601
|
Chand D, Casatti CA, de Lannoy L, Song L, Kollara A, Barsyte-Lovejoy D, Brown TJ, Lovejoy DA. C-terminal processing of the teneurin proteins: independent actions of a teneurin C-terminal associated peptide in hippocampal cells. Mol Cell Neurosci 2012; 52:38-50. [PMID: 23026563 DOI: 10.1016/j.mcn.2012.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/25/2012] [Accepted: 09/23/2012] [Indexed: 11/28/2022] Open
Abstract
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15 kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins.
Collapse
Affiliation(s)
- Dhan Chand
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5.
| | | | | | | | | | | | | | | |
Collapse
|
602
|
Depamphilis ML, de Renty CM, Ullah Z, Lee CY. "The Octet": Eight Protein Kinases that Control Mammalian DNA Replication. Front Physiol 2012; 3:368. [PMID: 23055977 PMCID: PMC3458233 DOI: 10.3389/fphys.2012.00368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/27/2012] [Indexed: 01/12/2023] Open
Abstract
Development of a fertilized human egg into an average sized adult requires about 29 trillion cell divisions, thereby producing enough DNA to stretch to the Sun and back 200 times (DePamphilis and Bell, 2011)! Even more amazing is the fact that throughout these mitotic cell cycles, the human genome is duplicated once and only once each time a cell divides. If a cell accidentally begins to re-replicate its nuclear DNA prior to cell division, checkpoint pathways trigger apoptosis. And yet, some cells are developmentally programmed to respond to environmental cues by switching from mitotic cell cycles to endocycles, a process in which multiple S phases occur in the absence of either mitosis or cytokinesis. Endocycles allow production of viable, differentiated, polyploid cells that no longer proliferate. What is surprising is that among the 516 (Manning et al., 2002) to 557 (BioMart web site) protein kinases encoded by the human genome, only eight regulate nuclear DNA replication directly. These are Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, Cdc7, Checkpoint kinase-1 (Chk1), and Checkpoint kinase-2. Even more remarkable is the fact that only four of these enzymes (Cdk1, Cdk7, Cdc7, and Chk1) are essential for mammalian development. Here we describe how these protein kinases determine when DNA replication occurs during mitotic cell cycles, how mammalian cells switch from mitotic cell cycles to endocycles, and how cancer cells can be selectively targeted for destruction by inducing them to begin a second S phase before mitosis is complete.
Collapse
Affiliation(s)
- Melvin L Depamphilis
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
603
|
Spatial positive feedback at the onset of mitosis. Cell 2012; 149:1500-13. [PMID: 22726437 DOI: 10.1016/j.cell.2012.05.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/08/2012] [Accepted: 05/08/2012] [Indexed: 01/10/2023]
Abstract
Mitosis is triggered by the activation of Cdk1-cyclin B1 and its translocation from the cytoplasm to the nucleus. Positive feedback loops regulate the activation of Cdk1-cyclin B1 and help make the process irreversible and all-or-none in character. Here we examine whether an analogous process, spatial positive feedback, regulates Cdk1-cyclin B1 redistribution. We used chemical biology approaches and live-cell microscopy to show that nuclear Cdk1-cyclin B1 promotes the translocation of Cdk1-cyclin B1 to the nucleus. Mechanistic studies suggest that cyclin B1 phosphorylation promotes nuclear translocation and, conversely, nuclear translocation promotes cyclin B1 phosphorylation, accounting for the feedback. Interfering with the abruptness of Cdk1-cyclin B1 translocation affects the timing and synchronicity of subsequent mitotic events, underscoring the functional importance of this feedback. We propose that spatial positive feedback ensures a rapid, complete, robust, and irreversible transition from interphase to mitosis and suggest that bistable spatiotemporal switches may be widespread in biological regulation.
Collapse
|
604
|
Matthews H, Delabre U, Rohn J, Guck J, Kunda P, Baum B. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression. Dev Cell 2012; 23:371-83. [PMID: 22898780 PMCID: PMC3763371 DOI: 10.1016/j.devcel.2012.06.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/04/2012] [Accepted: 06/05/2012] [Indexed: 12/17/2022]
Abstract
As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division.
Collapse
Affiliation(s)
- Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Ulysse Delabre
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
- PCC Curie, Institut Curie/CNRS/Université Paris 6 - UMR 168, 26 rue d'Ulm, 75248 Paris, France
| | - Jennifer L. Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Jochen Guck
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Patricia Kunda
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
605
|
Li Y, Yang Y, Guan X. Benzofurazan sulfides for thiol imaging and quantification in live cells through fluorescence microscopy. Anal Chem 2012; 84:6877-83. [PMID: 22794193 DOI: 10.1021/ac301306s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a-1e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH(2), -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 and 520 nm as the excitation and emission wavelengths, respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an high-pressure liquid chromatography/ultraviolet (HPLC/UV) total thiol assay method. The reagents and method will be of a great value to thiol redox-related research.
Collapse
Affiliation(s)
- Yinghong Li
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, USA
| | | | | |
Collapse
|
606
|
High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis 2012; 17:439-48. [PMID: 22311472 DOI: 10.1007/s10495-012-0702-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca(2+)/Mg(2+) free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H(2)O(2)) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H(2)O(2)) and inhibited catalase activity in treated eggs. The increased H(2)O(2) concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H(2)O(2) that leads to egg apoptosis through mitochondria-caspase mediated pathway.
Collapse
|
607
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
608
|
Imamoto N, Funakoshi T. Nuclear pore dynamics during the cell cycle. Curr Opin Cell Biol 2012; 24:453-9. [PMID: 22770730 DOI: 10.1016/j.ceb.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/17/2012] [Indexed: 01/08/2023]
Abstract
A nuclear pore complex (NPC) is a large protein assembly that mediates the nucleocytoplasmic exchange of molecules. During the cell cycle, NPCs assemble, disassemble, and dynamically change their distribution on assembled nuclear envelope (NE), whereas in post-mitosis, NPCs are extremely stable. Extensive studies on its components, structure, and building blocks allow the study of its assembly and disassembly at the molecular level. Depending on the location that the initial components of this structure are built (e.g. chromatin versus double lipid bilayers of the nuclear envelope), the regulation and the mechanism of the assembly differ. Moreover, cell cycle dynamics of NPC are linked with INM proteins, lamins, lipid membranes, and the cell cycle signal, which show that NPC dynamics are highly regulated processes.
