. Moreover, several other ALS-linked RBPs, including TDP-43, FUS, Matrin-3, and hnRNP-A1, interact with RBM45, consistent with prior observations of these proteins within intracellular inclusions in ALS/FTLD. Taken together, our results define a PPI network for RBM45, suggest novel functions for this protein, and provide new insights into the contributions of RBM45 to neurodegeneration in ALS/FTLD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
|
556
|
Sugiura T, Matsuda S, Kurosaka S, Nakai N, Fukumoto K, Takahashi T, Maruyama H, Imaizumi K, Matsumoto M, Takumi T. Translocated in liposarcoma regulates the distribution and function of mammalian enabled, a modulator of actin dynamics. FEBS J 2016; 283:1475-87. [PMID: 26896672 DOI: 10.1111/febs.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
Translocated in liposarcoma/fused in sarcoma (TLS/FUS) is an RNA-binding protein that regulates the splicing pattern of mRNA transcripts and is known to cause a type of familial amyotrophic lateral sclerosis (ALS). In the absence of TLS, Mammalian enabled (Mena), an actin-regulatory protein and a target of TLS, undergoes preferential alternative splicing. In the present study, we show that the ablation of TLS dysregulates the subcellular location and functions of Mena. When TLS knockout (KO) mouse embryonic fibroblasts (MEFs) were transfected with wild-type Mena, it no longer accumulated at focal adhesions and peripheral structures, whereas the localization of the alternatively spliced form was maintained. Additionally, the ability of Mena to suppress the motility of cells was lost in TLS KO MEFs. Moreover, Mena failed to promote neurite outgrowth in TLS KO primary neurons. Taken together, TLS is intimately involved in the local cytoskeletal dynamics surrounding Mena in both fibroblasts and neurons. The robust change in cytoskeletal dynamics, as indicated by the dysregulation of Mena in TLS KO cells, provides a new insight into the pathogenesis of certain types of ALS.
Collapse
Affiliation(s)
- Tomohito Sugiura
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Shuji Matsuda
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Satoshi Kurosaka
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Nobuhiro Nakai
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Keita Fukumoto
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Tetsuya Takahashi
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Hirofumi Maruyama
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Kazunori Imaizumi
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Masayasu Matsumoto
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Toru Takumi
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
557
|
Abstract
Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.
Collapse
Affiliation(s)
- Meredith E Jackrel
- a Department of Biochemistry and Biophysics ; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
558
|
Nostramo R, Herman PK. Deubiquitination and the regulation of stress granule assembly. Curr Genet 2016; 62:503-6. [PMID: 26852120 DOI: 10.1007/s00294-016-0571-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Stress granules (SGs) are evolutionarily conserved ribonucleoprotein (RNP) structures that form in response to a variety of environmental and cellular cues. The presence of these RNP granules has been linked to a number of human diseases, including neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (Li et al., J Cell Biol 201:361-372, 2013; Nonhoff et al., Mol Biol Cell 18:1385-1396, 2007). Understanding how the assembly of these granules is controlled could, therefore, suggest possible routes of therapy for patients afflicted with these conditions. Interestingly, several reports have identified a potential role for protein deubiquitination in the assembly of these RNP granules. In particular, recent work has found that a specific deubiquitinase enzyme, Ubp3, is required for efficient SG formation in S. cerevisiae (Nostramo et al., Mol Cell Biol 36:173-183, 2016). This same enzyme has been linked to SGs in other organisms, including humans and the fission yeast, Schizosaccharomyces pombe (Takahashi et al., Mol Cell Biol 33:815-829, 2013; Wang et al., RNA 18:694-703, 2012). At first glance, these observations suggest that a striking degree of conservation exists for a ubiquitin-based mechanism controlling SG assembly. However, the devil is truly in the details here, as the precise nature of the involvement of this deubiquitinating enzyme seems to vary in each organism. Here, we briefly review these differences and attempt to provide an overarching model for the role of ubiquitin in SG formation.
Collapse
Affiliation(s)
- R Nostramo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - P K Herman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
559
|
Abstract
Berchowitz et al. establish that transient amyloid-like forms of Rim4, a yeast RNA-binding protein with a predicted prion domain, translationally repress cyclin CLB3 in meiosis I, thereby ensuring homologous chromosome segregation. These findings suggest that prion domains might enable formation of tightly regulated amyloid-like effectors in diverse functional settings.
Collapse
Affiliation(s)
- Alice Flynn Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
560
|
Kim CH, Kim YD, Choi EK, Kim HR, Na BR, Im SH, Jun CD. Nuclear Speckle-related Protein 70 Binds to Serine/Arginine-rich Splicing Factors 1 and 2 via an Arginine/Serine-like Region and Counteracts Their Alternative Splicing Activity. J Biol Chem 2016; 291:6169-81. [PMID: 26797131 DOI: 10.1074/jbc.m115.689414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
Nuclear speckles are subnuclear storage sites containing pre-mRNA splicing machinery. Proteins assembled in nuclear speckles are known to modulate transcription and pre-mRNA processing. We have previously identified nuclear speckle-related protein 70 (NSrp70) as a novel serine/arginine (SR)-related protein that co-localizes with classical SR proteins such as serine/arginine-rich splicing factor 1 (SRSF1 or ASF/SF2) and SRSF2 (SC35). NSrp70 mediates alternative splice site selection, targeting several pre-mRNAs, including CD44 exon v5. Here we demonstrated that NSrp70 interacts physically with two SR proteins, SRSF1 and SRSF2, and reverses their splicing activity in terms of CD44 exon v5 as exon exclusion. The NSrp70 RS-like region was subdivided into three areas. Deletion of the first arginine/serine-rich-like region (RS1) completely abrogated binding to the SR proteins and to target mRNA and also failed to induce splicing of CD44 exon v5, suggesting that RS1 is critical for NSrp70 functioning. Interestingly, RS1 deletion also resulted in the loss of NSrp70 and SR protein speckle positioning, implying a potential scaffolding role for NSrp70 in nuclear speckles. NSrp70 contains an N-terminal coiled-coil domain that is critical not only for self-oligomerization but also for splicing activity. Consistently, deletion of the coiled-coil domain resulted in indefinite formation of nuclear speckles. Collectively, these results demonstrate that NSrp70 acts as a new molecular counterpart for alternative splicing of target RNA, counteracting SRSF1 and SRSF2 splicing activity.
