551
|
Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, Erichsen HC, Forbes LR, Gu S, Yuan B, Jhangiani SN, Muzny DM, Rødningen OK, Sheng Y, Nicholas SK, Noroski LM, Seeborg FO, Davis CM, Canter DL, Mace EM, Vece TJ, Allen CE, Abhyankar HA, Boone PM, Beck CR, Wiszniewski W, Fevang B, Aukrust P, Tjønnfjord GE, Gedde-Dahl T, Hjorth-Hansen H, Dybedal I, Nordøy I, Jørgensen SF, Abrahamsen TG, Øverland T, Bechensteen AG, Skogen V, Osnes LTN, Kulseth MA, Prescott TE, Rustad CF, Heimdal KR, Belmont JW, Rider NL, Chinen J, Cao TN, Smith EA, Caldirola MS, Bezrodnik L, Lugo Reyes SO, Espinosa Rosales FJ, Guerrero-Cursaru ND, Pedroza LA, Poli CM, Franco JL, Trujillo Vargas CM, Aldave Becerra JC, Wright N, Issekutz TB, Issekutz AC, Abbott J, Caldwell JW, Bayer DK, Chan AY, Aiuti A, Cancrini C, Holmberg E, West C, Burstedt M, Karaca E, Yesil G, Artac H, Bayram Y, Atik MM, Eldomery MK, Ehlayel MS, Jolles S, Flatø B, Bertuch AA, Hanson IC, Zhang VW, Wong LJ, Hu J, Walkiewicz M, Yang Y, Eng CM, Boerwinkle E, Gibbs RA, Shearer WT, Lyle R, Orange JS, Lupski JR. Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol 2017; 139:232-245. [PMID: 27577878 PMCID: PMC5222743 DOI: 10.1016/j.jaci.2016.05.042] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/10/2016] [Accepted: 05/13/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
Collapse
Affiliation(s)
- Asbjørg Stray-Pedersen
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Norwegian National Unit for Newborn Screening, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Oslo, Norway.
| | - Hanne Sørmo Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pubudu Samarakoon
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tomasz Gambin
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Ivan K Chinn
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Zeynep H Coban Akdemir
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | | | - Lisa R Forbes
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Shen Gu
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Bo Yuan
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sarah K Nicholas
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Lenora M Noroski
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Filiz O Seeborg
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carla M Davis
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Debra L Canter
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Emily M Mace
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Timothy J Vece
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Harshal A Abhyankar
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex; Texas Children's Cancer and Hematology Center, Department of Pediatrics, Center for Cell and Gene Therapy, Texas Children's Hospital and Baylor College of Medicine, Houston, Tex
| | - Philip M Boone
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine R Beck
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Wojciech Wiszniewski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Børre Fevang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Geir E Tjønnfjord
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Hematology, Oslo University Hospital, Oslo, Norway
| | | | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Ingvild Nordøy
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Silje F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tore G Abrahamsen
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vegard Skogen
- Department of Infectious Diseases, Medical Clinic, University Hospital of North-Norway, Tromsø, Norway
| | - Liv T N Osnes
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine E Prescott
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil R Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Nicholas L Rider
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Javier Chinen
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Tram N Cao
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Eric A Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
| | - Maria Soledad Caldirola
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Immunology Service, Ricardo Gutierrez Children's Hospital, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Coyoacan, Mexico City, Mexico
| | | | | | | | - Cecilia M Poli
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Hospital Roberto del Rio, Universidad de Chile, Santiago, Chile
| | - Jose L Franco
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Claudia M Trujillo Vargas
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | | | - Nicola Wright
- Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Andrew C Issekutz
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Jordan Abbott
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergic and Immunological Diseases, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC
| | - Diana K Bayer
- Department of Pediatrics, Division of Pediatric Allergy/Immunology and Pulmonology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Alice Y Chan
- Department of Pediatrics, University of California, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), and Vita-Salute San Raffaele University, Milan, Italy
| | - Caterina Cancrini
- University Department of Pediatrics, DPUO, Bambino Gesù Children's Hospital, and Tor Vergata University, Rome, Italy
| | - Eva Holmberg
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Christina West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Magnus Burstedt
- Department of Clinical Genetics, University Hospital of Umeå, Umeå, Sweden
| | - Ender Karaca
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Gözde Yesil
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Medical Genetics, Bezmi Alem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Hasibe Artac
- Department of Pediatric Immunology and Allergy, Selcuk University Medical Faculty, Alaeddin Keykubat Kampusu, Konya, Turkey
| | - Yavuz Bayram
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mehmed Musa Atik
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad K Eldomery
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Mohammad S Ehlayel
- Department of Pediatrics, Section of Pediatric Allergy and Immunology, Hamad Medical Corporation, Doha, Department of Paediatrics, Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, Wales
| | - Berit Flatø
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Tex
| | - I Celine Hanson
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Victor W Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Eric Boerwinkle
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Human Genetics Center, University of Texas School of Public Health, Houston, Tex
| | - Richard A Gibbs
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - William T Shearer
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordan S Orange
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex.
| | - James R Lupski
- Baylor-Hopkins Center for Mendelian Genomics of the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
552
|
Abstract
FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.,Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
553
|
Murakami N, Motwani S, Riella LV. Renal complications of immune checkpoint blockade. Curr Probl Cancer 2016; 41:100-110. [PMID: 28189263 DOI: 10.1016/j.currproblcancer.2016.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors have been approved for a variety of cancer species. Renal complications in use of these agents are not very common compared with other immune-related adverse events (irAE). However, it is crucial for physicians to recognize and manage renal manifestations of irAE. In this review, we will summarize the up-to-date knowledge of the clinical presentation, pathologic features, and management of renal irAE. In addition, we will discuss the safety of immune checkpoint inhibitors in patients with chronic kidney disease as well as in kidney transplant recipients.
Collapse
Affiliation(s)
- Naoka Murakami
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts; Renal Division, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Shveta Motwani
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts; Adult Survivorship Program, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts; Renal Division, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
554
|
Timmermans WMC, van Laar JAM, van Hagen PM, van Zelm MC. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunology 2016; 5:e118. [PMID: 28090320 PMCID: PMC5192066 DOI: 10.1038/cti.2016.75] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 12/23/2022] Open
Abstract
Granulomas are clusters of immune cells. These structures can be formed in reaction to infection and display signs of necrosis, such as in tuberculosis. Alternatively, in several immune disorders, such as sarcoidosis, Crohn's disease and common variable immunodeficiency, non-caseating granulomas are formed without an obvious infectious trigger. Despite advances in our understanding of the human immune system, the pathogenesis underlying these non-caseating granulomas in chronic inflammatory diseases is still poorly understood. Here, we review the current knowledge about the immunopathogenesis of granulomas, and we discuss how the involved immune cells can be targeted with novel therapeutics.
Collapse
Affiliation(s)
- Wilhelmina Maria Cornelia Timmermans
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jan Alexander Michael van Laar
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Petrus Martinus van Hagen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Menno Cornelis van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
555
|
Barış HE, Kıykım A, Nain E, Özen AO, Karakoç-Aydıner E, Barış S. The plethora, clinical manifestations and treatment options of autoimmunity in patients with primary immunodeficiency. Turk Arch Pediatr 2016; 51:186-192. [PMID: 28123330 DOI: 10.5152/turkpediatriars.2016.3928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
AIM Although the association between primary immunodeficiency and autoimmunity is already well-known, it has once again become a topic of debate with the discovery of newly-defined immunodeficiencies. Thus, investigation of the mechanisms of development of autoimmunity in primary immunodefficiency and new target-specific therapeutic options has come to the fore. In this study, we aimed to examine the clinical findings of autoimmunity, autoimmunity varieties, and treatment responses in patients who were genetically diagnosed as having primary immunodeficiency. MATERIAL AND METHODS The files of patients with primary immunodeficiency who had clinical findings of autoimmunity, who were diagnosed genetically, and followed up in our clinic were investigated. The demographic and clinical features of the patients and their medical treatments were evaluated. RESULTS Findings of autoimmunity were found in 30 patients whose genetic mutations were identified. The mean age at the time of the first symptoms was 8.96±14.64 months, and the mean age of receiving a genetic diagnosis was 82.55±84.71 months. The most common diseases showing findings of autoimmunity included immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (16.7%); autoimmune lymphoproliferative syndrome (10%); lipopolysaccharide-responsive beige-like anchor protein deficiency (10%); and DiGeorge syndrome (10%). Twelve (40%) patients showed findings of autoimmunity at the time of first presentation. The most common findings of autoimmunity included inflammatory bowel disease, inflammatory bowel disease-like findings (n=14, 46.7%), immune thrombocytopenic purpura (n=11, 36.7%), and autoimmune hemolytic anemia (n=9, 30.0%). A response to immunosupressive agents was observed in 15 (50%) patients. Ten patients underwent hematopoietic stem cell transplantation. Six patients were lost to follow-up due to a variety of complications. CONCLUSION Autoimmunity is frequently observed in patients with primary immunodeficiency. The possibility of primary immunodeficiency should be considered in patients with early-onset manifestations of autoimmunity, and these patients should be carefully monitored in terms of immunodeficiency development. Early diagnosis of primary immunodeficiency may provide favorable outcomes in terms of survival.