Collapse
Affiliation(s)
- Naoko Imamoto
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
609
|
Vagnarelli P. Mitotic chromosome condensation in vertebrates. Exp Cell Res 2012; 318:1435-41. [DOI: 10.1016/j.yexcr.2012.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/21/2023]
|
610
|
Brown HM, Knowlton AE, Grieshaber SS. Chlamydial infection induces host cytokinesis failure at abscission. Cell Microbiol 2012; 14:1554-67. [PMID: 22646503 DOI: 10.1111/j.1462-5822.2012.01820.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/23/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis.
Collapse
Affiliation(s)
- Heather M Brown
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
611
|
Chand D, Song L, deLannoy L, Barsyte-Lovejoy D, Ackloo S, Boutros PC, Evans K, Belsham DD, Lovejoy DA. C-Terminal region of teneurin-1 co-localizes with dystroglycan and modulates cytoskeletal organization through an extracellular signal-regulated kinase-dependent stathmin- and filamin A-mediated mechanism in hippocampal cells. Neuroscience 2012; 219:255-70. [PMID: 22698694 DOI: 10.1016/j.neuroscience.2012.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/07/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
The pyramidal neurons in the hippocampus are extremely neuroplastic, and the complexity of dendritic branches can be dynamically altered in response to a variety of stimuli, including learning and stress. Recently, the teneurin family of proteins has emerged as an interneuronal and extracellular matrix signaling system that plays a significant role in brain development and neuronal communication. Encoded on the last exon of the teneurin genes is a new family of bioactive peptides termed the teneurin C-terminal-associated peptides (TCAPs). Previous studies indicate that TCAP-1 regulates axon fasciculation and dendritic morphology in the hippocampus. This study was aimed at understanding the molecular mechanisms by which TCAP-1 regulates these changes in the mouse hippocampus. Fluoresceinisothiocyanate (FITC)-labeled TCAP-1 binds to the pyramidal neurons of the CA2 and CA3, and dentate gyrus in the hippocampus of the mouse brain. Moreover, FITC-TCAP-1 co-localizes with β-dystroglycan upon binding to the plasma membrane of cultured immortalized mouse E14 hippocampal cells. In culture, TCAP-1 stimulates ERK1/2-dependent phosphorylation of the cytoskeletal regulatory proteins, stathmin at serine-25 and filamin A at serine-2152. In addition, TCAP-1 induces actin polymerization, increases immunoreactivity of tubulin-based cytoskeletal elements and causes a corresponding increase in filopodia formation and mean filopodia length in cultured hippocampal cells. We postulate that the TCAP-1 region of teneurin-1 has a direct action on the cytoskeletal reorganization that precedes neurite and process development in hippocampal neurons. Our data provides novel evidence that functionally links the teneurin and dystroglycan systems and provides new insight into the molecular mechanisms by which TCAP-1 regulates cytoskeletal dynamics in hippocampal neurons. The TCAP-dystroglycan system may represent a novel mechanism associated with the regulation of hippocampal-function.
Collapse
Affiliation(s)
- D Chand
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5.
| | | | | | | | | | | | | | | | | |
Collapse
|
612
|
Wang J, Beauchemin M, Bertrand R. Phospho-Bcl-x(L)(Ser62) plays a key role at DNA damage-induced G(2) checkpoint. Cell Cycle 2012; 11:2159-69. [PMID: 22617334 PMCID: PMC3368867 DOI: 10.4161/cc.20672] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G 2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G 2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G 2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G 2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G 2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G 2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.
Collapse
Affiliation(s)
- Jianfang Wang
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Myriam Beauchemin
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
| | - Richard Bertrand
- Centre de recherche; Centre hospitalier de l’Université of Montréal (CRCHUM) - Hôpital Notre-Dame and Institut du Cancer de Montréal; Montréal, Québec, Canada
- Département de médecine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
613
|
Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 2012; 110:1484-97. [PMID: 22511751 PMCID: PMC3539779 DOI: 10.1161/circresaha.111.263848] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/06/2012] [Indexed: 01/12/2023]
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. OBJECTIVE We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. METHODS AND RESULTS Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1-dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl(2) or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. CONCLUSIONS DRP-1-mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- CDC2 Protein Kinase/metabolism
- Case-Control Studies
- Cell Cycle Checkpoints
- Cell Proliferation/drug effects
- Cells, Cultured
- Cobalt
- Cyclin B1/metabolism
- Disease Models, Animal
- Dynamins/genetics
- Dynamins/metabolism
- Enzyme Activation
- Familial Primary Pulmonary Hypertension
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Genetic Therapy/methods
- Glycolysis
- Humans
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/therapy
- Hypoxia/complications
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitosis/drug effects
- Monocrotaline
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Quinazolinones/pharmacology
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Serine
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Glenn Marsboom
- Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
614
|
Lane SIR, Yun Y, Jones KT. Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development 2012; 139:1947-55. [PMID: 22513370 DOI: 10.1242/dev.077040] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homologous chromosome segregation errors during meiosis I are common and generate aneuploid embryos. Here, we provide a reason for this susceptibility to mis-segregation by live cell imaging of mouse oocytes. Our results show that stable kinetochore-microtubule attachments form in mid-prometaphase, 3-4 hours before anaphase. This coincided with the loss of Mad2 from kinetochores and with the start of anaphase-promoting complex/cyclosome (APC/C)-mediated cyclin B1 destruction. Therefore, the spindle assembly checkpoint (SAC) ceased to inhibit the APC/C from mid-prometaphase. This timing did not coincide with bivalent congression in one-third of all oocytes examined. Non-aligned bivalents were weakly positive for Mad2, under less tension than congressed bivalents and, by live-cell imaging, appeared to be in the process of establishing correct bi-orientation. The time from when the APC/C became active until anaphase onset was affected by the rate of loss of CDK1 activity, rather than by these non-aligned bivalents, which occasionally persisted until anaphase, resulting in homolog non-disjunction. We conclude that, in oocytes, a few erroneous attachments of bivalent kinetochores to microtubules do not generate a sufficient SAC 'wait anaphase' signal to inhibit the APC/C.