Collapse
Affiliation(s)
- Chang-Hyun Kim
- From the School of Life Sciences, Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Young-Dae Kim
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseng-gu, Daejeon 3414, Korea, and
| | - Eun-Kyung Choi
- From the School of Life Sciences, Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Hye-Ran Kim
- From the School of Life Sciences, Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Bo-Ra Na
- From the School of Life Sciences, Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Sin-Hyeog Im
- the Academy of Immunology and Microbiology, Institute for Basic Science, and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Chang-Duk Jun
- From the School of Life Sciences, Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea,
| |
Collapse
|
561
|
ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell 2016; 164:487-98. [PMID: 26777405 DOI: 10.1016/j.cell.2015.12.038] [Citation(s) in RCA: 1104] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/29/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
Stress granules are mRNA-protein granules that form when translation initiation is limited, and they are related to pathological granules in various neurodegenerative diseases. Super-resolution microscopy reveals stable substructures, referred to as cores, within stress granules that can be purified. Proteomic analysis of stress granule cores reveals a dense network of protein-protein interactions and links between stress granules and human diseases and identifies ATP-dependent helicases and protein remodelers as conserved stress granule components. ATP is required for stress granule assembly and dynamics. Moreover, multiple ATP-driven machines affect stress granules differently, with the CCT complex inhibiting stress granule assembly, while the MCM and RVB complexes promote stress granule persistence. Our observations suggest that stress granules contain a stable core structure surrounded by a dynamic shell with assembly, disassembly, and transitions between the core and shell modulated by numerous protein and RNA remodeling complexes.
Collapse
|
562
|
Torrente MP, Chuang E, Noll MM, Jackrel ME, Go MS, Shorter J. Mechanistic Insights into Hsp104 Potentiation. J Biol Chem 2016; 291:5101-15. [PMID: 26747608 DOI: 10.1074/jbc.m115.707976] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/25/2022] Open
Abstract
Potentiated variants of Hsp104, a protein disaggregase from yeast, can dissolve protein aggregates connected to neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis. However, the mechanisms underlying Hsp104 potentiation remain incompletely defined. Here, we establish that 2-3 subunits of the Hsp104 hexamer must bear an A503V potentiating mutation to elicit enhanced disaggregase activity in the absence of Hsp70. We also define the ATPase and substrate-binding modalities needed for potentiated Hsp104(A503V) activity in vitro and in vivo. Hsp104(A503V) disaggregase activity is strongly inhibited by the Y257A mutation that disrupts substrate binding to the nucleotide-binding domain 1 (NBD1) pore loop and is abolished by the Y662A mutation that disrupts substrate binding to the NBD2 pore loop. Intriguingly, Hsp104(A503V) disaggregase activity responds to mixtures of ATP and adenosine 5'-(γ-thio)-triphosphate (a slowly hydrolyzable ATP analogue) differently from Hsp104. Indeed, an altered pattern of ATP hydrolysis and altered allosteric signaling between NBD1 and NBD2 are likely critical for potentiation. Hsp104(A503V) variants bearing inactivating Walker A or Walker B mutations in both NBDs are inoperative. Unexpectedly, however, Hsp104(A503V) retains potentiated activity upon introduction of sensor-1 mutations that reduce ATP hydrolysis at NBD1 (T317A) or NBD2 (N728A). Hsp104(T317A/A503V) and Hsp104(A503V/N728A) rescue TDP-43 (TAR DNA-binding protein 43), FUS (fused in sarcoma), and α-synuclein toxicity in yeast. Thus, Hsp104(A503V) displays a more robust activity that is unperturbed by sensor-1 mutations that greatly reduce Hsp104 activity in vivo. Indeed, ATPase activity at NBD1 or NBD2 is sufficient for Hsp104 potentiation. Our findings will empower design of ameliorated therapeutic disaggregases for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Edward Chuang
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Megan M Noll
- From the Department of Biochemistry and Biophysics and
| | | | - Michelle S Go
- From the Department of Biochemistry and Biophysics and
| | - James Shorter
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
563
|
Lim L, Wei Y, Lu Y, Song J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol 2016; 14:e1002338. [PMID: 26735904 PMCID: PMC4703307 DOI: 10.1371/journal.pbio.1002338] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) C-terminus encodes a prion-like domain widely presented in RNA-binding proteins, which functions to form dynamic oligomers and also, amazingly, hosts most amyotrophic lateral sclerosis (ALS)-causing mutations. Here, as facilitated by our previous discovery, by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy, we have successfully determined conformations, dynamics, and self-associations of the full-length prion-like domains of the wild type and three ALS-causing mutants (A315E, Q331K, and M337V) in both aqueous solutions and membrane environments. The study decodes the following: (1) The TDP-43 prion-like domain is intrinsically disordered only with some nascent secondary structures in aqueous solutions, but owns the capacity to assemble into dynamic oligomers rich in β-sheet structures. By contrast, despite having highly similar conformations, three mutants gained the ability to form amyloid oligomers. The wild type and three mutants all formed amyloid fibrils after incubation as imaged by electron microscopy. (2) The interaction with nucleic acid enhances the self-assembly for the wild type but triggers quick aggregation for three mutants. (3) A membrane-interacting subdomain has been identified over residues Met311-Gln343 indispensable for TDP-43 neurotoxicity, which transforms into a well-folded Ω-loop-helix structure in membrane environments. Furthermore, despite having very similar membrane-embedded conformations, three mutants will undergo further self-association in the membrane environment. Our study implies that the TDP-43 prion-like domain appears to have an energy landscape, which allows the assembly of the wild-type sequence into dynamic oligomers only under very limited condition sets, and ALS-causing point mutations are sufficient to remodel it to more favor the amyloid formation or irreversible aggregation, thus supporting the emerging view that the pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may critically account for its high neurotoxicity, and therefore its decoupling may represent a promising therapeutic strategy to treat TDP-43 causing neurodegenerative diseases. The prion-like domain of TDP-43 appears to have an energy landscape that allows oligomerisation only under very limited conditions; however, TDP-43 mutations that cause amyotrophic lateral sclerosis are sufficient to remodel the protein in favor of amyloid formation. Amyotrophic lateral sclerosis (ALS) is the most prevalent fatal motor neuron disease. It was identified ~140 years ago, but the exact mechanism underlying the disease has still not been well defined. TAR-DNA-binding protein-43 (TDP-43) was identified as the major component of the proteinaceous inclusions present in ~97% ALS and ~45% frontotemporal dementia (FTD) patients, and has also been observed in an increasing spectrum of other neurodegenerative disorders, including Alzheimer disease. The TDP-43 C-terminus is a key domain—it encodes a prion-like domain and, crucially, hosts almost all ALS-causing mutations. Here we have successfully determined the conformations, dynamics, and self-associations of the prion-like domains of both wild type and three ALS-causing mutants in both aqueous solutions and membrane environments. The study suggests that the TDP-43 prion-like domain appears to have a unique energy landscape, which allows the assembly of the wild-type sequence into specific oligomers only under very limited conditions. Intriguingly, ALS-causing point mutations remodel the energy landscape to favor amyloid formation or irreversible aggregation, thus supporting the emerging view that pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may partly account for its high neurotoxicity; decoupling these may therefore represent a promising therapeutic strategy to treat TDP-43-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
564
|
