601
|
Characterization of plasmids in extensively drug-resistant acinetobacter strains isolated in India and Pakistan. Antimicrob Agents Chemother 2014; 59:923-9. [PMID: 25421466 DOI: 10.1128/aac.03242-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The blaNDM-1 gene is associated with extensive drug resistance in Gram-negative bacteria. This probably spread to Enterobacteriaceae from Acinetobacter spp., and we characterized plasmids associated with blaNDM-1 in Acinetobacter spp. to gain insight into their role in this dissemination. Four clinical NDM-1-producing Acinetobacter species strains from India and Pakistan were investigated. A plasmid harboring blaNDM-1, pNDM-40-1, was characterized by whole-genome sequencing of Acinetobacter bereziniae CHI-40-1 and comparison with related plasmids. The presence of similar plasmids in strains from Pakistan was sought by PCR and sequencing of amplicons. Conjugation frequency was tested and stability of pNDM-40-1 investigated by real-time PCR of isolates passaged with and without antimicrobial selection pressure. A. bereziniae and Acinetobacter haemolyticus strains contained plasmids similar to the pNDM-BJ01-like plasmids identified in Acinetobacter spp. in China. The backbone of pNDM-40-1 was almost identical to that of pNDM-BJ01-like plasmids, but the transposon harboring blaNDM-1, Tn125, contained two short deletions. Escherichia coli and Acinetobacter pittii transconjugants were readily obtained. Transconjugants retained pNDM-40-1 after a 14-day passage experiment, although stability was greater with meropenem selection. Fragments of pNDM-BJ01-like plasmid backbones are found near blaNDM-1 in some genetic contexts from Enterobacteriaceae, suggesting that cross-genus transfer has occurred. pNDM-BJ01-like plasmids have been described in isolates originating from a wide geographical region in southern Asia. In vitro data on plasmid transfer and stability suggest that these plasmids could have contributed to the spread of blaNDM-1 into Enterobacteriaceae.
Collapse
|
602
|
Abstract
ABSTRACT
Whole-genome sequencing is revolutionizing the analysis of bacterial genomes. It leads to a massive increase in the amount of available data to be analyzed. Bacterial genomes are usually composed of one main chromosome and a number of accessory chromosomes, called plasmids. A recently developed methodology called PLACNET (for
pla
smid
c
onstellation
net
works) allows the reconstruction of the plasmids of a given genome. Thus, it opens an avenue for plasmidome analysis on a global scale. This work reviews our knowledge of the genetic determinants for plasmid propagation (conjugation and related functions), their diversity, and their prevalence in the variety of plasmids found by whole-genome sequencing. It focuses on the results obtained from a collection of 255
Escherichia coli
plasmids reconstructed by PLACNET. The plasmids found in
E. coli
represent a nonaleatory subset of the plasmids found in proteobacteria. Potential reasons for the prevalence of some specific plasmid groups will be discussed and, more importantly, additional questions will be posed.
Collapse
|
603
|
Brolund A. Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect Ecol Epidemiol 2014; 4:24555. [PMID: 25317262 PMCID: PMC4185132 DOI: 10.3402/iee.v4.24555] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/23/2014] [Accepted: 09/06/2014] [Indexed: 11/19/2022] Open
Abstract
Extended spectrum β-lactamases (ESBL) are increasing rapidly worldwide. E. coli producing CTX-M type ESBLs are the most common clinically encountered. The majority of E. coli ESBL infections are represented by urinary tract infections, but they can also cause severe infections, for example, in the blood stream and central nervous system. Since E. coli is a common colonizer of the normal gut microbiota, increasing prevalence of ESBL-producing strains is particularly worrisome. Once disseminated in the community, containment of this resistance type will be challenging. The driver of ESBL-producing Enterobacteriaceae (EPE) is debated. Some suggest that the ESBL genes were introduced to particularly successful bacterial clones. Others imply that very successful plasmids drive the rapid dissemination. More research and epidemiological studies of strain types, plasmids and mobile genetic elements are needed for these questions to be answered. In order to combat, or at least slow down, the worrisome trend of increasing numbers of EPE more knowledge is also needed on persistence of EPE in carriers as well as better understanding of how antibiotic treatment and other risk factors affect persistence and further dissemination. This review aims at giving an overview of this global problem from a Nordic perspective.
