601
|
Neogenin as a receptor for early cell fate determination in preimplantation mouse embryos. PLoS One 2014; 9:e101989. [PMID: 25013897 PMCID: PMC4094428 DOI: 10.1371/journal.pone.0101989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/12/2014] [Indexed: 01/03/2023] Open
Abstract
The first cell lineage determination in embryos takes place when two cell populations are set apart, each differentiating into the trophectoderm (TE) and inner cell mass (ICM), respectively. It is widely believed that position/polarity cues play a key role in triggering this differentiation, but it remains unclear how extracellular cues are transduced into cell fate determination. Here, we provide evidence that supports that neogenin is implicated in relaying extracellular cues into the first cell fate determination in preimplantation mouse embryos. A polarized and transient distribution of neogenin was manifested in early blastomeres. Neogenin up-regulation by its overexpression accelerated ICM development in the blastocyst concomitant with the activation of the ICM-specific transcription factors Oct3/4, Sox2, and Nanog while its depletion by small hairpin RNAs (shRNAs) caused a developmental abnormality of poorly endowed ICM accompanied by the deactivation of Oct3/4, Sox2, and Nanog. Treatment with netrin-1 among neogenin ligands further impaired both embryonic development and ICM formation while repulsive guidance molecule c (RGMc) led to opposite consequences, enhancing ICM formation. From this study, we propose a model whereby neogenin interprets its own expression level to control the first cell fate determination in response to extracellular cues.
Collapse
|
602
|
Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 2014; 394:142-55. [PMID: 24997360 DOI: 10.1016/j.ydbio.2014.06.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Specification of the trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst correlates with cell position, as TE derives from outer cells whereas ICM from inner cells. Differences in position are reflected by cell polarization and Hippo signaling. Only in outer cells, the apical-basal cell polarity is established, and Hippo signaling is inhibited in such a manner that LATS1 and 2 (LATS1/2) kinases are prevented from phosphorylating YAP, a key transcriptional co-activator of the TE-specifying gene Cdx2. However, the molecular mechanisms that regulate these events are not fully understood. Here, we showed that inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling and disruption of apical-basal polarity. Embryos treated with ROCK inhibitor Y-27632 exhibited elevated expression of ICM marker NANOG and reduced expression of CDX2 at the blastocyst stage. Y-27632-treated embryos failed to accumulate YAP in the nucleus, although it was rescued by concomitant inhibition of LATS1/2. Segregation between apical and basal polarity regulators, namely PARD6B, PRKCZ, SCRIB, and LLGL1, was dampened by Y-27632 treatment, whereas some of the polarization events at the late 8-cell stage such as compaction and apical localization of p-ERM and tyrosinated tubulin occurred normally. Similar abnormalities of Hippo signaling and apical-basal polarization were also observed in embryos that were treated with RHO GTPases inhibitor. These results suggest that RHO-ROCK signaling plays an essential role in regulating Hippo signaling and cell polarization to enable proper specification of the ICM and TE lineages.
Collapse
|
603
|
Liang K, Zhou G, Zhang Q, Li J, Zhang C. Expression of hippo pathway in colorectal cancer. SAUDI JOURNAL OF GASTROENTEROLOGY : OFFICIAL JOURNAL OF THE SAUDI GASTROENTEROLOGY ASSOCIATION 2014. [PMID: 24976283 DOI: 10.4103/1319‐3767.133025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Hippo pathway plays a crucial role in cell proliferation, apoptosis, and tumorigenesis. This study aimed to investigate the expression of Hippo pathway components in the progression and metastasis of colorectal cancer (CRC). MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the mRNA expression levels of MST1, LATS2, YAP, TAZ, TEAD1, CDX2, and OCT4, and western blot (WB) was used to examine the protein expression levels of MST1, YAP, TEAD1, and CDX2 in 30 specimens of human colorectal adenomas, 50 pairs of human CRC tissues, and adjacent nontumorous tissues from CRC patients. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the housekeeping gene in qRT-PCR. RESULTS The mRNA expression levels of MST1 and LATS2 showed an increasing tendency from CRC to adjacent nontumorous tissues (P < 0.001). Conversely, the mRNA expression levels of YAP, TAZ, TEAD, and OCT4 showed a decreasing tendency from CRC to adjacent nontumorous tissues (P < 0.001). MST1 protein was downregulated and YAP and TEAD1 proteins were upregulated in CRC (all P < 0.001). The mRNA and protein expression levels of CDX2 in CRC were significantly lower than those in colorectal adenomas and adjacent nontumorous tissues (P < 0.001), but there was no significant difference between the latter two groups (qRT-PCR, P = 0.113; WB, P = 0.151). Furthermore, statistical analysis showed that the expression levels of Hippo signal pathway components were associated with tumor differentiation, lymph node metastasis, and TNM stage. CONCLUSION Hippo pathway is suppressed in the progression from colorectal adenomas to CRC and is associated with CRC progression and metastasis. This study suggests the components of Hippo pathway might be prognostic indicators for CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Cuiping Zhang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
604
|
Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 2014; 141:2813-24. [PMID: 24948601 DOI: 10.1242/dev.107276] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the mouse embryo, asymmetric divisions during the 8-16 cell division generate two cell types, polar and apolar cells, that are allocated to outer and inner positions, respectively. This outer/inner configuration is the first sign of the formation of the first two cell lineages: trophectoderm (TE) and inner cell mass (ICM). Outer polar cells become TE and give rise to the placenta, whereas inner apolar cells become ICM and give rise to the embryo proper and yolk sac. Here, we analyze the frequency of asymmetric divisions during the 8-16 cell division and assess the relationships between cell polarity, cell and nuclear position, and Hippo signaling activation, the pathway that initiates lineage-specific gene expression in 16-cell embryos. Although the frequency of asymmetric divisions varied in each embryo, we found that more than six blastomeres divided asymmetrically in most embryos. Interestingly, many apolar cells in 16-cell embryos were located at outer positions, whereas only one or two apolar cells were located at inner positions. Live imaging analysis showed that outer apolar cells were eventually internalized by surrounding polar cells. Using isolated 8-cell blastomeres, we carefully analyzed the internalization process of apolar cells and found indications of higher cortical tension in apolar cells than in polar cells. Last, we found that apolar cells activate Hippo signaling prior to taking inner positions. Our results suggest that polar and apolar cells have intrinsic differences that establish outer/inner configuration and differentially regulate Hippo signaling to activate lineage-specific gene expression programs.