Li S, Zhang P, Freibaum BD, Kim NC, Kolaitis RM, Molliex A, Kanagaraj AP, Yabe I, Tanino M, Tanaka S, Sasaki H, Ross ED, Taylor JP, Kim HJ. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum Mol Genet 2016; 25:936-50. [PMID: 26744327 DOI: 10.1093/hmg/ddv627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022] Open
Abstract
Adult-onset inherited myopathies with similar pathological features, including hereditary inclusion body myopathy (hIBM) and limb-girdle muscular dystrophy (LGMD), are a genetically heterogeneous group of muscle diseases. It is unclear whether these inherited myopathies initiated by mutations in distinct classes of genes are etiologically related. Here, we exploit a genetic model system to establish a mechanistic link between diseases caused by mutations in two distinct genes, hnRNPA2B1 and DNAJB6. Hrb98DE and mrj are the Drosophila melanogaster homologs of human hnRNPA2B1 and DNAJB6, respectively. We introduced disease-homologous mutations to Hrb98DE, thus capturing mutation-dependent phenotypes in a genetically tractable model system. Ectopic expression of the disease-associated mutant form of hnRNPA2B1 or Hrb98DE in fly muscle resulted in progressive, age-dependent cytoplasmic inclusion pathology, as observed in humans with hnRNPA2B1-related myopathy. Cytoplasmic inclusions consisted of hnRNPA2B1 or Hrb98DE protein in association with the stress granule marker ROX8 and additional endogenous RNA-binding proteins (RBPs), suggesting that these pathological inclusions are related to stress granules. Notably, TDP-43 was also recruited to these cytoplasmic inclusions. Remarkably, overexpression of MRJ rescued this phenotype and suppressed the formation of cytoplasmic inclusions, whereas reduction of endogenous MRJ by a classical loss of function allele enhanced it. Moreover, wild-type, but not disease-associated, mutant forms of MRJ interacted with RBPs after heat shock and prevented their accumulation in aggregates. These results indicate both genetic and physical interactions between disease-linked RBPs and DNAJB6/mrj, suggesting etiologic overlap between the pathogenesis of hIBM and LGMD initiated by mutations in hnRNPA2B1 and DNAJB6.
Collapse
Affiliation(s)
- Songqing Li
- Department of Cell and Molecular Biology and
| | | | | | | | | | | | | | | | - Mishie Tanino
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan and
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan and
| | | | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - J Paul Taylor
- HHMI and Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA,
| | | |
Collapse
|
565
|
Fan AC, Leung AKL. RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:263-96. [PMID: 27256390 DOI: 10.1007/978-3-319-29073-7_11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA granules are microscopically visible cellular structures that aggregate by protein-protein and protein-RNA interactions. Using stress granules as an example, we discuss the principles of RNA granule formation, which rely on the multivalency of RNA and multi-domain proteins as well as low-affinity interactions between proteins with prion-like/low-complexity domains (e.g. FUS and TDP-43). We then explore how dysregulation of RNA granule formation is linked to neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), and discuss possible strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Alexander C Fan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
566
|
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 2015; 163:123-33. [PMID: 26406374 PMCID: PMC5149108 DOI: 10.1016/j.cell.2015.09.015] [Citation(s) in RCA: 1870] [Impact Index Per Article: 187.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
Stress granules are membrane-less organelles composed of RNA-binding proteins (RBPs) and RNA. Functional impairment of stress granules has been implicated in amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy-diseases that are characterized by fibrillar inclusions of RBPs. Genetic evidence suggests a link between persistent stress granules and the accumulation of pathological inclusions. Here, we demonstrate that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD). While the LCD of hnRNPA1 is sufficient to mediate LLPS, the RNA recognition motifs contribute to LLPS in the presence of RNA, giving rise to several mechanisms for regulating assembly. Importantly, while not required for LLPS, fibrillization is enhanced in protein-rich droplets. We suggest that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties and provides a mechanistic link between persistent stress granules and fibrillar protein pathology in disease.
Collapse
Affiliation(s)
- Amandine Molliex
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jamshid Temirov
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jihun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anderson P Kanagaraj
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - J Paul Taylor
- Howard Hughes Medical Institute, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
567
|
Figueroa-Romero C, Hur J, Lunn JS, Paez-Colasante X, Bender DE, Yung R, Sakowski SA, Feldman EL. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol Cell Neurosci 2015; 71:34-45. [PMID: 26704906 DOI: 10.1016/j.mcn.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Raymond Yung
- Division of Geriatrics and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Geriatric Research, Education and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
568
|
Haase G, Rabouille C. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles. Front Neurosci 2015; 9:448. [PMID: 26696811 PMCID: PMC4672084 DOI: 10.3389/fnins.2015.00448] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses.
Collapse
Affiliation(s)
- Georg Haase
- Centre National de la Recherche Scientifique and Aix-Marseille Université UMR 7289, Institut de Neurosciences de la Timone Marseille, France
| | - Catherine Rabouille
- The Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
569
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a severely debilitating neurodegenerative disease linked to mutations in various genes implicated in cytoplasmic RNA metabolism. Recent studies from genetic models have also helped reveal connections between various ALS-linked factors and RNA-DNA hybrid (R-loop) regulation. Here, we examine how such hybrid-regulatory processes are pointing to a key role for the nucleus in ALS. We also present a potential molecular mechanism in which hybrids may represent at least one of the long sought after missing links between different ALS genes. Our opinion is that RNA-DNA hybrids will play a key role in deciphering ALS and other human diseases.
Collapse
Affiliation(s)
- Jayesh S Salvi
- a Department of Laboratory Medicine and Pathobiology; Faculty of Medicine ; University of Toronto ; Toronto , ON Canada
| | | |
Collapse
|
570
|
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015; 162:1066-77. [PMID: 26317470 DOI: 10.1016/j.cell.2015.07.047] [Citation(s) in RCA: 2019] [Impact Index Per Article: 201.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/10/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.
Collapse
|
571
|
Freischmidt A, Schöpflin M, Feiler MS, Fleck AK, Ludolph AC, Weishaupt JH. Profilin 1 with the amyotrophic lateral sclerosis associated mutation T109M displays unaltered actin binding and does not affect the actin cytoskeleton. BMC Neurosci 2015; 16:77. [PMID: 26572741 PMCID: PMC4647582 DOI: 10.1186/s12868-015-0214-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background The recent identification of several mutations in PFN1, a protein involved in actin dynamics, strengthens the hypothesis that pathology of amyotrophic lateral sclerosis is linked to cytoskeletal defects. Impaired actin binding is a common denominator of several PFN1 mutations associated with amyotrophic lateral sclerosis, although further mechanisms may also contribute to the death of motor neurons. In this study we examine the actin binding properties of PFN1 carrying the causal T109M mutation and its effects on the actin cytoskeleton. Methods Actin binding of PFN1 T109M was examined by co-immunoprecipitation experiments, a split luciferase complementation assay and a pulldown assay with recombinant PFN1. The actin cytoskeleton was investigated by fluorescence microscopy and by ultracentrifuge separation of globular and filamentous actin fractions followed by Western blotting. Results Using different technical approaches we show that PFN1 T109M displays unaltered actin binding. Furthermore we show that the actin cytoskeleton is not affected by PFN1 carrying the T109M mutation. Conclusion Our data suggest that actin independent mechanisms contribute to the pathogenicity of PFN1 T109M and possibly other PFN1 mutations.
