551
|
Arita A, McFarland DC, Myklebust JH, Parekh S, Petersen B, Gabrilove J, Brody JD. Signaling pathways in lymphoma: pathogenesis and therapeutic targets. Future Oncol 2013; 9:1549-71. [DOI: 10.2217/fon.13.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lymphoma is the fifth most common cancer in the USA. Most lymphomas are classified as non-Hodgkin’s lymphoma, and nearly 95% of these cancers are of B-cell origin. B-cell receptor (BCR) surface expression and BCR functional signaling are critical for survival and proliferation of both healthy B cells, as well as most B-lymphoma cells. Agents that inhibit various components of the BCR signaling pathway, as well as parallel signaling pathways, are currently in clinical trials for the treatment of various lymphoma subtypes, including those targeting isoforms of PI3K, mTOR and BTK. In this review, we describe the signaling pathways in healthy mature B cells, the aberrant signaling in lymphomatous B cells and the rationale for clinical trials of agents targeting these pathways as well as the results of clinical trials to date. We propose that the entry into a kinase inhibitor era of lymphoma therapy will be as transformative for our patients as the advent of the antibody or chemotherapy era before it.
Collapse
Affiliation(s)
- Adriana Arita
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Daniel C McFarland
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - June H Myklebust
- Department of Immunology, Institute for Cancer Research, Oslo University Hospital/Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Samir Parekh
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Bruce Petersen
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Janice Gabrilove
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Joshua D Brody
- Division of Hematology/Oncology, Tisch Cancer Institute & Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
552
|
Herishanu Y, Katz BZ, Lipsky A, Wiestner A. Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013; 27:173-206. [PMID: 23561469 DOI: 10.1016/j.hoc.2013.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature monoclonal B cells in peripheral blood, bone marrow, spleen, and lymph nodes. The trafficking, survival, and proliferation of CLL cells is tightly regulated by the surrounding tissue microenvironment and is mediated by antigenic stimulation, close interaction with various accessory cells and exposure to different cytokines, chemokines, and extracellular matrix components. In the last decade there have been major advances in the understanding of the reciprocal interactions between CLL cells and the various microenvironmental compartments. This article discusses the role of the microenvironment in the context of efforts to develop novel therapeutics that target the biology of CLL.
Collapse
Affiliation(s)
- Yair Herishanu
- Hematology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel
| | | | | | | |
Collapse
|
553
|
Schnaiter A, Stilgenbauer S. 17p deletion in chronic lymphocytic leukemia: risk stratification and therapeutic approach. Hematol Oncol Clin North Am 2013; 27:289-301. [PMID: 23561474 DOI: 10.1016/j.hoc.2013.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Treatment of chronic lymphocytic leukemia has greatly advanced in the past few years since introduction of the fludarabine/cyclosphosphamide/rituximab regimen as first-line therapy. Nevertheless, 17p deletion represents a challenge because conventional treatment does not provide satisfactory results. 17p deletion and TP53 mutation are the major factors accounting for rapid disease progression, poor response to therapy, early relapse, and short survival. Allogeneic stem cell transplantation harbors curative potential but also considerable morbidity and mortality. Novel agents acting independently of the p53 signaling pathway, with favorable side-effect profiles, are promising. This review summarizes up-to-date knowledge about 17p deletion and the spectrum of treatment options.
Collapse
Affiliation(s)
- Andrea Schnaiter
- Department of Internal Medicine III, Ulm University, Ulm 89081, Germany
| | | |
Collapse
|
554
|
Hallek M. Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol 2013; 88:803-16. [PMID: 23720127 DOI: 10.1002/ajh.23491] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 12/14/2022]
Abstract
DISEASE OVERVIEW Chronic lymphocytic leukemia (CLL) is the commonest leukemia in western countries. The disease typically occurs in elderly patients and has a highly variable clinical course. Leukemic transformation is initiated by specific genomic alterations that impair apoptosis of clonal B-cells. DIAGNOSIS The diagnosis is established by blood counts, blood smears, and immunophenotyping of circulating B-lymphocytes, which identify a clonal B-cell population carrying the CD5 antigen as well as B-cell markers. PROGNOSIS Two prognostic staging systems exist, the Rai and Binet staging systems, which are established by physical examination and blood counts. Various biological and genetic markers also have prognostic value. Deletions of the short arm of chromosome 17 (del(17p)) predict resistance to most available therapies. THERAPY Patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. For physical fit patients, chemoimmunotherapy with fludarabine, cyclophosphamide and rituximab represents the current standard therapy. For unfit patients, treatment with an anti-CD20 antibody plus a milder chemotherapy (chlorambucil) is currently established as standard treatment. At relapse, the initial treatment may be repeated, if the treatment-free interval exceeds two years. If the disease relapses earlier, alternative therapies such as bendamustine alone or with rituximab, alemtuzumab, lenalidomide, or ofatumumab should be used. Patients with a del(17p) or TP53 should be considered for an allogeneic SCT. FUTURE CHALLENGES Several new agents (e.g., ibrutinib, obinutuzumab) hold the potential to change standard of CLL treatment in the next 6-12 months. Therefore, CLL patients should be included into current clinical trials whenever possible.
