551
|
Turner KL, Gheres KW, Proctor EA, Drew PJ. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. eLife 2020; 9:62071. [PMID: 33118932 PMCID: PMC7758068 DOI: 10.7554/elife.62071] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
To understand how arousal state impacts cerebral hemodynamics and neurovascular coupling, we monitored neural activity, behavior, and hemodynamic signals in un-anesthetized, head-fixed mice. Mice frequently fell asleep during imaging, and these sleep events were interspersed with periods of wake. During both NREM and REM sleep, mice showed large increases in cerebral blood volume ([HbT]) and arteriole diameter relative to the awake state, two to five times larger than those evoked by sensory stimulation. During NREM, the amplitude of bilateral low-frequency oscillations in [HbT] increased markedly, and coherency between neural activity and hemodynamic signals was higher than the awake resting and REM states. Bilateral correlations in neural activity and [HbT] were highest during NREM, and lowest in the awake state. Hemodynamic signals in the cortex are strongly modulated by arousal state, and changes during sleep are substantially larger than sensory-evoked responses.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States
| | - Kyle W Gheres
- Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, United States
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States.,Department of Pharmacology, Penn State College of Medicine, Hershey, United States
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States
| |
Collapse
|
552
|
Siengsukon CF, Nelson E, Williams-Cooke C, Ludwig R, Beck ES, Vidoni ED, Mahnken JD, Stevens S, Drerup M, Bruce J, Burns JM. Cognitive behavioral therapy for insomnia to enhance cognitive function and reduce the rate of Aβ deposition in older adults with symptoms of insomnia: A single-site randomized pilot clinical trial protocol. Contemp Clin Trials 2020; 99:106190. [PMID: 33091586 DOI: 10.1016/j.cct.2020.106190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Lifestyle interventions to increase exercise and improve diet have been the focus of recent clinical trials to potentially prevent Alzheimer's disease (AD). However, despite the strong links between sleep disruptions, cognitive decline, and AD, sleep enhancement has yet to be targeted as a lifestyle intervention to prevent AD. A recent meta-analysis suggests that approximately 15% of AD may be prevented by an efficacious intervention aimed to reduce sleep disturbances and sleep disorders. Chronic insomnia is the most frequent sleep disorder occurring in at least 40% of older adults. Individuals with insomnia are more likely to be diagnosed with Alzheimer's Disease (AD) and demonstrate decline in cognitive function at long-term follow-up. AD is characterized by the accumulation of amyloid-β (Aβ) plaques and tau tangles in the brain, and growing evidence shows impaired sleep contributes to the accumulation of Aβ. An intervention aimed at improving insomnia may be a critical opportunity for primary prevention to slow cognitive decline and potentially delay the onset of AD. Cognitive behavioral therapy for insomnia (CBT-I) is an efficacious treatment for insomnia, but the use of CBT-I to improve cognitive function and potentially reduce the rate of Aβ accumulation has never been examined. Therefore, the objective of the proposed study is to examine the efficacy of CBT-I on improving cognitive function in older adults with symptoms of insomnia. An exploratory aim is to assess the effect of CBT-I on rate of Aβ accumulation.
Collapse
Affiliation(s)
- Catherine F Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America.
| | - Eryen Nelson
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Cierra Williams-Cooke
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Rebecca Ludwig
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Eber Silveira Beck
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, KS, United States of America
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Center, Fairway, KS, United States of America; Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Suzanne Stevens
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michelle Drerup
- Sleep Disorders Clinic, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jared Bruce
- Department of Biomedical and Health Informatics, University of Missouri - Kansas City School of Medicine, Kansas City, MO, United States of America
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, Fairway, KS, United States of America
| |
Collapse
|
553
|
Kosugi K, Yamada Y, Yamada M, Yokoyama Y, Fujiwara H, Yoshida K, Yoshida K, Toda M, Jinzaki M. Posture-induced changes in the vessels of the head and neck: evaluation using conventional supine CT and upright CT. Sci Rep 2020; 10:16623. [PMID: 33024196 PMCID: PMC7538893 DOI: 10.1038/s41598-020-73658-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Since the venous system is affected by gravity, upright computed tomography (CT) in addition to conventional supine CT has great potential for evaluating postural changes in the venous system. We evaluated the morphological differences in the head and neck vessels by performing a contrast CT study in both the supine and the sitting positions. In this study, the 20 included participants (10 men and 10 women) were healthy adults aged 30 to 55 years. The cross-sectional area of the cervical vessels, craniocervical junction veins, and intracranial vessels were obtained quantitatively. Venous sinuses and venous plexuses that were difficult to measure were evaluated qualitatively. The average change in areas from a supine to an upright posture was - 77.87 ± 15.99% (P < 0.0001) in the right internal jugular vein (IJV), - 69.42 ± 23.15% (P < 0.0001) in the left IJV, - 61.52 ± 12.81% (P < 0.0001) in the right external jugular vein (EJV), and - 58.91 ± 17.37% (P < 0.0001) in the left EJV. In contrast, the change in the anterior condylar vein (ACV) from a supine to an upright posture was approximately + 144% (P < 0.005) on the right side and + 110% (P < 0.05) on the left side. In addition, according to the qualitative analysis, the posterior venous structures including the anterior condylar confluence (ACC) of the craniocervical junction became more prominent in an upright posture. Despite these changes, the intracranial vessels showed almost no change between postures. From a supine to an upright position, the IJVs and EJVs above the heart collapsed, and venous channels including the ACCs and ACVs opened, switching the main cerebral venous drainage from the IJVs to the vertebral venous system. Upright head CT angiography can be useful for investigating physiological and pathophysiological hemodynamics of the venous system accompanying postural changes.
Collapse
Affiliation(s)
- Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirokazu Fujiwara
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keisuke Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
554
|
Abstract
Sleep is evolutionarily conserved across all species, and impaired sleep is a common trait of the diseased brain. Sleep quality decreases as we age, and disruption of the regular sleep architecture is a frequent antecedent to the onset of dementia in neurodegenerative diseases. The glymphatic system, which clears the brain of protein waste products, is mostly active during sleep. Yet the glymphatic system degrades with age, suggesting a causal relationship between sleep disturbance and symptomatic progression in the neurodegenerative dementias. The ties that bind sleep, aging, glymphatic clearance, and protein aggregation have shed new light on the pathogenesis of a broad range of neurodegenerative diseases, for which glymphatic failure may constitute a therapeutically targetable final common pathway.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
555
|
Tang IN, Jao T, Huang YA, Li CW, Yu YC, Chen JH. A new MRI subject position to explore simultaneous BOLD oscillations of the brain and the body. J Neurosci Methods 2020; 344:108829. [PMID: 32663550 DOI: 10.1016/j.jneumeth.2020.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Anatomically and physiologically, there is strong relationship between the brain and body. A new MRI platform covering both the brain and the limb would be beneficial for a more thorough understanding of the brain-body interactions. NEW METHOD A new arm-over-head (AOH) position was developed to collect MRI of the brain and one arm simultaneously. Subject's tolerability and SNR of both the brain and limb under a serial of seven different TR (250-3000 ms) were tested. Then, blocked motor imagery tasks were performed to test the possible brain-body oscillations. RESULTS The new MRI position provided structural images with good quality, and the AOH position had the best SNR under TR 3000 ms (p = 0.03 for the brain; p = 0.064 for the limb). Then, by using both hypothesis-free independent component analysis (ICA) and a priori seed-based functional connectivity (FC) analysis, it is demonstrated during motionless motor imagery tasks there existed possible brain-body BOLD oscillations connecting especially arm flexors to default mode, vision, and sensorimotor networks. The FC appeared at network density as low as 5%. COMPARISON WITH EXISTING METHODS We have developed a new MRI subject position to explore the possibilities of more extensive neuronal and physiological networks. CONCLUSIONS The results of this preliminary experiment indicate that functional brain networks might extend outside the brain. A bottom-up circulatory effect might explain this phenomenon. Nonetheless, considering the mechanism of neural top-down control and the nature of complex brain networks, the existence of a more extensive whole-body functional network is rational and possible.