Collapse
Affiliation(s)
- Simon I R Lane
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
615
|
Hernandez-Verdun D. Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2012; 2:189-94. [PMID: 21818412 DOI: 10.4161/nucl.2.3.16246] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023] Open
Abstract
The nucleolus is a large nuclear domain in which transcription, maturation and assembly of ribosomes take place. In higher eukaryotes, nucleolar organization in three sub-domains reflects the compartmentation of the machineries related to active or inactive transcription of the ribosomal DNA, ribosomal RNA processing and assembly with ribosomal proteins of the two (40S and 60S) ribosomal subunits. The assembly of the nucleoli during telophase/early G(1) depends on pre-existing machineries inactivated during prophase (the transcription machinery and RNP processing complexes) and on partially processed 45S rRNAs inherited throughout mitosis. In telophase, the 45S rRNAs nucleate the prenucleolar bodies and order the dynamics of nucleolar assembly. The assembly/disassembly processes of the nucleolus depend on the equilibrium between phosphorylation/dephosphorylation of the transcription machinery and on the RNP processing complexes under the control of the CDK1-cyclin B kinase and PP1 phosphatases. The dynamics of assembly/disassembly of the nucleolus is time and space regulated.
Collapse
|
616
|
Di Talia S, Wieschaus EF. Short-term integration of Cdc25 dynamics controls mitotic entry during Drosophila gastrulation. Dev Cell 2012; 22:763-74. [PMID: 22483720 DOI: 10.1016/j.devcel.2012.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/20/2011] [Accepted: 01/25/2012] [Indexed: 11/29/2022]
Abstract
Cells commit to mitosis by abruptly activating the mitotic cyclin-Cdk complexes. During Drosophila gastrulation, mitosis is associated with the transcriptional activation of cdc25(string), a phosphatase that activates Cdk1. Here, we demonstrate that the switch-like entry into mitosis observed in the Drosophila embryo during the 14(th) mitotic cycle is timed by the dynamics of Cdc25(string) accumulation. The switch operates as a short-term integrator, a property that can improve the reliable control of timing of mitosis. The switch is independent of the positive feedback between Cdk1 and Cdc25(string) and of the double negative feedback between Cdk1 and Wee1. We propose that the properties of the mitotic switch are established by the out-of-equilibrium properties of the covalent modification cycle controlling Cdk1 activity. Such covalent modification cycles, triggered by transcriptional expression of the activating enzymes, might be a widespread strategy to obtain reliable and switch-like control of cell decisions.
Collapse
Affiliation(s)
- Stefano Di Talia
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
617
|
Aoki K, Komatsu N, Hirata E, Kamioka Y, Matsuda M. Stable expression of FRET biosensors: a new light in cancer research. Cancer Sci 2012; 103:614-9. [PMID: 22188216 DOI: 10.1111/j.1349-7006.2011.02196.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/22/2023] Open
Abstract
The constituents of the oncogene signal transduction pathway are promising targets for anticancer drugs. Despite the wealth of available knowledge regarding their molecular properties, the spatiotemporal regulation of the signaling molecules remains elusive. Biosensors based on the principle of FRET have been developed to visualize the activities of the signaling molecules in living cells. However, difficulties in the development of sensitive FRET biosensors have prevented their widespread use in cancer research. The lack of cell lines constitutively expressing a FRET biosensor has also limited their use. In this review, we will introduce the principle of FRET-based biosensors, describe an optimized backbone of the FRET biosensors, techniques to express FRET biosensors stably in the cells, and discuss the future perspectives of FRET biosensors in cancer research.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
618
|
Hukasova E, Silva Cascales H, Kumar SR, Lindqvist A. Monitoring kinase and phosphatase activities through the cell cycle by ratiometric FRET. J Vis Exp 2012:e3410. [PMID: 22314640 DOI: 10.3791/3410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Förster resonance energy transfer (FRET)-based reporters(1) allow the assessment of endogenous kinase and phosphatase activities in living cells. Such probes typically consist of variants of CFP and YFP, intervened by a phosphorylatable sequence and a phospho-binding domain. Upon phosphorylation, the probe changes conformation, which results in a change of the distance or orientation between CFP and YFP, leading to a change in FRET efficiency (Fig 1). Several probes have been published during the last decade, monitoring the activity balance of multiple kinases and phosphatases, including reporters of PKA(2), PKB(3), PKC(4), PKD(5), ERK(6), JNK(7), Cdk(18), Aurora B(9) and Plk1(9). Given the modular design, additional probes are likely to emerge in the near future(10). Progression through the cell cycle is affected by stress signaling pathways( 11). Notably, the cell cycle is regulated differently during unperturbed growth compared to when cells are recovering from stress(12).Time-lapse imaging of cells through the cell cycle therefore requires particular caution. This becomes a problem particularly when employing ratiometric imaging, since two images with a high signal to noise ratio are required to correctly interpret the results. Ratiometric FRET imaging of cell cycle dependent changes in kinase and phosphatase activities has predominately been restricted to sub-sections of the cell cycle(8,9,13,14). Here, we discuss a method to monitor FRET-based probes using ratiometric imaging throughout the human cell cycle. The method relies on equipment that is available to many researchers in life sciences and does not require expert knowledge of microscopy or image processing.