Collapse
Affiliation(s)
- Michael Hallek
- Department I of Internal Medicine; University of Cologne, Center for Integrated Oncology Köln Bonn, Center of Excellence on “Cellular Stress Responses in Aging-Associated Diseases,”; Germany
| |
Collapse
|
555
|
Akinleye A, Chen Y, Mukhi N, Song Y, Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013; 6:59. [PMID: 23958373 PMCID: PMC3751776 DOI: 10.1186/1756-8722-6-59] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/18/2013] [Indexed: 12/15/2022] Open
Abstract
Small molecule inhibitors targeting dysregulated pathways (RAS/RAF/MEK, PI3K/AKT/mTOR, JAK/STAT) have significantly improved clinical outcomes in cancer patients. Recently Bruton's tyrosine kinase (BTK), a crucial terminal kinase enzyme in the B-cell antigen receptor (BCR) signaling pathway, has emerged as an attractive target for therapeutic intervention in human malignancies and autoimmune disorders. Ibrutinib, a novel first-in-human BTK-inhibitor, has demonstrated clinical effectiveness and tolerability in early clinical trials and has progressed into phase III trials. However, additional research is necessary to identify the optimal dosing schedule, as well as patients most likely to benefit from BTK inhibition. This review summarizes preclinical and clinical development of ibrutinib and other novel BTK inhibitors (GDC-0834, CGI-560, CGI-1746, HM-71224, CC-292, and ONO-4059, CNX-774, LFM-A13) in the treatment of B-cell malignancies and autoimmune disorders.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | - Yamei Chen
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
- Department of Hematology, Xiamen Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Nikhil Mukhi
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | - Yongping Song
- Institute of Hematology, Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, China
| | - Delong Liu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
- Institute of Hematology, Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, China
| |
Collapse
|
556
|
Kenny EF, Quinn SR, Doyle SL, Vink PM, van Eenennaam H, O'Neill LAJ. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin. PLoS One 2013; 8:e74103. [PMID: 23967355 PMCID: PMC3743783 DOI: 10.1371/journal.pone.0074103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023] Open
Abstract
B cells signal through both the B cell receptor (BCR) which binds antigens and Toll-like receptors (TLRs) including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK) is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.
Collapse
Affiliation(s)
- Elaine F Kenny
- Immunology Research Centre, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
557
|
Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 2013; 122:2412-24. [PMID: 23940282 DOI: 10.1182/blood-2013-02-482125] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19(+)CD5(+) cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738.
Collapse
|
558
|
Targeting inflammatory pathways in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2013; 88:655-66. [PMID: 23941728 DOI: 10.1016/j.critrevonc.2013.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/01/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022] Open
Abstract
Despite recent major advances in leukemia research, the pathobiology of chronic lymphocytic leukemia (CLL) remains poorly understood. Herein we review the role chronic inflammation plays in the initiation and progression of CLL. The robust production of inflammatory cytokines and chemokines accompanied by activation of intra-cellular pro-inflammatory pathways, and the presence of somatic mutations that activate pro-inflammatory signaling pathways, suggest that chronic inflammation plays a pathophysiological role in this disease. Indeed, glucocorticoids and non-steroidal anti-inflammatory possess anti-tumor activity, and glucocorticoids have been broadly used to treat CLL and its complications. Recent clinical trials demonstrated that tyrosine kinase inhibitors, such as ibrutinib and the immune-modulatory agent lenalidomide, induced impressive clinical responses in CLL patients with relapsed or refractory disease. As those pro-inflammatory pathway inhibitors and immune modulating drugs proved to be effective in CLL, other agents with similar activities are currently investigated in clinical trials. New insights into the pathobiology of CLL and the development of novel classes of drugs will undoubtedly provide us with effective tools to treat and perhaps cure CLL.
Collapse
|
559
|
Nastoupil LJ, Sinha R, Flowers CR. The role of chemotherapy in managing chronic lymphocytic leukemia: optimizing combinations with targeted therapy. Expert Rev Anticancer Ther 2013; 13:1089-108. [PMID: 23919536 DOI: 10.1586/14737140.2013.818294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For many years, alkylating agents were the standard treatment for chronic lymphocytic leukemia (CLL). The advent of purine analogs improved response rates, but not overall survival, and although the monoclonal antibody rituximab is generally active against B-cell malignancies, it has demonstrated limited benefits as monotherapy for the treatment of CLL. However, specific combinations of chemotherapy, antibodies and targeted therapies have demonstrated additive or synergistic activity in CLL cells and deliver substantial clinical benefits. A greater understanding of the actions of chemotherapies and targeted agents on cellular pathways will advance the development of rationally designed combinations corresponding to individual patients' disease profiles.
Collapse
Affiliation(s)
- Loretta J Nastoupil
- Department of Hematology Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
560
|
|
561
|
Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W, Advani RH, Romaguera JE, Williams ME, Barrientos JC, Chmielowska E, Radford J, Stilgenbauer S, Dreyling M, Jedrzejczak WW, Johnson P, Spurgeon SE, Li L, Zhang L, Newberry K, Ou Z, Cheng N, Fang B, McGreivy J, Clow F, Buggy JJ, Chang BY, Beaupre DM, Kunkel LA, Blum KA. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2013; 369:507-16. [PMID: 23782157 PMCID: PMC4513941 DOI: 10.1056/nejmoa1306220] [Citation(s) in RCA: 1301] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a mediator of the B-cell-receptor signaling pathway implicated in the pathogenesis of B-cell cancers. In a phase 1 study, ibrutinib, a BTK inhibitor, showed antitumor activity in several types of non-Hodgkin's lymphoma, including mantle-cell lymphoma. METHODS In this phase 2 study, we investigated oral ibrutinib, at a daily dose of 560 mg, in 111 patients with relapsed or refractory mantle-cell lymphoma. Patients were enrolled into two groups: those who had previously received at least 2 cycles of bortezomib therapy and those who had received less than 2 complete cycles of bortezomib or had received no prior bortezomib therapy. The primary end point was the overall response rate. Secondary end points were duration of response, progression-free survival, overall survival, and safety. RESULTS The median age was 68 years, and 86% of patients had intermediate-risk or high-risk mantle-cell lymphoma according to clinical prognostic factors. Patients had received a median of three prior therapies. The most common treatment-related adverse events were mild or moderate diarrhea, fatigue, and nausea. Grade 3 or higher hematologic events were infrequent and included neutropenia (in 16% of patients), thrombocytopenia (in 11%), and anemia (in 10%). A response rate of 68% (75 patients) was observed, with a complete response rate of 21% and a partial response rate of 47%; prior treatment with bortezomib had no effect on the response rate. With an estimated median follow-up of 15.3 months, the estimated median response duration was 17.5 months (95% confidence interval [CI], 15.8 to not reached), the estimated median progression-free survival was 13.9 months (95% CI, 7.0 to not reached), and the median overall survival was not reached. The estimated rate of overall survival was 58% at 18 months. CONCLUSIONS Ibrutinib shows durable single-agent efficacy in relapsed or refractory mantle-cell lymphoma. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01236391.)