Collapse
Affiliation(s)
- I-Ning Tang
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tun Jao
- Department of Neurology, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-An Huang
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Chih Yu
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
556
|
Wang X, Liu F, Bi Y, Shen X, Xu W, Wang J, Tan L, Yu J. Associations of sleep characteristics with alpha-synuclein in cerebrospinal fluid in older adults. Ann Clin Transl Neurol 2020; 7:2026-2034. [PMID: 32949229 PMCID: PMC7545588 DOI: 10.1002/acn3.51204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Sleep disorders as a preclinical symptom of synucleinopathies become more prevalent in older adults. Synucleinopathies might be caused by the abnormal aggregation of alpha-synuclein in the brain, which was indicated by alpha-synuclein levels in cerebrospinal fluid (CSF). We aimed to investigate associations of sleep characteristics with CSF alpha-synuclein in older adults. METHODS Our study recruited 536 cognitively intact individuals (aged between 40 and 90 years old) from the Chinese Alzheimer's Biomarker and Lifestyle study. Sleep behaviors were assessed by Pittsburgh Sleep Quality Index and total alpha-synuclein in CSF was measured by enzyme-linked immune-sorbent assay. We used multiple linear and non-linear regression models for research. RESULTS Significant non-linear associations of CSF alpha-synuclein with sleep time and duration were revealed. Individuals who went to bed and fell asleep too early or late tended to have lower CSF alpha-synuclein (reflection point for time to bed and fall asleep were 10:26 p.m. and 10:40 p.m.). Lower CSF alpha-synuclein was also observed in individuals with either excessive or insufficient sleep duration (reflection point: 7.24 hours). Besides, overall poor sleep quality (β = -0.0621; P = 0.0242), longer sleep latency (β = -0.0415; P = 0.0174) and lower sleep efficiency (β = 0.0036; P = 0.0017) showed linear associations with lower CSF alpha-synuclein. Sleep disturbances and daytime dysfunction were not significantly associated with CSF alpha-synuclein. INTERPRETATION Poor sleep was associated with lower levels of CSF alpha-synuclein in older adults, which may provide new insight into the prevention of synucleinopathies.
Collapse
Affiliation(s)
- Xiao‐Tong Wang
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Feng‐Tao Liu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yan‐Lin Bi
- Department of AnesthesiologyQingdao Municipal HospitalQingdao UniversityChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Xu
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jian Wang
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
557
|
Benveniste H, Elkin R, Heerdt PM, Koundal S, Xue Y, Lee H, Wardlaw J, Tannenbaum A. The glymphatic system and its role in cerebral homeostasis. J Appl Physiol (1985) 2020; 129:1330-1340. [PMID: 33002383 DOI: 10.1152/japplphysiol.00852.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain's high bioenergetic state is paralleled by high metabolic waste production. Authentic lymphatic vasculature is lacking in brain parenchyma. Cerebrospinal fluid (CSF) flow has long been thought to facilitate central nervous system detoxification in place of lymphatics, but the exact processes involved in toxic waste clearance from the brain remain incompletely understood. Over the past 8 yr, novel data in animals and humans have begun to shed new light on these processes in the form of the "glymphatic system," a brain-wide perivascular transit passageway dedicated to CSF transport and interstitial fluid exchange that facilitates metabolic waste drainage from the brain. Here we will discuss glymphatic system anatomy and methods to visualize and quantify glymphatic system (GS) transport in the brain and also discuss physiological drivers of its function in normal brain and in neurodegeneration.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Rena Elkin
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | - Paul M Heerdt
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
558
|
Giannetto M, Xia M, Stæger FF, Metcalfe T, Vinitsky HS, Dang JAML, Xavier ALR, Kress BT, Nedergaard M, Hablitz LM. Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice. Sci Rep 2020; 10:16073. [PMID: 32999319 PMCID: PMC7528110 DOI: 10.1038/s41598-020-72621-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Sexual dimorphism is evident in brain structure, size, and function throughout multiple species. Here, we tested whether cerebrospinal fluid entry into the glymphatic system, a network of perivascular fluid transport that clears metabolic waste from the brain, was altered between male and female mice. We analyze glymphatic influx in 244 young reproductive age (2-4 months) C57BL/6 mice. We found no male/female differences in total influx under anesthesia, or across the anterior/posterior axis of the brain. Circadian-dependent changes in glymphatic influx under ketamine/xylazine anesthesia were not altered by sex. This was not true for diurnal rhythms under pentobarbital and avertin, but both still showed daily oscillations independent of biological sex. Finally, although glymphatic influx decreases with age there was no sex difference in total influx or subregion-dependent tracer distribution in 17 middle aged (9-10 months) and 36 old (22-24 months) mice. Overall, in healthy adult C57BL/6 mice we could not detect male/female differences in glymphatic influx. This finding contrasts the gender differences in common neurodegenerative diseases. We propose that additional sex-dependent co-morbidities, such as chronic stress, protein misfolding, traumatic brain injury or other pathological mechanisms may explain the increased risk for developing proteinopathies rather than pre-existing suppression of glymphatic influx.
Collapse
Affiliation(s)
- Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 77, Puhe Street, Shenbei District, Shenyang, 110177, People's Republic of China.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Frederik Filip Stæger
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tanner Metcalfe
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanna S Vinitsky
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Juliana A M L Dang
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anna L R Xavier
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Benjamin T Kress
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA. .,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
559
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
560
|
Paul H, Heller R. EEG-Fokus: osteopathisch-manualmedizinische Therapie? MANUELLE MEDIZIN 2020. [DOI: 10.1007/s00337-020-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
561
|
Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron 2020; 107:782-804. [PMID: 32791040 PMCID: PMC7886622 DOI: 10.1016/j.neuron.2020.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Ultra-slow, ∼0.1-Hz variations in the oxygenation level of brain blood are widely used as an fMRI-based surrogate of "resting-state" neuronal activity. The temporal correlations among these fluctuations across the brain are interpreted as "functional connections" for maps and neurological diagnostics. Ultra-slow variations in oxygenation follow a cascade. First, they closely track changes in arteriole diameter. Second, interpretable functional connections arise when the ultra-slow changes in amplitude of γ-band neuronal oscillations, which are shared across even far-flung but synaptically connected brain regions, entrain the ∼0.1-Hz vasomotor oscillation in diameter of local arterioles. Significant confounds to estimates of functional connectivity arise from residual vasomotor activity as well as arteriole dynamics driven by self-generated movements and subcortical common modulatory inputs. Last, methodological limitations of fMRI can lead to spurious functional connections. The neuronal generator of ultra-slow variations in γ-band amplitude, including that associated with self-generated movements, remains an open issue.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
562
|
Wilckens KA, Chahine LM. Sleep and circadian rhythms in the treatment, trajectory, and prevention of neurodegenerative disease. Neurobiol Dis 2020; 145:105075. [PMID: 32890772 DOI: 10.1016/j.nbd.2020.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kristine A Wilckens
- University of Pittsburgh, School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Lana M Chahine
- University of Pittsburgh, School of Medicine, Department of Neurology, Pittsburgh, PA, USA.