Collapse
Affiliation(s)
- Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Marcel Schöpflin
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Marisa S Feiler
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Ann-Katrin Fleck
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
572
|
MacNair L, Xiao S, Miletic D, Ghani M, Julien JP, Keith J, Zinman L, Rogaeva E, Robertson J. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain 2015; 139:86-100. [PMID: 26525917 DOI: 10.1093/brain/awv308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/03/2015] [Indexed: 01/21/2023] Open
Abstract
Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model, identifying DDX58 and MTHFSD as two TDP-43 targets that are misregulated in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Laura MacNair
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Shangxi Xiao
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Denise Miletic
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Mahdi Ghani
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Jean-Pierre Julien
- 3 Département de psychiatrie et de neurosciences, Université Laval, Québec G1V 0A6, Canada
| | - Julia Keith
- 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada 4 Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- 4 Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Ekaterina Rogaeva
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Janice Robertson
- 1 Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 2S8, Canada 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
573
|
Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2517-24. [DOI: 10.1016/j.bbadis.2015.08.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
|
574
|
Brielle S, Gura R, Kaganovich D. Imaging stress. Cell Stress Chaperones 2015; 20:867-74. [PMID: 26139131 PMCID: PMC4595435 DOI: 10.1007/s12192-015-0615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
Abstract
Recent innovations in cell biology and imaging approaches are changing the way we study cellular stress, protein misfolding, and aggregation. Studies have begun to show that stress responses are even more variegated and dynamic than previously thought, encompassing nano-scale reorganization of cytosolic machinery that occurs almost instantaneously, much faster than transcriptional responses. Moreover, protein and mRNA quality control is often organized into highly dynamic macromolecular assemblies, or dynamic droplets, which could easily be mistaken for dysfunctional "aggregates," but which are, in fact, regulated functional compartments. The nano-scale architecture of stress-response ranges from diffraction-limited structures like stress granules, P-bodies, and stress foci to slightly larger quality control inclusions like juxta nuclear quality control compartment (JUNQ) and insoluble protein deposit compartment (IPOD), as well as others. Examining the biochemical and physical properties of these dynamic structures necessitates live cell imaging at high spatial and temporal resolution, and techniques to make quantitative measurements with respect to movement, localization, and mobility. Hence, it is important to note some of the most recent observations, while casting an eye towards new imaging approaches that offer the possibility of collecting entirely new kinds of data from living cells.
Collapse
Affiliation(s)
- Shlomi Brielle
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel, 91904
| | - Rotem Gura
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
575
|
Murakami T, Qamar S, Lin JQ, Schierle GSK, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FTS, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 2015; 88:678-90. [PMID: 26526393 PMCID: PMC4660210 DOI: 10.1016/j.neuron.2015.10.030] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. FUS phase transitions between monomer, liquid droplet, and hydrogel states FUS mutants induce further phase transition into irreversible fibrillar hydrogels Irreversible hydrogels sequester RNP cargo and impair RNP granule function Formation of non-amyloid fibrillar hydrogels provides a compelling causative mechanism for neurodegeneration
Collapse
Affiliation(s)
- Tetsuro Murakami
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Seema Qamar
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Ana R Costa
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roger B Dodd
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona T S Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Claire H Michel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Deborah Kronenberg-Versteeg
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yi Li
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Seung-Pil Yang
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Yosuke Wakutani
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - William Meadows
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Rodylyn Rose Ferry
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Liang Dong
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gian Gaetano Tartaglia
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Centre for Genomic Regulation and University Pompeu Fabra, Dr. Aiguader St. 88, and Universitat Pompeu Fabra, 08003, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluís Companys, 08010 Barcelona, Spain
| | - Giorgio Favrin
- Cambridge Systems Biology Center & Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Wen-Lang Lin
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - David Ron
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
576
|
Xia Q, Wang G, Wang H, Hu Q, Ying Z. Folliculin, a tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome, is a novel modifier of TDP-43 cytoplasmic translocation and aggregation. Hum Mol Genet 2015; 25:83-96. [PMID: 26516189 DOI: 10.1093/hmg/ddv450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
TDP-43 was identified as the major component of ubiquitin and autophagosome-positive cytoplasmic inclusions in neurons in the large majority of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) patients. It has been shown that a loss of nuclear TDP-43 in combination with enhanced cytoplasmic mislocalization of TDP-43, which is associated with accumulation of TDP-43 aggregates in the cytosol, is an early and key event in TDP-43-mediated neurodegeneration. However, the mechanism underlying TDP-43 nucleocytoplasmic shuttling is still not clear. Here, we show that the tumor suppressor folliculin (FLCN) is a novel positive regulator of TDP-43 cytoplasmic translocation. FLCN directly interacts with TDP-43. The amino acids 202-299 of FLCN and RNA-recognition motif domains of TDP-43 are necessary for their interaction. In addition, both exogenous and endogenous FLCNs are required for TDP-43 cytoplasmic accumulation, protein aggregation and stress granule formation. Overall, our study suggests that FLCN may play an important role in the regulation of TDP-43 nucleocytoplasmic shuttling and TDP-43-mediated proteinopathy.
Collapse
Affiliation(s)
- Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China, Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China and
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
577
|
The Catalytic Activity of the Ubp3 Deubiquitinating Protease Is Required for Efficient Stress Granule Assembly in Saccharomyces cerevisiae. Mol Cell Biol 2015; 36:173-83. [PMID: 26503781 DOI: 10.1128/mcb.00609-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/11/2015] [Indexed: 12/20/2022] Open
Abstract
The interior of the eukaryotic cell is a highly compartmentalized space containing both membrane-bound organelles and the recently identified nonmembranous ribonucleoprotein (RNP) granules. This study examines in Saccharomyces cerevisiae the assembly of one conserved type of the latter compartment, known as the stress granule. Stress granules form in response to particular environmental cues and have been linked to a variety of human diseases, including amyotrophic lateral sclerosis. To further our understanding of these structures, a candidate genetic screen was employed to identify regulators of stress granule assembly in quiescent cells. These studies identified a ubiquitin-specific protease, Ubp3, as having an essential role in the assembly of these RNP granules. This function was not shared by other members of the Ubp protease family and required Ubp3 catalytic activity as well as its interaction with the cofactor Bre5. Interestingly, the loss of stress granules was correlated with a decrease in the long-term survival of stationary-phase cells. This phenotype is similar to that observed in mutants defective for the formation of a related RNP complex, the Processing body. Altogether, these observations raise the interesting possibility of a general role for these types of cytoplasmic RNP granules in the survival of G0-like resting cells.