Collapse
Affiliation(s)
- Elvira Hukasova
- Department of Cell and Molecular Biology, Karolinska Institutet
| | | | | | | |
Collapse
|
619
|
Gilley R, Lochhead PA, Balmanno K, Oxley D, Clark J, Cook SJ. CDK1, not ERK1/2 or ERK5, is required for mitotic phosphorylation of BIMEL. Cell Signal 2012; 24:170-80. [DOI: 10.1016/j.cellsig.2011.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
|
620
|
Mass Spectrometric Tools for Systematic Analysis of Protein Phosphorylation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:3-32. [DOI: 10.1016/b978-0-12-396456-4.00014-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
621
|
González-Vera JA. Probing the kinome in real time with fluorescent peptides. Chem Soc Rev 2012; 41:1652-64. [DOI: 10.1039/c1cs15198c] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
622
|
Abstract
'…in Italy, for thirty years under the Borgias, they had warfare, terror, murder and bloodshed, but they produced Michelangelo, Leonardo da Vinci and the Renaissance. In Switzerland, they had brotherly love, they had five hundred years of democracy and peace-and what did that produce? The cuckoo clock'. Orson Welles as Harry Lime: The Third Man. Orson Welles might have been a little unfair on the Swiss, after all cuckoo clocks were developed in the Schwartzwald, but, more importantly, Swiss democracy gives remarkably stable government with considerable decision-making at the local level. The alternative is the battling city-states of Renaissance Italy: culturally rich but chaotic at a higher level of organization. As our understanding of the cell cycle improves, it appears that the cell is organized more along the lines of Switzerland than Renaissance Italy, and one major challenge is to determine how local decisions are made and coordinated to produce the robust cell cycle mechanisms that we observe in the cell as a whole.
Collapse
Affiliation(s)
- Jonathon Pines
- Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Iain Hagan
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
623
|
Nilsson J. Cdc20 control of cell fate during prolonged mitotic arrest: do Cdc20 protein levels affect cell fate in response to antimitotic compounds? Bioessays 2011; 33:903-9. [PMID: 22045620 DOI: 10.1002/bies.201100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations in Cdc20 protein levels, rather than mutations in checkpoint genes, could affect cell fate during prolonged mitotic arrest. This hypothesis is supported by experiments where manipulation of Cdc20 levels affects the response to antimitotic compounds. The observed differences in Cdc20 levels between cell lines likely reflects differences in the rate of synthesis or degradation of the protein; therefore, understanding these pathways at a molecular level could pave the way for modulating the activity of Cdc20, in turn presenting novel therapeutic possibilities.
Collapse
Affiliation(s)
- Jakob Nilsson
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
624
|
Coulonval K, Kooken H, Roger PP. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation. Mol Biol Cell 2011; 22:3971-85. [PMID: 21900495 PMCID: PMC3204060 DOI: 10.1091/mbc.e11-02-0136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/19/2011] [Accepted: 09/01/2011] [Indexed: 01/26/2023] Open
Abstract
Mitosis is triggered by the abrupt dephosphorylation of inhibitory Y15 and T14 residues of cyclin B1-bound cyclin-dependent kinase (CDK)1 that is also phosphorylated at T161 in its activation loop. The sequence of events leading to the accumulation of fully phosphorylated cyclin B1-CDK1 complexes remains unclear. Two-dimensional gel electrophoresis allowed us to determine whether T14, Y15, and T161 phosphorylations occur on same CDK1 molecules and to characterize the physiological occurrence of their seven phosphorylation combinations. Intriguingly, in cyclin B1-CDK1, the activating T161 phosphorylation never occurred without the T14 phosphorylation. This strict association could not be uncoupled by a substantial reduction of T14 phosphorylation in response to Myt1 knockdown, suggesting some causal relationship. However, T14 phosphorylation was not directly required for T161 phosphorylation, because Myt1 knockdown did uncouple these phosphorylations when leptomycin B prevented cyclin B1-CDK1 complexes from accumulating in cytoplasm. The coupling mechanism therefore depended on unperturbed cyclin B1-CDK1 traffic. The unexpected observation that the activating phosphorylation of cyclin B1-CDK1 was tightly coupled to its T14 phosphorylation, but not Y15 phosphorylation, suggests a mechanism that prevents premature activation by constitutively active CDK-activating kinase. This explained the opposite effects of reduced expression of Myt1 and Wee1, with only the latter inducing catastrophic mitoses.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Hugues Kooken
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
- WELBIO
| |
Collapse
|
625
|
Cunningham RL, Macheda T, Watts LT, Poteet E, Singh M, Roberts JL, Giuffrida A. Androgens exacerbate motor asymmetry in male rats with unilateral 6-hydroxydopamine lesion. Horm Behav 2011; 60:617-24. [PMID: 21907204 PMCID: PMC3210335 DOI: 10.1016/j.yhbeh.2011.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopamine neuron loss in the nigrostriatal pathway that shows greater incidence in men than women. The mechanisms underlying this gender bias remain elusive, although one possibility is that androgens may increase dopamine neuronal vulnerability to oxidative stress. Motor impairment can be modeled in rats receiving a unilateral injection of 6-hydroxydopamine (6-OHDA), a neurotoxin producing nigrostriatal degeneration. To investigate the role of androgens in PD, we compared young (2 months) and aged (24 months) male rats receiving gonadectomy (GDX) and their corresponding intact controls. One month after GDX, rats were unilaterally injected with 6-OHDA, and their motor impairment and asymmetry were assessed 2 weeks later using the cylinder test and the amphetamine-induced rotation test. Plasma samples were also collected to assess the concentration of testosterone and advanced oxidation protein products, a product of oxidative stress. GDX decreased lesion-induced asymmetry along with oxidative stress and increased amphetamine-induced rotations. These results show that GDX improves motor behaviors by decreasing motor asymmetry in 6-OHDA-treated rats, an effect that may be ascribed to increased release of striatal dopamine and decreased oxidative stress. Collectively, the data support the hypothesis that androgens may underlie the gender bias observed in PD.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | |
Collapse
|
626
|
Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, Shen ZY, Cao H, Lu YY, Fang JY. MiR-29a inhibits cell proliferation and induces cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One 2011; 6:e25872. [PMID: 21998710 PMCID: PMC3187799 DOI: 10.1371/journal.pone.0025872] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022] Open
Abstract
As a newly identified and characterized gene, p42.3 is associated with cell proliferation and tumorigenicity. The expression of p42.3 is upregulated in human gastric cancer (GC), but its underlying mechanisms of action are not well understood. MicroRNAs (miRNAs) are known to play vital regulatory roles in many cellular processes. Here we utilized bioinformatics and experimental approaches to investigate the regulatory relationship between miRNAs and the p42.3 gene. We showed that miR-29a could repress p42.3 expression at both the mRNA and protein levels via directly binding to its 3’UTR. Furthermore, an inverse relationship was observed between miR-29a and p42.3 expression in gastric cancer cell lines and GC tissue samples, especially in cases where p42.3 was downregulated. Taken together, we have elucidated previously unrecognized roles of miR-29a and indicated that miR-29a may function, at least partially, by targeting the p42.3 gene in human GC.