| |
Collapse
|
563
|
Xue Y, Liu X, Koundal S, Constantinou S, Dai F, Santambrogio L, Lee H, Benveniste H. In vivo T1 mapping for quantifying glymphatic system transport and cervical lymph node drainage. Sci Rep 2020; 10:14592. [PMID: 32884041 PMCID: PMC7471332 DOI: 10.1038/s41598-020-71582-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (MRI) for tracking glymphatic system transport with paramagnetic contrast such as gadoteric acid (Gd-DOTA) administration into cerebrospinal fluid (CSF) requires pre-contrast data for proper quantification. Here we introduce an alternative approach for glymphatic system quantification in the mouse brain via T1 mapping which also captures drainage of Gd-DOTA to the cervical lymph nodes. The Gd-DOTA injection into CSF was performed on the bench after which the mice underwent T1 mapping using a 3D spoiled gradient echo sequence on a 9.4 T MRI. In Ketamine/Xylazine (KX) anesthetized mice, glymphatic transport and drainage of Gd-DOTA to submandibular and deep cervical lymph nodes was demonstrated as 25–50% T1 reductions in comparison to control mice receiving CSF saline. To further validate the T1 mapping approach we also verified increased glymphatic transport of Gd-DOTA transport in mice anesthetized with KX in comparison with ISO. The novel T1 mapping method allows for quantification of glymphatic transport as well as drainage to the deep and superficial cervical lymph nodes. The ability to measure glymphatic transport and cervical lymph node drainage in the same animal longitudinally is advantageous and time efficient and the coupling between the two systems can be studied and translated to human studies.
Collapse
Affiliation(s)
- Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA.,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaodan Liu
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Stefan Constantinou
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laura Santambrogio
- Englander Institute of Precision Medicine, Department of Radiation Oncology, Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, 330 Cedar St, TMP 3, New Haven, CT, 06520, USA.
| |
Collapse
|
564
|
Kahn S, Ehrlich P, Feldman M, Sapolsky R, Wong S. The Jaw Epidemic: Recognition, Origins, Cures, and Prevention. Bioscience 2020; 70:759-771. [PMID: 32973408 PMCID: PMC7498344 DOI: 10.1093/biosci/biaa073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Contemporary humans are living very different lives from those of their ancestors, and some of the changes have had serious consequences for health. Multiple chronic "diseases of civilization," such as cardiovascular problems, cancers, ADHD, and dementias are prevalent, increasing morbidity rates. Stress, including the disruption of traditional sleep patterns by modern lifestyles, plays a prominent role in the etiology of these diseases, including obstructive sleep apnea. Surprisingly, jaw shrinkage since the agricultural revolution, leading to an epidemic of crooked teeth, a lack of adequate space for the last molars (wisdom teeth), and constricted airways, is a major cause of sleep-related stress. Despite claims that the cause of this jaw epidemic is somehow genetic, the speed with which human jaws have changed, especially in the last few centuries, is much too fast to be evolutionary. Correlation in time and space strongly suggests the symptoms are phenotypic responses to a vast natural experiment-rapid and dramatic modifications of human physical and cultural environments. The agricultural and industrial revolutions have produced smaller jaws and less-toned muscles of the face and oropharynx, which contribute to the serious health problems mentioned above. The mechanism of change, research and clinical trials suggest, lies in orofacial posture, the way people now hold their jaws when not voluntarily moving them in speaking or eating and especially when sleeping. The critical resting oral posture has been disrupted in societies no longer hunting and gathering. Virtually all aspects of how modern people function and rest are radically different from those of our ancestors. We also briefly discuss treatment of jaw symptoms and possible clinical cures for individuals, as well as changes in society that might lead to better care and, ultimately, prevention.
Collapse
|
565
|
Ye E, Sun H, Leone MJ, Paixao L, Thomas RJ, Lam AD, Westover MB. Association of Sleep Electroencephalography-Based Brain Age Index With Dementia. JAMA Netw Open 2020; 3:e2017357. [PMID: 32986106 PMCID: PMC7522697 DOI: 10.1001/jamanetworkopen.2020.17357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Dementia is an increasing cause of disability and loss of independence in the elderly population yet remains largely underdiagnosed. A biomarker for dementia that can identify individuals with or at risk for developing dementia may help close this diagnostic gap. OBJECTIVE To investigate the association between a sleep electroencephalography-based brain age index (BAI), the difference between chronological age and brain age estimated using the sleep electroencephalogram, and dementia. DESIGN, SETTING, AND PARTICIPANTS In this retrospective cross-sectional study of 9834 polysomnograms, BAI was computed among individuals with previously determined dementia, mild cognitive impairment (MCI), or cognitive symptoms but no diagnosis of MCI or dementia, and among healthy individuals without dementia from August 22, 2008, to June 4, 2018. Data were analyzed from November 15, 2018, to June 24, 2020. EXPOSURE Dementia, MCI, and dementia-related symptoms, such as cognitive change and memory impairment. MAIN OUTCOMES AND MEASURES The outcome measures were the trend in BAI when moving from groups ranging from healthy, to symptomatic, to MCI, to dementia and pairwise comparisons of BAI among these groups. FINDINGS A total of 5144 sleep studies were included in BAI examinations. Patients in these studies had a median (interquartile range) age of 54 (43-65) years, and 3026 (59%) were men. The patients included 88 with dementia, 44 with MCI, 1075 who were symptomatic, and 2336 without dementia. There was a monotonic increase in mean (SE) BAI from the nondementia group to the dementia group (nondementia: 0.20 [0.42]; symptomatic: 0.58 [0.41]; MCI: 1.65 [1.20]; dementia: 4.18 [1.02]; P < .001). CONCLUSIONS AND RELEVANCE These findings suggest that a sleep-state electroencephalography-based BAI shows promise as a biomarker associated with progressive brain processes that ultimately result in dementia.
Collapse
Affiliation(s)
- Elissa Ye
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital, Boston
| | | | - Luis Paixao
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Alice D. Lam
- Department of Neurology, Massachusetts General Hospital, Boston
| | | |
Collapse
|
566
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 2020; 98:2406-2434. [PMID: 32875628 DOI: 10.1002/jnr.24718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Neurology Unit, Pisa University Hospital, Pisa, Italy
| | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S. I.N.M. Neuromed, Pozzilli, Italy
| |
Collapse
|
567
|
Amara AW. Sleep and cognition in Parkinson's disease. Sleep Med 2020; 73:179-180. [DOI: 10.1016/j.sleep.2020.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
|
568
|
Semyachkina-Glushkovskaya O, Postnov D, Penzel T, Kurths J. Sleep as a Novel Biomarker and a Promising Therapeutic Target for Cerebral Small Vessel Disease: A Review Focusing on Alzheimer's Disease and the Blood-Brain Barrier. Int J Mol Sci 2020; 21:ijms21176293. [PMID: 32878058 PMCID: PMC7504101 DOI: 10.3390/ijms21176293] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of cognitive decline in elderly people and development of Alzheimer’s disease (AD). Blood–brain barrier (BBB) leakage is a key pathophysiological mechanism of amyloidal CSVD. Sleep plays a crucial role in keeping health of the central nervous system and in resistance to CSVD. The deficit of sleep contributes to accumulation of metabolites and toxins such as beta-amyloid in the brain and can lead to BBB disruption. Currently, sleep is considered as an important informative platform for diagnosis and therapy of AD. However, there are no effective methods for extracting of diagnostic information from sleep characteristics. In this review, we show strong evidence that slow wave activity (SWA) (0–0.5 Hz) during deep sleep reflects glymphatic pathology, the BBB leakage and memory deficit in AD. We also discuss that diagnostic and therapeutic targeting of SWA in AD might lead to be a novel era in effective therapy of AD. Moreover, we demonstrate that SWA can be pioneering non-invasive and bed–side technology for express diagnosis of the BBB permeability. Finally, we review the novel data about the methods of detection and enhancement of SWA that can be biomarker and a promising therapy of amyloidal CSVD and CSVD associated with the BBB disorders.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Correspondence: ; Tel.: +7-927-115-5157
| | - Dmitry Postnov
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
| | - Thomas Penzel
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Advanced Sleep Research GmbH, 12489 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Sleep Medicine Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Kurths
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
569
|
Brain Glymphatic/Lymphatic Imaging by MRI and PET. Nucl Med Mol Imaging 2020; 54:207-223. [PMID: 33088350 DOI: 10.1007/s13139-020-00665-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023] Open
Abstract
Since glymphatic was proposed and meningeal lymphatic was discovered, MRI and even PET were introduced to investigate brain parenchymal interstitial fluid (ISF), cerebrospinal fluid (CSF), and lymphatic outflow in rodents and humans. Previous findings by ex vivo fluorescent microscopic, and in vivo two-photon imaging in rodents were reproduced using intrathecal contrast (gadobutrol and the similar)-enhanced MRI in rodents and further in humans. On dynamic MRI of meningeal lymphatics, in contrast to rodents, humans use mainly dorsal meningeal lymphatic pathways of ISF-CSF-lymphatic efflux. In mice, ISF-CSF exchange was examined thoroughly using an intra-cistern injection of fluorescent tracers during sleep, aging, and neurodegeneration yielding many details. CSF to lymphatic efflux is across arachnoid barrier cells over the dorsal dura in rodents and in humans. Meningeal lymphatic efflux to cervical lymph nodes and systemic circulation is also well-delineated especially in humans onintrathecal contrast MRI. Sleep- or anesthesia-related changes of glymphatic-lymphatic flow and the coupling of ISF-CSF-lymphatic drainage are major confounders ininterpreting brain glymphatic/lymphatic outflow in rodents. PET imaging in humans should be interpreted based on human anatomy and physiology, different in some aspects, using MRI recently. Based on the summary in this review, we propose non-invasive and longer-term intrathecal SPECT/PET or MRI studies to unravel the roles of brain glymphatic/lymphatic in diseases.