Collapse
|
578
|
Jun MH, Lee JA. Analysis of domain required for aggregates formation of ALS (Amyotrophic lateral sclerosis)/FTD (Frontotemporal dementia)-linked FUS in mammalian cells. ANALYTICAL SCIENCE AND TECHNOLOGY 2015. [DOI: 10.5806/ast.2015.28.5.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
579
|
Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 2015; 9:423. [PMID: 26557057 PMCID: PMC4615823 DOI: 10.3389/fncel.2015.00423] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress exposure. Since their discovery in 1999, over 120 proteins have been described to be localized to these structures (in 154 publications). Most of these components are RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs have been linked to several pathologies including inflammatory diseases, cancer, viral infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no known etiology and exposure to external stress is frequently proposed as a contributor to either disease initiation or the rate of disease progression. Of note, both ALS and FTD are characterized by pathological inclusions, where some well-known SG markers localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43 and FUS serve as an interface between genetic susceptibility and environmental stress exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in SG dynamics and how disease-linked mutations affect this process.
Collapse
Affiliation(s)
- Anaïs Aulas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Biochemistry, Université de Montréal Montréal, QC, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
580
|
Abstract
Paradigm-shifting advances have revealed that diverse membraneless organelles originate via liquid-liquid phase separation, but how their distinct structural and functional milieux are specified is not understood. Recent work elucidates that RNA governs the biophysical characteristics of liquid droplets formed by RNA-binding proteins with low-complexity domains and can decelerate pathogenic fibrillogenesis.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
581
|
Nagata E, Nonaka T, Moriya Y, Fujii N, Okada Y, Tsukamoto H, Itoh J, Okada C, Satoh T, Arai T, Hasegawa M, Takizawa S. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation. Mol Neurobiol 2015; 53:5377-83. [PMID: 26440668 DOI: 10.1007/s12035-015-9470-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/30/2015] [Indexed: 12/30/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) has been identified as a major component of ubiquitin-positive inclusions in the brains and spinal cords of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) or amyotrophic lateral sclerosis (ALS). The phosphorylated C-terminal fragment of TDP-43 forms aggregates in the neuronal cytoplasm, possibly resulting in neuronal cell death in patients with FTLD-U or ALS. The inositol pyrophosphate known as diphosphoinositol pentakisphosphate (InsP7) contains highly energetic pyrophosphate bonds. We previously reported that inositol hexakisphosphate kinase type 2 (InsP6K2), which converts inositol hexakisphosphate (InsP6) to InsP7, mediates cell death in mammalian cells. Moreover, InsP6K2 is translocated from the nucleus to the cytosol during apoptosis. In this study, we verified that phosphorylated TDP-43 co-localized and co-bound with InsP6K2 in the cytoplasm of anterior horn cells of the spinal cord. Furthermore, we verified that cell death was augmented in the presence of cytoplasmic TDP-43 aggregations and activated InsP6K2. However, cells with only cytoplasmic TDP-43 aggregation survived because Akt activity increased. In the presence of both TDP-43 aggregation and activated InsP6K2 in the cytoplasm of cells, the expression levels of HSP90 and casein kinase 2 decreased, as the activity of Akt decreased. These conditions may promote cell death. Thus, InsP6K2 could cause neuronal cell death in patients with FTLD-U or ALS. Moreover, InsP6K2 plays an important role in a novel cell death pathway present in FTLD-U and ALS.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan.
- , 143 Shimo-Kasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yusuke Moriya
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Hideo Tsukamoto
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Johbu Itoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tadayuki Satoh
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Tetsuaki Arai
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
582
|
Hadley KC, Rakhit R, Guo H, Sun Y, Jonkman JEN, McLaurin J, Hazrati LN, Emili A, Chakrabartty A. Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. eLife 2015; 4. [PMID: 26418743 PMCID: PMC4630677 DOI: 10.7554/elife.09579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue. DOI:http://dx.doi.org/10.7554/eLife.09579.001 Neurodegenerative diseases such as Alzheimer's disease affect millions of people worldwide. In many of these diseases, toxic proteins accumulate in the brain and build up as small ‘plaques’ in the gaps, or synapses, that cells called neurons communicate across. Eventually, the plaques prevent the neurons signaling to each other correctly, leading to problems such as memory loss. Identifying the proteins present in plaques is technically challenging, partly because the plaques are very small. Hadley, Rakhit et al. have now developed a new method called spatially targeted optical microproteomics (or STOMP) that can collect proteins from small areas of cells. In this method, plaques are identified under a light microscope, and their contents are attached to a molecule called a photo-affinity tag using lasers. The photo-tagged proteins are then pulled out using beads that specifically bind to the photo-affinity tag. The proteins can then be identified using a well-established method called mass spectrometry. Hadley, Rakhit et al. used STOMP to analyze plaques present in the brains of mice that develop similar symptoms to those seen in humans with Alzheimer's disease. This revealed that these plaques contain more than 50 different proteins, some of which had not previously been found in plaques. In particular, several proteins from the ‘presynaptic’ neuron that sends signals across the synapse were found in the plaques. However, no proteins from the receiving (‘postsynaptic’) neuron on the other side of the synapse were present in the plaque. Fixed human brain tissue is more difficult to analyze than mouse samples because it is modified for storage. In spite of these issues, Hadley, Rakhit et al. successfully also used STOMP to identify the proteins in human plaques. STOMP can be used to identify the proteins present in any area of a cell and thus has the potential to be widely used by scientists, not just those studying plaques. DOI:http://dx.doi.org/10.7554/eLife.09579.002
Collapse
Affiliation(s)
- Kevin C Hadley
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Rishi Rakhit
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Hongbo Guo
- The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yulong Sun
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - James E N Jonkman
- Advanced Optical Microscopy Facility, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Joanne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lili-Naz Hazrati
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Emili
- The Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular & Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Avijit Chakrabartty
- Departments of Biochemistry and Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
583
|
Lin Y, Protter DSW, Rosen MK, Parker R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell 2015; 60:208-19. [PMID: 26412307 PMCID: PMC4609299 DOI: 10.1016/j.molcel.2015.08.018] [Citation(s) in RCA: 1163] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/04/2023]
Abstract
Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules.