Collapse
Affiliation(s)
- Michael L Wang
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34:592-601. [PMID: 23928062 DOI: 10.1016/j.it.2013.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
B cell receptor (BCR) signaling plays an important pathogenic role in chronic lymphocytic leukemia (CLL) and B cell lymphomas, based on structural restrictions of the BCR, and BCR-dependent survival and growth of the malignant B cells. In CLL and lymphoma subtypes, ligand-independent ('tonic') and ligand-dependent BCR signaling have been characterized, which can involve mutations of BCR pathway components or be triggered by (auto)antigens present in the tissue microenvironment. In CLL, based on high response rates and durable remissions in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR-associated kinases [Bruton's tyrosine kinase (BTK), phosphoinositide 3-kinase (PI3K)δ], which will change treatment paradigms in CLL and other B cell malignancies. Here, we discuss the evolution of this field, from BCR-related prognostic markers, to mechanisms of BCR activation, and targeting of BCR-associated kinases, the emerging Achilles' heel in CLL pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
563
|
Robak T, Robak P. BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol 2013; 32:358-376. [PMID: 23617253 DOI: 10.3109/08830185.2013.786711] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Normal B lymphocytes receive signals from B-cell antigen receptor (BCR) that are triggered by binding of the BCR to an external antigen. Tonic signaling through the BCR provides growth and signals to chronic lymphocytic leukemia (CLL) cells, and plays an important role in the pathogenesis and progression of the disease. Antigen engagement of BCR is followed by intracellular recruitment and activation of BCR-associated kinases including spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk) and phosphatidylinositol 3-kinases (PI3K). Inhibition of signaling pathways downstream of the BCR induces disruption of chemokine-mediated CLL cell migration and cell killing. BCR signal transduction inhibitors represent a promising new strategy for targeted CLL treatment. A number of therapeutic agents have recently been developed with significant activity in CLL. The compounds that are currently investigated in patients with CLL include ibrutinib -inhibitor of Btk, fostamatinib-inhibitor of Syk and idelalisib (GS-1101) -a specific isoform of the PI3K (PI3K) inhibitor. The clinical activity of ibrutinib, GS-1101 and fostamatinib in patients with CLL is associated with marked lymphocytosis due to release of tumor cells from the lymph nodes into the peripheral blood. Further studies are ongoing with single agents and their combinations with other targeted and conventional therapies. This article will review the preclinical rationale of BCR signaling inhibitors in the treatment of CLL, and the clinical evidence supporting the use of these agents in CLL patients.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz , 93-510 Lodz, Poland.
| | | |
Collapse
|
564
|
Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 2013; 122:2539-49. [PMID: 23886836 DOI: 10.1182/blood-2013-06-507947] [Citation(s) in RCA: 643] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.
Collapse
|
565
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|
566
|
Insulin-like growth factor-1 receptor (IGF1R) as a novel target in chronic lymphocytic leukemia. Blood 2013; 122:1621-33. [PMID: 23863897 DOI: 10.1182/blood-2013-02-484386] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) is implicated in various tumor entities including chronic lymphocytic leukemia (CLL), but its functional significance in this disease remains poorly characterized. Here, we show that the IGF1R protein is overexpressed in various CLL subsets, suggesting a contribution to CLL pathology. Indeed, we show that IGF1R knockdown in primary human CLL cells compromised their viability. Likewise, IGF1R inhibition with 3 structurally distinct compounds induced apoptosis, even in the presence of protective stroma components. Furthermore, IGF1R inhibition effectively limited CLL development in Eμ-TCL1 transgenic mice and of primary human CLL xenografts. In agreement with its prosurvival function, IGF1R inhibition affected the phosphorylation and/or expression of multiple signaling proteins. The multikinase inhibitor sorafenib yielded similar effects on these signaling elements as IGF1R inhibitors. Indeed, IGF1R appears to be a direct sorafenib target because sorafenib decreased IGF1R expression and phosphorylation, counteracted insulin-like growth factor-1 (IGF-1) binding to CLL cells, and lowered the in vitro kinase activity of recombinant, purified IGF1R. Thus, we demonstrate that blockade of IGF1R-mediated signaling represents a novel mechanism of action for sorafenib in CLL. Importantly, IGF1R inhibitors compromise CLL viability in their microenvironment context, implicating this RTK as a promising therapeutic target.
Collapse
|
567
|
Brown JR. Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials. Curr Hematol Malig Rep 2013; 8:1-6. [PMID: 23296407 DOI: 10.1007/s11899-012-0147-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib is a potent covalent kinase inhibitor that targets BTK. BTK, or Bruton's tyrosine kinase, is an obvious target for therapy of B cell diseases because inactivating mutations lead to B cell aplasia in humans and the disease X-linked agammaglobulinemia. Ibrutinib has modest cytotoxicity against CLL cells in vitro but also blocks trophic stimuli from the microenvironment. As with other inhibitors of the BCR pathway, ibrutinib causes rapid nodal reduction and response associated with rapid increase in lymphocytosis, which then returns to baseline over time. The ORR of ibrutinib in relapsed refractory CLL is 67 % with PFS 88 % at 15 months. In a cohort of untreated patients 65 years and over, the estimated 15 month PFS is 96 %. Registration trials have been initiated, and the difficult task that remains is to determine where in the course of CLL therapy this drug will have the greatest impact and benefit for patients.
Collapse
Affiliation(s)
- Jennifer R Brown
- Harvard Medical School and Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
568
|
Ahmed W, Van Etten RA. Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep 2013; 8:71-80. [PMID: 23307472 DOI: 10.1007/s11899-012-0150-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways.