Collapse
Affiliation(s)
- Shihadeh Anani
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Shivani Bhat
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Nobuko Honma-Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Dayana Krawchuk
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| |
Collapse
|
605
|
Kojima Y, Tam OH, Tam PPL. Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 2014; 34:65-75. [PMID: 24954643 DOI: 10.1016/j.semcdb.2014.06.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/29/2023]
Abstract
The timing of developmental events during early mouse development has been investigated in embryos that have been subject to experimental manipulation of cell number and tissue mass. These phenomenological studies revealed that the timing of preimplantation events, such as compaction, formation of blastocyst cavity and lineage allocation is correlated with the rounds of cleavage division or DNA replication of the blastomeres. Timing of postimplantation processes, such as formation of proamniotic cavity and onset of gastrulation is sensitive to cell number and probably the tissue mass, which may be measured by a mechanosensory signaling mechanism. Developmental changes in these two physical attributes are correlated with the cell proliferative activity and the growth trajectory of the whole embryo prior to the transit to organogenesis. During organogenesis, timing of morphogenesis appears to be regulated by individual devices that could be uncoupled during compensatory growth. Insights of the timing mechanism may be gleaned from the analysis of genomic activity associated with the transition through developmental milestones.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Oliver H Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
606
|
Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 2014; 141:1614-26. [PMID: 24715453 DOI: 10.1242/dev.102376] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies over the past 20 years have defined the Hippo signaling pathway as a major regulator of tissue growth and organ size. Diverse roles for the Hippo pathway have emerged, the majority of which in vertebrates are determined by the transcriptional regulators TAZ and YAP (TAZ/YAP). Key processes regulated by TAZ/YAP include the control of cell proliferation, apoptosis, movement and fate. Accurate control of the levels and localization of these factors is thus essential for early developmental events, as well as for tissue homeostasis, repair and regeneration. Recent studies have revealed that TAZ/YAP activity is regulated by mechanical and cytoskeletal cues as well as by various extracellular factors. Here, I provide an overview of these and other regulatory mechanisms and outline important developmental processes controlled by TAZ and YAP.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Room K-620, Boston, MA 02118, USA
| |
Collapse
|
607
|
Sugawara S, Ito T, Sato S, Sato Y, Sasaki A, Fukuda T, Yamanaka KI, Sakatani M, Takahashi M, Kobayashi M. Generation of aminoterminally truncated, stable types of bioactive bovine and porcine fibroblast growth factor 4 in Escherichia coli. Biotechnol Appl Biochem 2014; 62:164-72. [PMID: 24863735 DOI: 10.1002/bab.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is a crucial growth factor for the development of mammalian embryos. We previously produced hexahistidine-tagged, bovine and porcine FGF4 (Pro(32) to Leu(206) ) proteins without a secretory signal peptide at the aminoterminus in Escherichia coli. Here, we found that these were unstable; site-specific cleavage between Ser(54) and Leu(55) in both FGF4 derivatives was identified. In order to generate stable FGF4 derivatives and to investigate their biological activities, aminoterminally truncated and hexahistidine-tagged bovine and porcine FGF4 (Leu(55) to Leu(206) ) proteins, termed HisbFGF4L and HispFGF4L, respectively, were produced in E. coli. These FGF4 derivatives were sufficiently stable and exerted mitogenic activities in fibroblasts. Treatment with the FGF4 derivatives promoted the phosphorylation of ERK1/2, which are crucial kinases in the FGF signaling pathway. In the presence of PD173074, an FGF receptor inhibitor, the phosphorylation of ERK1/2 was inhibited and resulted in abolition of the growth-promoting activity of FGF4 derivatives. Taken together, we demonstrate that HisbFGF4L and HispFGF4L are capable of promoting the proliferation of bovine- and porcine-derived cells, respectively, via an authentic FGF signaling pathway. These FGF4 derivatives may be applicable for dissecting the roles of FGF4 during embryogenesis in cattle and pigs.
Collapse
Affiliation(s)
- Saiko Sugawara
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
609
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
610
|
Lim B, Park JL, Kim HJ, Park YK, Kim JH, Sohn HA, Noh SM, Song KS, Kim WH, Kim YS, Kim SY. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis 2014; 35:1020-1027. [PMID: 24325916 DOI: 10.1093/carcin/bgt409] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is a consequence of failures of multistep defense mechanisms against deleterious perturbations that occur at the genomic, epigenomic, transcriptomic and proteomic levels. To uncover previously unrecognized genes that undergo multilevel perturbations in gastric cancer (GC), we integrated epigenomic and transcriptomic approaches using two recently developed tools: MENT and GENT. This integrative analysis revealed that nine Hippo pathway-related genes, including components [FAT, JUB, LATS2, TEA domain family member 4 (TEAD4) and Yes-associated protein 1 (YAP1)] and targets (CRIM1, CYR61, CTGF and ITGB2), are concurrently hypomethylated at promoter CpG sites and overexpressed in GC tissues. In particular, TEAD4, a link between Hippo pathway components and targets, was significantly hypomethylated at CpG site cg21637033 (P = 3.8 × 10(-) (20)) and overexpressed (P = 5.2 × 10(-) (10)) in 108 Korean GC tissues compared with the normal counterparts. A reduced level of methylation at the TEAD4 promoter was significantly associated with poor outcomes, including large tumor size, high-grade tumors and low survival rates. Compared with normal tissues, the TEAD4 protein was more frequently found in the nuclei of tumor cells along with YAP1 in 53 GC patients, demonstrating the posttranslational activation of this protein. Moreover, the knockdown of TEAD4 resulted in the reduced growth of GC cells both in vitro and in vivo. Finally, chromatin immunoprecipitation-sequencing and microarray analysis revealed the oncogenic properties of TEAD4 and its novel targets (ADM, ANG, ARID5B, CALD1, EDN2, FSCN1 and OSR2), which are involved in cell proliferation and migration. In conclusion, the multilevel perturbations of TEAD4 at epigenetic, transcriptional and posttranslational levels may contribute to GC development.