Collapse
|
570
|
Thomas J, Ooms SJ, Mentink LJ, Booij J, Olde Rikkert MGM, Overeem S, Kessels RPC, Claassen JAHR. Effects of long-term sleep disruption on cognitive function and brain amyloid-β burden: a case-control study. ALZHEIMERS RESEARCH & THERAPY 2020; 12:101. [PMID: 32847615 PMCID: PMC7450576 DOI: 10.1186/s13195-020-00668-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Background Recent evidence indicates that disrupted sleep could contribute to the development of Alzheimer’s disease by influencing the production and/or clearance of the amyloid-β protein. We set up a case-control study to investigate the association between long-term work-induced sleep disruption, cognitive function, and brain amyloid-β burden. Methods Nineteen male maritime pilots (aged 48–60 years) with chronic work-related sleep disruption and a sex-, age-, and education-matched control sample (n = 16, aged 50–60 years) with normal sleep completed the study. Primary sleep disorders were ruled out with in-lab polysomnography. Additional sleep measurements were obtained at home using actigraphy, sleep-wake logs, and a single-lead EEG device. Cognitive function was assessed with a neuropsychological test battery, sensitive to early symptomatic Alzheimer’s disease. Brain amyloid-β burden was assessed in maritime pilots using 18F-flutemetamol amyloid PET-CT. Results Maritime pilots reported significantly worse sleep quality (Pittsburgh Sleep Quality Index (PSQI) = 8.8 ± 2.9) during work weeks, compared to controls (PSQI = 3.2 ± 1.4; 95% CI 0.01 to 2.57; p = 0.049). This was confirmed with actigraphy-based sleep efficiency (86% ± 3.8 vs. 89.3% ± 4.3; 95% CI 0.43 to 6.03; p = 0.03). Home-EEG recordings showed less total sleep time (TST) and deep sleep time (DST) during work weeks compared to rest weeks (TST 318.56 (250.21–352.93) vs. TST 406.17 (340–425.98); p = 0.001; DST 36.75 (32.30–58.58) vs. DST 51.34 (48.37–69.30); p = 0.005)). There were no differences in any of the cognitive domains between the groups. For brain amyloid-β levels, mean global cortical standard uptake value ratios of 18F-flutemetamol were all in the normal range (1.009 ± 0.059; 95% CI 0.980 to 1.037), confirmed by visual reads. Conclusions Capitalizing on the particular work-rest schedule of maritime pilots, this study with a small sample size observed that long-term intermittent sleep disruption had no effects on global brain amyloid-β levels or cognitive function.
Collapse
Affiliation(s)
- Jana Thomas
- Department of Geriatric Medicine, Radboud University Medical Center, 6525, GC, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands. .,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands.
| | - Sharon J Ooms
- Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands
| | - Lara J Mentink
- Department of Geriatric Medicine, Radboud University Medical Center, 6525, GC, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6525, GC, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, 1105, AZ, Amsterdam, The Netherlands
| | - Marcel G M Olde Rikkert
- Department of Geriatric Medicine, Radboud University Medical Center, 6525, GC, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands
| | - Sebastiaan Overeem
- Sleep Medicine Centre Kempenhaeghe, 5591, VE, Heeze, The Netherlands.,Eindhoven University of Technology, 5612, AZ, Eindhoven, The Netherlands
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands.,Department of Medical Psychology, Radboud University Medical Center, 6525, GA, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, 6525, GC, Nijmegen, The Netherlands. .,Donders Institute for Brain, Cognition and Behaviour, 6525, HR, Nijmegen, The Netherlands. .,Radboud Alzheimer Centre, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
571
|
Green TRF, Ortiz JB, Wonnacott S, Williams RJ, Rowe RK. The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer's Disease. Front Neurosci 2020; 14:894. [PMID: 32982677 PMCID: PMC7479838 DOI: 10.3389/fnins.2020.00894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are diseases during which the fine-tuned autoregulation of the brain is lost. Despite the stark contrast in their causal mechanisms, both TBI and AD are conditions which elicit a neuroinflammatory response that is coupled with physical, cognitive, and affective symptoms. One commonly reported symptom in both TBI and AD patients is disturbed sleep. Sleep is regulated by circadian and homeostatic processes such that pathological inflammation may disrupt the chemical signaling required to maintain a healthy sleep profile. In this way, immune system activation can influence sleep physiology. Conversely, sleep disturbances can exacerbate symptoms or increase the risk of inflammatory/neurodegenerative diseases. Both TBI and AD are worsened by a chronic pro-inflammatory microenvironment which exacerbates symptoms and worsens clinical outcome. Herein, a positive feedback loop of chronic inflammation and sleep disturbances is initiated. In this review, the bidirectional relationship between sleep disturbances and inflammation is discussed, where chronic inflammation associated with TBI and AD can lead to sleep disturbances and exacerbated neuropathology. The role of microglia and cytokines in sleep disturbances associated with these diseases is highlighted. The proposed sleep and inflammation-mediated link between TBI and AD presents an opportunity for a multifaceted approach to clinical intervention.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
| | - Sue Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ, United States
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| |
Collapse
|
572
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
573
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
574
|
Wall J, Xie H, Wang X. Interaction of Sleep and Cortical Structural Maintenance From an Individual Person Microlongitudinal Perspective and Implications for Precision Medicine Research. Front Neurosci 2020; 14:769. [PMID: 32848551 PMCID: PMC7411006 DOI: 10.3389/fnins.2020.00769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Sleep and maintenance of brain structure are essential for the continuity of a person's cognitive/mental health. Interestingly, whether normal structural maintenance of the brain and sleep continuously interact in some way over day-week-month times has never been assessed at an individual-person level. This study used unconventional microlongitudinal sampling, structural magnetic resonance imaging, and n-of-1 analyses to assess normal interactions between fluctuations in the structural maintenance of cerebral cortical thickness and sleep duration for day, week, and multi-week intervals over a 6-month period in a healthy adult man. Correlation and time series analyses provided indications of "if-then," i.e., "if" this preceded "then" this followed, sleep-to-thickness maintenance and thickness maintenance-to-sleep bidirectional inverse interactions. Inverse interaction patterns were characterized by concepts of graded influences across nights, bilaterally positive relationships, continuity across successive weeks, and longer delayed/prolonged effects in the thickness maintenance-to-sleep than sleep-to-thickness maintenance direction. These interactions are proposed to involve normal circadian/allostatic/homeostatic mechanisms that continuously influence, and are influenced by, cortical substrate remodeling/turnover and sleep/wake cycle. Understanding interactions of individual person "-omics" is becoming a central interest in precision medicine research. The present n-of-1 findings contribute to this interest and have implications for precision medicine research use of a person's cortical structural and sleep "-omics" to optimize the continuous maintenance of that individual's cortical structure, sleep, and cognitive/mental health.