Collapse
Affiliation(s)
- Wesam Ahmed
- Molecular Oncology Research Institute and Division of Hematology/Oncology, Tufts Medical Center, 800 Washington Street, Box 5609, Boston, MA 02111, USA
| | | |
Collapse
|
569
|
Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O'Brien S. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369:32-42. [PMID: 23782158 PMCID: PMC3772525 DOI: 10.1056/nejmoa1215637] [Citation(s) in RCA: 1835] [Impact Index Per Article: 152.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The treatment of relapsed chronic lymphocytic leukemia (CLL) has resulted in few durable remissions. Bruton's tyrosine kinase (BTK), an essential component of B-cell-receptor signaling, mediates interactions with the tumor microenvironment and promotes the survival and proliferation of CLL cells. METHODS We conducted a phase 1b-2 multicenter study to assess the safety, efficacy, pharmacokinetics, and pharmacodynamics of ibrutinib (PCI-32765), a first-in-class, oral covalent inhibitor of BTK designed for treatment of B-cell cancers, in patients with relapsed or refractory CLL or small lymphocytic lymphoma. A total of 85 patients, the majority of whom were considered to have high-risk disease, received ibrutinib orally once daily; 51 received 420 mg, and 34 received 840 mg. RESULTS Toxic effects were predominantly grade 1 or 2 and included transient diarrhea, fatigue, and upper respiratory tract infection; thus, patients could receive extended treatment with minimal hematologic toxic effects. The overall response rate was the same in the group that received 420 mg and the group that received 840 mg (71%), and an additional 20% and 15% of patients in the respective groups had a partial response with lymphocytosis. The response was independent of clinical and genomic risk factors present before treatment, including advanced-stage disease, the number of previous therapies, and the 17p13.1 deletion. At 26 months, the estimated progression-free survival rate was 75% and the rate of overall survival was 83%. CONCLUSIONS Ibrutinib was associated with a high frequency of durable remissions in patients with relapsed or refractory CLL and small lymphocytic lymphoma, including patients with high-risk genetic lesions. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01105247.).
Collapse
Affiliation(s)
- John C Byrd
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Bhattacharjee B, Vijayasarathy S, Karunakar P, Chatterjee J. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. Asian Pac J Cancer Prev 2013; 13:5605-11. [PMID: 23317225 DOI: 10.7314/apjcp.2012.13.11.5605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. METHODS In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. RESULTS The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. CONCLUSION This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.
Collapse
|
571
|
|
572
|
Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D, Doench JG, Bogusz AM, Habermann TM, Dogan A, Witzig TE, Kutok JL, Rodig SJ, Golub T, Shipp MA. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23:826-38. [PMID: 23764004 PMCID: PMC3700321 DOI: 10.1016/j.ccr.2013.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/23/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
B cell receptor (BCR) signaling pathway components represent promising treatment targets in diffuse large B cell lymphoma (DLBCL) and additional B cell tumors. BCR signaling activates spleen tyrosine kinase (SYK) and downstream pathways including PI3K/AKT and NF-κB. In previous studies, chemical SYK blockade selectively decreased BCR signaling and induced apoptosis of BCR-dependent DLBCLs. Herein, we characterize distinct SYK/PI3K-dependent survival pathways in DLBCLs with high or low baseline NF-κB activity including selective repression of the pro-apoptotic HRK protein in NF-κB-low tumors. We also define SYK/PI3K-dependent cholesterol biosynthesis as a feed-forward mechanism of maintaining the integrity of BCRs in lipid rafts in DLBCLs with low or high NF-κB. In addition, SYK amplification and PTEN deletion are identified as selective genetic alterations in primary "BCR"-type DLBCLs.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Stefano Monti
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | | | - Jing Ouyang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, MA
| | - John G. Doench
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Agata M. Bogusz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Ahmet Dogan
- Department of Pathology, Mayo Clinic, Rochester, MN
| | | | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Todd Golub
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- Corresponding author: Margaret A. Shipp, MD, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; phone: 617-632-3874; fax: 617-632-4734;
| |
Collapse
|
573
|
Bam R, Ling W, Khan S, Pennisi A, Venkateshaiah SU, Li X, van Rhee F, Usmani S, Barlogie B, Shaughnessy J, Epstein J, Yaccoby S. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease. Am J Hematol 2013; 88:463-71. [PMID: 23456977 DOI: 10.1002/ajh.23433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/13/2013] [Accepted: 02/24/2013] [Indexed: 01/14/2023]
Abstract
Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol. 88:463-471, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rakesh Bam
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Wen Ling
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Sharmin Khan
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Angela Pennisi
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | | | - Xin Li
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Frits van Rhee
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Saad Usmani
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - John Shaughnessy
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Joshua Epstein
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| | - Shmuel Yaccoby
- Myeloma Institute for Research and Therapy; University of Arkansas for Medical Sciences; Little Rock; Arkansas
| |
Collapse
|
574
|
Chavez JC, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review of its potential in the treatment of advanced chronic lymphocytic leukemia. CORE EVIDENCE 2013; 8:37-45. [PMID: 23717217 PMCID: PMC3662532 DOI: 10.2147/ce.s34068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 12/28/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with a variable course, and remains an incurable disease. Frequent relapses and eventual resistance to fludarabine characterize symptomatic CLL and portends a dismal prognosis for patients. Growing evidence has shown that signaling pathways such as the B cell receptor and NFkB are implicated in the survival and proliferation of the CLL cells which are ultimately associated with persistence of the disease. The Bruton's tyrosine kinase pathway regulates downstream activation of the B cell receptor and has emerged as an attractive target. Ibrutinib inhibits the Bruton's tyrosine kinase pathway, and consequently induces apoptosis of B cells. Phase I and II studies have shown impressive response rates with an excellent safety profile in patients with refractory/relapsed CLL and elderly treatment-naïve CLL patients. This paper reviews the preclinical and clinical data for ibrutinib when used in the treatment of CLL. Recent studies showing the benefit of combination therapy using ibrutinib, monoclonal antibodies, and chemoimmunotherapy are also discussed.
Collapse
Affiliation(s)
- Julio C Chavez
- H Lee Moffitt Cancer and Research Institute, Division of Malignant Hematology, and University of South Florida, Tampa, FL, USA
| | | | | |
Collapse
|
575
|
Biosensors in clinical practice: focus on oncohematology. SENSORS 2013; 13:6423-47. [PMID: 23673681 PMCID: PMC3690064 DOI: 10.3390/s130506423] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
Abstract
Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.