Collapse
Affiliation(s)
- Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Wen-Yu Su
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing Xing
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying-Chao Wang
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ping Wang
- GI Division, No.9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Yu Chen
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi-Yong Shen
- GI Surgical Division, Shanghai Jiaotong University School of Medicine Renji Hospital, Shanghai, China
| | - Hui Cao
- GI Surgical Division, Shanghai Jiaotong University School of Medicine Renji Hospital, Shanghai, China
| | - You-Yong Lu
- Laboratory of Molecular Oncology, Beijing Institute for Cancer Research, School of Oncology, Peking University, Hai-Dian District, Beijing, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, China
- * E-mail:
| |
Collapse
|
627
|
Harvey SL, Enciso G, Dephoure N, Gygi SP, Gunawardena J, Kellogg DR. A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Mol Biol Cell 2011; 22:3595-608. [PMID: 21849476 PMCID: PMC3183015 DOI: 10.1091/mbc.e11-04-0340] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023] Open
Abstract
Entry into mitosis is initiated by synthesis of cyclins, which bind and activate cyclin-dependent kinase 1 (Cdk1). Cyclin synthesis is gradual, yet activation of Cdk1 occurs in a stepwise manner: a low level of Cdk1 activity is initially generated that triggers early mitotic events, which is followed by full activation of Cdk1. Little is known about how stepwise activation of Cdk1 is achieved. A key regulator of Cdk1 is the Wee1 kinase, which phosphorylates and inhibits Cdk1. Wee1 and Cdk1 show mutual regulation: Cdk1 phosphorylates Wee1, which activates Wee1 to inhibit Cdk1. Further phosphorylation events inactivate Wee1. We discovered that a specific form of protein phosphatase 2A (PP2A(Cdc55)) opposes the initial phosphorylation of Wee1 by Cdk1. In vivo analysis, in vitro reconstitution, and mathematical modeling suggest that PP2A(Cdc55) sets a threshold that limits activation of Wee1, thereby allowing a low constant level of Cdk1 activity to escape Wee1 inhibition in early mitosis. These results define a new role for PP2A(Cdc55) and reveal a systems-level mechanism by which dynamically opposed kinase and phosphatase activities can modulate signal strength.
Collapse
Affiliation(s)
- Stacy L Harvey
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
628
|
Medema RH, Lindqvist A. Boosting and suppressing mitotic phosphorylation. Trends Biochem Sci 2011; 36:578-84. [PMID: 21958687 DOI: 10.1016/j.tibs.2011.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 11/15/2022]
Abstract
Reversible protein phosphorylation is an essential aspect of mitosis and forms the basis of nuclear envelope breakdown, chromosome condensation and spindle assembly. Through global phosphoproteomic analysis, it has become clear that overall protein phosphorylation and phosphosite occupancy is most abundant during mitosis. At mitotic exit, this abundant phosphorylation must be reversed, and this process requires massive and rapid protein dephosphorylation. In addition to this global shift in protein phosphorylation, careful spatial control of protein (de)phosphorylation is equally important for spindle assembly, chromosome disjunction and chromosome alignment. In this review, we discuss the underlying mechanisms that enforce the dramatic global shift in protein phosphorylation as well as the mechanisms that allow for highly localized substrate phosphorylation in mitosis.
Collapse
Affiliation(s)
- René H Medema
- Department of Medical Oncology and Cancer Genomics Center, UMC Utrecht, The Netherlands.
| | | |
Collapse
|
629
|
Hubert T, Vandekerckhove J, Gettemans J. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem Biophys Res Commun 2011; 414:240-5. [PMID: 21951856 DOI: 10.1016/j.bbrc.2011.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023]
Abstract
DNA damage is a critical event that requires an appropriate cellular response. This is mediated by checkpoint proteins such as Cdk1 that controls S/G2 and G2/M transition. Cdk1 is required for BRCA1 transport to DNA damage sites inside the nucleus where BRCA1 functions as a scaffold to initiate a signaling cascade. BRCA1 is a multifunctional protein that also ubiquitinates γ-tubulin and, consequently, inhibits microtubule nucleation at the centrosome. Here, we report that γ-tubulin also localizes at confined areas in the microtubule network. Nocodazole-mediated microtubule depolymeration results in disappearance of this γ-tubulin fraction, while microtubule stabilization by taxol preserves this structure. Surprisingly, overexpression of Cdk1 or BRCA1 greatly expands the γ-tubulin coating of microtubules, suggesting that the microtubule-bound γ-tubulin is involved in DNA damage response. This is in accordance with numerous reports of microtubule-associated DNA damage proteins, such as p53, that are transported to the nucleus when DNA damage occurs. γ-Tubulin itself has been reported to form complexes with DNA repair proteins in the nucleus.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
630
|
Zhuang C, Tang H, Dissanaike S, Cobos E, Tao Y, Dai Z. CDK1-mediated phosphorylation of Abi1 attenuates Bcr-Abl-induced F-actin assembly and tyrosine phosphorylation of WAVE complex during mitosis. J Biol Chem 2011; 286:38614-38626. [PMID: 21900237 DOI: 10.1074/jbc.m111.281139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordinated actin remodeling is crucial for cell entry into mitosis. The WAVE regulatory complex is a key regulator of actin assembly, yet how the WAVE signaling is regulated to coordinate actin assembly with mitotic entry is not clear. Here, we have uncovered a novel mechanism that regulates the WAVE complex at the onset of mitosis. We found that the Bcr-Abl-stimulated F-actin assembly is abrogated during mitosis. This mitotic inhibition of F-actin assembly is accompanied by an attenuation of Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex. We identified serine 216 of Abi1 as a target of CDK1/cyclin B kinase that is phosphorylated in cells at the onset of mitosis. The Abi1 phosphorylated on serine 216 displayed greatly reduced tyrosine phosphorylation in the hematopoietic cells transformed by Bcr-Abl. Moreover, a phosphomimetic mutation of serine 216 to aspartic acid in Abi1 was sufficient to attenuate Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex and F-actin assembly. Ectopic expression of Abi1 with serine 216 mutations interfered with cell cycle progression. Together, these data show that CDK1-mediated phosphorylation of serine 216 in Abi1 serves as a regulatory mechanism that may contribute to coordinated actin cytoskeleton remodeling during mitosis.