Collapse
Affiliation(s)
- John Wall
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Hong Xie
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Xin Wang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
- Department of Radiology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
575
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
576
|
Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:413-436. [PMID: 32739013 DOI: 10.1016/bs.irn.2020.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral vasculature serves as the crossroads of the CNS, supporting exchange of nutrients, metabolic wastes, solutes and cells between the compartments of the brain, including the blood, brain interstitium, and cerebrospinal fluid (CSF). The blood-brain barrier (BBB) regulates the entry and efflux of molecules into brain tissue. The cells of the neurovascular unit regulate cerebral blood flow, matching local metabolic demand to blood supply. The blood-CSF barrier at the choroid plexus secretes CSF, which supports the brain and provides a sink for interstitial solutes not cleared across the BBB. Recent studies have characterized the glymphatic system, a brain-wide network of perivascular spaces that supports CSF and interstitial fluid exchange and the clearance of interstitial solutes to the CSF. The critical role that these structures play in maintaining brain homeostasis is illustrated by the established and emerging roles that their dysfunctions play in the development of neurodegenerative diseases, such as Alzheimer's disease (AD). Loss of BBB and blood-CSF barrier function is reported both in rodent models of AD, and in human AD subjects. Cerebrovascular dysfunction and ischemic injury are well established contributors to both vascular dementia and to a large proportion of cases of sporadic AD. In animal models, the slowed glymphatic clearance of interstitial proteins, such as amyloid β or tau, are proposed to contribute to the development of neurodegenerative diseases, including AD. In total, these findings suggest that cellular and molecular changes occurring within and around the cerebral vasculature are among the key drivers of neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
- Molly Braun
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States; VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States; Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
577
|
Younes M, Schweitzer PK, Griffin KS, Balshaw R, Walsh JK. Comparing two measures of sleep depth/intensity. Sleep 2020; 43:5867896. [DOI: 10.1093/sleep/zsaa127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/20/2020] [Indexed: 01/05/2023] Open
Abstract
Abstract
Study Objectives
To compare delta spectral power (delta) and odds ratio product (ORP) as measures of sleep depth during sleep restriction with placebo or a drug that increases delta.
Methods
This is a secondary analysis of data from a study of 41 healthy participants randomized to receive placebo or gaboxadol 15 mg during sleep restriction. Participants underwent in-laboratory sleep studies on two baseline, four sleep restriction (5-h), and two recovery nights. Relation between delta or ORP and sleep depth was operationally defined as the degree of association of each metric to the probability of arousal or awakening occurring during the next 30 s (arousability).
Results
ORP values in wake, N1, N2, N3, and REM were significantly different. Delta differed between both N2 and N3 and other sleep stages but not between wake and N1 or N1 and REM. Epoch-by-epoch and individual correlations between ORP and delta power were modest or insignificant. The relation between ORP and arousability was linear across the entire ORP range. Delta also changed with arousability but only when delta values were less than 300 μV2. Receiver-operating-characteristic analysis found the ability to predict imminent arousal to be significantly greater with ORP than with log delta power for all experimental conditions. Changes in ORP, but not log delta, across the night correlated with next-day physiologic sleep tendency.
Conclusions
Compared to delta power, ORP is more discriminating among sleep stages, more sensitive to sleep restriction, and more closely associated with arousability. This evidence supports ORP as a measure of sleep depth/intensity.
Collapse
Affiliation(s)
- Magdy Younes
- Sleep Disorders Centre, Misericordia Health Centre, University of Manitoba, Winnipeg, Canada
| | | | - Kara S Griffin
- Sleep Medicine & Research Center, St. Luke’s Hospital, Chesterfield, MO
| | - Robert Balshaw
- Centre for Healthcare Innovation, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - James K Walsh
- Sleep Medicine & Research Center, St. Luke’s Hospital, Chesterfield, MO
| |
Collapse
|
578
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
579
|
Pavlov AN, Dubrovsky AI, Koronovskii AA, Pavlova ON, Semyachkina-Glushkovskaya OV, Kurths J. Extended detrended fluctuation analysis of electroencephalograms signals during sleep and the opening of the blood-brain barrier. CHAOS (WOODBURY, N.Y.) 2020; 30:073138. [PMID: 32752608 DOI: 10.1063/5.0011823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Detrended fluctuation analysis (DFA) is widely used to characterize long-range power-law correlations in complex signals. However, it has restrictions when nonstationarity is not limited only to slow variations in the mean value. To improve the characterization of inhomogeneous datasets, we have proposed the extended DFA (EDFA), which is a modification of the conventional method that evaluates an additional scaling exponent to take into account the features of time-varying nonstationary behavior. Based on EDFA, here, we analyze rat electroencephalograms to identify specific changes in the slow-wave dynamics of brain electrical activity associated with two different conditions, such as the opening of the blood-brain barrier and sleep, which are both characterized by the activation of the brain drainage function. We show that these conditions cause a similar reduction in the scaling exponents of EDFA. Such a similarity may represent an informative marker of fluid homeostasis of the central nervous system.
Collapse
Affiliation(s)
- A N Pavlov
- Department of Nonlinear Processes, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - A I Dubrovsky
- Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - A A Koronovskii
- Department of Nonlinear Processes, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - O N Pavlova
- Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | | | - J Kurths
- Deparatment of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| |
Collapse
|
580
|
Memon AA, Coleman JJ, Amara AW. Effects of exercise on sleep in neurodegenerative disease. Neurobiol Dis 2020; 140:104859. [PMID: 32243913 PMCID: PMC7497904 DOI: 10.1016/j.nbd.2020.104859] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
As the population ages, the incidence and prevalence of neurodegenerative disorders will continue to increase. Persons with neurodegenerative disease frequently experience sleep disorders, which not only affect quality of life, but potentially accelerate progression of the disease. Unfortunately, pharmacological interventions are often futile or have adverse effects. Therefore, investigation of non-pharmacological interventions has the potential to expand the treatment landscape for these disorders. The last decade has observed increasing recognition of the beneficial role of exercise in brain diseases, and neurodegenerative disorders in particular. In this review, we will focus on the therapeutic role of exercise for sleep dysfunction in four neurodegenerative diseases, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Available data suggest that exercise may have the potential to improve sleep disorders and attenuate neurodegeneration, particularly in Alzheimer's disease and Parkinson's disease. However, additional research is required in order to understand the most effective exercise therapy for these indications; the best way to monitor the response to interventions; the influence of exercise on sleep dysfunction in Huntington's disease and amyotrophic lateral sclerosis; and the mechanisms underlying exercise-induced sleep modifications.