Collapse
Affiliation(s)
- Byungho Lim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
611
|
Liang K, Zhou G, Zhang Q, Li J, Zhang C. Expression of hippo pathway in colorectal cancer. Saudi J Gastroenterol 2014; 20:188-94. [PMID: 24976283 PMCID: PMC4067916 DOI: 10.4103/1319-3767.133025] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND/AIMS Hippo pathway plays a crucial role in cell proliferation, apoptosis, and tumorigenesis. This study aimed to investigate the expression of Hippo pathway components in the progression and metastasis of colorectal cancer (CRC). MATERIALS AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the mRNA expression levels of MST1, LATS2, YAP, TAZ, TEAD1, CDX2, and OCT4, and western blot (WB) was used to examine the protein expression levels of MST1, YAP, TEAD1, and CDX2 in 30 specimens of human colorectal adenomas, 50 pairs of human CRC tissues, and adjacent nontumorous tissues from CRC patients. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the housekeeping gene in qRT-PCR. RESULTS The mRNA expression levels of MST1 and LATS2 showed an increasing tendency from CRC to adjacent nontumorous tissues (P < 0.001). Conversely, the mRNA expression levels of YAP, TAZ, TEAD, and OCT4 showed a decreasing tendency from CRC to adjacent nontumorous tissues (P < 0.001). MST1 protein was downregulated and YAP and TEAD1 proteins were upregulated in CRC (all P < 0.001). The mRNA and protein expression levels of CDX2 in CRC were significantly lower than those in colorectal adenomas and adjacent nontumorous tissues (P < 0.001), but there was no significant difference between the latter two groups (qRT-PCR, P = 0.113; WB, P = 0.151). Furthermore, statistical analysis showed that the expression levels of Hippo signal pathway components were associated with tumor differentiation, lymph node metastasis, and TNM stage. CONCLUSION Hippo pathway is suppressed in the progression from colorectal adenomas to CRC and is associated with CRC progression and metastasis. This study suggests the components of Hippo pathway might be prognostic indicators for CRC patients.
Collapse
Affiliation(s)
- Kun Liang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Qi Zhang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing Li
- Department of Pharmacology and Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Cuiping Zhang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
612
|
Wen D, Saiz N, Rosenwaks Z, Hadjantonakis AK, Rafii S. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts. PLoS One 2014; 9:e94730. [PMID: 24733255 PMCID: PMC3986396 DOI: 10.1371/journal.pone.0094730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/18/2014] [Indexed: 01/15/2023] Open
Abstract
Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM). We designate these as type a (presence of ICM at blastocyst stage) or type b (absence of ICM). ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.
Collapse
Affiliation(s)
- Duancheng Wen
- Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (DW); (SR)
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, New York, New York, United States of America
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | | | - Shahin Rafii
- Ansary Stem Cell Institute and Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (DW); (SR)
| |
Collapse
|
613
|
De Paepe C, Krivega M, Cauffman G, Geens M, Van de Velde H. Totipotency and lineage segregation in the human embryo. ACTA ACUST UNITED AC 2014; 20:599-618. [DOI: 10.1093/molehr/gau027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
614
|
Yap1, transcription regulator in the Hippo signaling pathway, is required for Xenopus limb bud regeneration. Dev Biol 2014; 388:57-67. [DOI: 10.1016/j.ydbio.2014.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022]
|
615
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
616
|
Hiemer SE, Szymaniak AD, Varelas X. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 2014; 289:13461-74. [PMID: 24648515 DOI: 10.1074/jbc.m113.529115] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled transforming growth factor-β (TGFβ) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGFβ-mediated cues are directed to induce tumorigenic events is poorly understood, particularly given that TGFβ has clear tumor suppressing activity in other contexts. Here, we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGFβ-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGFβ-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs, and TGFβ-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGFβ, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGFβ signaling to promote phenotypic and transcriptional changes in nontumorigenic cells to overcome TGFβ-repressive effects. Our work thus identifies cross-talk between nuclear TAZ/YAP and TGFβ signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms.
Collapse
Affiliation(s)
- Samantha E Hiemer
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | |
Collapse
|
617
|
YAP promotes ovarian cancer cell tumorigenesis and is indicative of a poor prognosis for ovarian cancer patients. PLoS One 2014; 9:e91770. [PMID: 24622501 PMCID: PMC3951505 DOI: 10.1371/journal.pone.0091770] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/14/2014] [Indexed: 01/08/2023] Open
Abstract
YAP is a key component of the Hippo signaling pathway and plays a critical role in the development and progression of multiple cancer types, including ovarian cancer. However, the effects of YAP on ovarian cancer development in vivo and its downstream effectors remain uncertain. In this study we found that strong YAP expression was associated with poor ovarian cancer patient survival. Specifically, we showed for the first time that high YAP expression levels were positively correlated with TEAD4 gene expression, and their co-expression was a prognostic marker for poor ovarian cancer survival. Hyperactivation of YAP by mutating its five inhibitory phosphorylation sites (YAP-5SA) increased ovarian cancer cell proliferation, resistance to chemotherapeutic drugs, cell migration, and anchorage-independent growth. In contrast, expression of a dominant negative YAP mutant reversed these phenotypes in ovarian cancer cells both in vitro and in vivo. Our results suggested that YAP caused these effects by promoting an epithelial-to-mesenchymal transition. Thus, YAP promotes ovarian cancer cell growth and tumorigenesis both in vitro and in vivo. Further, high YAP and TEAD4 expression is a prognostic marker for ovarian cancer progression and a potential target for ovarian cancer treatment.