Collapse
Affiliation(s)
- Hatice Ezgi Barış
- Department of Peditarics, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Ayça Kıykım
- Department of Peditarics, Division of Allergy and Immunology, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Ercan Nain
- Department of Peditarics, Division of Allergy and Immunology, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Ahmet Oğuzhan Özen
- Department of Peditarics, Division of Allergy and Immunology, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Elif Karakoç-Aydıner
- Department of Peditarics, Division of Allergy and Immunology, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Safa Barış
- Department of Peditarics, Division of Allergy and Immunology, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
556
|
Schwarz C, Unger L, Mahr B, Aumayr K, Regele H, Farkas AM, Hock K, Pilat N, Wekerle T. The Immunosuppressive Effect of CTLA4 Immunoglobulin Is Dependent on Regulatory T Cells at Low But Not High Doses. Am J Transplant 2016; 16:3404-3415. [PMID: 27184870 DOI: 10.1111/ajt.13872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
B7.1/2-targeted costimulation blockade (CTLA4 immunoglobulin [CTLA4-Ig]) is available for immunosuppression after kidney transplantation, but its potentially detrimental impact on regulatory T cells (Tregs) is of concern. We investigated the effects of CTLA4-Ig monotherapy in a fully mismatched heart transplant model (BALB/c onto C57BL/6). CTLA4-Ig was injected chronically (on days 0, 4, 14, and 28 and every 4 weeks thereafter) in dosing regimens paralleling clinical use, shown per mouse: low dose (LD), 0.25 mg (≈10 mg/kg body weight); high dose (HD), 1.25 mg (≈50 mg/kg body weight); and very high dose (VHD), 6.25 mg (≈250 mg/kg body weight). Chronic CTLA4-Ig therapy showed dose-dependent efficacy, with the LD regimen prolonging graft survival and with the HD and VHD regimens leading to >95% long-term graft survival and preserved histology. CTLA4-Ig's effect was immunosuppressive rather than tolerogenic because treatment cessation after ≈3 mo led to rejection. FoxP3-positive Tregs were reduced in naïve mice to a similar degree, independent of the CTLA4-Ig dose, but recovered to normal values in heart recipients under chronic CTLA4-Ig therapy. Treg depletion (anti-CD25) resulted in an impaired outcome under LD therapy but had no detectable effect under HD therapy. Consequently, the immunosuppressive effect of partially effective LD CTLA4-Ig therapy is impaired when Tregs are removed, whereas CTLA4-Ig monotherapy at higher doses effectively maintains graft survival independent of Tregs.
Collapse
Affiliation(s)
- C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Aumayr
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
557
|
Navarini AA, Hruz P, Berger CT, Hou TZ, Schwab C, Gabrysch A, Higgins R, Frede N, Padberg Sgier BC, Kämpe O, Burgener AV, Marquardsen F, Baldin F, Bigler M, Kistner A, Jauch A, Bignucolo O, Meyer B, Meienberg F, Mehling M, Jeker LT, Heijnen I, Daikeler TD, Gebbers JO, Grimbacher B, Sansom DM, Jeker R, Hess C, Recher M. Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J Allergy Clin Immunol 2016; 139:1043-1046.e5. [PMID: 27908448 DOI: 10.1016/j.jaci.2016.08.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/04/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | - Petr Hruz
- Gastroenterology, University Hospital, Basel, Switzerland
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Tie Zheng Hou
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Charlotte Schwab
- Center for Chronic Immunodeficiency, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Center for Chronic Immunodeficiency, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Higgins
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | - Natalie Frede
- Center for Chronic Immunodeficiency, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Olle Kämpe
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anne-Valérie Burgener
- Immunobiology Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Florian Marquardsen
- Immunodeficiency Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Fabian Baldin
- Immunodeficiency Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Marc Bigler
- Translational Immunology, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Anne Kistner
- Translational Immunology, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Annaise Jauch
- Immunodeficiency Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Olivier Bignucolo
- SIB Swiss Institute of Bioinformatics and Biozentrum, University of Basel, Basel, Switzerland
| | - Benedikt Meyer
- Immunodeficiency Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | | | - Matthias Mehling
- Translational Neuroimmunology, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Lukas T Jeker
- Molecular Immune Regulation, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Ingmar Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Jan-Olaf Gebbers
- Institute of Pathology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center-Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David M Sansom
- Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Raphael Jeker
- Department of Internal Medicine, Kantonsspital Graubünden, Chur, Switzerland
| | - Christoph Hess
- Immunobiology Lab, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Lab, Department of Biomedicine, University Hospital, Basel, Switzerland.
| |
Collapse
|
558
|
Guffroy A, Gies V, Martin M, Korganow AS. [Primary immunodeficiency and autoimmunity]. Rev Med Interne 2016; 38:383-392. [PMID: 27889323 DOI: 10.1016/j.revmed.2016.10.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
Abstract
Many evidences highlight that immunodeficiency and autoimmunity are two sides of a same coin. Primary immune deficiencies (PIDs), which are rare mono- or multigenic defects of innate or adaptative immunity, frequently associate with autoimmunity. Analyses of single-gene defects in immune pathways of families with PIDs, by new tools of molecular biology (next genome sequencing technologies), allowed a better understanding of the ways that could both drive immune defect with immune deficiency and autoimmunity. Moreover, genes implicated in rare single-gene defects are now known to be also involved in polygenic conventional autoimmune diseases. Here, we describe the main autoimmune symptoms occurring in PIDs and the underlying mechanisms that lead to autoimmunity in immunodeficiency. We review the links between autoimmunity and immunodeficiency and purpose some principles of care for patients with PIDs and autoimmunity.
Collapse
Affiliation(s)
- A Guffroy
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France.
| | - V Gies
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - M Martin
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - A-S Korganow
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| |
Collapse
|
559
|
Takagi M, Ogata S, Ueno H, Yoshida K, Yeh T, Hoshino A, Piao J, Yamashita M, Nanya M, Okano T, Kajiwara M, Kanegane H, Muramatsu H, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Bando Y, Kato M, Hayashi Y, Miyano S, Imai K, Ogawa S, Kojima S, Morio T. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 2016; 139:1914-1922. [PMID: 27845235 DOI: 10.1016/j.jaci.2016.09.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Autoimmune diseases in children are rare and can be difficult to diagnose. Autoimmune lymphoproliferative syndrome (ALPS) is a well-characterized pediatric autoimmune disease caused by mutations in genes associated with the FAS-dependent apoptosis pathway. In addition, various genetic alterations are associated with the ALPS-like phenotype. OBJECTIVE The aim of the present study was to elucidate the genetic cause of the ALPS-like phenotype. METHODS Candidate genes associated with the ALPS-like phenotype were screened by using whole-exome sequencing. The functional effect of the identified mutations was examined by analyzing the activity of related signaling pathways. RESULTS A de novo heterozygous frameshift mutation of TNF-α-induced protein 3 (TNFAIP3, A20), a negative regulator of the nuclear factor κB pathway, was identified in one of the patients exhibiting the ALPS-like phenotype. Increased activity of the nuclear factor κB pathway was associated with haploinsufficiency of TNFAIP3 (A20). CONCLUSION Haploinsufficiency of TNFAIP3 (A20) by a germline heterozygous mutation leads to the ALPS phenotype.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shohei Ogata
- Department of Pediatrics, Kitasato University, Kanagawa, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Tzuwen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jinhua Piao
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoy Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Nanya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Kajiwara
- Department of Transfusion Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Yusuke Okuno
- Department of Pediatrics, Nagoya University, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuki Bando
- Department of Pediatrics, Kitasato University Medical Center, Saitama, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Centre for Child Health and Development, Tokyo, Japan
| | | | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University, Nagoya, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
560
|
Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol 2016; 241:123-139. [PMID: 27682255 DOI: 10.1002/path.4812] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Immune-mediated autoinflammatory diseases are occupying an increasingly prominent position among the pantheon of debilitating conditions that afflict humankind. This review focuses on some of the key developments that have occurred since the original description of autoinflammatory disease in 1999, and focuses on underlying mechanisms that trigger autoinflammation. The monogenic autoinflammatory disease range has expanded considerably during that time, and now includes a broad spectrum of disorders, including relatively common conditions such as cystic fibrosis and subsets of systemic lupus erythematosus. The innate immune system also plays a key role in the pathogenesis of complex inflammatory disorders. We have proposed a new nomenclature to accommodate the rapidly increasing number of monogenic disorders, which predispose to either autoinflammation or autoimmunity or, indeed, combinations of both. This new terminology also encompasses a wide spectrum of genetically determined autoinflammatory diseases, with variable clinical manifestations of immunodeficiency and immune dysregulation/autoimmunity. We also explore some of the ramifications of the breakthrough discovery of the physiological role of pyrin and the search for identifiable factors that may serve to trigger attacks of autoinflammation. The evidence that pyrin, as part of the pyrin inflammasome, acts as a sensor of different inactivating bacterial modification Rho GTPases, rather than interacting directly with these microbial products, sets the stage for a better understanding of the role of microorganisms and infections in the autoinflammatory disorders. Finally, we discuss some of the triggers of autoinflammation as well as potential therapeutic interventions aimed at enhancing autophagy and proteasome degradation pathways. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Peckham
- Leeds Centre for Cystic Fibrosis, St James's University Hospital, Leeds, UK
| | - Thomas Scambler
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| |
Collapse
|
561
|
Ring EK, Markert JM, Gillespie GY, Friedman GK. Checkpoint Proteins in Pediatric Brain and Extracranial Solid Tumors: Opportunities for Immunotherapy. Clin Cancer Res 2016; 23:342-350. [PMID: 27836863 DOI: 10.1158/1078-0432.ccr-16-1829] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Pediatric brain and extracranial solid tumors are a diverse group of malignancies that represent almost half of all pediatric cancers. Standard therapy includes various combinations of surgery, cytotoxic chemotherapy, and radiation, which can be very harmful to a developing child, and survivors carry a substantial burden of long-term morbidities. Although these therapies have improved survival rates for children with solid tumors, outcomes still remain extremely poor for subsets of patients. Recently, immunosuppressive checkpoint molecules that negatively regulate immune cell function have been described. When found on malignant cells or in the tumor microenvironment, they contribute to immune evasion and tumor escape. Agents designed to inhibit these proteins have demonstrated significant efficacy in human adult solid tumor studies. However, there is limited research focusing on immune checkpoint molecules and inhibitors in pediatric solid tumors. In this review, we examine the current knowledge on immune checkpoint proteins with an emphasis on cytotoxic T lymphocyte antigen-4 (CTLA-4); programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1); OX-2 membrane glycoprotein (CD200); and indoleamine 2,3-dioxygenase (IDO). We review T-cell signaling, the mechanisms of action of these checkpoint molecules, pediatric preclinical studies on checkpoint proteins and checkpoint blockade, pediatric checkpoint inhibitor clinical trials conducted to date, and future immunotherapy opportunities for childhood cancers. Clin Cancer Res; 23(2); 342-50. ©2016 AACR.