Collapse
Affiliation(s)
- Chunmei Zhuang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Hongxing Tang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
631
|
Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett 2011; 313:64-75. [PMID: 21945852 DOI: 10.1016/j.canlet.2011.08.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
In continuation to our studies on radioresistance in meningioma, here we show that radiation treatment (7Gy) induces G2/M cell cycle arrest in meningioma cells. Phosphorylation of Chk2, Cdc25c and Cdc2 were found to be key events since interference with Chk2 activation and cyclin B1/Cdc2 interaction led to permanent arrest followed by apoptosis. Irradiated cells showed recovery and formed aggressive intracranial tumors with rapid spread and morbidity. Nevertheless, knock down of uPAR with or without radiation induced permanent arrest in G2/M phase and subsequent apoptosis in vitro and in vivo. In conclusion, our data suggest that combination treatment with radiation and uPAR knock down or other inhibitors resulting in non-reversible G2/M arrest may be beneficial in the management of meningiomas.
Collapse
Affiliation(s)
- Venkateswara Rao Gogineni
- Departments of Cancer Biology & Pharmacology and Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | | | | | | | | | |
Collapse
|
632
|
Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J. Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 2011; 43:406-17. [PMID: 21816347 PMCID: PMC3332305 DOI: 10.1016/j.molcel.2011.05.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 04/06/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.
Collapse
|
633
|
Abstract
Background Diverse mitotic events can be triggered in the correct order and time by a single cyclin-CDK. A single regulator could confer order and timing on multiple events if later events require higher cyclin-CDK than earlier events, so that gradually rising cyclin-CDK levels can sequentially trigger responsive events: the “quantitative model” of ordering. Methodology/Principal Findings This ‘quantitative model’ makes predictions for the effect of locking cyclin at fixed levels for a protracted period: at low cyclin levels, early events should occur rapidly, while late events should be slow, defective, or highly variable (depending on threshold mechanism). We titrated the budding yeast mitotic cyclin Clb2 within its endogenous expression range to a stable, fixed level and measured time to occurrence of three mitotic events: growth depolarization, spindle formation, and spindle elongation, as a function of fixed Clb2 level. These events require increasingly more Clb2 according to their normal order of occurrence. Events occur efficiently and with low variability at fixed Clb2 levels similar to those observed when the events normally occur. A second prediction of the model is that increasing the rate of cyclin accumulation should globally advance timing of all events. Moderate (<2-fold) overexpression of Clb2 accelerates all events of mitosis, resulting in consistently rapid sequential cell cycles. However, this moderate overexpression also causes a significant frequency of premature mitoses leading to inviability, suggesting that Clb2 expression level is optimized to balance the fitness costs of variability and catastrophe. Conclusions/Significance We conclude that mitotic events are regulated by discrete cyclin-CDK thresholds. These thresholds are sequentially triggered as cyclin increases, yielding reliable order and timing. In many biological processes a graded input must be translated into discrete outputs. In such systems, expression of the central regulator is likely to be tuned to an optimum level, as we observe here for Clb2.
Collapse
Affiliation(s)
- Catherine Oikonomou
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
634
|
Ferrell JE, Tsai TYC, Yang Q. Modeling the cell cycle: why do certain circuits oscillate? Cell 2011; 144:874-85. [PMID: 21414480 DOI: 10.1016/j.cell.2011.03.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 12/13/2022]
Abstract
Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur, just as the theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle. We examine Boolean models, delay differential equation models, and especially ordinary differential equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two simple types of circuits (negative feedback loops and coupled positive and negative feedback loops). Finally, we review the procedures of linear stability analysis, which allow one to determine whether a given ODE model and a particular set of kinetic parameters will produce oscillations.
Collapse
Affiliation(s)
- James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | | | | |
Collapse
|
635
|
Bertran MT, Sdelci S, Regué L, Avruch J, Caelles C, Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J 2011; 30:2634-47. [PMID: 21642957 PMCID: PMC3155310 DOI: 10.1038/emboj.2011.179] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/09/2011] [Indexed: 11/08/2022] Open
Abstract
The NIMA-family kinases Nek9/Nercc1, Nek6 and Nek7 form a signalling module required for mitotic spindle assembly. Nek9, the upstream kinase, is activated during prophase at centrosomes although the details of this have remained elusive. We now identify Plk1 as Nek9 direct activator and propose a two-step activation mechanism that involves Nek9 sequential phosphorylation by CDK1 and Plk1. Furthermore, we show that Plk1 controls prophase centrosome separation through the activation of Nek9 and ultimately the phosphorylation of the mitotic kinesin Eg5 at Ser1033, a Nek6/7 site that together with the CDK1 site Thr926 we establish contributes to the accumulation of Eg5 at centrosomes and is necessary for subsequent centrosome separation and timely mitosis. Our results provide a basis to understand signalling downstream of Plk1 and shed light on the role of Eg5, Plk1 and the NIMA-family kinases in the control of centrosome separation and normal mitotic progression.