Collapse
|
618
|
Zacchigna S, Giacca M. Extra- and intracellular factors regulating cardiomyocyte proliferation in postnatal life. Cardiovasc Res 2014; 102:312-20. [PMID: 24623280 DOI: 10.1093/cvr/cvu057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the striking differences that distinguish the adult from the embryonic heart in mammals and set it apart from the heart in urodeles and teleosts is the incapacity of cardiomyocytes to respond to damage by proliferation. While the molecular reasons underlying these characteristics still await elucidation, mounting evidence collected over the last several years indicates that cardiomyocyte proliferation can be modulated by different extracellular molecules. The exogenous administration of selected growth factors is capable of inducing neonatal and, in some instances, also adult cardiomyocyte proliferation. Other diffusible factors can regulate the proliferation and cardiac commitment of endogenous or implanted stem cells. While the individual role of these factors in the paracrine control of normal heart homeostasis still needs to be defined, this information is relevant for the development of novel therapeutic strategies for cardiac regeneration. In addition, recent evidence indicates that postnatal cardiomyocyte proliferation is controlled by genetically defined pathways, such as the Hippo pathway, and can be modulated by perturbing the endogenous cardiomyocyte microRNA network; the identification of the cytokines that activate these molecular circuits holds great potential for clinical translation.
Collapse
Affiliation(s)
- Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology , Padriciano, 99, Trieste 34149, Italy
| | | |
Collapse
|
619
|
Leung CY, Zernicka-Goetz M. Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 2014; 4:2251. [PMID: 23903990 PMCID: PMC3741640 DOI: 10.1038/ncomms3251] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/03/2013] [Indexed: 01/04/2023] Open
Abstract
Cell identity is specified in the early mammalian embryo by the generation of precursors for two cell lineages: the pluripotent inner cell mass and differentiating trophectoderm. Here we identify Angiomotin as a key regulator of this process. We show that the loss of Angiomotin, together with Angiomotin-like 2, leads to differentiation of inner cell mass cells and compromised peri-implantation development. We show that Angiomotin regulates localization of Yap, and Yap-binding motifs are required for full activity of Angiomotin. Importantly, we also show that Angiomotin function can compensate for the absence of Lats1/2 kinases, indicating the ability of Angiomotin to bypass the classical Hippo pathway for Yap regulation. In polarized outside cells, Angiomotin localizes apically, pointing to the importance of cell polarity in regulating Yap to promote differentiation. We propose that both Hippo pathway-dependent and Hippo pathway-independent mechanisms regulate Yap localization to set apart pluripotent and differentiated lineages in the pre-implantation mouse embryo. Angiomotins retain the transcription co-activator YAP in the cytoplasm and thereby regulate the Hippo pathway in mammalian cultured cells. Here Leung and Zernicka-Goetz show that Angiomotin family members prevent the differentiation of inner cell mass cells in the mouse blastocyst, via both Hippo pathway-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Chuen Yan Leung
- The Wellcome Trust/Cancer Research UK Gurdon Institute, the Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
620
|
Hirate Y, Sasaki H. The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers 2014; 2:e28127. [PMID: 24843842 PMCID: PMC4022607 DOI: 10.4161/tisb.28127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/01/2014] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
The Hippo signaling pathway regulates a number of cellular events, including the control of cell fates in preimplantation mouse embryos. The inner and outer cells of the embryo show high and low levels of Hippo signaling, respectively. This position-dependent Hippo signaling promotes the specification of distinct cell fates. In a recent paper, we identified the molecular mechanism that controls Hippo signaling in preimplantation embryos. The junction-associated scaffold protein Angiomotin (Amot) plays a key role in this mechanism. At the adherens junctions of the inner cells, Amot activates the Hippo pathway by recruiting and activating the protein kinase large tumor suppressor (Lats). In contrast, Amot at the apical membrane of the outer cells suppresses Hippo signaling by interacting with F-actin. The phosphorylation of Amot inhibits its interaction with F-actin and activates Hippo signaling. We propose that Amot acts as a molecular switch for the Hippo pathway and links F-actin with Lats activity.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control; Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto, Japan
| | - Hiroshi Sasaki
- Department of Cell Fate Control; Institute of Molecular Embryology and Genetics; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
621
|
Lin AYT, Pearson BJ. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development 2014; 141:1197-208. [PMID: 24523458 DOI: 10.1242/dev.101915] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.
Collapse
Affiliation(s)
- Alexander Y T Lin
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
622
|
Latos P, Hemberger M. Review: The transcriptional and signalling networks of mouse trophoblast stem cells. Placenta 2014; 35 Suppl:S81-5. [DOI: 10.1016/j.placenta.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
|
623
|
Lats2 is critical for the pluripotency and proper differentiation of stem cells. Cell Death Differ 2014; 21:624-33. [PMID: 24413153 DOI: 10.1038/cdd.2013.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/08/2022] Open
Abstract
Differentiation is a highly controlled process essential for embryonic and adult development. Moreover, disruption of proper differentiation is often associated with human diseases, including cancer. We analyzed the involvement of the tumor-suppressor Lats2 in mouse embryonic stem cell (mESC) pluripotency and differentiation, and report that mESCs lacking Lats2 are unable to sustain stemness and are not able to initiate and coordinate developmental transcriptional programs. Lats2-/- mESCs retain bivalent 'poised' chromatin marks on developmental genes and exhibit germ layer ambiguity both in vitro and in vivo. Importantly, in coordinating proper germ layer specification, Lats2 engages in a feedback loop with another tumor suppressor, p53.