Collapse
Affiliation(s)
- Eric K Ring
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
562
|
Maródi L. Inborn errors of T cell immunity underlying autoimmune diseases. Expert Rev Clin Immunol 2016; 13:97-99. [PMID: 27801603 DOI: 10.1080/1744666x.2017.1256204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- László Maródi
- a Departments of Dermatology, Venereology and Dermatooncology , Semmelweis University , Budapest , Hungary.,b 2nd Department of Pediatrics , Semmelweis University , Budapest , Hungary
| |
Collapse
|
563
|
Schussler E, Beasley MB, Maglione PJ. Lung Disease in Primary Antibody Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2016; 4:1039-1052. [PMID: 27836055 PMCID: PMC5129846 DOI: 10.1016/j.jaip.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
Abstract
Primary antibody deficiencies (PADs) are the most common form of primary immunodeficiency and predispose to severe and recurrent pulmonary infections, which can result in chronic lung disease including bronchiectasis. Chronic lung disease is among the most common complications of PAD and a significant source of morbidity and mortality for these patients. However, the development of lung disease in PAD may not be solely the result of recurrent bacterial infection or a consequence of bronchiectasis. Recent characterization of monogenic immune dysregulation disorders and more extensive study of common variable immunodeficiency have demonstrated that interstitial lung disease (ILD) in PAD can result from generalized immune dysregulation and frequently occurs in the absence of pneumonia history or bronchiectasis. This distinction between bronchiectasis and ILD has important consequences in the evaluation and management of lung disease in PAD. For example, treatment of ILD in PAD typically uses immunomodulatory approaches in addition to immunoglobulin replacement and antibiotic prophylaxis, which are the stalwarts of bronchiectasis management in these patients. Although all antibody-deficient patients are at risk of developing bronchiectasis, ILD occurs in some forms of PAD much more commonly than in others, suggesting that distinct but poorly understood immunological factors underlie the development of this complication. Importantly, ILD can have earlier onset and may worsen survival more than bronchiectasis. Further efforts to understand the pathogenesis of lung disease in PAD will provide vital information for the most effective methods of diagnosis, surveillance, and treatment of these patients.
Collapse
Affiliation(s)
- Edith Schussler
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary B Beasley
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
564
|
Zeissig Y, Petersen BS, Franke A, Blumberg RS, Zeissig S. Rare phenotypes in the understanding of autoimmunity. Immunol Cell Biol 2016; 94:943-948. [PMID: 27562064 PMCID: PMC5371426 DOI: 10.1038/icb.2016.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and 'horror autotoxicus'. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity.
Collapse
Affiliation(s)
- Yvonne Zeissig
- Department of General Pediatrics, University Medical Center Dresden, Technical University Dresden, Dresden, Germany
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian Zeissig
- Department of Medicine I, University Medical Center Dresden, Technical University Dresden, Dresden, Germany
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany
| |
Collapse
|
565
|
Abstract
Some autoimmune disorders are monogenetic diseases; however, clinical manifestations among individuals vary, despite the presence of identical mutations in the disease-causing gene. In this issue of the JCI, Massaad and colleagues characterized a seemingly monogenic autoimmune disorder in a family that was linked to homozygous loss-of-function mutations in the gene encoding the endonuclease Nei endonuclease VIII-like 3 (NEIL3), which has not been previously associated with autoimmunity. The identification of an unrelated healthy individual with the same homozygous mutation spurred more in-depth analysis of the data and revealed the presence of a second mutation in a known autoimmune-associated gene. Animals lacking Neil3 had no overt phenotype, but were predisposed to autoantibody production and nephritis following exposure to the TLR3 ligand poly(I:C). Together, these results support further evaluation of the drivers of autoimmunity in supposedly monogenic disorders.
Collapse
|
566
|
Kaur G, Mohindra K, Singla S. Autoimmunity-Basics and link with periodontal disease. Autoimmun Rev 2016; 16:64-71. [PMID: 27664383 DOI: 10.1016/j.autrev.2016.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 12/24/2022]
Abstract
Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Periodontology and Oral Implantology, Genesis Institute of Dental Sciences and Research, Punjab.
| | - Kanika Mohindra
- Department of Periodontology and Oral Implantology, Laxmi Bai Dental College and Hospital, Patiala, Punjab, India.
| | - Shifali Singla
- Department of Oral and Maxillofacial Surgery, Adesh Institute of Dental Sciences and Research, Bathinda, Punjab, India.
| |
Collapse
|
567
|
Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, Payne K, Crestani E, Roncagalli R, Belkadi A, Kerner G, Lorenzo L, Deswarte C, Chrabieh M, Patin E, Vincent QB, Müller-Fleckenstein I, Fleckenstein B, Ailal F, Quintana-Murci L, Fraitag S, Alyanakian MA, Leruez-Ville M, Picard C, Puel A, Bustamante J, Boisson-Dupuis S, Malissen M, Malissen B, Abel L, Hovnanian A, Notarangelo LD, Jouanguy E, Tangye SG, Béziat V, Casanova JL. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 2016; 213:2413-2435. [PMID: 27647349 PMCID: PMC5068239 DOI: 10.1084/jem.20160576] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022] Open
Abstract
In two complementary papers, Casanova, Malissen, and collaborators report the discovery of human RLTPR deficiency, the first primary immunodeficiency of the human CD28 pathway in T cells. Together, the two studies highlight the important and largely (but not completely) overlapping roles of RLTPR in T and B cells of humans and mice. Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yun Ling
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Aziz Bousfiha
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Yildiz Camcioglu
- Division of Infectious Diseases, Clinical Immunology, and Allergy, Department of Pediatrics, Cerrahpaşa Medical Faculty, Istanbul University, 34452 Istanbul, Turkey
| | - Serge Jacquot
- Immunology Unit, Rouen University Hospital, 76031 Rouen, France.,Institut National de la Santé et de la Recherche Médicale U905, Institute for Research and Innovation in Biomedicine, Rouen Normandy University, 76183 Rouen, France
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115
| | | | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Ingrid Müller-Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Fatima Ailal
- Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca 20100, Morocco
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, 75015 Paris, France.,Centre National de la Recherche Scientifique URA 3012, 75015 Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marie-Alexandra Alyanakian
- Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Marianne Leruez-Ville
- Virology Laboratory, Paris Descartes University, Sorbonne Paris Cité-EA 36-20, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Marie Malissen
- Center for Immunology Marseille-Luminy, 13288 Marseille, France
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases: from Disease Mechanism to Therapies, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France .,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
568
|
Pathak S, McDermott MF, Savic S. Autoinflammatory diseases: update on classification diagnosis and management. J Clin Pathol 2016; 70:1-8. [PMID: 27646526 DOI: 10.1136/jclinpath-2016-203810] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023]
Abstract
The spectrum of systemic autoinflammatory disorders broadens continually. In part, this is due to the more widespread application of massive parallel sequencing, helping with novel gene discovery in this and other areas of rare diseases. Some of the conditions that have been described fit neatly into a conventional idea of autoinflammation. Others, such as interferon-mediated autoinflammatory diseases, are broadening the concept which we consider to be autoinflammatory disorders. There is also a widening of the clinical phenotypes associated with certain genetic mutations, as genetic testing is used more regularly and increasing numbers of patients are screened. It is also increasingly evident that both autoinflammatory and autoimmune problems are frequently seen as complications of primary immunodeficiency disorders. The aim of this review is to provide an update on some recently discovered conditions and to discuss how these disorders help to define the concept of autoinflammation. The review will also cover recent discoveries in the biology of innate-immune-mediated inflammation and describe how this has provided the biological rationale for using anti-interleukin-1 therapies in the treatment of many such conditions. Finally, we discuss the importance of recognising somatic mutations as causes of autoinflammatory clinical phenotypes and provide practical advice on how this could be tackled in everyday clinical practice.