Collapse
|
576
|
Szymanski LJ, Ayyad H, Inamdar K. Chronic Myelogenous Leukemia in a 66-Year-Old Male with Concurrent Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Lab Med 2013. [DOI: 10.1309/lm5js4lsslx7uqyv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
577
|
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; 27:2311-21. [PMID: 23619564 PMCID: PMC4126654 DOI: 10.1038/leu.2013.131] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/06/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells depend on microenvironmental factors for proliferation and survival. In particular, the B-cell receptor (BCR) and NF-κB pathways are activated in the lymph node microenvironment. Thus, model systems mimicking tumor-host interactions are important tools to study CLL biology and pathogenesis. We investigated whether the recently established NOD/scid/γcnull (NSG) mouse xenograft model can recapitulate the effects of the human microenvironment. We assessed, therefore, tumor characteristics previously defined in lymph node-resident CLL cells, including proliferation, and activation of the BCR and NF-κB pathways. We found that the murine spleen microenvironment supported CLL cell proliferation and activation to a similar degree than the human lymph node, including induction of BCR and NF-κB signaling in the xenografted cells. Next, we used this model to study ibrutinib, a Bruton's tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis, and reduced the tumor burden in vivo. Thus, our data demonstrate that the spleen of xenografted NSG mice can, in part, recapitulate the role of the human lymph node for CLL cells. In addition, we show that ibrutinib effectively disrupts tumor-host interactions essential for CLL cell proliferation and survival in vivo.
Collapse
|
578
|
Warner JL, Arnason JE. Alemtuzumab use in relapsed and refractory chronic lymphocytic leukemia: a history and discussion of future rational use. Ther Adv Hematol 2013; 3:375-89. [PMID: 23606939 DOI: 10.1177/2040620712458949] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the clinical experience with single-agent alemtuzumab as a treatment for relapsed and refractory chronic lymphocytic leukemia (CLL) in both prospective and retrospective trials and describe the multiagent use of the drug with the goal of updating clinicians on recent developments and possible future rational combinations. Alemtuzumab, an antibody targeting the lymphocyte-specific surface marker CD52, is an approved agent for the treatment of CLL. Despite its demonstrated efficacy, likely secondary to concerns regarding infectious complications, it is most commonly used in the relapsed and refractory setting. Given alemtuzumab's unique mechanism of action it has been demonstrated to have activity in disease that is refractory to both alkylating agents and purine analogs. Furthermore, it has activity in TP53-mutated disease, which has the worst prognosis of any subset of CLL. Alemtuzumab has greater efficacy on circulating disease relative to nodal disease. Rational combinations are attempting to use these attributes to increase response rates in patients with relapsed and refractory disease.
Collapse
Affiliation(s)
- Jeremy L Warner
- Hematologic Malignancy and Bone Marrow Transplantation Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
579
|
Abstract
In recent years, several genetic and epigenetic alterations have been identified and linked with deregulated signaling pathways that promote growth and survival of lymphoma cells. These discoveries have raised hopes that a new era of targeted therapy will eventually improve treatment outcome of lymphoma. In this focused review, we summarize emerging preclinical and clinical data supporting the development of novel agents targeting B cell receptor signaling, phosphoinositol-3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) oncogenic pathways. Furthermore, we discuss new data on targeting chromatin modulating mechanisms.
Collapse
Affiliation(s)
- Lori A Leslie
- Division of Cancer Medicine, M. D. Anderson Cancer Center , Houston, TX , USA
| | | |
Collapse
|
580
|
de Weerdt I, Eldering E, van Oers MH, Kater AP. The biological rationale and clinical efficacy of inhibition of signaling kinases in chronic lymphocytic leukemia. Leuk Res 2013; 37:838-47. [PMID: 23597579 DOI: 10.1016/j.leukres.2013.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/15/2013] [Accepted: 03/17/2013] [Indexed: 10/27/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is still incurable, with considerable resistance to the standard therapy. CLL cells receive anti-apoptotic and pro-proliferation stimuli in lymph nodes and bone marrow, mainly through B cell receptor activation and TNF-receptor family ligation. In recent years, the focus for finding new drugs has shifted to blocking signals from the microenvironment. Novel therapeutical agents interfere with these microenvironmental interactions, and include inhibitors of kinases Syk, Btk and PI3Kδ. In this review we will focus on the microenvironmental interactions of CLL and the role of tyrosine kinases. Furthermore, early results from clinical trials with kinase inhibitors are discussed.
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
581
|
Davids MS, Brown JR. Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 53:2362-70. [PMID: 22616724 DOI: 10.3109/10428194.2012.695781] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The B cell receptor (BCR) pathway plays a crucial role in the survival, proliferation and trafficking of chronic lymphocytic leukemia (CLL) cells. Inhibitors of the key kinases in this pathway, including spleen tyrosine kinase (SYK), mammalian target of rapamycin (mTOR), phosphoinositide 3'-kinase (PI3K) and Bruton's tyrosine kinase (BTK), have been found in preclinical models to decrease CLL cell viability both directly and indirectly through modulation of the microenvironment. Recently, oral agents targeting each of these kinases have been explored in early phase clinical trials in patients with CLL. BCR pathway antagonists appear to be highly active in relapsed/refractory CLL, independent of high-risk disease markers such as del(17p). These agents have shown a unique pattern of inducing early transient lymphocytosis, which typically is associated with nodal response. Here, we review the biology of the BCR, the kinases within this pathway and their interaction with the CLL microenvironment. We also discuss data from recent and ongoing clinical trials of BCR antagonists. We address the development of potential biomarkers for response to these agents such as ZAP-70, IGHV status and CCL3, and discuss where these exciting new drugs may fit in the evolving landscape of CLL therapy.