Collapse
|
624
|
|
625
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
626
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
627
|
Lanner F. Lineage specification in the early mouse embryo. Exp Cell Res 2013; 321:32-9. [PMID: 24333597 DOI: 10.1016/j.yexcr.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
Before the mammalian embryo is ready to implant in the uterine wall, the single cell zygote must divide and differentiate into three distinct tissues; trophectoderm (prospective placenta), primitive endoderm (prospective yolk sac), and pluripotent epiblast cells which will form the embryo proper. In this review I will discuss our current understanding of how positional information, cell polarization, signaling pathways, and transcription factor networks converge to drive and regulate the progressive segregation of the first three cell types in the mouse embryo.
Collapse
Affiliation(s)
- Fredrik Lanner
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Karolinska Universitetssjukhuset, K 57 CLINTEC, 141 86 Stockholm, Sweden.
| |
Collapse
|
628
|
Chaulk SG, Lattanzi VJ, Hiemer SE, Fahlman RP, Varelas X. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J Biol Chem 2013; 289:1886-91. [PMID: 24324261 DOI: 10.1074/jbc.c113.529362] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are genome-encoded small double-stranded RNAs that have emerged as key regulators of gene expression and are implicated in most aspects of human development and disease. Canonical miRNA biogenesis involves processing of ∼70-nucleotide pre-miRNA hairpins by Dicer to generate mature ∼22-nucleotide miRNAs, which target complementary RNA sequences. Despite the importance of miRNA biogenesis, signaling mechanisms controlling this process are poorly defined. Here we demonstrate that the post-transcriptional regulation of Dicer is controlled by the cell density-mediated localization of the Hippo pathway effectors TAZ (transcriptional co-activator with PDZ-binding motif) and YAP (Yes-associated protein) (TAZ/YAP). We show that nuclear TAZ/YAP, which are abundant at low cell density, are required for efficient pre-miRNA processing. Knockdown of TAZ/YAP in low density cells, or density-mediated sequestration of TAZ/YAP into the cytoplasm, results in the defective processing of pre-miRNAs. Strikingly, one exception is Let-7, which accumulates upon loss of nuclear TAZ/YAP, leading to Let-7-dependent reduction in Dicer levels. Accordingly, inhibition of Let-7 rescues the miRNA biogenesis defects observed following TAZ/YAP knockdown. Thus, density-regulated TAZ/YAP localization defines a critical and previously unrecognized mechanism by which cells relay cell contact-induced cues to control miRNA biogenesis.
Collapse
Affiliation(s)
- Steven G Chaulk
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | | | | | | | | |
Collapse
|
629
|
Saben J, Zhong Y, McKelvey S, Dajani NK, Andres A, Badger TM, Gomez-Acevedo H, Shankar K. A comprehensive analysis of the human placenta transcriptome. Placenta 2013; 35:125-31. [PMID: 24333048 DOI: 10.1016/j.placenta.2013.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 01/16/2023]
Abstract
As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 healthy women with uncomplicated pregnancies using RNA-seq. To identify genes that were highly expressed and unique to the placenta we compared placental RNA-seq data to data from 7 other tissues (adipose, breast, hear, kidney, liver, lung, and smooth muscle) and identified several genes novel to placental biology (QSOX1, DLG5, and SEMA7A). Semi-quantitative RT-PCR confirmed the RNA-seq results and immunohistochemistry indicated these proteins were highly expressed in the placental syncytium. Additionally, we mined our RNA-seq data to map the relative expression of key developmental gene families (Fox, Sox, Gata, Tead, and Wnt) within the placenta. We identified FOXO4, GATA3, and WNT7A to be amongst the highest expressed members of these families. Overall, these findings provide a new reference for understanding of placental transcriptome and can aid in the identification of novel pathways regulating placenta physiology that may be dysregulated in placental disease.
Collapse
Affiliation(s)
- J Saben
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Zhong
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S McKelvey
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - N K Dajani
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - H Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - K Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
630
|
Laeno AMA, Tamashiro DAA, Alarcon VB. Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst. Biol Reprod 2013; 89:122. [PMID: 23946538 DOI: 10.1095/biolreprod.113.109470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blastocyst consists of the outer layer of trophectoderm and pluripotent inner cell mass (ICM), the precursor of the placenta and fetus, respectively. During blastocyst expansion, the ICM adopts a compact, ovoidal shape, whose proper morphology is crucial for normal embryogenesis. Rho-associated kinase (ROCK), an effector of small GTPase RHO signaling, mediates the diverse cellular processes of morphogenesis, but its role in ICM morphogenesis is unclear. Here, we demonstrate that ROCK is required for cohesion of ICM cells and formation of segregated tissues called primitive endoderm (PrE) and epiblast (Epi) in the ICM of the mouse blastocyst. Blastocyst treatment with ROCK inhibitors Y-27632 and Fasudil caused widening or spreading of the ICM, and intermingling of PrE and Epi. Widening of ICM was independent of trophectoderm because isolated ICMs as well as colonies of mouse embryonic stem cells (mESC) also spread upon Y-27632 treatment. PrE, Epi, and trophectoderm cell numbers were similar between control and treated blastocysts, suggesting that ROCK inhibition affected ICM morphology but not lineage differentiation. Rock1 and Rock2 knockdown via RNA interference in mESC also induced spreading, supporting the conclusion that morphological defects caused by the pharmacological inhibitors were due to ROCK inactivation. When blastocysts were transferred into surrogates, implantation efficiencies were unaffected by ROCK inhibition, but treated blastocysts yielded greater fetal loss. These results show that proper ICM morphology is dependent on ROCK activity and is crucial for fetal development. Our studies have wider implication for improving efficiencies of human assisted reproductive technologies that diminish pregnancy loss and promote successful births.