Collapse
Affiliation(s)
- Shelly Pathak
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| |
Collapse
|
569
|
Bogaert DJA, De Bruyne M, Debacker V, Depuydt P, De Preter K, Bonroy C, Philippé J, Bordon V, Lambrecht BN, Kerre T, Cerutti A, Vermaelen KY, Haerynck F, Dullaers M. The immunophenotypic fingerprint of patients with primary antibody deficiencies is partially present in their asymptomatic first-degree relatives. Haematologica 2016; 102:192-202. [PMID: 27634199 DOI: 10.3324/haematol.2016.149112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022] Open
Abstract
The etiology of primary antibody deficiencies is largely unknown. Beside rare monogenic forms, the majority of cases seem to have a more complex genetic basis. Whereas common variable immunodeficiency has been investigated in depth, there are only a few reports on milder primary antibody deficiencies such as idiopathic primary hypogammaglobulinemia and IgG subclass deficiency. We performed flow cytometric immunophenotyping in 33 patients with common variable immunodeficiency, 23 with idiopathic primary hypogammaglobulinemia and 21 with IgG subclass deficiency, as well as in 47 asymptomatic first-degree family members of patients and 101 unrelated healthy controls. All three groups of patients showed decreased memory B- and naïve T-cell subsets and decreased B-cell activating factor receptor expression. In contrast, circulating follicular helper T-cell frequency and expression of inducible T-cell co-stimulator and chemokine receptors were only significantly altered in patients with common variable immunodeficiency. Asymptomatic first-degree family members of patients demonstrated similar, albeit intermediate, alterations in naïve and memory B- and T-cell subsets. About 13% of asymptomatic relatives had an abnormal peripheral B-cell composition. Furthermore, asymptomatic relatives showed decreased levels of CD4+ recent thymic emigrants and increased central memory T cells. Serum IgG and IgM levels were also significantly lower in asymptomatic relatives than in healthy controls. We conclude that, in our cohort, the immunophenotypic landscape of primary antibody deficiencies comprises a spectrum, in which some alterations are shared between all primary antibody deficiencies whereas others are only associated with common variable immunodeficiency. Importantly, asymptomatic first-degree family members of patients were found to have an intermediate phenotype for peripheral B- and T-cell subsets.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium.,Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Marieke De Bruyne
- Clinical Immunology Research Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium
| | - Veronique Debacker
- Clinical Immunology Research Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium.,Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium
| | - Pauline Depuydt
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium.,Cancer Research Institute, Ghent University, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Belgium.,Cancer Research Institute, Ghent University, Belgium
| | - Carolien Bonroy
- Department of Laboratory Medicine, Ghent University Hospital, Belgium
| | - Jan Philippé
- Department of Laboratory Medicine, Ghent University Hospital, Belgium.,Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Belgium.,Department of Pulmonology, Ghent University Hospital, Belgium
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium.,Department of Internal Medicine, Ghent University, Belgium.,Department of Hematology, Ghent University Hospital, Belgium
| | - Andrea Cerutti
- Department of Medicine, The Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA and.,B Cell Biology Laboratory, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Karim Y Vermaelen
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium.,Department of Internal Medicine, Ghent University, Belgium.,Department of Pulmonology, Ghent University Hospital, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium.,Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Belgium .,Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Belgium
| |
Collapse
|
570
|
Abstract
Hypophysitis is the acute or chronic inflammation of the pituitary gland. The spectrum of hypophysitis has expanded in recent years with the addition of two histologic subtypes and recognition as a complication of treatment with immune checkpoint inhibitors. Despite the increased number of published cases, the pathogenesis of hypophysitis is poorly understood, and treatment strategies are diverse and controversial. The diagnosis of hypophysitis generally requires histopathologic confirmation. The presentation and clinical course of hypophysitis varies. Hypophysitis can resolve spontaneously, relapse may occur, and some cases can be refractory to treatment.
Collapse
Affiliation(s)
- Alexander Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| |
Collapse
|
571
|
Rivas-Larrauri F, Yamazaki-Nakashimada MA. Lupus eritematoso sistémico: ¿es una sola enfermedad? ACTA ACUST UNITED AC 2016; 12:274-81. [DOI: 10.1016/j.reuma.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023]
|
572
|
Ferre EM, Rose SR, Rosenzweig SD, Burbelo PD, Romito KR, Niemela JE, Rosen LB, Break TJ, Gu W, Hunsberger S, Browne SK, Hsu AP, Rampertaap S, Swamydas M, Collar AL, Kong HH, Lee CCR, Chascsa D, Simcox T, Pham A, Bondici A, Natarajan M, Monsale J, Kleiner DE, Quezado M, Alevizos I, Moutsopoulos NM, Yockey L, Frein C, Soldatos A, Calvo KR, Adjemian J, Similuk MN, Lang DM, Stone KD, Uzel G, Kopp JB, Bishop RJ, Holland SM, Olivier KN, Fleisher TA, Heller T, Winer KK, Lionakis MS. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight 2016; 1:e88782. [PMID: 27588307 PMCID: PMC5004733 DOI: 10.1172/jci.insight.88782] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by homozygous AIRE mutations. It classically presents with chronic mucocutaneous candidiasis and autoimmunity that primarily targets endocrine tissues; hypoparathyroidism and adrenal insufficiency are most common. Developing any two of these classic triad manifestations establishes the diagnosis. Although widely recognized in Europe, where nonendocrine autoimmune manifestations are uncommon, APECED is less defined in patients from the Western Hemisphere. We enrolled 35 consecutive American APECED patients (33 from the US) in a prospective observational natural history study and systematically examined their genetic, clinical, autoantibody, and immunological characteristics. Most patients were compound heterozygous; the most common AIRE mutation was c.967_979del13. All but one patient had anti-IFN-ω autoantibodies, including 4 of 5 patients without biallelic AIRE mutations. Urticarial eruption, hepatitis, gastritis, intestinal dysfunction, pneumonitis, and Sjögren's-like syndrome, uncommon entities in European APECED cohorts, affected 40%-80% of American cases. Development of a classic diagnostic dyad was delayed at mean 7.38 years. Eighty percent of patients developed a median of 3 non-triad manifestations before a diagnostic dyad. Only 20% of patients had their first two manifestations among the classic triad. Urticarial eruption, intestinal dysfunction, and enamel hypoplasia were prominent among early manifestations. Patients exhibited expanded peripheral CD4+ T cells and CD21loCD38lo B lymphocytes. In summary, American APECED patients develop a diverse syndrome, with dramatic enrichment in organ-specific nonendocrine manifestations starting early in life, compared with European patients. Incorporation of these new manifestations into American diagnostic criteria would accelerate diagnosis by approximately 4 years and potentially prevent life-threatening endocrine complications.
Collapse
Affiliation(s)
- Elise M.N. Ferre
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Stacey R. Rose
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | | | - Peter D. Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, and
| | - Kimberly R. Romito
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center
| | - Julie E. Niemela
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center
| | - Lindsey B. Rosen
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Timothy J. Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Wenjuan Gu
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute (NCI) Campus at Frederick, Frederick, Maryland, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, Division of Clinical Research, NIAID
| | - Sarah K. Browne
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Amy P. Hsu
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Amanda L. Collar
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | | | | | - David Chascsa
- Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Thomas Simcox
- Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Angela Pham
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Anamaria Bondici
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Mukil Natarajan
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| | - Joseph Monsale
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center
| | | | | | - Ilias Alevizos
- Sjögren’s Syndrome and Salivary Gland Dysfunction Unit, and
| | - Niki M. Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Lynne Yockey
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Cathleen Frein
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute (NCI) Campus at Frederick, Frederick, Maryland, USA
| | - Ariane Soldatos
- Undiagnosed Diseases Program, Common Fund, NIH Office of the Director and National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Katherine R. Calvo
- Hematology Section, Department of Laboratory Medicine, NIH Clinical Center
| | | | | | | | | | - Gulbu Uzel
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | | | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, and
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center
| | - Theo Heller
- Translational Hepatology Unit, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Karen K. Winer
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID)
| |
Collapse
|
573
|
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory manifestations are the biggest clinical challenge in the care of patients with common variable immunodeficiency (CVID). The increasing pathogenic knowledge and potential therapeutic implications require a new evaluation of the status quo. (Figure is included in full-text article.) RECENT FINDINGS The conundrum of the simultaneous manifestation of primary immunodeficiency and autoimmune disease (AID) is increasingly elucidated by newly discovered genetic defects. Thus, cytotoxic T lymphocyte-associated antigen 4 or caspase-9 deficiency presenting with CVID-like phenotypes reiterate concepts of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome and autoimmune lymphoproliferative syndrome. Activating signaling defects downstream of antigen or cytokine receptors are often associated with loss-of-tolerance in the affected patients. Increasingly, forms of combined immunodeficiency are discovered among CVID-like patients. Although different autoimmune manifestations often coincide in the same patient their immunopathology varies. Treatment of AID in CVID remains a challenge, but based on a better definition of the immunopathology first attempts of targeted treatment have been made. SUMMARY The increasing comprehension of immunological concepts promoting AID in CVID will allow better and in some cases possibly even targeted treatment. A genetic diagnosis therefore becomes important information in this group of patients, especially in light of the fact that some patients might require hematopoietic stem cell transplantation because of their underlying immunodeficiency.
Collapse
|
574
|
Phenotypic and Functional Comparison of Class Switch Recombination Deficiencies with a Subgroup of Common Variable Immunodeficiencies. J Clin Immunol 2016; 36:656-66. [PMID: 27484504 PMCID: PMC5018261 DOI: 10.1007/s10875-016-0321-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/18/2016] [Indexed: 11/01/2022]
Abstract
Primary antibody deficiencies (PADs) are the most common immunodeficiency in humans, characterized by low levels of immunoglobulins and inadequate antibody responses upon immunization. These PADs may result from an early block in B cell development with a complete absence of peripheral B cells and lack of immunoglobulins. In the presence of circulating B cells, some PADs are genetically caused by a class switch recombination (CSR) defect, but in the most common PAD, common variable immunodeficiency (CVID), very few gene defects have as yet been characterized despite various phenotypic classifications. Using a functional read-out, we previously identified a functional subgroup of CVID patients with plasmablasts (PBs) producing IgM only. We have now further characterized such CVID patients by a direct functional comparison with patients having genetically well-characterized CSR defects in CD40L, activation-induced cytidine deaminase (AID) and uracil N-glycosylase activity (UNG). The CSR-like CVID patients showed a failure in B cell activation patterns similar to the classical AID/UNG defects in three out of five CVID patients and distinct more individual defects in the two other CVID cases when tested for cellular activation and PB differentiation. Thus, functional categorization of B cell activation and differentiation pathways extends the expected variation in CVID to CSR-like defects of as yet unknown genetic etiology.