Collapse
Affiliation(s)
- Yuan Lin
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - David S W Protter
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael K Rosen
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Roy Parker
- The HHMI Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
584
|
Li Y, Collins M, Geiser R, Bakkar N, Riascos D, Bowser R. RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules. Sci Rep 2015; 5:14262. [PMID: 26391765 PMCID: PMC4585734 DOI: 10.1038/srep14262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
The aggregation of RNA-binding proteins is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBM45 is an RNA-binding protein that forms cytoplasmic inclusions in neurons and glia in ALS and FTLD. To explore the role of RBM45 in ALS and FTLD, we examined the contribution of the protein’s domains to its function, subcellular localization, and interaction with itself and ALS-linked proteins. We find that RBM45 forms homo-oligomers and physically associates with the ALS-linked proteins TDP-43 and FUS in the nucleus. Nuclear localization of RBM45 is mediated by a bipartite nuclear-localization sequence (NLS) located at the C-terminus. RBM45 mutants that lack a functional NLS accumulate in the cytoplasm and form TDP-43 positive stress granules. Moreover, we identify a novel structural element, termed the homo-oligomer assembly (HOA) domain, that is highly conserved across species and promote homo-oligomerization of RBM45. RBM45 mutants that fail to form homo-oligomers exhibit significantly reduced association with ALS-linked proteins and inclusion into stress granules. These results show that RMB45 may function as a homo-oligomer and that its oligomerization contributes to ALS/FTLD RNA-binding protein aggregation.
Collapse
Affiliation(s)
- Yang Li
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Mahlon Collins
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Rachel Geiser
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Nadine Bakkar
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - David Riascos
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | - Robert Bowser
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
585
|
Dovidchenko NV, Leonova EI, Galzitskaya OV. Mechanisms of amyloid fibril formation. BIOCHEMISTRY (MOSCOW) 2015; 79:1515-27. [PMID: 25749162 DOI: 10.1134/s0006297914130057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloid and amyloid-like aggregates are elongated unbranched fibrils consisting of β-structures of separate monomers positioned perpendicular to the fibril axis and stacked strictly above each other. In their physicochemical properties, amyloid fibrils are reminiscent of synthetic polymers rather than usual proteins because they are stable to the action of denaturing agents and proteases. Their mechanical stability can be compared to a spider's web, that in spite of its ability to stretch, is stronger than steel. It is not surprising that a large number of diseases are accompanied with amyloid fibril depositing in different organs. Pathologies provoked by depositing of incorrectly folded proteins include Alzheimer's, Parkinson's, and Huntington's diseases. In addition, this group of diseases involves mucoviscidosis, some types of diabetes, and hereditary cataracts. Each type of amyloidosis is characterized by aggregation of a certain type of protein that is soluble in general, and thus leads to specific distortions of functions of the corresponding organs. Therefore, it is important to understand the process of transformation of "native" proteins to amyloid fibrils to clarify how these molecules acquire such strength and what key elements of this process determine the pathway of erroneous protein folding. This review presents our analysis of complied information on the mechanisms of formation and biochemical properties of amyloid fibrils.
Collapse
Affiliation(s)
- N V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
586
|
Cary GA, Vinh DBN, May P, Kuestner R, Dudley AM. Proteomic Analysis of Dhh1 Complexes Reveals a Role for Hsp40 Chaperone Ydj1 in Yeast P-Body Assembly. G3 (BETHESDA, MD.) 2015; 5:2497-511. [PMID: 26392412 PMCID: PMC4632068 DOI: 10.1534/g3.115.021444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
Abstract
P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. Although the conserved mRNA decay and translational repression machineries are known components of PB, how and why cells assemble RNP complexes into large foci remain unclear. Using mass spectrometry to analyze proteins immunoisolated with the core PB protein Dhh1, we show that a considerable number of proteins contain low-complexity sequences, similar to proteins highly represented in mammalian RNP granules. We also show that the Hsp40 chaperone Ydj1, which contains an low-complexity domain and controls prion protein aggregation, is required for the formation of Dhh1-GFP foci on glucose depletion. New classes of proteins that reproducibly coenrich with Dhh1-GFP during PB induction include proteins involved in nucleotide or amino acid metabolism, glycolysis, transfer RNA aminoacylation, and protein folding. Many of these proteins have been shown to form foci in response to other stresses. Finally, analysis of RNA associated with Dhh1-GFP shows enrichment of mRNA encoding the PB protein Pat1 and catalytic RNAs along with their associated mitochondrial RNA-binding proteins. Thus, global characterization of PB composition has uncovered proteins important for PB assembly and evidence suggesting an active role for RNA in PB function.
Collapse
Affiliation(s)
- Gregory A Cary
- Institute for Systems Biology, Seattle, Washington 98109 Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Dani B N Vinh
- Institute for Systems Biology, Seattle, Washington 98109
| | - Patrick May
- Institute for Systems Biology, Seattle, Washington 98109 Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg L-4362
| | - Rolf Kuestner
- Institute for Systems Biology, Seattle, Washington 98109
| | - Aimée M Dudley
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195 Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| |
Collapse
|
587
|
Coyne AN, Yamada SB, Siddegowda BB, Estes PS, Zaepfel BL, Johannesmeyer JS, Lockwood DB, Pham LT, Hart MP, Cassel JA, Freibaum B, Boehringer AV, Taylor JP, Reitz AB, Gitler AD, Zarnescu DC. Fragile X protein mitigates TDP-43 toxicity by remodeling RNA granules and restoring translation. Hum Mol Genet 2015; 24:6886-98. [PMID: 26385636 DOI: 10.1093/hmg/ddv389] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
RNA dysregulation is a newly recognized disease mechanism in amyotrophic lateral sclerosis (ALS). Here we identify Drosophila fragile X mental retardation protein (dFMRP) as a robust genetic modifier of TDP-43-dependent toxicity in a Drosophila model of ALS. We find that dFMRP overexpression (dFMRP OE) mitigates TDP-43 dependent locomotor defects and reduced lifespan in Drosophila. TDP-43 and FMRP form a complex in flies and human cells. In motor neurons, TDP-43 expression increases the association of dFMRP with stress granules and colocalizes with polyA binding protein in a variant-dependent manner. Furthermore, dFMRP dosage modulates TDP-43 solubility and molecular mobility with overexpression of dFMRP resulting in a significant reduction of TDP-43 in the aggregate fraction. Polysome fractionation experiments indicate that dFMRP OE also relieves the translation inhibition of futsch mRNA, a TDP-43 target mRNA, which regulates neuromuscular synapse architecture. Restoration of futsch translation by dFMRP OE mitigates Futsch-dependent morphological phenotypes at the neuromuscular junction including synaptic size and presence of satellite boutons. Our data suggest a model whereby dFMRP is neuroprotective by remodeling TDP-43 containing RNA granules, reducing aggregation and restoring the translation of specific mRNAs in motor neurons.