Collapse
Affiliation(s)
- Arlene May A Laeno
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | | | | |
Collapse
|
631
|
Sugawara S, Ito T, Sato S, Sato Y, Kasuga K, Kojima I, Kobayashi M. Production of an aminoterminally truncated, stable type of bioactive mouse fibroblast growth factor 4 in Escherichia coli. J Biosci Bioeng 2013; 117:525-30. [PMID: 24210555 DOI: 10.1016/j.jbiosc.2013.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022]
Abstract
In mice, fibroblast growth factor 4 (Fgf4) is a crucial gene for the generation of trophectoderm, progenitor cells of the placenta. Therefore, exogenous FGF4 promotes the isolation and maintenance of trophoblast stem cells from preimplantation embryos. We previously produced a 6× histidine (His)-tagged, mouse FGF4 (Pro(31)-Leu(202)) without a secretory signal peptide at the amino-terminus, referred to as HismFGF4, in Escherichia coli. Here, we found that HismFGF4 was unstable, such as in phosphate-buffered saline. In these conditions, site-specific cleavage between Ser(50) and Leu(51) was identified. In order to generate stable mouse FGF4 derivatives, a 6× His-tagged mouse FGF4 (Leu(51)-Leu(202)), termed HismFGF4L, was expressed in E. coli. HismFGF4L could be purified from the supernatant of cell lysates by heparin column chromatography. In phosphate-buffered saline, HismFGF4L was relatively stable. HismFGF4L exerted significant mitogenic activities at concentrations as low as 0.01 nM (P < 0.01) in mouse embryonic fibroblast Balb/c 3T3 cells expressing FGF receptor 2. In the presence of PD173074, an FGF receptor inhibitor, the growth-promoting activity of HismFGF4L was abolished. Taken together, we suggest that aminoterminally truncated HismFGF4L is capable of promoting the proliferation of mouse-derived cells via an authentic FGF signaling pathway. We consider that HismFGF4L is useful as a derivative of mouse FGF4 protein for analyzing the effects of mouse FGF4 and for stimulating cell growth of mouse-derived cells, such as trophoblast stem cells. Our study provides a simple method for the production of a bioactive, stable mouse FGF4 derivative in E. coli.
Collapse
Affiliation(s)
- Saiko Sugawara
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Toshihiko Ito
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Shiori Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Yuki Sato
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Kano Kasuga
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Ikuo Kojima
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| |
Collapse
|
632
|
Li P, Chen Y, Mak KK, Wong CK, Wang CC, Yuan P. Functional role of Mst1/Mst2 in embryonic stem cell differentiation. PLoS One 2013; 8:e79867. [PMID: 24224013 PMCID: PMC3818222 DOI: 10.1371/journal.pone.0079867] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/07/2023] Open
Abstract
The Hippo pathway is an evolutionary conserved pathway that involves cell proliferation, differentiation, apoptosis and organ size regulation. Mst1 and Mst2 are central components of this pathway that are essential for embryonic development, though their role in controlling embryonic stem cells (ES cells) has yet to be exploited. To further understand the Mst1/Mst2 function in ES cell pluripotency and differentiation, we derived Mst1/Mst2 double knockout (Mst-/-) ES cells to completely perturb Hippo signaling. We found that Mst-/- ES cells express higher level of Nanog than wild type ES cells and show differentiation resistance after LIF withdrawal. They also proliferate faster than wild type ES cells. Although Mst-/- ES cells can form embryoid bodies (EBs), their differentiation into tissues of three germ layers is distorted. Intriguingly, Mst-/- ES cells are unable to form teratoma. Mst-/- ES cells can differentiate into mesoderm lineage, but further differentiation to cardiac lineage cells is significantly affected. Microarray analysis revealed that ligands of non-canonical Wnt signaling, which is critical for cardiac progenitor specification, are significantly repressed in Mst-/- EBs. Taken together our results showed that Mst1/Mst2 are required for proper cardiac lineage cell development and teratoma formation.
Collapse
Affiliation(s)
- Peng Li
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Chen
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kinglun Kingston Mak
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Key Laboratories for Regenerative Medicine, Ministry of Education, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Chi Chiu Wang
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Yuan
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
633
|
A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 2013; 23:1201-14. [PMID: 23999857 DOI: 10.1038/cr.2013.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 01/01/2023] Open
Abstract
The Hippo (Hpo) pathway controls tissue growth and organ size by regulating the activity of transcriptional co-activator Yorkie (Yki), which associates with transcription factor Scalloped (Sd) in the nucleus to promote downstream target gene expression. Here we identify a novel protein Sd-Binding-Protein (SdBP)/Tgi, which directly competes with Yki for binding to Sd through its TDU domains and inhibits the Sd-Yki transcriptional activity. We also find that SdBP retains Yki in the nucleus through the association with Yki WW domains via its PPXY motifs. Collectively, we identify SdBP as a novel component of the Hpo pathway, negatively regulating the transcriptional activity of Sd-Yki to restrict tissue growth.
Collapse
|
634
|
Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D. Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev 2013; 27:1441-6. [PMID: 23824537 DOI: 10.1101/gad.219618.113] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cellular localization of the Yes-associated protein (YAP) is dependent on large tumor suppressor (LATS) kinase activity and initiates lineage specification in the preimplantation embryo. We temporally reduced LATS activity to disrupt this early event, allowing its reactivation at later stages. This interference resulted in an irreversible lineage misspecification and aberrant polarization of the inner cell mass (ICM). Complementation experiments revealed that neither epiblast nor primitive endoderm can be established from these ICMs. We therefore conclude that precisely timed YAP localization in early morulae is essential to prevent trophectoderm marker expression in, and lineage specification of, the ICM.