Collapse
|
575
|
Hematopoietic stem cell transplantation for CTLA4 deficiency. J Allergy Clin Immunol 2016; 138:615-619.e1. [DOI: 10.1016/j.jaci.2016.01.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 01/22/2023]
|
576
|
Lau CY, Mihalek AD, Wang J, Dodd LE, Perkins K, Price S, Webster S, Pittaluga S, Folio LR, Rao VK, Olivier KN. Pulmonary Manifestations of the Autoimmune Lymphoproliferative Syndrome. A Retrospective Study of a Unique Patient Cohort. Ann Am Thorac Soc 2016; 13:1279-88. [PMID: 27268092 PMCID: PMC5021079 DOI: 10.1513/annalsats.201601-079oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Patients with autoimmune lymphoproliferative syndrome (ALPS), a disorder of impaired lymphocyte apoptosis, often undergo radiographic chest imaging to evaluate the presence and progression of lymphadenopathy. These images often lead to parenchymal and interstitial lung findings of unclear clinical significance. OBJECTIVES To characterize the pulmonary findings associated with ALPS and to determine if lung abnormalities present on computed tomographic (CT) imaging of the chest correlate with infection or functional status. METHODS Patients with lung abnormalities observed on chest CT scans were retrospectively identified from the largest known ALPS cohort. Lung computed tomography findings were characterized and correlated with medical records, bronchoalveolar lavage, biopsy, and lung function. MEASUREMENTS AND MAIN RESULTS CT images of the chest were available for 234 (92%) of 255 of the patients with ALPS. Among patients with a chest CT scan, 18 (8%) had lung abnormalities on at least one CT scan. Fourteen (78%) of those 18 were classified as having ALPS with undetermined genetic defect. Most patients (n = 16 [89%]) with lung lesions were asymptomatic. However, two (11%) of them had associated dyspnea and/or desaturation on room air. Immunosuppressive treatment was administered for lung disease in nine (50%) cases, and all were followed for clinical outcomes. CONCLUSIONS Patients with ALPS can develop chest radiographic findings with protean manifestations that may mimic pulmonary infection. Management of patients with ALPS with incidental lung lesions identified by CT imaging should be guided by clinical correlation. Symptomatic patients may benefit from chest CT imaging and lesion biopsy to exclude infection and guide administration of immunosuppressive therapy.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- Collaborative Clinical Research Branch, Division of Clinical Research
| | - Andrew D. Mihalek
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia; and
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jing Wang
- Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., and
| | - Lori E. Dodd
- Biostatistics Research Branch, Division of Clinical Research, and
| | - Katie Perkins
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Susan Price
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sharon Webster
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Les R. Folio
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - V. Koneti Rao
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
577
|
Maglione PJ. Autoimmune and Lymphoproliferative Complications of Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2016; 16:19. [PMID: 26857017 DOI: 10.1007/s11882-016-0597-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Common variable immunodeficiency (CVID) is frequently complicated by the development of autoimmune and lymphoproliferative diseases. With widespread use of immunoglobulin replacement therapy, autoimmune and lymphoproliferative complications have replaced infection as the major cause of morbidity and mortality in CVID patients. Certain CVID complications, such as bronchiectasis, are likely to be the result of immunodeficiency and are associated with infection susceptibility. However, other complications may result from immune dysregulation rather than immunocompromise. CVID patients develop autoimmunity, lymphoproliferation, and granulomas in association with distinct immunological abnormalities. Mutations in transmembrane activator and CAML interactor, reduction of isotype-switched memory B cells, expansion of CD21 low B cells, heightened interferon signature expression, and retained B cell function are all associated with both autoimmunity and lymphoproliferation in CVID. Further research aimed to better understand that the pathological mechanisms of these shared forms of immune dysregulation may inspire therapies beneficial for multiple CVID complications.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
578
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is the prototypic autoimmune condition, often affecting multiple organ systems, including the skin. Cutaneous lupus erythematosus (CLE) is distinct from SLE and may be skin limited or associated with systemic disease. Histopathologically, the hallmark of lupus-specific manifestations of SLE and CLE is an interface dermatitis. The cause of SLE and CLE is likely multifactorial and may include shared genetic factors. In this review, we will discuss the genetic findings related to the cutaneous manifestations of SLE and isolated CLE, with a particular focus on the lupus-specific CLE subtypes. RECENT FINDINGS Several major histocompatibility complex and nonmajor histocompatibility complex genetic polymorphisms have been identified which may contribute to the cutaneous manifestations of SLE and to CLE. Most of these genetic variants are associated with mechanisms attributed to the pathogenesis of SLE, including pathways involved in interferon and vitamin D regulation and ultraviolet light exposure. Although there is overlap between the genetic factors associated with SLE and CLE, there appear to be unique genetic factors specific for CLE. SUMMARY Improved understanding of the genetics of CLE may lead to the creation of targeted therapies, improving outcomes for patients with this challenging dermatologic condition.
Collapse
|
579
|
CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood 2016; 128:1037-42. [PMID: 27418640 DOI: 10.1182/blood-2016-04-712612] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/07/2016] [Indexed: 01/20/2023] Open
Abstract
CTLA-4 is a critical inhibitory "checkpoint" molecule of immune activation. Several recent reports have described patients with immune dysregulation and lymphoproliferative disease resulting from 2 different genetic diseases that directly or indirectly cause CTLA-4 deficiency. Numerous articles have also been published describing CTLA-4 blockade in cancer immunotherapy and its side effects, which are ultimately the consequence of treatment-induced CTLA-4 deficiency. Here, we review these 2 diseases and CTLA-4 blockade therapy, emphasizing the crucial role of CTLA-4 in immune checkpoint regulation.
Collapse
|
580
|
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.
Collapse
Affiliation(s)
- Fayhan J Alroqi
- Division of Immunology, Boston Children's Hospital, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
581
|
Abstract
PURPOSE OF REVIEW We review newly discovered monogenic immune-dysregulatory disorders that were reported in Pubmed over the last year. RECENT FINDINGS Fourteen novel monogenic immune-dysregulatory disorders that present with innate and acquired/adaptive immune dysregulation and inflammatory clinical phenotypes were identified. These include autosomal-dominant gain-of function mutations in viral innate immune sensors or their adaptors, TMEM173/STING IFIH1/MDA5 and DDX58/RIG-I that cause complex clinical syndromes distinct from IL-1-mediated diseases and present with a chronic type I interferon (IFN Type I) signature in peripheral blood. Gain-of-function mutations in NLRC4 add a novel inflammasome disorder associated with predisposition to macrophage-activation syndrome and highly elevated IL-18 levels. Mutations in ADA2, TRNT1 and COPA, AP1S3, and TNFRSF11A cause complex syndromes; loss-of-function mutations in enzymes and molecules are linked to the generation of 'cellular stress' and the release of inflammatory mediators that likely cause the inflammatory disease manifestations. A monogenic form of systemic-onset juvenile idiopathic arthritis is caused by homozygous mutations in LACC1. Lastly, mutations in PRKDC (recessive), STAT3, CTLA4, and PIK3R1 (all dominant) lead to impaired central and peripheral T-cell tolerance and present with variable disease manifestations of immunodeficiency and immune dysregulation/autoimmunity. SUMMARY A number of novel monogenic diseases that present with innate and/or acquired immune dysregulation reveal novel immune pathways that cause human inflammatory diseases and suggest potential novel targets for treatment.
Collapse
|
582
|
Boztug H, Hirschmugl T, Holter W, Lakatos K, Kager L, Trapin D, Pickl W, Förster-Waldl E, Boztug K. NF-κB1 Haploinsufficiency Causing Immunodeficiency and EBV-Driven Lymphoproliferation. J Clin Immunol 2016; 36:533-40. [PMID: 27338827 PMCID: PMC4940442 DOI: 10.1007/s10875-016-0306-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/10/2016] [Indexed: 01/29/2023]
Abstract
Purpose NF-κB signaling is critically important for regulation of both innate and adaptive immune responses. While activation of NF-κB has been implicated in malignancies such as leukemia and lymphoma, loss-of-function mutations affecting different NF-κB pathway components have been shown to cause primary immunodeficiency disorders. Recently, haploinsufficiency of NF-κB1 has been described in three families with common variable immunodeficiency (CVID). Methods and Results We studied a patient with recurrent respiratory infections and bacterial parapharyngeal abscess. Immunological investigations revealed normal total B- cell numbers, but hypogammaglobulinemia, decreased frequencies of class-switched B cells and impaired T-cell proliferation. Targeted next-generation sequencing using a custom-designed panel comprising all known PID genes (IUIS 2014 classification) and novel candidate genes identified a novel heterozygous frameshift mutation in the NFKB1 gene leading to a premature stop codon (c.491delG; p.G165A*31). We could show that the mutation leads to reduced phosphorylation of p105 upon stimulation, resulting in decreased protein levels of p50. The further disease course was mainly characterized by two episodes of severe EBV-associated lymphoproliferative disease responsive to rituximab treatment. Due to disease severity, the patient is considered for allogeneic hematopoietic stem cell transplantation. Interestingly, the father carries the same heterozygous NFKB1 mutation and also shows decreased frequencies of memory B cells but has a much milder clinical phenotype, in line with a considerable phenotypic disease heterogeneity. Conclusions Deficiency of NF-κB1 leads to immunodeficiency with a wider phenotypic spectrum of disease manifestation than previously appreciated, including EBV lymphoproliferative diseases as a hitherto unrecognized feature of the disease. Electronic supplementary material The online version of this article (doi:10.1007/s10875-016-0306-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidrun Boztug
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karoly Lakatos
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Leo Kager
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Kaan Boztug
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria. .,Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Lazarettgasse 14 AKH BT 25.3, Vienna, Austria.