Collapse
Affiliation(s)
- Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Juliana J Coleman
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America
| | - Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America; UAB Center for Exercise Medicine, Birmingham, AL 35205, United States of America; UAB Sleep and Circadian Research Core, United States of America.
| |
Collapse
|
581
|
Chappel-Farley MG, Lui KK, Dave A, Chen IY, Mander BA. Candidate mechanisms linking insomnia disorder to Alzheimer’s disease risk. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
582
|
Chen JE, Lewis LD, Chang C, Tian Q, Fultz NE, Ohringer NA, Rosen BR, Polimeni JR. Resting-state "physiological networks". Neuroimage 2020; 213:116707. [PMID: 32145437 PMCID: PMC7165049 DOI: 10.1016/j.neuroimage.2020.116707] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Slow changes in systemic brain physiology can elicit large fluctuations in fMRI time series, which manifest as structured spatial patterns of temporal correlations between distant brain regions. Here, we investigated whether such "physiological networks"-sets of segregated brain regions that exhibit similar responses following slow changes in systemic physiology-resemble patterns associated with large-scale networks typically attributed to remotely synchronized neuronal activity. By analyzing a large group of subjects from the 3T Human Connectome Project (HCP) database, we demonstrate brain-wide and noticeably heterogenous dynamics tightly coupled to either respiratory variation or heart rate changes. We show, using synthesized data generated from physiological recordings across subjects, that these physiologically-coupled fluctuations alone can produce networks that strongly resemble previously reported resting-state networks, suggesting that, in some cases, the "physiological networks" seem to mimic the neuronal networks. Further, we show that such physiologically-relevant connectivity estimates appear to dominate the overall connectivity observations in multiple HCP subjects, and that this apparent "physiological connectivity" cannot be removed by the use of a single nuisance regressor for the entire brain (such as global signal regression) due to the clear regional heterogeneity of the physiologically-coupled responses. Our results challenge previous notions that physiological confounds are either localized to large veins or globally coherent across the cortex, therefore emphasizing the necessity to consider potential physiological contributions in fMRI-based functional connectivity studies. The rich spatiotemporal patterns carried by such "physiological" dynamics also suggest great potential for clinical biomarkers that are complementary to large-scale neuronal networks.
Collapse
Affiliation(s)
- Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Nina E Fultz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
583
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
584
|
Debaker C, Djemai B, Ciobanu L, Tsurugizawa T, Le Bihan D. Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor. PLoS One 2020; 15:e0229702. [PMID: 32413082 PMCID: PMC7228049 DOI: 10.1371/journal.pone.0229702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer’s disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet. Here we investigated the potential of diffusion MRI to monitor astrocyte activity in a mouse brain model through the inhibition of AQP4 channels with TGN-020. Upon TGN-020 injection, we observed a significant decrease in the Sindex, a diffusion marker of tissue microstructure, and a significant increase of the water diffusion coefficient (sADC) in cerebral cortex and hippocampus compared to saline injection. These results indicate the suitability of diffusion MRI to monitor astrocytic activity in vivo and non-invasively.
Collapse
|
585
|
Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies. Trends Neurosci 2020; 43:458-466. [PMID: 32423764 DOI: 10.1016/j.tins.2020.04.003] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
The glymphatic concept along with the discovery of meningeal lymphatic vessels have, in recent years, highlighted that fluid is directionally transported within the central nervous system (CNS). Imaging studies, as well as manipulations of fluid transport, point to a key role of the glymphatic-lymphatic system in clearance of amyloid-β and other proteins. As such, the glymphatic-lymphatic system represents a new target in combating neurodegenerative diseases. Not unexpectedly, introduction of a new plumbing system in the brain has stirred controversies. This opinion article will highlight what we know about the brain's fluid transport systems, where experimental data are lacking, and what is still debated.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
586
|
Gu Y, Han F, Sainburg LE, Liu X. Transient Arousal Modulations Contribute to Resting-State Functional Connectivity Changes Associated with Head Motion Parameters. Cereb Cortex 2020; 30:5242-5256. [PMID: 32406488 DOI: 10.1093/cercor/bhaa096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Correlations of resting-state functional magnetic resonance imaging (rsfMRI) signals are being widely used for assessing the functional brain connectivity in health and disease. However, an association was recently observed between rsfMRI connectivity modulations and the head motion parameters and regarded as a causal relationship, which has raised serious concerns about the validity of many rsfMRI findings. Here, we studied the origin of this rsfMRI-motion association and its relationship to arousal modulations. By using a template-matching method to locate arousal-related fMRI changes, we showed that the effects of high motion time points on rsfMRI connectivity are largely due to their significant overlap with arousal-affected time points. The finding suggests that the association between rsfMRI connectivity and the head motion parameters arises from their comodulations at transient arousal modulations, and this information is critical not only for proper interpretation of motion-associated rsfMRI connectivity changes, but also for controlling the potential confounding effects of arousal modulation on rsfMRI metrics.
Collapse
Affiliation(s)
- Yameng Gu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Feng Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lucas E Sainburg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.,Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
587
|
Ulv Larsen SM, Landolt HP, Berger W, Nedergaard M, Knudsen GM, Holst SC. Haplotype of the astrocytic water channel AQP4 is associated with slow wave energy regulation in human NREM sleep. PLoS Biol 2020; 18:e3000623. [PMID: 32369477 PMCID: PMC7199924 DOI: 10.1371/journal.pbio.3000623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Cerebrospinal fluid (CSF) flow through the brain parenchyma is facilitated by the astrocytic water channel aquaporin 4 (AQP4). Homeostatically regulated electroencephalographic (EEG) slow waves are a hallmark of deep non-rapid eye movement (NREM) sleep and have been implicated in the regulation of parenchymal CSF flow and brain clearance. The human AQP4 gene harbors several single nucleotide polymorphisms (SNPs) associated with AQP4 expression, brain-water homeostasis, and neurodegenerative diseases. To date, their role in sleep-wake regulation is unknown. To investigate whether functional variants in AQP4 modulate human sleep, nocturnal EEG recordings and cognitive performance were investigated in 123 healthy participants genotyped for a common eight-SNP AQP4-haplotype. We show that this AQP4-haplotype is associated with distinct modulations of NREM slow wave energy, strongest in early sleep and mirrored by changes in sleepiness and reaction times during extended wakefulness. The study provides the first human evidence for a link between AQP4, deep NREM sleep, and cognitive consequences of prolonged wakefulness.
Collapse
Affiliation(s)
- Sara Marie Ulv Larsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Peter Landolt
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, Zurich, Switzerland
| | - Wolfgang Berger
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Camillo Holst
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Sleep & Health Zurich, University Center of Competence, Zurich, Switzerland
| |
Collapse
|
588
|
Verma A, Hesterman JY, Chazen JL, Holt R, Connolly P, Horky L, Vallabhajosula S, Mozley PD. Intrathecal 99mTc-DTPA imaging of molecular passage from lumbar cerebrospinal fluid to brain and periphery in humans. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12030. [PMID: 32355870 PMCID: PMC7191108 DOI: 10.1002/dad2.12030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) molecular exchange with brain interstitial fluid (ISF) and periphery is implicated in neurological disorders but needs better quantitative clinical assessment approaches. METHODS Following intrathecal (ITH) dosing via lumbar puncture, Technetium-99 m (99mTc-) diethylenetriaminepentaacetic acid (DTPA) imaging was used to quantify neuraxial spread, CSF-brain molecular exchange, and CSF-peripheral clearance in 15 normal human volunteers. The effect of experimental convection manipulation on these processes was also assessed. RESULTS Rostral cranial 99mTc-DTPA exposures were influenced by the volume of artificial CSF in the formulation. Signal translocation to the cranial cisterns and the brain parenchyma was observable by 3 hours. 99mTc-DTPA penetrated cortical ISF but showed lower signal in deeper structures. Urinary 99mTc-DTPA signal elimination was accelerated by higher formulation volumes and mechanical convection. DISCUSSION Widely used for detecting CSF leaks, ITH 99mTc-DTPA imaging can also become a useful clinical biomarker for measuring molecular exchange physiology between the CSF, brain, and periphery.