Collapse
|
635
|
Arias AM, Nichols J, Schröter C. A molecular basis for developmental plasticity in early mammalian embryos. Development 2013; 140:3499-510. [DOI: 10.1242/dev.091959] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early mammalian embryos exhibit remarkable plasticity, as highlighted by the ability of separated early blastomeres to produce a whole organism. Recent work in the mouse implicates a network of transcription factors in governing the establishment of the primary embryonic lineages. A combination of genetics and embryology has uncovered the organisation and function of the components of this network, revealing a gradual resolution from ubiquitous to lineage-specific expression through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs. Here, we summarise this information, link it to classical embryology and propose a molecular framework for the establishment and regulation of developmental plasticity.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
636
|
Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 2013; 3:32. [PMID: 23985307 PMCID: PMC3849777 DOI: 10.1186/2045-3701-3-32] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023] Open
Abstract
The metazoan Hippo pathway is an essential tumour suppressor signalling cascade that ensures normal tissue growth by co-ordinating cell proliferation, cell death and cell differentiation. Over the past years, various genetic and biochemical studies in Drosophila and mammals have defined a conserved core Hippo signalling module, composed of members of the Ste20-like kinase, the MOB co-activator and the AGC kinase families. In Drosophila, stimulated Hippo kinase phosphorylates and thereby activates the Mats/Warts complex, which consequently phosphorylates and inactivates the transcriptional co-activator Yorkie. In mammals, the counterparts of the Hippo/Mats/Warts/Yorkie cascade, namely MST1/2, MOB1A/B, LATS1/2 and YAP/TAZ, function in a similar fashion. These canonical Hippo pathways are so highly conserved that human MST2, hMOB1A and LATS1 can compensate for the loss of Hippo, Mats and Warts in flies. However, recent reports have shown that Hippo signalling is more diverse and complex, in particular in mammals. In this review, we summarize our current understanding of mammalian LATS1/2 kinases together with their closest relatives, the NDR1/2 kinases. The regulation of the LATS/NDR family of kinases will be discussed, followed by a summary of all currently known LATS/NDR substrates. Last, but not least, the biological roles of LATS/NDR kinases will be reviewed with specific emphasis on recent discoveries of canonical and non-canonical LATS/NDR functions in the extended Hippo pathway.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
637
|
Integration of mechanical and chemical signals by YAP and TAZ transcription coactivators. Cell Biosci 2013; 3:33. [PMID: 23985334 PMCID: PMC3849657 DOI: 10.1186/2045-3701-3-33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023] Open
Abstract
YAP and TAZ are transcription coactivators and effectors of the Hippo pathway, which play a key role in organ size control. Through interaction with transcription factors such as TEADs, they activate gene transcription and thus promote cell proliferation, inhibit apoptosis, and regulate cell differentiation. Dysregulation of YAP/TAZ was found to correlate with human cancers. The oncogenic roles of these proteins were also demonstrated in animal models. The growth promoting activity of YAP/TAZ is limited by the Hippo tumor suppressor pathway through phosphorylation-induced cytoplasmic retention and destabilization. Recently, it was found that YAP and TAZ mediate responses to several extracellular signals including mechanical stress, GPCR signaling, and the Wnt signaling pathway. All these growth-regulating signals play important roles in normal development and cancer. In this review, we would like to discuss the function of YAP and TAZ as effectors of these physiological signals.
Collapse
|
638
|
Landin Malt A, Georges A, Silber J, Zider A, Flagiello D. Interaction with the Yes-associated protein (YAP) allows TEAD1 to positively regulate NAIP expression. FEBS Lett 2013; 587:3216-23. [DOI: 10.1016/j.febslet.2013.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022]
|
639
|
Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, Plusa B, Lechniak D. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC DEVELOPMENTAL BIOLOGY 2013; 13:32. [PMID: 23941255 PMCID: PMC3751447 DOI: 10.1186/1471-213x-13-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/07/2013] [Indexed: 02/27/2023]
Abstract
Background Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8–16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6. Results At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8–16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions Cell fate specification in cattle become evident earlier than presently anticipated – around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan 60-673, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
640
|
Abstract
The adult mammalian heart has limited potential for regeneration. Thus, after injury, cardiomyocytes are permanently lost, and contractility is diminished. In contrast, the neonatal heart can regenerate owing to sustained cardiomyocyte proliferation. Identification of critical regulators of cardiomyocyte proliferation and quiescence represents an important step toward potential regenerative therapies. Yes-associated protein (Yap), a transcriptional cofactor in the Hippo signaling pathway, promotes proliferation of embryonic cardiomyocytes by activating the insulin-like growth factor and Wnt signaling pathways. Here we report that mice bearing mutant alleles of Yap and its paralog WW domain containing transcription regulator 1 (Taz) exhibit gene dosage-dependent cardiac phenotypes, suggesting redundant roles of these Hippo pathway effectors in establishing proper myocyte number and maintaining cardiac function. Cardiac-specific deletion of Yap impedes neonatal heart regeneration, resulting in a default fibrotic response. Conversely, forced expression of a constitutively active form of Yap in the adult heart stimulates cardiac regeneration and improves contractility after myocardial infarction. The regenerative activity of Yap is correlated with its activation of embryonic and proliferative gene programs in cardiomyocytes. These findings identify Yap as an important regulator of cardiac regeneration and provide an experimental entry point to enhance this process.
Collapse
|
641
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
Affiliation(s)
- Subhashini Sadasivam
- Institute for Stem Cell Biology and Regenerative Medicine National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560065, India
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA 02215 USA Department of Medicine, Brigham and Women's Hospital, Boston MA 02115 USA Department of Medicine, Harvard Medical School, Boston, MA 02115 USA
- Corresponding author James A. DeCaprio Dana-Farber Cancer Institute 450 Brookline Avenue Boston, MA 02215 Tel: 617-632-3825 Fax: 617-582-8601
| |
Collapse
|
642
|
Kaneko KJ, DePamphilis ML. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 2013; 140:3680-90. [PMID: 23903192 DOI: 10.1242/dev.093799] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been suggested that during mouse preimplantation development, the zygotically expressed transcription factor TEAD4 is essential for specification of the trophectoderm lineage required for producing a blastocyst. Here we show that blastocysts can form without TEAD4 but that TEAD4 is required to prevent oxidative stress when blastocoel formation is accompanied by increased oxidative phosphorylation that leads to the production of reactive oxygen species (ROS). Both two-cell and eight-cell Tead4(-/-) embryos developed into blastocysts when cultured under conditions that alleviate oxidative stress, and Tead4(-/-) blastocysts that formed under these conditions expressed trophectoderm-associated genes. Therefore, TEAD4 is not required for specification of the trophectoderm lineage. Once the trophectoderm was specified, Tead4 was not essential for either proliferation or differentiation of trophoblast cells in culture. However, ablation of Tead4 in trophoblast cells resulted in reduced mitochondrial membrane potential. Moreover, Tead4 suppressed ROS in embryos and embryonic fibroblasts. Finally, ectopically expressed TEAD4 protein could localize to the mitochondria as well as to the nucleus, a property not shared by other members of the TEAD family. These results reveal that TEAD4 plays a crucial role in maintaining energy homeostasis during preimplantation development.