| |
Collapse
|
583
|
Tashtoush B, Memarpour R, Ramirez J, Bejarano P, Mehta J. Granulomatous-lymphocytic interstitial lung disease as the first manifestation of common variable immunodeficiency. CLINICAL RESPIRATORY JOURNAL 2016; 12:337-343. [PMID: 27243233 DOI: 10.1111/crj.12511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 05/29/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is one of the most common primary immunodeficiencies, which is characterized by reduced serum immunoglobulin levels and B-lymphocyte dysfunction. There are many clinical manifestations of this disease, the most common of which are recurrent respiratory tract infections. Among the most recently recognized autoimmune manifestation of CVID is a disease described as granulomatous-lymphocytic interstitial lung disease (GLILD), where CVID coexists with a small airway lymphoproliferative disorder, mimicking follicular bronchiolitis, or lymphocytic interstitial pneumonitis (LIP) on histology specimens. We herein describe the clinical and radiological features of GLILD in a 55-year-old woman where the diagnosis of CVID was actively pursued and eventually confirmed after her lung biopsy showed characteristic features of GLILD. The patient had dramatic response to treatment with IVIG and corticosteroids for 3 months followed by Mycophenolate mofetil for maintenance therapy.
Collapse
Affiliation(s)
- Basheer Tashtoush
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Roya Memarpour
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Jose Ramirez
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Pablo Bejarano
- Department of Pathology, Cleveland Clinic Florida, Weston, Florida
| | - Jinesh Mehta
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| |
Collapse
|
584
|
Predispositions to Lymphoma: A Practical Review for Genetic Counselors. J Genet Couns 2016; 25:1157-1170. [PMID: 27265405 DOI: 10.1007/s10897-016-9979-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
This review provides a synopsis for genetic counselors of the major concepts of lymphoma predisposition: genomic instability, immune deficiency, inappropriate lymphoproliferation, and chronic antigen stimulation. We discuss syndromes typifying each of these mechanisms. Importantly, our review of the genetic counseling literature reveals sparse discussion of genetically-based immune-mediated lymphoma predisposition, which we address in depth here. We aim to increase awareness among genetic counselors and colleagues in oncology about familial susceptibility and facilitate critical thinking about lymphoma risk assessment. Clinical application of this knowledge is aided by recommendations for collection of personal and family history to guide risk assessment and testing. Lastly, we include a special discussion of genetic counseling issues including perceptions of the context, nature, and magnitude of lymphoma risk, as well as coping with awareness of susceptibility to lymphoma.
Collapse
|
585
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
586
|
Allenspach E, Torgerson TR. Autoimmunity and Primary Immunodeficiency Disorders. J Clin Immunol 2016; 36 Suppl 1:57-67. [PMID: 27210535 DOI: 10.1007/s10875-016-0294-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These "immune dysregulation" disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.
Collapse
Affiliation(s)
- Eric Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA.
| |
Collapse
|
587
|
Abstract
Autoimmune diseases represent a heterogeneous group of common disorders defined by complex trait genetics and environmental effects. The genetic variants usually align in immune and metabolic pathways that affect cell survival or apoptosis and modulate leukocyte function. Nevertheless, the exact triggers of disease development remain poorly understood and the current therapeutic interventions only modify the disease course. Both the prevention and the cure of autoimmune disorders are beyond our present medical capabilities. In contrast, a growing number of single gene autoimmune disorders have also been identified and characterized in the last few decades. Mutations and other gene alterations exert significant effects in these conditions, and often affect genes involved in central or peripheral immunologic tolerance induction. Even though a single genetic abnormality may be the disease trigger, it usually upsets a number of interactions among immune cells, and the biological developments of these monogenic disorders are also complex. Nevertheless, identification of the triggering molecular abnormalities greatly contributes to our understanding of the pathogenesis of autoimmunity and facilitates the development of newer and more effective treatment strategies.
Collapse
Affiliation(s)
- Mark Plander
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and
| | - Bernadette Kalman
- a Markusovszky University Teaching Hospital , Szombathely , Hungary and.,b University of Pecs , Pecs , Hungary
| |
Collapse
|
588
|
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016; 44:973-88. [PMID: 27192564 PMCID: PMC4932896 DOI: 10.1016/j.immuni.2016.04.020] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Ligation of the CD28 receptor on T cells provides a critical second signal alongside T cell receptor (TCR) ligation for naive T cell activation. Here, we discuss the expression, structure, and biochemistry of CD28 and its ligands. CD28 signals play a key role in many T cell processes, including cytoskeletal remodeling, production of cytokines, survival, and differentiation. CD28 ligation leads to unique epigenetic, transcriptional, and post-translational changes in T cells that cannot be recapitulated by TCR ligation alone. We discuss the function of CD28 and its ligands in both effector and regulatory T cells. CD28 is critical for regulatory T cell survival and the maintenance of immune homeostasis. We outline the roles that CD28 and its family members play in human disease and we review the clinical efficacy of drugs that block CD28 ligands. Despite the centrality of CD28 and its family members and ligands to immune function, many aspects of CD28 biology remain unclear. Translation of a basic understanding of CD28 function into immunomodulatory therapeutics has been uneven, with both successes and failures. Such real-world results might stem from multiple factors, including complex receptor-ligand interactions among CD28 family members, differences between the mouse and human CD28 families, and cell-type specific roles of CD28 family members.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Ynes A Helou
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue Center for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Arthur Weiss
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
589
|
Wong GK, Huissoon AP. T-cell abnormalities in common variable immunodeficiency: the hidden defect. J Clin Pathol 2016; 69:672-6. [PMID: 27153873 PMCID: PMC4975840 DOI: 10.1136/jclinpath-2015-203351] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022]
Abstract
This review discusses how the T-cell compartment in common variable immunodeficiency is marked by the premature arrest in thymic output, leading to T-cell exhaustion and immune dysregulation. Although B cells have been the main focus of the disorder, ample experimental data suggest that T-cell abnormalities can be seen in a large proportion of Freiburg Group 1a patients and those suffering from inflammatory complications. The reductions in T-cell receptor excision circles, naïve T cells, invariant NKT cells and regulatory T cells suggest a diminished thymic output, while CD8 T cells are driven towards exhaustion either via an antigen-dependent or an antigen-independent manner. The theoretical risk of anti-T-cell therapies is discussed, highlighting the need for an international effort in generating longitudinal data in addition to better-defined underlying molecular characterisation.
Collapse
Affiliation(s)
- Gabriel K Wong
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK West Midlands Primary Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, UK
| | - Aarnoud P Huissoon
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK West Midlands Primary Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, UK
| |
Collapse
|
590
|
Tesi B, Priftakis P, Lindgren F, Chiang SCC, Kartalis N, Löfstedt A, Lörinc E, Henter JI, Winiarski J, Bryceson YT, Meeths M. Successful Hematopoietic Stem Cell Transplantation in a Patient with LPS-Responsive Beige-Like Anchor (LRBA) Gene Mutation. J Clin Immunol 2016; 36:480-9. [PMID: 27146671 DOI: 10.1007/s10875-016-0289-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Autosomal recessive mutations in LRBA, encoding for LPS-responsive beige-like anchor protein, were described in patients with a common variable immunodeficiency (CVID)-like disease characterized by hypogammaglobulinemia, autoimmune cytopenias, and enteropathy. Here, we detail the clinical, immunological, and genetic features of a patient with severe autoimmune manifestations. METHODS Whole exome sequencing was performed to establish a molecular diagnosis. Evaluation of lymphocyte subsets was performed for immunological characterization. Medical files were reviewed to collect clinical and immunological data. RESULTS A 7-year-old boy, born to consanguineous parents, presented with autoimmune hemolytic anemia, hepatosplenomegaly, autoimmune thyroiditis, and severe autoimmune gastrointestinal manifestations. Immunological investigations revealed low immunoglobulin levels and low numbers of B and NK cells. Treatment included immunoglobulin replacement and immunosuppressive therapy. Seven years after disease onset, the patient developed severe neurological symptoms resembling acute disseminated encephalomyelitis, prompting allogeneic hematopoietic stem cell transplantation (HSCT) with the HLA-identical mother as donor. Whole exome sequencing of the patient uncovered a homozygous 1 bp deletion in LRBA (c.7162delA:p.T2388Pfs*7). Importantly, during 2 years of follow-up post-HSCT, marked clinical improvement and recovery of immune function was observed. CONCLUSIONS Our data suggest a beneficial effect of HSCT in patients with LRBA deficiency.