Collapse
Affiliation(s)
- Ajay Verma
- Codiak BiosciencesCambridgeMassachusetts
| | | | - J. Levi Chazen
- Cornell University Weill College of MedicineNew YorkNew York
| | | | | | | | | | - P. David Mozley
- Cornell University Weill College of MedicineNew YorkNew York
| |
Collapse
|
589
|
Zhou G, Pan Y, Yang J, Zhang X, Guo X, Luo Y. Sleep Electroencephalographic Response to Respiratory Events in Patients With Moderate Sleep Apnea-Hypopnea Syndrome. Front Neurosci 2020; 14:310. [PMID: 32372906 PMCID: PMC7186482 DOI: 10.3389/fnins.2020.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/17/2020] [Indexed: 12/03/2022] Open
Abstract
Sleep apnea–hypopnea syndrome is a common breathing disorder that can lead to organic brain injury, prevent memory consolidation, and cause other adverse mental-related complications. Brain activity while sleeping during respiratory events is related to these dysfunctions. In this study, we analyzed variations in electroencephalography (EEG) signals before, during, and after such events. Absolute and relative powers, as well as symbolic transfer entropy (STE) of scalp EEG signals, were calculated to unveil the activity of brain regions and information interactions between them, respectively. During the respiratory events, only low-frequency power increased during rapid eye movement (REM) stage (δ-band absolute and relative power) and N1 (δ- and θ-band absolute power, δ-band relative power) sleep. But absolute power increased in low- and medium-frequency bands (δ, θ, α, and σ bands), and relative power increased mainly in the medium-frequency band (α and σ bands) during stage N2 sleep. After the respiratory events, absolute power increased in all frequency bands and sleep stages, but relative power increased in medium and high frequencies. Regarding information interactions, the β-band STE decreased during and after events. In the γ band, the intrahemispheric STE increased during events and decreased afterward. Moreover, the interhemisphere STE increased after events during REM and stage N1 sleep. The EEG changes throughout respiratory events are supporting evidence for previous EEG knowledge of the impact of sleep apnea on the brain. These findings may provide insights into the influence of the sleep apnea–hypopnea syndrome on cognitive function and neuropsychiatric defects.
Collapse
Affiliation(s)
- Guolin Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yu Pan
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Juan Yang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiangmin Zhang
- Sleep-Disordered Breathing Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinwen Guo
- Department of Psychology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
590
|
Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, Romano C, Ristori G, Giubilei F, Salvetti M, Orzi F, Guttmann CRG, Cavallari M. Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System. Front Neuroanat 2020; 14:17. [PMID: 32372921 PMCID: PMC7177187 DOI: 10.3389/fnana.2020.00017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Most neurological disorders seemingly have heterogenous pathogenesis, with overlapping contribution of neuronal, immune and vascular mechanisms of brain injury. The perivascular space in the brain represents a crossroad where those mechanisms interact, as well as a key anatomical component of the recently discovered glymphatic pathway, which is considered to play a crucial role in the clearance of brain waste linked to neurodegenerative diseases. The pathological interplay between neuronal, immune and vascular factors can create an environment that promotes self-perpetration of mechanisms of brain injury across different neurological diseases, including those that are primarily thought of as neurodegenerative, neuroinflammatory or cerebrovascular. Changes of the perivascular space can be monitored in humans in vivo using magnetic resonance imaging (MRI). In the context of glymphatic clearance, MRI-visible enlarged perivascular spaces (EPVS) are considered to reflect glymphatic stasis secondary to the perivascular accumulation of brain debris, although they may also represent an adaptive mechanism of the glymphatic system to clear them. EPVS are also established correlates of dementia and cerebral small vessel disease (SVD) and are considered to reflect brain inflammatory activity. In this review, we describe the “perivascular unit” as a key anatomical and functional substrate for the interaction between neuronal, immune and vascular mechanisms of brain injury, which are shared across different neurological diseases. We will describe the main anatomical, physiological and pathological features of the perivascular unit, highlight potential substrates for the interplay between different noxae and summarize MRI studies of EPVS in cerebrovascular, neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Fernanda Troili
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Virginia Cipollini
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Moci
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Emanuele Morena
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miklos Palotai
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Virginia Rinaldi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Carmela Romano
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Ristori
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Francesco Orzi
- Department of Neurosciences Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Charles R G Guttmann
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| | - Michele Cavallari
- Harvard Medical School, Center for Neurological Imaging, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
591
|
Ferretti A, McWilliams SR, Rattenborg NC, Maggini I, Cardinale M, Fusani L. Energy Stores, Oxidative Balance, and Sleep in Migratory Garden Warblers ( Sylvia borin) and Whitethroats ( Sylvia communis) at a Spring Stopover Site. Integr Org Biol 2020; 2:obaa010. [PMID: 33791554 PMCID: PMC7671129 DOI: 10.1093/iob/obaa010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about how songbirds modulate sleep during migratory periods. Due to the alternation of nocturnal endurance flights and diurnal refueling stopovers, sleep is likely to be a major constraint for many migratory passerine species. Sleep may help to increase the endogenous antioxidant capacity that counteracts free radicals produced during endurance flight and reduces energy expenditure. Here, we investigated the relationship between sleep behavior, food intake, and two markers of physiological condition-the amount of energy reserves and oxidative status-in two migratory songbird species, the garden warbler (Sylvia borin) and the whitethroat (Sylvia communis). In garden warblers, birds with high energy stores were more prone to sleep during the day, while this condition-dependent sleep pattern was not present in whitethroats. In both species, birds with low energy stores were more likely to sleep with their head tucked in the feathers during nocturnal sleep. Moreover, we found a positive correlation between food intake and the extent of energy reserves in garden warblers, but not in whitethroats. Finally, we did not find significant correlations between oxidative status and sleep, or oxidative status and energy stores. Despite our study was not comparative, it suggests that different species might use different strategies to manage their energy during stopover and, additionally, it raises the possibility that migrants have evolved physiological adaptations to deal with oxidative damage produced during migration.
Collapse
Affiliation(s)
- Andrea Ferretti
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 8231, Germany
| | - Ivan Maggini
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Massimiliano Cardinale
- Marine Research Institute, Swedish University of Agricultural Sciences, Turistgatan 5, Lysekil SE-453 30, Sweden
| | - Leonida Fusani
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| |
Collapse
|
592
|
|
593
|
Letter to the Editor “Is Sleep Duration Associated with Prognosis in Patients with Traumatic Brain Injury?”. World Neurosurg 2020; 135:411. [DOI: 10.1016/j.wneu.2019.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/19/2022]
|
594
|
Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes. J Neurosci 2020; 40:2371-2380. [PMID: 32047056 DOI: 10.1523/jneurosci.2223-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.