Collapse
Affiliation(s)
- Matthew S Davids
- CLL Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
582
|
Kempin S. Update on Chronic Lymphocytic Leukemia: Overview of New Agents and Comparative Analysis. Curr Treat Options Oncol 2013; 14:144-55. [DOI: 10.1007/s11864-013-0229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
583
|
Abstract
Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
584
|
Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol 2013; 131:959-71. [PMID: 23465663 DOI: 10.1016/j.jaci.2013.01.046] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
B cells develop from hematopoietic precursor cells in an ordered maturation and selection process. Extensive studies with many different mouse mutants provided fundamental insights into this process. However, the characterization of genetic defects causing primary immunodeficiencies was essential in understanding human B-cell biology. Defects in pre-B-cell receptor components or in downstream signaling proteins, such as Bruton tyrosine kinase and B-cell linker protein, arrest development at the pre-B-cell stage. Defects in survival-regulating proteins, such as B-cell activator of the TNF-α family receptor (BAFF-R) or caspase recruitment domain-containing protein 11 (CARD11), interrupt maturation and prevent differentiation of transitional B cells into marginal zone and follicular B cells. Mature B-cell subsets, immune responses, and memory B-cell and plasma cell development are disturbed by mutations affecting Toll-like receptor signaling, B-cell antigen receptor coreceptors (eg, CD19), or enzymes responsible for immunoglobulin class-switch recombination. Transgenic mouse models helped to identify key regulatory mechanisms, such as receptor editing and clonal anergy, preventing the activation of B cells expressing antibodies recognizing autoantigens. Nevertheless, the combination of susceptible genetic backgrounds with the rescue of self-reactive B cells by T cells allows the generation of autoreactive clones found in patients with many autoimmune diseases and even in those with primary immunodeficiencies. The rapid progress of functional genomic research is expected to foster the development of new tools that specifically target dysfunctional B lymphocytes to treat autoimmunity, B-cell malignancies, and immunodeficiency.
Collapse
Affiliation(s)
- Kathrin Pieper
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg, Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
585
|
Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12:229-43. [PMID: 23449308 PMCID: PMC7595252 DOI: 10.1038/nrd3937] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signalling through the B cell receptor (BCR) is central to the development and maintenance of B cells. In light of the numerous proliferative and survival pathways activated downstream of the BCR, it comes as no surprise that malignant B cells would co-opt this receptor to promote their own growth and survival. However, direct evidence for BCR signalling in human lymphoma has only come to light recently. Roles for antigen-dependent and antigen-independent, or tonic, BCR signalling have now been described for several different lymphoma subtypes. Furthermore, correlative data implicate antigen-dependent BCR signalling in many other forms of lymphoma. A host of therapeutic agents targeting effectors of the BCR signalling pathway are now in clinical trials and have shown initial success against multiple forms of lymphoma.
Collapse
Affiliation(s)
- Ryan M Young
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
586
|
Tzenaki N, Papakonstanti EA. p110δ PI3 kinase pathway: emerging roles in cancer. Front Oncol 2013; 3:40. [PMID: 23459844 PMCID: PMC3585436 DOI: 10.3389/fonc.2013.00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022] Open
Abstract
Class IA PI3Ks consists of three isoforms of the p110 catalytic subunit designated p110α, p110β, and p110δ which are encoded by three separate genes. Gain-of-function mutations on PIK3CA gene encoding for p110α isoform have been detected in a wide variety of human cancers whereas no somatic mutations of genes encoding for p110β or p110δ have been reported. Unlike p110α and p110β which are ubiquitously expressed, p110δ is highly enriched in leukocytes and thus the p110δ PI3K pathway has attracted more attention for its involvement in immune disorders. However, findings have been accumulated showing that the p110δ PI3K plays a seminal role in the development and progression of some hematologic malignancies. A wealth of knowledge has come from studies showing the central role of p110δ PI3K in B-cell functions and B-cell malignancies. Further data have documented that wild-type p110δ becomes oncogenic when overexpressed in cell culture models and that p110δ is the predominant isoform expressed in some human solid tumor cells playing a prominent role in these cells. Genetic inactivation of p110δ in mice models and highly-selective inhibitors of p110δ have demonstrated an important role of this isoform in differentiation, growth, survival, motility, and morphology with the inositol phosphatase PTEN to play a critical role in p110δ signaling. In this review, we summarize our understanding of the p110δ PI3K signaling pathway in hematopoietic cells and malignancies, we highlight the evidence showing the oncogenic potential of p110δ in cells of non-hematopoietic origin and we discuss perspectives for potential novel roles of p110δ PI3K in cancer.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete Heraklion, Greece
| | | |
Collapse
|
587
|
Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 2013; 138:294-309. [PMID: 23396081 DOI: 10.1016/j.pharmthera.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Spleen Tyrosine Kinase (SYK) and Bruton's Tyrosine Kinase (BTK) are non-receptor cytoplasmic tyrosine kinases that are primarily expressed in cells of hematopoietic lineage. Both are key mediators in coupling activated immunoreceptors to downstream signaling events that affect diverse biological functions, from cellular proliferation, differentiation and adhesion to innate and adaptive immune responses. As such, pharmacological inhibitors of SYK or BTK are being actively pursued as potential immunomodulatory agents for the treatment of autoimmune and inflammatory disorders. Deregulation of SYK or BTK activity has also been implicated in certain hematological malignancies. To date, from a clinical perspective, pharmacological inhibition of SYK activity has demonstrated encouraging efficacy in patients with rheumatoid arthritis (RA), while patients with relapsed or refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) have benefited from covalent inhibitors of BTK in early clinical studies. Here, we review and discuss recent insights into the emerging role of the SYK-BTK axis in innate immune cell function as well as in the maintenance of survival and homing signals for tumor cell progression. The current progress on the clinical development of SYK and BTK inhibitors is also highlighted.