Collapse
Affiliation(s)
- Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden. .,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Peter Priftakis
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fredrik Lindgren
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nikolaos Kartalis
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Alexandra Löfstedt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Esther Lörinc
- Department of Pathology, University Hospital Karolinska Huddinge, Solna, Sweden.,Department of Pathology, Skåne University Hospital, Lund, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jacek Winiarski
- Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Science Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden. .,Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
591
|
Murakami N, Borges TJ, Yamashita M, Riella LV. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin Kidney J 2016; 9:411-7. [PMID: 27274826 PMCID: PMC4886917 DOI: 10.1093/ckj/sfw024] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/08/2016] [Indexed: 01/05/2023] Open
Abstract
Immune-checkpoint inhibitors are emerging as revolutionary drugs for certain malignancies. However, blocking the co-inhibitory signals may lead to immune-related adverse events, mainly in the spectrum of autoimmune diseases including colitis, endocrinopathies and nephritis. Here, we report a case of a 75-year-old man with metastatic malignant melanoma treated with a combination of nivolumab (anti-PD1-antibody) and ipilimumab (anti-CTLA-4 antibody) who developed systemic rash along with severe acute tubulointerstitial nephritis after two doses of combination therapy. Kidney biopsy and peripheral blood immune profile revealed highly proliferative and cytotoxic T cell features. Herein, we discuss the pathophysiology and management of immune checkpoint blockade-related adverse events.
Collapse
Affiliation(s)
- Naoka Murakami
- Renal Division, Brigham & Women's Hospital , Harvard Medical School , Boston, MA , USA
| | - Thiago J Borges
- Renal Division, Brigham & Women's Hospital , Harvard Medical School , Boston, MA , USA
| | - Michifumi Yamashita
- Department of Pathology, Brigham and Women's Hospital , Harvard Medical School , Boston, MA , USA
| | - Leonardo V Riella
- Renal Division, Brigham& Women's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
592
|
Halpert MM, Konduri V, Liang D, Chen Y, Wing JB, Paust S, Levitt JM, Decker WK. Dendritic Cell-Secreted Cytotoxic T-Lymphocyte-Associated Protein-4 Regulates the T-cell Response by Downmodulating Bystander Surface B7. Stem Cells Dev 2016; 25:774-87. [PMID: 26979751 DOI: 10.1089/scd.2016.0009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable functional plasticity of professional antigen-presenting cells (APCs) allows the adaptive immune system to respond specifically to an incredibly diverse array of potential pathogenic insults; nonetheless, the specific molecular effectors and mechanisms that underpin this plasticity remain poorly characterized. Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), the target of the blockbuster cancer immunotherapeutic ipilimumab, is one of the most well-known and well-studied members of the B7 superfamily and negatively regulates T cell responses by a variety of known mechanisms. Although CTLA-4 is thought to be expressed almost exclusively among lymphoid lineage hematopoietic cells, a few reports have indicated that nonlymphoid APCs can also express the CTLA-4 mRNA transcript and that transcript levels can be regulated by external stimuli. In this study, we substantially build upon these critical observations, definitively demonstrating that mature myeloid lineage dendritic cells (DC) express significant levels of intracellular CTLA-4 that they constitutively secrete in microvesicular structures. CTLA-4(+) microvesicles can competitively bind B7 costimulatory molecules on bystander DC, resulting in downregulation of B7 surface expression with significant functional consequences for downstream CD8(+) T-cell responses. Hence, the data indicate a previously unknown role for DC-derived CTLA-4 in immune cell functional plasticity and have significant implication for the design and implementation of immunomodulatory strategies intended to treat cancer and infectious disease.
Collapse
Affiliation(s)
- Matthew M Halpert
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
| | - Vanaja Konduri
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
| | - Dan Liang
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
| | - Yunyu Chen
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
| | - James B Wing
- 2 Immunology Frontier Research Center, Osaka University , Osaka, Japan
| | - Silke Paust
- 3 Department of Pediatrics, Baylor College of Medicine , Houston, Texas
- 4 Center for Human Immunobiology, Baylor College of Medicine , Houston, Texas
| | - Jonathan M Levitt
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
- 5 Department of Urology, Baylor College of Medicine , Houston, Texas
| | - William K Decker
- 1 Department of Pathology & Immunology, Baylor College of Medicine , Houston, Texas
- 6 Center for Cell and Gene Therapy, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
593
|
Vece TJ, Watkin LB, Nicholas S, Canter D, Braun MC, Guillerman RP, Eldin KW, Bertolet G, McKinley S, de Guzman M, Forbes L, Chinn I, Orange JS. Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease. J Clin Immunol 2016; 36:377-387. [PMID: 27048656 PMCID: PMC4842120 DOI: 10.1007/s10875-016-0271-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Inherently defective immunity typically results in either ineffective host defense, immune regulation, or both. As a category of primary immunodeficiency diseases, those that impair immune regulation can lead to autoimmunity and/or autoinflammation. In this review we focus on one of the most recently discovered primary immunodeficiencies that leads to immune dysregulation: "Copa syndrome". Copa syndrome is named for the gene mutated in the disease, which encodes the alpha subunit of the coatomer complex-I that, in aggregate, is devoted to transiting molecular cargo from the Golgi complex to the endoplasmic reticulum (ER). Copa syndrome is autosomal dominant with variable expressivity and results from mutations affecting a narrow amino acid stretch in the COPA gene-encoding COPα protein. Patients with these mutations typically develop arthritis and interstitial lung disease with pulmonary hemorrhage representing a striking feature. Immunologically Copa syndrome is associated with autoantibody development, increased Th17 cells and pro-inflammatory cytokine expression including IL-1β and IL-6. Insights have also been gained into the underlying mechanism of Copa syndrome, which include excessive ER stress owing to the impaired return of proteins from the Golgi, and presumably resulting aberrant cellular autophagy. As such it represents a novel cellular disorder of intracellular trafficking associated with a specific clinical presentation and phenotype.
Collapse
Affiliation(s)
- Timothy J. Vece
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Levi B. Watkin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Sarah Nicholas
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Debra Canter
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Michael C. Braun
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | - Karen W. Eldin
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Grant Bertolet
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Scott McKinley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Marietta de Guzman
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Lisa Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Ivan Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital Center for Human ImmunoBiology, Houston, TX
| |
Collapse
|
594
|
Berrón-Ruiz L, López-Herrera G, Vargas-Hernández A, Santos-Argumedo L, López-Macías C, Isibasi A, Segura-Méndez NH, Bonifaz L. Impaired selective cytokine production by CD4+ T cells in Common Variable Immunodeficiency associated with the absence of memory B cells. Clin Immunol 2016; 166-167:19-26. [DOI: 10.1016/j.clim.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022]
|
595
|
Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4064-74. [PMID: 27076679 DOI: 10.4049/jimmunol.1501027] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Fc receptor-like (FCRL) 5 is a novel IgG binding protein expressed on B cells, with the capacity to regulate Ag receptor signaling. We assessed FCRL5 expression on circulating B cells from healthy donors and found that FCRL5(+) cells are most enriched among atypical CD21(-/lo)/CD27(-) tissue-like memory (TLM) B cells, which are abnormally expanded in several autoimmune and infectious diseases. Using multicolor flow cytometry, FCRL5(+) TLM cells were found to express more CD11c and several inhibitory receptors than did the FCRL5(-) TLM subset. The homing receptor profiles of the two TLM subsets shared features consistent with migration away from lymphoid tissues, but they also displayed distinct differences. Analysis of IgH V regions in single cells indicated that although both subsets are diverse, the FCRL5(+) subset accumulated significantly more somatic mutations. Furthermore, the FCRL5(+) subset had more switched isotype expression and more extensive proliferative history. Microarray analysis and quantitative RT-PCR demonstrated that the two TLM subsets possess distinct gene expression profiles, characterized by markedly different CD11c, SOX5, T-bet, and RTN4R expression, as well as differences in expression of inhibitory receptors. Functional analysis revealed that the FCRL5(+) TLM subset responds poorly to multiple stimuli compared with the FCRL5(-) subset, as reflected by reduced calcium mobilization and blunted cell proliferation. We propose that the FCRL5(+) TLM subset, but not the FCRL5(-) TLM subset, underwent Ag-driven development and is severely dysfunctional. The present study elucidates the heterogeneity of TLM B cells and provides the basis to dissect their roles in the pathogenesis of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Huifang Li
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, 48903 Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; and
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Mate Tolnay
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
596
|
Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 2016; 113:E2383-92. [PMID: 27071130 DOI: 10.1073/pnas.1603892113] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is essential for immunological (self-) tolerance, but due to the early fatality of CTLA-4 KO mice, its specific function in central and peripheral tolerance and in different systemic diseases remains to be determined. Here, we further examined the role of CTLA-4 by abrogating CTLA-4 expression in adult mice and compared the resulting autoimmunity that follows with that produced by congenital CTLA-4 deficiency. We found that conditional deletion of CTLA-4 in adult mice resulted in spontaneous lymphoproliferation, hypergammaglobulinemia, and histologically evident pneumonitis, gastritis, insulitis, and sialadenitis, accompanied by organ-specific autoantibodies. However, in contrast to congenital deficiency, this was not fatal. CTLA-4 deletion induced preferential expansion of CD4(+)Foxp3(+) Treg cells. However, T cells from CTLA-4-deficient inducible KO mice were able to adoptively transfer the diseases into T cell-deficient mice. Notably, cell transfer of thymocytes de novo produced myocarditis, otherwise not observed in donor mice depleted in adulthood. Moreover, CTLA-4 deletion in adult mice had opposing impacts on induced autoimmune models. Thus, although CTLA-4-deficient mice had more severe collagen-induced arthritis (CIA), they were protected against peptide-induced experimental autoimmune encephalomyelitis (EAE); however, onset of protein-induced EAE was only delayed. Collectively, this indicates that CTLA-4 deficiency affects both central and peripheral tolerance and Treg cell-mediated suppression.