Collapse
|
595
|
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis 2020; 11:200-211. [PMID: 32010493 PMCID: PMC6961771 DOI: 10.14336/ad.2020.0103] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
The brain interstitial fluid (ISF) and the cerebrospinal fluid (CSF) cushion and support the brain cells. The ISF occupies the brain interstitial system (ISS), whereas the CSF fills the brain ventricles and the subarachnoid space. The brain ISS is an asymmetrical, tortuous, and exceptionally confined space between neural cells and the brain microvasculature. Recently, with a newly developed in vivo measuring technique, a series of discoveries have been made in the brain ISS and the drainage of ISF. The goal of this review is to confer recent advances in our understanding of the brain ISS, including its structure, function, and the various processes mediating or disrupting ISF drainage in physiological and pathological conditions. The brain ISF in the deep brain regions has recently been demonstrated to drain in a compartmentalized ISS instead of a highly connected system, together with the drainage of ISF into the cerebrospinal fluid (CSF) at the surface of the cerebral cortex and the transportation from CSF into cervical lymph nodes. Besides, accumulation of tau in the brain ISS in conditions such as Alzheimer’s disease and its link to the sleep-wake cycle and sleep deprivation, clearance of ISF in a deep sleep via increased CSF flow, novel approaches to remove beta-amyloid from the brain ISS, and obstruction to the ISF drainage in neurological conditions are deliberated. Moreover, the role of ISS in the passage of extracellular vesicles (EVs) released from neural cells and the rapid targeting of therapeutic EVs into neural cells in the entire brain following an intranasal administration, and the promise and limitations of ISS based drug delivery approaches are discussed
Collapse
Affiliation(s)
- Ashok K Shetty
- 1Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX 77843, USA
| | - Gabriele Zanirati
- 2Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
596
|
Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer's Disease in Mice. J Neurosci 2020; 40:1581-1593. [PMID: 31915254 DOI: 10.1523/jneurosci.2120-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, resulting in the progressive decline of cognitive function in patients. Familial forms of AD are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Inflammation and amyloidosis from amyloid β (Aβ) aggregates are implicated in neuron loss and cognitive decline. Inflammation activates the protein-tyrosine phosphatase 1B (PTP1B), and this could suppress many signaling pathways that activate glycogen synthase kinase 3β (GSK3β) implicated in neurodegeneration. However, the significance of PTP1B in AD pathology remains unclear. Here, we show that pharmacological inhibition of PTP1B with trodusquemine or selective ablation of PTP1B in neurons prevents hippocampal neuron loss and spatial memory deficits in a transgenic AD mouse model with Aβ pathology (hAPP-J20 mice of both sexes). Intriguingly, while systemic inhibition of PTP1B reduced inflammation in the hippocampus, neuronal PTP1B ablation did not. These results dissociate inflammation from neuronal loss and cognitive decline and demonstrate that neuronal PTP1B hastens neurodegeneration and cognitive decline in this model of AD. The protective effect of PTP1B inhibition or ablation coincides with the restoration of GSK3β inhibition. Neuronal ablation of PTP1B did not affect cerebral amyloid levels or plaque numbers, but reduced Aβ plaque size in the hippocampus. In summary, our preclinical study suggests that targeting PTP1B may be a new strategy to intervene in the progression of AD.SIGNIFICANCE STATEMENT Familial forms of Alzheimer's disease (AD) are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Here, we used a mouse model expressing human amyloid precursor protein bearing two familial mutations and asked whether activation of a phosphatase PTP1B participates in the disease process. Systemic inhibition of this phosphatase using a selective inhibitor prevented cognitive decline, neuron loss in the hippocampus, and attenuated inflammation. Importantly, neuron-targeted ablation of PTP1B also prevented cognitive decline and neuron loss but did not reduce inflammation. Therefore, neuronal loss rather than inflammation was critical for AD progression in this mouse model, and that disease progression could be ameliorated by inhibition of PTP1B.
Collapse
|
597
|
Huang H, Chen L, Mao G, Bach J, Xue Q, Han F, Guo X, Otom A, Chernykh E, Alvarez E, Bryukhovetskiy A, Sarnowaska A, He X, Dimitrijevic M, Shanti I, von Wild K, Ramón-Cueto A, Alzoubi Z, Moviglia G, Mobasheri H, Alzoubi A, Zhang W. The 2019 yearbook of Neurorestoratology. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Time is infinite movement in constant motion. We are glad to see that Neurorestoratology, a new discipline, has grown into a rich field involving many global researchers in recent years. In this 2019 yearbook of Neurorestoratology, we introduce the most recent advances and achievements in this field, including findings on the pathogenesis of neurological diseases, neurorestorative mechanisms, and clinical therapeutic achievements globally. Many patients have benefited from treatments involving cell therapies, neurostimulation/neuromodulation, brain–computer interface, neurorestorative surgery or pharmacy, and many others. Clinical physicians can refer to this yearbook with the latest knowledge and apply it to clinical practice.
Collapse
|
598
|
Deng W, Liu C, Parra C, Sims JR, Faiq MA, Sainulabdeen A, Song H, Chan KC. Quantitative imaging of the clearance systems in the eye and the brain. Quant Imaging Med Surg 2020; 10:1-14. [PMID: 31956524 DOI: 10.21037/qims.2019.11.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenyu Deng
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Crystal Liu
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Carlos Parra
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Jeffrey R Sims
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Anoop Sainulabdeen
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Hana Song
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA
| | - Kevin C Chan
- Department of Ophthalmology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Department of Radiology, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Neuroscience Institute, New York University (NYU) School of Medicine, NYU Langone Health, New York, NY, USA.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
599
|
Naganawa S, Taoka T. The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging. Magn Reson Med Sci 2020; 21:182-194. [PMID: 33250472 PMCID: PMC9199971 DOI: 10.2463/mrms.rev.2020-0122] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The central nervous system (CNS) was previously thought to be the only organ system lacking lymphatic vessels to remove waste products from the interstitial space. Recently, based on the results from animal experiments, the glymphatic system was hypothesized. In this hypothesis, cerebrospinal fluid (CSF) enters the periarterial spaces, enters the interstitial space of the brain parenchyma via aquaporin-4 (AQP4) channels in the astrocyte end feet, and then exits through the perivenous space, thereby clearing waste products. From the perivenous space, the interstitial fluid drains into the subarachnoid space and meningeal lymphatics of the parasagittal dura. It has been reported that the glymphatic system is particularly active during sleep. Impairment of glymphatic system function might be a cause of various neurodegenerative diseases such as Alzheimer’s disease, normal pressure hydrocephalus, glaucoma, and others. Meningeal lymphatics regulate immunity in the CNS. Many researchers have attempted to visualize the function and structure of the glymphatic system and meningeal lymphatics in vivo using MR imaging. In this review, we aim to summarize these in vivo MR imaging studies and discuss the significance, current limitations, and future directions. We also discuss the significance of the perivenous cyst formation along the superior sagittal sinus, which is recently discovered in the downstream of the glymphatic system.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine
| |
Collapse
|
600
|
Abstract
The blood-brain barrier (BBB) protects the vertebrate central nervous system from harmful blood-borne, endogenous and exogenous substances to ensure proper neuronal function. The BBB describes a function that is established by endothelial cells of CNS vessels in conjunction with pericytes, astrocytes, neurons and microglia, together forming the neurovascular unit (NVU). Endothelial barrier function is crucially induced and maintained by the Wnt/β-catenin pathway and requires intact NVU for proper functionality. The BBB and the NVU are characterized by a specialized assortment of molecular specializations, providing the basis for tightening, transport and immune response functionality.The present chapter introduces state-of-the-art knowledge of BBB structure and function and highlights current research topics, aiming to understanding in more depth the cellular and molecular interactions at the NVU, determining functionality of the BBB in health and disease, and providing novel potential targets for therapeutic BBB modulation. Moreover, we highlight recent advances in understanding BBB and NVU heterogeneity within the CNS as well as their contribution to CNS physiology, such as neurovascular coupling, and pathophysiology, is discussed. Finally, we give an outlook onto new avenues of BBB research.
Collapse
Affiliation(s)
- Fabienne Benz
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio Pulmonary System (CPI), Partner Site Frankfurt, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|