Collapse
Affiliation(s)
- M Teresa Bertran
- Cell Signalling Research Group, Molecular Medicine Program, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Sara Sdelci
- Cell Signalling Research Group, Molecular Medicine Program, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Laura Regué
- Cell Signalling Research Group, Molecular Medicine Program, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Joseph Avruch
- Department of Molecular Biology and Medical Services, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carme Caelles
- Cell Signalling Research Group, Molecular Medicine Program, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Department of Biochemistry and Molecular Biology (Pharmacy), Universitat de Barcelona, Barcelona, Spain
| | - Joan Roig
- Cell Signalling Research Group, Molecular Medicine Program, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| |
Collapse
|
636
|
Regulated inactivation of the spindle assembly checkpoint without functional mitotic spindles. EMBO J 2011; 30:2648-61. [PMID: 21642954 DOI: 10.1038/emboj.2011.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 05/09/2011] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) arrests mitosis until bipolar attachment of spindle microtubules to all chromosomes is accomplished. However, when spindle formation is prevented and the SAC cannot be satisfied, mammalian cells can eventually overcome the mitotic arrest while the checkpoint is still activated. We find that Aspergillus nidulans cells, which are unable to satisfy the SAC, inactivate the checkpoint after a defined period of mitotic arrest. Such SAC inactivation allows normal nuclear reassembly and mitotic exit without DNA segregation. We demonstrate that the mechanisms, which govern such SAC inactivation, require protein synthesis and can occur independently of inactivation of the major mitotic regulator Cdk1/Cyclin B or mitotic exit. Moreover, in the continued absence of spindle function cells transit multiple cell cycles in which the SAC is reactivated each mitosis before again being inactivated. Such cyclic activation and inactivation of the SAC suggests that it is subject to cell-cycle regulation that is independent of bipolar spindle function.
Collapse
|
637
|
Smith E, Hégarat N, Vesely C, Roseboom I, Larch C, Streicher H, Straatman K, Flynn H, Skehel M, Hirota T, Kuriyama R, Hochegger H. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 2011; 30:2233-45. [PMID: 21522128 PMCID: PMC3117641 DOI: 10.1038/emboj.2011.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.
Collapse
Affiliation(s)
- Ewan Smith
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Clare Vesely
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Isaac Roseboom
- Department of Physics and Astronomy, University of Sussex, Brigthon, UK
| | - Chris Larch
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | - Hansjörg Streicher
- Department of Chemistry and Biochemistry, University of Sussex, Brighton, UK
| | | | - Helen Flynn
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Mark Skehel
- CRUK London Research Institutes Clare Hall, South Mimms, UK
| | - Toru Hirota
- The Cancer Institute, Japanese Foundation for Cancer Research, Ariake, Tokyo, Japan
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
638
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
639
|
Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 2011; 144:539-50. [PMID: 21335236 DOI: 10.1016/j.cell.2011.01.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/16/2010] [Accepted: 12/16/2010] [Indexed: 12/31/2022]
Abstract
Disassembly of nuclear pore complexes (NPCs) is a decisive event during mitotic entry in cells undergoing open mitosis, yet the molecular mechanisms underlying NPC disassembly are unknown. Using chemical inhibition and depletion experiments we show that NPC disassembly is a phosphorylation-driven process, dependent on CDK1 activity and supported by members of the NIMA-related kinase (Nek) family. We identify phosphorylation of the GLFG-repeat nucleoporin Nup98 as an important step in mitotic NPC disassembly. Mitotic hyperphosphorylation of Nup98 is accomplished by multiple kinases, including CDK1 and Neks. Nuclei carrying a phosphodeficient mutant of Nup98 undergo nuclear envelope breakdown slowly, such that both the dissociation of Nup98 from NPCs and the permeabilization of the nuclear envelope are delayed. Together, our data provide evidence for a phosphorylation-dependent mechanism underlying disintegration of NPCs during prophase. Moreover, we identify mitotic phosphorylation of Nup98 as a rate-limiting step in mitotic NPC disassembly.
Collapse
|
640
|
Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell 2011; 22:1191-206. [PMID: 21325631 PMCID: PMC3078080 DOI: 10.1091/mbc.e10-07-0599] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of Cdk1 is rapid and switch-like due to positive feedback mechanisms. When Cdk1 is fully on, cells are capable of M-to-G1 transition. Inhibition of positive feedback prevents rapid Cdk1 activation and induces a mitotic “collapse” phenotype characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. Mitosis requires precise coordination of multiple global reorganizations of the nucleus and cytoplasm. Cyclin-dependent kinase 1 (Cdk1) is the primary upstream kinase that directs mitotic progression by phosphorylation of a large number of substrate proteins. Cdk1 activation reaches the peak level due to positive feedback mechanisms. By inhibiting Cdk chemically, we showed that, in prometaphase, when Cdk1 substrates approach the peak of their phosphorylation, cells become capable of proper M-to-G1 transition. We interfered with the molecular components of the Cdk1-activating feedback system through use of chemical inhibitors of Wee1 and Myt1 kinases and Cdc25 phosphatases. Inhibition of Wee1 and Myt1 at the end of the S phase led to rapid Cdk1 activation and morphologically normal mitotic entry, even in the absence of G2. Dampening Cdc25 phosphatases simultaneously with Wee1 and Myt1 inhibition prevented Cdk1/cyclin B kinase activation and full substrate phosphorylation and induced a mitotic “collapse,” a terminal state characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis. This was blocked by the PP1/PP2A phosphatase inhibitor, okadaic acid. These findings suggest that the positive feedback in Cdk activation serves to overcome the activity of Cdk-opposing phosphatases and thus sustains forward progression in mitosis.
Collapse
|
641
|
Masuda H, Fong CS, Ohtsuki C, Haraguchi T, Hiraoka Y. Spatiotemporal regulations of Wee1 at the G2/M transition. Mol Biol Cell 2011; 22:555-69. [PMID: 21233285 PMCID: PMC3046054 DOI: 10.1091/mbc.e10-07-0644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Wee1 is highly dynamic at the SPB during the G2/M transition. Wee1 accumulates at the nuclear face of the SPB when cyclin B–Cdc2 peaks at the SPB and disappears from the SPB during spindle assembly. This dynamic behavior of Wee1 at the SPB is important for regulation of cyclin B–Cdc2 activity and proper mitotic entry and progression. Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B–Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B–Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B–Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B–Cdc2-dependent manner and locally suppresses both cyclin B–Cdc2 activity and spindle assembly to counteract a Polo kinase–dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom.
| | | | | | | | | |
Collapse
|
642
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
643
|
Mehta S, Zhang J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 2011; 80:375-401. [PMID: 21495849 PMCID: PMC4384825 DOI: 10.1146/annurev-biochem-060409-093259] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience and Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
644
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
645
|
Begasse ML, Hyman AA. The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. Results Probl Cell Differ 2011; 53:109-33. [PMID: 21630143 DOI: 10.1007/978-3-642-19065-0_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout the development of an organism, it is essential that the cell cycle machinery is fine-tuned to generate cells of different fate. A series of asymmetric cell divisions leads to lineage specification. The Caenorhabditis elegans embryo is an excellent system to study various aspects of the early embryonic cell cycle. The invariant nature of the rapid cell divisions is the key feature for studying the effects of small perturbations to a complex process such as the cell cycle. The thorough characterization of the asymmetric first cell division of the C. elegans embryo has given great insight on how the oscillations of the cell cycle coordinate with the cytoplasmic rearrangements that ultimately lead to two developmentally distinct daughter cells.