Collapse
|
597
|
Matsumoto T, Sasaki N, Yamashita T, Emoto T, Kasahara K, Mizoguchi T, Hayashi T, Yodoi K, Kitano N, Saito T, Yamaguchi T, Hirata KI. Overexpression of Cytotoxic T-Lymphocyte-Associated Antigen-4 Prevents Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1141-51. [PMID: 27055906 DOI: 10.1161/atvbaha.115.306848] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/25/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Although T-cell-mediated chronic inflammation contributes to atherosclerosis development, the role of a negative regulatory molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) in atherosclerosis is poorly understood. We investigated the effects of CTLA-4 overexpression on atherosclerosis in apolipoprotein E-deficient (Apoe(-/-)) mice. APPROACH AND RESULTS We generated CTLA-4 transgenic (CTLA-4-Tg)/Apoe(-/-) mice that display constitutive cell surface and intracellular expression of CTLA-4 in T cells and assessed atherosclerosis at age 16 weeks. CTLA-4 overexpression significantly reduced atherosclerotic lesion formation and intraplaque accumulation of macrophage and CD4(+) T cells in the aortic root compared with controls. CTLA-4-Tg/Apoe(-/-) mice showed decreased numbers of effector CD4(+) T cells and decreased expression of costimulatory molecules CD80 and CD86, ligands for CTLA-4, and a costimulatory molecule CD28, on CD11c(+) dendritic cells compared with controls. Consistent with in vivo findings, in vitro experiments revealed that CD4(+) T cells from CTLA-4-Tg/Apoe(-/-) mice showed decreased proliferative capacity and proinflammatory cytokine production, downregulated CD80 expression on CD11c(+) dendritic cells, and suppressed the proliferation of other T cells by limiting the costimulatory pathway. Moreover, CD11c(+) dendritic cells from CTLA-4-Tg/Apoe(-/-) mice showed reduced proliferative activity of T cells in vitro, suggesting the suppression of dendritic cell maturation in vivo. CONCLUSIONS CTLA-4 regulates atherosclerosis by suppressing proatherogenic immune responses and could be an attractive therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Takuya Matsumoto
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Naoto Sasaki
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.).
| | - Tomoya Yamashita
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Takuo Emoto
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Kazuyuki Kasahara
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Taiji Mizoguchi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Tomohiro Hayashi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Keiko Yodoi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Naoki Kitano
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Takashi Saito
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Tomoyuki Yamaguchi
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| | - Ken-Ichi Hirata
- From the Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan (T.M., N.S., T.Y., T.E., K.K., T.M., T.H., K.Y., N.K., K.-i.H.); Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan (T.S.); and Laboratory for Cell Signaling (T.S.) and Department of Single Molecule Imaging, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan (T.Y.)
| |
Collapse
|
598
|
LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clin Immunol 2016; 168:88-93. [PMID: 27057999 DOI: 10.1016/j.clim.2016.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/21/2022]
Abstract
LRBA (lipopolysaccharide-responsive and beige-like anchor protein) deficiency associates immune deficiency, lymphoproliferation, and various organ-specific autoimmunity. To date, prevalent symptoms are autoimmune cytopenias and enteropathy, and lymphocytic interstitial lung disease. In 2 siblings from a consanguineous family presenting with early onset polyautoimmunity, we presumed autosomal recessive inheritance and performed whole exome sequencing. We herein report the first case of early-onset, severe, chronic polyarthritis associated with LRBA deficiency. A novel 1bp insertion in the LRBA gene, abolishing protein expression, was identified in this family. Among the 2 brothers homozygous for LRBA mutation, one developed Evans syndrome and deceased at age 8.5 from complications of severe autoimmune thrombocytopenia. His brother, who carried the same homozygous LRBA mutation, early-onset erosive polyarthritis associated with chronic, bilateral, anterior uveitis and early onset type 1 diabetes mellitus. This report widens the clinical spectrum of LRBA deficiency and, in lights of the variable phenotypes described so far, prompts us to screen for this disease in patients with multiple autoimmune symptoms in the family, including severe, erosive, polyarticular juvenile arthritis.
Collapse
|
599
|
Marthey L, Mateus C, Mussini C, Nachury M, Nancey S, Grange F, Zallot C, Peyrin-Biroulet L, Rahier JF, Bourdier de Beauregard M, Mortier L, Coutzac C, Soularue E, Lanoy E, Kapel N, Planchard D, Chaput N, Robert C, Carbonnel F. Cancer Immunotherapy with Anti-CTLA-4 Monoclonal Antibodies Induces an Inflammatory Bowel Disease. J Crohns Colitis 2016; 10:395-401. [PMID: 26783344 PMCID: PMC4946758 DOI: 10.1093/ecco-jcc/jjv227] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic monoclonal anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibodies are associated with immune-mediated enterocolitis. The aim of this study was to provide a detailed description of this entity. METHODS We included patients with endoscopic signs of inflammation after anti-CTLA-4 infusions for cancer treatment. Other causes of enterocolitis were excluded. Clinical, biological and endoscopic data were recorded. A single pathologist reviewed endoscopic biopsies and colectomy specimens from 27 patients. Patients with and without enterocolitis after ipilimumab-treated melanoma were compared, to identify clinical factors associated with enterocolitis. RESULTS Thirty-nine patients with anti-CTLA-4 enterocolitis were included (ipilimumab n = 37; tremelimumab n = 2). The most frequent symptom was diarrhoea. Ten patients had extra-intestinal manifestations. Most colonoscopies showed ulcerations involving the rectum and sigmoid, 66% of patients had extensive colitis, 55% had patchy distribution and 20% had ileal inflammation. Endoscopic colonic biopsies showed acute colitis in most patients, while half of the patients had chronic duodenitis. Thirty-five patients received steroids that led to complete clinical remission in 13 patients (37%). Twelve patients required infliximab, of whom 10 (83%) responded. Six patients underwent colectomy (perforation n = 5; toxic megacolon n = 1); one of them died postoperatively. Four patients had a persistent enterocolitis at follow-up colonoscopy. Patients with enterocolitis were more frequently prescribed NSAIDs compared with patients without enterocolitis (31 vs 5%, p = 0.003). CONCLUSIONS Ipilimumab and tremelimumab may induce a severe and extensive form of inflammatory bowel disease. Rapid escalation to infliximab should be advocated in patients who do not respond to steroids. Patients treated with anti-CTLA-4 should be advised to avoid NSAIDs.
Collapse
Affiliation(s)
- L. Marthey
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France,Department of Gastroenterology, Antoine Béclère Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Clamart, France
| | - C. Mateus
- Dermatology Unit, Department of Medical Oncology, Gustave Roussy, Paris Sud University, Villejuif, F-94805, France
| | - C. Mussini
- Department of Pathology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| | - M. Nachury
- Department of Gastroenterology, Claude Huriez Hospital, Lille, France
| | - S. Nancey
- Department of Gastroenterology, Lyon Sud Hospital, Hospices Civils de Lyon, Pierre-Benite, France
| | - F. Grange
- Department of Dermatology, Robert Debré Hospital, Reims, France
| | - C. Zallot
- Department of Gastroenterology, Nancy Hospital, Inserm U954, Lorraine University, Vandoeuvre Les Nancy, France
| | - L. Peyrin-Biroulet
- Department of Gastroenterology, Nancy Hospital, Inserm U954, Lorraine University, Vandoeuvre Les Nancy, France
| | - J. F. Rahier
- Department of Hepato-Gastroenterology, CHU Dinant Godinne UCL Namur, Yvoir, Belgium
| | | | - L. Mortier
- Department of Dermatology, Claude Huriez Hospital, Lille, France
| | - C. Coutzac
- Laboratoire d’Immunomonitoring en Oncologie, Gustave Roussy, Villejuif, F-94805, France
| | - E. Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| | - E. Lanoy
- Biostatistics and Epidemiology Unit, Gustave-Roussy, Villejuif, France,Inserm Unit U1018, CESP, Paris Sud University, Paris-Saclay University, Villejuif, France
| | - N. Kapel
- Department of Functional Coprology, Pitié Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - D. Planchard
- Pneumology Unit, Department of Medical Oncology, Gustave Roussy, Villejuif, F-94805, France
| | - N. Chaput
- Laboratoire d’Immunomonitoring en Oncologie, Gustave Roussy, Villejuif, F-94805, France,CNRS, UMS 3655, Villejuif, F-94805, France,INSERM, US23, Villejuif, F-94805, France
| | - C. Robert
- Dermatology Unit, Department of Medical Oncology, Gustave Roussy, Paris Sud University, Villejuif, F-94805, France
| | - F. Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance publique-Hôpitaux de Paris (AP-HP), Paris Sud University, Le Kremlin Bicêtre, France
| |
Collapse
|
600
|
Abstract
More than 15 years ago, mutations in the autoimmune regulator (AIRE) gene were identified as the cause of autoimmune polyglandular syndrome type 1 (APS1). It is now clear that this transcription factor has a crucial role in promoting self-tolerance in the thymus by regulating the expression of a wide array of self-antigens that have the commonality of being tissue-restricted in their expression pattern in the periphery. In this Review, we highlight many of the recent advances in our understanding of the complex biology that is related to AIRE, with a particular focus on advances in genetics, molecular interactions and the effect of AIRE on thymic selection of regulatory T cells. Furthermore, we highlight new areas of biology that are potentially affected by this key regulator of immune tolerance.
Collapse
Affiliation(s)
- Maureen A. Su
- Department of Pediatrics, School of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology/Immunology, School of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|