Collapse
Affiliation(s)
- Kotaro J Kaneko
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
643
|
Abstract
The dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and forkhead box protein M1. DREAM mediates gene repression during the G0 phase and coordinates periodic gene expression with peaks during the G1/S and G2/M phases. Perturbations in DREAM complex regulation shift the balance from quiescence towards proliferation and contribute to the increased mitotic gene expression levels that are frequently observed in cancers with a poor prognosis.
Collapse
|
644
|
Manzanares M, Rodriguez T. Development: Hippo Signalling Turns the Embryo Inside Out. Curr Biol 2013; 23:R559-61. [DOI: 10.1016/j.cub.2013.05.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
645
|
Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res 2013; 115:1-12. [PMID: 23792172 DOI: 10.1016/j.exer.2013.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities, such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose an important set of regulatory signals to cells. However, these signals are not exerted in isolation, but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as targets of biophysical and biochemical signaling and important agonists and antagonists of numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules, capable of integrating biophysical and biochemical cues into a broad cellular response. Finally, while we draw on research from various fields to provide a full picture of YAP and TAZ, we attempt to highlight the intersections with vision science and the exciting work that has already been performed.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
646
|
Cockburn K, Biechele S, Garner J, Rossant J. The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 2013; 23:1195-201. [PMID: 23791728 DOI: 10.1016/j.cub.2013.05.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 02/03/2023]
Abstract
During mammalian development, the first two lineages to be specified are the trophectoderm (TE) and the inner cell mass (ICM). The Hippo pathway kinases Lats 1 and 2 (Lats1/2) and the transcriptional coactivator Yap play important roles in this specification process [1]. In outside cells of the embryo, Yap is nuclear localized and cooperates with Tead4 to induce the TE-specifying transcription factor Cdx2. In inside cells, Lats1/2 phosphorylate Yap and prevent its nuclear localization. The factors acting upstream of Lats1/2 and Yap in this context have not been identified. Here, we demonstrate that the upstream Hippo pathway member Nf2/Merlin is required for Lats1/2-dependent Yap phosphorylation in the preimplantation embryo. Injection of dominant-negative Nf2 mRNA causes Yap mislocalization and ectopic Cdx2 expression, effects that can be rescued by overexpression of Lats2 kinase. Zygotic Nf2 mutant blastocysts have mild defects in Yap localization and Cdx2 expression, but these become much more severe upon removal of both maternal and zygotic Nf2. The inside cells of maternal-zygotic mutants fail to establish a pluripotent ICM and form excess TE, resulting in peri-implantation lethality. Together, these data establish a clear role for Nf2 upstream of Yap in the preimplantation embryo and demonstrate that Hippo signaling is essential to segregate the ICM from the TE.
Collapse
Affiliation(s)
- Katie Cockburn
- Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | | | | | | |
Collapse
|
647
|
Hirate Y, Hirahara S, Inoue KI, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 2013; 23:1181-94. [PMID: 23791731 DOI: 10.1016/j.cub.2013.05.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. RESULTS We show that a combination of cell polarity and cell-cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and angiomotin-like 2 (Amotl2) are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs), and cell-cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, S176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot-Lats interaction to activate the Hippo pathway. CONCLUSIONS We propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell-cell adhesion by sequestering Amot from AJs. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
648
|
A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 2013; 14:452-9. [PMID: 23778971 DOI: 10.1038/nrm3602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the appearance of asymmetry between cells in the early embryo and consequently the specification of distinct cell lineages during mammalian development remain elusive. Recent experimental advances have revealed unexpected dynamics of and new complexity in this process. These findings can be integrated in a new unified framework that regards the early mammalian embryo as a self-organizing system.
Collapse
|
649
|
Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000PRIME REPORTS 2013. [PMID: 23755364 DOI: 10.12703/p5‐17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto 160 College Street, Toronto, ON Canada, M5S 3E1
| | | |
Collapse
|
650
|
Biechele S, Cockburn K, Lanner F, Cox BJ, Rossant J. Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development 2013; 140:2961-71. [PMID: 23760955 DOI: 10.1242/dev.094458] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In mice and humans the X-chromosomal porcupine homolog (Porcn) gene is required for the acylation and secretion of all 19 Wnt ligands and thus represents a bottleneck for all Wnt signaling. We have generated a mouse line carrying a floxed allele for Porcn and used zygotic, oocyte-specific and visceral endoderm-specific deletions to investigate embryonic and extra-embryonic requirements for Wnt ligand secretion. We show that there is no requirement for Porcn-dependent secretion of Wnt ligands during preimplantation development of the mouse embryo. Porcn-dependent Wnts are first required for the initiation of gastrulation, where Porcn function is required in the epiblast but not the visceral endoderm. Heterozygous female embryos, which are mutant in both trophoblast and visceral endoderm due to imprinted X chromosome inactivation, complete gastrulation but display chorio-allantoic fusion defects similar to Wnt7b mutants. Our studies highlight the importance of Wnt3 and Wnt7b for embryonic and placental development but suggest that endogenous Porcn-dependent Wnt secretion does not play an essential role in either implantation or blastocyst lineage specification.
Collapse
Affiliation(s)
- Steffen Biechele
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|