Collapse
Affiliation(s)
- Alyssa N Coyne
- Department of Molecular and Cellular Biology, Department of Neuroscience
| | | | | | | | | | | | - Donovan B Lockwood
- Department of Molecular and Cellular Biology, Department of Neuroscience
| | - Linh T Pham
- Department of Molecular and Cellular Biology
| | - Michael P Hart
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Brian Freibaum
- Department of Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley V Boehringer
- Department of Molecular and Cellular Biology, Department of Neuroscience, Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - J Paul Taylor
- Department of Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Department of Neuroscience, Department of Neurology, University of Arizona, Tucson, AZ, USA,
| |
Collapse
|
588
|
ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov 2015; 1:15030. [PMID: 27551461 PMCID: PMC4979432 DOI: 10.1038/cddiscovery.2015.30] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by the formation of intracellular misfolded protein inclusions that form in motor neurons. Autophagy is the major degradation pathway for aggregate-prone proteins within lysosomes. Autophagy begins by the production of the omegasome, forming the autophagosome membrane, which then fuses with the lysosome. Mutations in fused in sarcoma (FUS) cause 5% of familial ALS cases and FUS-positive inclusions are also formed in sporadic ALS tissues. In this study, we demonstrate that the expression of ALS-associated mutant FUS impairs autophagy in neuronal cells. In mutant FUS-expressing neuronal cells, accumulation of ubiquitinated proteins and autophagy substrates p62 and NBR1 was detected, and formation of both the omegasome and autophagosome was inhibited in these cells. However, overexpression of Rab1 rescued these defects, suggesting that Rab1 is protective in ALS. The number of LC3-positive vesicles was also increased in motor neurons from the spinal cord of an ALS patient carrying a FUS (R521C) mutation compared with a control patient, providing additional evidence that autophagy is dysregulated in mutant FUS-associated ALS. This study provides further understanding of the intricate autophagy system and neurodegeneration in ALS.
Collapse
|
589
|
Emde A, Eitan C, Liou LL, Libby RT, Rivkin N, Magen I, Reichenstein I, Oppenheim H, Eilam R, Silvestroni A, Alajajian B, Ben-Dov IZ, Aebischer J, Savidor A, Levin Y, Sons R, Hammond SM, Ravits JM, Möller T, Hornstein E. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J 2015; 34:2633-51. [PMID: 26330466 DOI: 10.15252/embj.201490493] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 07/20/2015] [Indexed: 12/12/2022] Open
Abstract
Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.
Collapse
Affiliation(s)
- Anna Emde
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lee-Loung Liou
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Ryan T Libby
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Natali Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Reichenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Oppenheim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Aurelio Silvestroni
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Betty Alajajian
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Iddo Z Ben-Dov
- Nephrology Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Julianne Aebischer
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Sons
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - John M Ravits
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
590
|
Walters RW, Muhlrad D, Garcia J, Parker R. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2015; 21:1660-1671. [PMID: 26199455 PMCID: PMC4536325 DOI: 10.1261/rna.053116.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 05/27/2023]
Abstract
Stress granules and P-bodies are conserved assemblies of nontranslating mRNAs in eukaryotic cells that can be related to RNA-protein aggregates found in some neurodegenerative diseases. Herein, we examine how the Hsp70/Hsp40 protein chaperones affected the assembly and disassembly of stress granules and P-bodies in yeast. We observed that Hsp70 and the Ydj1 and Sis1 Hsp40 proteins accumulated in stress granules and defects in these proteins led to decreases in the disassembly and/or clearance of stress granules. We observed that individual Hsp40 proteins have different effects on stress granules with defects in Ydj1 leading to accumulation of stress granules in the vacuole and limited recovery of translation following stress, which suggests that Ydj1 promotes disassembly of stress granules to promote translation. In contrast, defects in Sis1 did not affect recovery of translation, accumulated cytoplasmic stress granules, and showed reductions in the targeting of stress granules to the vacuole. This demonstrates a new principle whereby alternative disassembly machineries lead to different fates of components within stress granules, thereby providing additional avenues for regulation of their assembly, composition, and function. Moreover, a role for Hsp70 and Hsp40 proteins in stress granule disassembly couples the assembly of these stress responsive structures to the proteostatic state of the cell.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Denise Muhlrad
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA Howard Hughes Medical Institute, Boulder, Colorado 80303, USA
| | - Jennifer Garcia
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA Howard Hughes Medical Institute, Boulder, Colorado 80303, USA
| |
Collapse
|
591
|
Wear MP, Kryndushkin D, O’Meally R, Sonnenberg JL, Cole RN, Shewmaker FP. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates. PLoS One 2015; 10:e0136362. [PMID: 26317359 PMCID: PMC4552826 DOI: 10.1371/journal.pone.0136362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Maggie P. Wear
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
| | - Robert O’Meally
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Jason L. Sonnenberg
- Chemistry department, School of Sciences, Stevenson University, Stevenson, Maryland, 21153, United States of America
| | - Robert N. Cole
- Johns Hopkins Mass Spectrometry and Proteomic Facility, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Frank P. Shewmaker
- Department of Pharmacology, Uniformed Services University of the Heath Sciences, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
592
|
Abstract
Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states.
Collapse
Affiliation(s)
- J Ross Buchan
- a Department of Molecular and Cellular Biology ; University of Arizona ; Tucson , AZ USA
| |
Collapse
|
593
|
Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grøfte M, Rask MBD, Streicher W, Jungmichel S, Nielsen ML, Lukas J. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat Commun 2015; 6:8088. [PMID: 26286827 PMCID: PMC4560800 DOI: 10.1038/ncomms9088] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
Intrinsically disordered proteins can phase separate from the soluble intracellular space, and tend to aggregate under pathological conditions. The physiological functions and molecular triggers of liquid demixing by phase separation are not well understood. Here we show in vitro and in vivo that the nucleic acid-mimicking biopolymer poly(ADP-ribose) (PAR) nucleates intracellular liquid demixing. PAR levels are markedly induced at sites of DNA damage, and we provide evidence that PAR-seeded liquid demixing results in rapid, yet transient and fully reversible assembly of various intrinsically disordered proteins at DNA break sites. Demixing, which relies on electrostatic interactions between positively charged RGG repeats and negatively charged PAR, is amplified by aggregation-prone prion-like domains, and orchestrates the earliest cellular responses to DNA breakage. We propose that PAR-seeded liquid demixing is a general mechanism to dynamically reorganize the soluble nuclear space with implications for pathological protein aggregation caused by derailed phase separation.