Collapse
Affiliation(s)
- Maria L Begasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
646
|
Kilpinen S, Ojala K, Kallioniemi O. Analysis of kinase gene expression patterns across 5681 human tissue samples reveals functional genomic taxonomy of the kinome. PLoS One 2010; 5:e15068. [PMID: 21151926 PMCID: PMC2997066 DOI: 10.1371/journal.pone.0015068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 10/17/2010] [Indexed: 01/03/2023] Open
Abstract
Kinases play key roles in cell signaling and represent major targets for drug development, but the regulation of their activation and their associations with health and disease have not been systematically analyzed. Here, we carried out a bioinformatic analysis of the expression levels of 459 human kinase genes in 5681 samples consisting of 44 healthy and 55 malignant human tissues. Defining the tissues where the kinase genes were transcriptionally active led to a functional genomic taxonomy of the kinome and a classification of human tissues and disease types based on the similarity of their kinome gene expression. The co-expression network around each of the kinase genes was defined in order to determine the functional context, i.e. the biological processes that were active in the cells and tissues where the kinase gene was expressed. Strong associations for individual kinases were found for mitosis (69 genes, including AURKA and BUB1), cell cycle control (73 genes, including PLK1 and AURKB), DNA repair (49 genes, including CHEK1 and ATR), immune response (72 genes, including MATK), neuronal (131 genes, including PRKCE) and muscular (72 genes, including MYLK2) functions. We then analyzed which kinase genes gain or lose transcriptional activity in the development of prostate and lung cancers and elucidated the functional associations of individual cancer associated kinase genes. In summary, we report here a systematic classification of kinases based on the bioinformatic analysis of their expression in human tissues and diseases, as well as grouping of tissues and tumor types according to the similarity of their kinome transcription.
Collapse
Affiliation(s)
- Sami Kilpinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
647
|
Yim H, Erikson RL. Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase. Proc Natl Acad Sci U S A 2010; 107:19742-7. [PMID: 21041660 PMCID: PMC2993418 DOI: 10.1073/pnas.1013557107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression.
Collapse
Affiliation(s)
- Hyungshin Yim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Raymond L. Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
648
|
Xu Z, Vagnarelli P, Ogawa H, Samejima K, Earnshaw WC. Gradient of increasing Aurora B kinase activity is required for cells to execute mitosis. J Biol Chem 2010; 285:40163-70. [PMID: 20956539 PMCID: PMC3000998 DOI: 10.1074/jbc.m110.181545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INCENP, Borealin, Survivin, and Aurora B kinase comprise the chromosomal passenger complex, an essential regulator of mitotic events. INCENP (inner centromere protein) binds and activates Aurora B through a feedback loop involving phosphorylation of a Thr-Ser-Ser (TSS) motif near the INCENP C terminus. Here, we have examined the role of the TSS motif in vertebrate cells using an DT40 INCENPON/OFF conditional knock-out cell line in which mutants are expressed in the absence of wild-type INCENP. Our analysis confirms that regulated phosphorylation of the two serine residues (presumably by Aurora B) is critical for full activation of the kinase and is essential for cell viability. Cells expressing INCENP mutants bearing either phospho-null (TAA) or phospho-mimetic (TEE) mutations exhibit significant levels of Aurora B kinase activity but fail to undergo normal spindle elongation or complete cytokinesis. This work confirms previous suggestions that INCENP can act as a rheostat, with different INCENP mutants promoting differing degrees of kinase activation. Our results also reveal that mitotic progression is accompanied by a requirement for progressively higher levels of Aurora B kinase activity.
Collapse
Affiliation(s)
- Zhenjie Xu
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | |
Collapse
|
649
|
Abstract
This paper presents evidence that chromatin condensation, like nuclear envelope breakdown, is brought about through the combined effects of cyclins A2 and B1, and that cyclins B1 and B2 are largely responsible for maintenance of a spindle assembly checkpoint arrest. Here we have used siRNAs and time-lapse epifluorescence microscopy to examine the roles of various candidate mitotic cyclins in chromatin condensation in HeLa cells. Knocking down cyclin A2 resulted in a substantial (∼7 h) delay in chromatin condensation and histone H3 phosphorylation, and expressing an siRNA-resistant form of cyclin A2 partially rescued chromatin condensation. There was no detectable delay in DNA replication in the cyclin A2 knockdowns, arguing that the delay in chromatin condensation is not secondary to a delay in S-phase completion. Cyclin A2 is required for the activation and nuclear accumulation of cyclin B1-Cdk1, raising the possibility that cyclin B1-Cdk1 mediates the effects of cyclin A2. Consistent with this possibility, we found that chromatin condensation was tightly associated temporally with the redistribution of cyclin B1 to the nucleus. Moreover, a constitutively nuclear cyclin B1 rescued chromatin condensation in cyclin A2 knockdown cells. On the other hand, knocking down cyclin B1 delayed chromatin condensation by only about one hour. Our working hypothesis is that active, nuclear cyclin B1-Cdk1 normally cooperates with cyclin A2 to bring about early mitotic events. Because cyclin A2 is present only during the early stages of mitosis, we asked whether cyclin B knockdown might have more dramatic defects on late mitotic events. Consistent with this possibility, we found that cyclin B1- and cyclin B1/B2-knockdown cells had difficulty in maintaining a mitotic arrest in the presence of nocodazole. Taken together, these data suggest that cyclin A2 helps initiate mitosis, in part through its effects on cyclin B1, and that cyclins B1 and B2 are particularly critical for the maintenance of the mitotic state.
Collapse
Affiliation(s)
- Delquin Gong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
650
|
|