Collapse
Affiliation(s)
- Seng-Lai Tan
- Inflammation Discovery and Therapeutic Area, Hoffmann-La Roche, Nutley, NJ 07110, USA.
| | | | | | | | | |
Collapse
|
588
|
Herman SEM, Barr PM, McAuley EM, Liu D, Wiestner A, Friedberg JW. Fostamatinib inhibits B-cell receptor signaling, cellular activation and tumor proliferation in patients with relapsed and refractory chronic lymphocytic leukemia. Leukemia 2013; 27:1769-73. [PMID: 23385377 PMCID: PMC3920486 DOI: 10.1038/leu.2013.37] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
589
|
Dasmahapatra G, Patel H, Dent P, Fisher RI, Friedberg J, Grant S. The Bruton tyrosine kinase (BTK) inhibitor PCI-32765 synergistically increases proteasome inhibitor activity in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells sensitive or resistant to bortezomib. Br J Haematol 2013; 161:43-56. [PMID: 23360303 DOI: 10.1111/bjh.12206] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/19/2012] [Indexed: 01/08/2023]
Abstract
Interactions between the Bruton tyrosine kinase (BTK) inhibitor PCI-32765 and the proteasome inhibitor (bortezomib) were examined in diffuse large-B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) cells, including those highly resistant to bortezomib. Co-administration of PCI-32765/bortezomib synergistically increased mitochondrial injury and apoptosis in germinal centre- or activated B-cell-like-DLBCL cells and in MCL cells. These events were accompanied by marked AKT and nuclear factor (NF)-κB (NFKB1) inactivation, down-regulation of Mcl-1 (MCL1), Bcl-xL (BCL2L1), and XIAP, and enhanced DNA damage (e.g., γH2A.X formation) and endoplasmic reticulum (ER) stress. Similar interactions were observed in highly bortezomib-resistant DLBCL and MCL cells, and in primary DLBCL cells. In contrast, PCI-32765/bortezomib regimens displayed minimal toxicity toward normal CD34(+) bone marrow cells. Transfection of DLBCL cells with a constitutively active AKT construct attenuated AKT inactivation and significantly diminished cell death, whereas expression of an NF-κB "super-repressor" (IκBαser34/36 ) increased both PCI-32765 and bortezomib lethality. Moreover, cells in which the ER stress response was disabled by a dominant-negative eIF2α construct were resistant to this regimen. Finally, combined exposure to PCI-32765 and bortezomib resulted in more pronounced and sustained reactive oxygen species (ROS) generation, and ROS scavengers significantly diminished lethality. Given promising early clinical results for PCI-32765 in DLBCL and MCL, a strategy combining BTK/proteasome inhibitor warrants attention in these malignancies.
Collapse
Affiliation(s)
- Girija Dasmahapatra
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
590
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
591
|
Dyer MJS, Vogler M, Samuel J, Jayne S, Wagner S, Pritchard C, Macip S. Precision medicines for B-cell leukaemias and lymphomas; progress and potential pitfalls. Br J Haematol 2013; 160:725-33. [DOI: 10.1111/bjh.12219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Martin J. S. Dyer
- Departments of Cancer Studies and Molecular Medicine; University of Leicester; Leicester UK
| | - Meike Vogler
- Departments of Cancer Studies and Molecular Medicine; University of Leicester; Leicester UK
| | - Jesvin Samuel
- Department of Biochemistry; University of Leicester; Leicester UK
| | | | - Simon Wagner
- Departments of Cancer Studies and Molecular Medicine; University of Leicester; Leicester UK
| | - Catrin Pritchard
- Department of Biochemistry; University of Leicester; Leicester UK
| | - Salvador Macip
- Department of Biochemistry; University of Leicester; Leicester UK
| |
Collapse
|
592
|
Kil LP, de Bruijn MJW, van Hulst JAC, Langerak AW, Yuvaraj S, Hendriks RW. Bruton's tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:71-83. [PMID: 23359016 PMCID: PMC3555194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
In chronic lymphocytic leukemia (CLL) signals from the B cell receptor (BCR) play a major role in disease development and progression. In this light, new therapies that specifically target signaling molecules downstream of the BCR continue to be developed. While first studies on the selective small molecule inhibitor of Bruton's tyrosine kinase (Btk), Ibrutinib (PCI-32765), demonstrated that Btk inhibition sensitizes CLL cells to apoptosis and alters their migratory behavior, these studies however did not address whether Btk-mediated signaling is involved in the process of CLL leukemogenesis. To investigate the requirement of Btk signaling for CLL development, we modulated Btk expression in the IgH.ETμ CLL mouse model, which is based on sporadic expression of the simian oncovirus SV40 T-antigen in mature B cells. To this end, we crossed IgH.ETμ mice on a Btk-deficient background or introduced a human Btk transgene (CD19-hBtk). Here we show that Btk deficiency fully abrogates CLL formation in IgH.ETμ mice, and that leukemias formed in Btk haplo-insufficient mice selectively expressed the wild-type Btk allele on their active X chromosome. Conversely, Btk overexpression accelerated CLL onset, increased mortality, and was associated with selection of non-stereotypical BCRs into CLL clones. Taken together, these data show that Btk expression represents an absolute prerequisite for CLL development and that Btk mediated signaling enhances leukemogenesis in mice. We therefore conclude that in CLL Btk expression levels set the threshold for malignant transformation.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MCRotterdam, The Netherlands
| | | | | | | | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Erasmus MCRotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MCRotterdam, The Netherlands
| |
Collapse
|
593
|
Rushworth SA, Bowles KM, Barrera LN, Murray MY, Zaitseva L, MacEwan DJ. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB. Cell Signal 2013; 25:106-12. [PMID: 22975686 DOI: 10.1016/j.cellsig.2012.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
Abstract
Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIP(L) and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib.