Collapse
Affiliation(s)
- Matthias Altmeyer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark.,Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Kai J Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Irina Pozdnyakova
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Stefania Pellegrino
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Merete Grøfte
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Maj-Britt Druedahl Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Werner Streicher
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Stephanie Jungmichel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Michael Lund Nielsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, Copenhagen DK-2200, Denmark
| |
Collapse
|
594
|
Donnelly CJ, Grima JC, Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener Dis Manag 2015; 4:417-37. [PMID: 25531686 DOI: 10.2217/nmt.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Christopher J Donnelly
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
595
|
Coady TH, Manley JL. ALS mutations in TLS/FUS disrupt target gene expression. Genes Dev 2015; 29:1696-706. [PMID: 26251528 PMCID: PMC4561479 DOI: 10.1101/gad.267286.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
In this study, Coadey et al. investigated how mutations in the RNA/DNA-binding protein TLS/FUS (FUS), caused by ALS, affect target gene expression. They used several FUS derivatives with ALS mutations and showed that FUS-containing aggregates can alter gene expression by a toxic gain-of-function mechanism. These findings establish that ALS mutations in FUS can strongly impact target gene expression. Amyotrophic lateral sclerosis (ALS) is caused by mutations in a number of genes, including the gene encoding the RNA/DNA-binding protein translocated in liposarcoma or fused in sarcoma (TLS/FUS or FUS). Previously, we identified a number of FUS target genes, among them MECP2. To investigate how ALS mutations in FUS might impact target gene expression, we examined the effects of several FUS derivatives harboring ALS mutations, such as R521C (FUSC), on MECP2 expression in transfected human U87 cells. Strikingly, FUSC and other mutants not only altered MECP2 alternative splicing but also markedly increased mRNA abundance, which we show resulted from sharply elevated stability. Paradoxically, however, MeCP2 protein levels were significantly reduced in cells expressing ALS mutant derivatives. Providing a parsimonious explanation for these results, biochemical fractionation and in vivo localization studies revealed that MECP2 mRNA colocalized with cytoplasmic FUSC in insoluble aggregates, which are characteristic of ALS mutant proteins. Together, our results establish that ALS mutations in FUS can strongly impact target gene expression, reflecting a dominant effect of FUS-containing aggregates.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
596
|
Abstract
Chemical, genetic and cell biology tools have been used to probe which RNA-protein granules behave like liquids and which behave like solids.
Collapse
Affiliation(s)
- Lindsay A Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
597
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 PMCID: PMC4522596 DOI: 10.7554/elife.06807] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI:http://dx.doi.org/10.7554/eLife.06807.001 Genes consist of long stretches of DNA that code for proteins. The DNA is first ‘transcribed’ to produce an RNA molecule, which is then translated into a protein. In most cells, RNA molecules are present within a structure called ribonucleoprotein (RNP for short) granules. These contain the protein machinery needed to transport, store, and break down RNAs. P bodies and stress granules are two types of RNP granules found in all cells, from yeast to human. P bodies are present at all times, whereas stress granules assemble when a cell experiences stressful conditions, such as a lack of nutrients or high temperatures. Once the stress has been overcome, the stress granules are disassembled. The precise details of how RNP granules assemble in cells remain poorly understood. One theory suggests that RNP granules form through a physical process called ‘phase separation’ in which RNA molecules and proteins above a certain critical concentration condense to form a liquid droplet. Other research has suggested that RNP granules arise when so-called prion-like proteins spontaneously clump together and start aggregating to form fibers. These granules would behave more like solids than liquids. Kroschwald et al. have now analyzed how P bodies and stress granules form in yeast and human cells using a chemical compound that can distinguish between liquid-like and solid-like structures. The results revealed that P bodies and stress granules behave very differently in yeast cells. While P bodies are indeed liquid droplets, stress granules are more solid in nature and act like protein aggregates. So why is there a difference between the two? It is known from previous work that when cells are stressed, many proteins misfold and start aggregating. Kroschwald et al. found that the formation of stress granules coincides with the formation of aggregates, suggesting that stress granules themselves are a type of aggregate. Furthermore, stress granule formation does not seem to involve prion-like fibers, but rather prion-like proteins can easily interact with other proteins in a promiscuous way, thus promoting the seeding of stress granules and their growth. Kroschwald et al. next studied human cells and observed that in these cells, both P bodies and stress granules were liquid droplets. These results together suggest that the physical properties and method of assembling P bodies and stress granules can vary from one organism to another. Future work will investigate whether the ability to form solid rather than liquid stress granules provides extra protection to yeast cells when they are stressed. It also remains to be tested whether and how stress granules convert into the pathological RNP aggregates that are often seen in neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.06807.002
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
598
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 DOI: 10.7554/elife.06807.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine.
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
599
|
Abdelhak A, Junker A, Brettschneider J, Kassubek J, Ludolph AC, Otto M, Tumani H. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis? Int J Mol Sci 2015; 16:17565-88. [PMID: 26263977 PMCID: PMC4581209 DOI: 10.3390/ijms160817565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Göttingen, Robert-Koch-Str 40, 37075 Göttingen, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
600
|
Cassola A, Romaniuk MA, Primrose D, Cervini G, D'Orso I, Frasch AC. Association of UBP1 to ribonucleoprotein complexes is regulated by interaction with the trypanosome ortholog of the human multifunctional P32 protein. Mol Microbiol 2015; 97:1079-96. [PMID: 26096620 DOI: 10.1111/mmi.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression in trypanosomatid parasitic protozoa is mainly achieved posttranscriptionally. RNA-binding proteins (RBPs) associate to 3' untranslated regions in mRNAs through dedicated domains such as the RNA recognition motif (RRM). Trypanosoma cruzi UBP1 (TcUBP1) is an RRM-type RBP involved in stabilization/degradation of mRNAs. TcUBP1 uses its RRM to associate with cytoplasmic mRNA and to mRNA granules under starvation stress. Here, we show that under starvation stress, TcUBP1 is tightly associated with condensed cytoplasmic mRNA granules. Conversely, under high nutrient/low density-growing conditions, TcUBP1 ribonucleoprotein (RNP) complexes are lax and permeable to mRNA degradation and disassembly. After dissociating from mRNA, TcUBP1 can be phosphorylated only in unstressed parasites. We have identified TcP22, the ortholog of mammalian P32/C1QBP, as an interactor of TcUBP1 RRM. Overexpression of TcP22 decreased the number of TcUBP1 granules in starved parasites in vivo. Endogenous TcUBP1 RNP complexes could be dissociated in vitro by addition of recombinant TcP22, a condition stimulating TcUBP1 phosphorylation. Biochemical and in silico analysis revealed that TcP22 interacts with the RNA-binding surface of TcUBP1 RRM. We propose a model for the decondensation of TcUBP1 RNP complexes in T. cruzi through direct interaction with TcP22 and phosphorylation.
Collapse
Affiliation(s)
- Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Debora Primrose
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Gabriela Cervini
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Iván D'Orso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Alberto Carlos Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| |
Collapse
|