Collapse
Affiliation(s)
- Stuart A Rushworth
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
594
|
Grever MR. Accelerating safe drug development: an ideal approach to approval. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:24-29. [PMID: 24319158 DOI: 10.1182/asheducation-2013.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although enormous progress in therapeutic research has improved the lives of patients with hematologic malignancies, these earlier achievements resulted from strategic combinations of agents with unique mechanisms of action and nonoverlapping toxicities. Continued investment in the modern era of drug discovery and development will focus on targeted therapies. Targeting of specific molecular pathways is expected to achieve effective tumor cell reduction with less overall toxicity. The translational processes involved in moving novel therapeutic strategies from the laboratory toward the clinic require close monitoring. The efforts in both cancer drug discovery and development will require extensive collaboration among basic scientists, clinical investigators, and regulatory scientists. The transition from older methods of therapeutic research will require laboratory support to define eligible patients based upon their pretreatment profile. The principles of preclinical drug development based upon decades of experience in predicting toxicity and designing therapeutic strategies are still needed to insure that safety is a high priority. The opportunities for developing novel targeted combination therapies in uniquely profiled patients will hopefully enable successful breakthroughs. Several concrete examples of exciting new agents are discussed here. Defining the predicted mechanism of resistance to these new targeted agents will enable investigators to subsequently design strategies to circumvent resistance with effective combinations. Drug discovery and development are complex and expensive, so efficiency and cooperation in task completion must be tracked.
Collapse
Affiliation(s)
- Michael R Grever
- 1Division of Hematology, Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
595
|
Wiestner A. Targeting B-Cell Receptor Signaling for Anticancer Therapy: The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Induces Impressive Responses in B-Cell Malignancies. J Clin Oncol 2013; 31:128-30. [DOI: 10.1200/jco.2012.44.4281] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Adrian Wiestner
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
596
|
Niemann CU, Jones J, Wiestner A. Towards Targeted Therapy of Chronic Lymphocytic Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:259-91. [DOI: 10.1007/978-1-4614-8051-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
597
|
Burger JA. The CLL cell microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:25-45. [PMID: 24014291 DOI: 10.1007/978-1-4614-8051-8_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cross talk between CLL cells and accessory stromal cells in specialized tissue microenvironments, such as the secondary lymphoid organs, favors CLL progression by promoting malignant B cell growth and drug resistance. Disrupting the cross talk between CLL cells and their milieu is an attractive, novel strategy for treating CLL patients. This chapter summarizes current knowledge about cellular and molecular interactions between CLL cells and their supportive tissue microenvironment and the therapeutic targets that are emerging, focusing on the CXCR4-CXCL12 axis and small molecule inhibitors that are targeting the B cell receptor-associated kinases SYK, BTK, and PI3Kδ. Clinically relevant aspects of these new therapeutics will be discussed, along with an outlook into future biologically oriented therapeutic strategies. The rapid progress in dissecting the CLL microenvironment and the promising early results of these new targeted treatments in CLL indicate that CLL has become a role model for microenvironment-dependent cancers.
Collapse
Affiliation(s)
- Jan A Burger
- Unit 428, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 301402, Houston, TX, 77230-1402, USA,
| |
Collapse
|
598
|
Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling. Blood 2012; 121:1501-9. [PMID: 23264597 DOI: 10.1182/blood-2012-08-452607] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells proliferate in pseudofollicles within the lymphatic tissues, where signals from the microenvironment and BCR signaling drive the expansion of the CLL clone. Mobilization of tissue-resident cells into the blood removes CLL cells from this nurturing milieu and sensitizes them to cytotoxic drugs. This concept recently gained momentum after the clinical activity of kinase inhibitors that target BCR signaling (spleen tyrosine kinase, Bruton tyrosine kinase, PI3Kδ inhibitors) was established. Besides antiproliferative activity, these drugs cause CLL cell redistribution with rapid lymph node shrinkage, along with a transient surge in lymphocytosis, before inducing objective remissions. Inactivation of critical CLL homing mechanism (chemokine receptors, adhesion molecules), thwarting tissue retention and recirculation into the tissues, appears to be the basis for this striking clinical activity. This effect of BCR-signaling inhibitors resembles redistribution of CLL cells after glucocorticoids, described as early as in the 1940s. As such, we are witnessing a renaissance of the concept of leukemia cell redistribution in modern CLL therapy. Here, we review the molecular basis of CLL cell trafficking, homing, and redistribution and similarities between old and new drugs affecting these processes. In addition, we outline how these discoveries are changing our understanding of CLL biology and therapy.
Collapse
|
599
|
Kenkre VP, Kahl BS. The future of B-cell lymphoma therapy: the B-cell receptor and its downstream pathways. Curr Hematol Malig Rep 2012; 7:216-20. [PMID: 22688757 DOI: 10.1007/s11899-012-0127-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is becoming increasingly apparent that tonic signaling through the B cell receptor provides a growth and survival signal in many types of B cell lymphomas, and that disruption of B cell receptor signaling can be lethal to malignant B cells. Several small molecule tyrosine kinase inhibitors, which block signaling pathways downstream from the B cell receptor, are in active clinical development. Preliminary data suggests impressive activity in relapsed and refractory B cell lymphomas. Among the kinases which have been targeted are Spleen tyrosine kinase (Syk), the Bruton's tyrosine kinase (BTK), and phosphoinositide 3-kinase (PI3K). This article discusses the rationale for targeting these pathways and summarizes the current clinical trial data for agents targeting Syk, BTK, and PI3K.
Collapse
|
600
|
Abstract
Abstract
Several prognostic markers based on genetic, phenotypic, and molecular characteristics of chronic lymphocytic leukemia (CLL) B cells have emerged in the past decade. The clinical utility of these newer prognostic indicators, alone or in combination with each other and other clinical predictive systems, is still being determined. This chapter attempts to define biologic and molecular underpinnings of 3 sets of prognostic indicators in CLL: genetic abnormalities quantified by FISH and/or defined by exploratory sensitive molecular techniques, expression of specific proteins in or on CLL cells (ie, CD38, CD49d, and ZAP-70), and the IGHV mutation status of a CLL clone. Although not demonstrated conclusively, each probably reflects the biologic properties of the leukemic cells of individual CLL patients. This reflection may be direct, indicating a specific property of the CLL cell itself, or indirect, representing how the CLL cell interacts with the host's microenvironment. The new tyrosine kinase inhibitors that are currently in clinical trials support this interpretation. These and other biology-based indicators of patient clinical course and outcome can be used as starting points from which to understand and treat CLL.
Collapse
|