Collapse
Affiliation(s)
- Alma Brolund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ; Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
604
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
605
|
pIMP-PH114 carrying bla IMP-4 in a Klebsiella pneumoniae strain is closely related to other multidrug-resistant IncA/C2 plasmids. Curr Microbiol 2014; 68:227-32. [PMID: 24121549 DOI: 10.1007/s00284-013-0471-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The IncA/C plasmids are broad host-range vehicles which have been associated with wide dissemination of CMY-2 among Enterobacteriaceae of human and animal origins. Acquired metallo-β-lactamases (MBLs) such as the IMP-type enzymes are increasingly reported in multidrug-resistant Gram-negative bacteria worldwide, particularly in Enterobacteriaceae. We described the complete sequence of the first IMP-4-encoding IncA/C2 plasmid, pIMP-PH114 (151,885 bp), from a sequence type 1 Klebsiella pneumoniae strain that was recovered from a patient who was hospitalized in the Philippines. pIMP-PH114 consists of a backbone from the IncA/C2 plasmids, with the insertion of a novel Tn21-like class 1 integron composite structure (containing the cassette array bla IMP-4-qacG-aacA4-catB3, followed by a class C β-lactamase bla DHA-1 and the mercury resistance operon, merRTPCADE) and a sul2-floR encoding region. Phylogenetic analysis of the IncA/C repA sequences showed that pIMP-PH114 formed a subgroup with other IncA/C plasmids involved in the international spread of CMY-2, TEM-24 and NDM-1. Identical bla IMP-4 arrays have been described among different Enterobacteriaceae and Acinetobacter spp. in China, Singapore and Australia but the genetic context is different. The broad host range of IncA/C plasmids may have facilitated dissemination of the bla IMP-4 arrays among different diverse groups of bacteria.
Collapse
|
606
|
Sturød K, Dahle UR, Berg ES, Steinbakk M, Wester AL. Evaluation of the ability of four ESBL-screening media to detect ESBL-producing Salmonella and Shigella. BMC Microbiol 2014; 14:217. [PMID: 25204319 PMCID: PMC4159537 DOI: 10.1186/s12866-014-0217-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to compare the ability of four commercially available media for screening extended-spectrum beta-lactamase (ESBL) to detect and identify ESBL-producing Salmonella and Shigella in fecal samples. A total of 71 Salmonella- and 21 Shigella-isolates producing ESBL(A) and/or AmpC, were received at Norwegian Institute of Public Health between 2005 and 2012. The 92 isolates were mixed with fecal specimens and tested on four ESBL screening media; ChromID ESBL (BioMèrieux), Brilliance ESBL (Oxoid), BLSE agar (AES Chemunex) and CHROMagar ESBL (CHROMagar). The BLSE agar is a biplate consisting of two different agars. Brilliance and CHROMagar are supposed to suppress growth of AmpC-producing bacteria while ChromID and BLSE agar are intended to detect both ESBL(A) and AmpC. RESULTS The total sensitivity (ESBL(A)+AmpC) with 95% confidence intervals after 24 hours of incubation were as follows: ChromID: 95% (90.4-99.6), Brilliance: 93% (87.6-98.4), BLSE agar (Drigalski): 99% (96.9-100), BLSE agar (MacConkey): 99% (96.9-100) and CHROMagar: 85% (77.5-92.5). The BLSE agar identified Salmonella and Shigella isolates as lactose-negative. The other agars based on chromogenic technology displayed Salmonella and Shigella flexneri isolates with colorless colonies (as expected). Shigella sonnei produced pink colonies, similar to the morphology described for E. coli. CONCLUSION All four agar media were reliable in screening fecal samples for ESBL(A)-producing Salmonella and Shigella. However, only ChromID and BLSE agar gave reliable detection of AmpC-producing isolates. Identification of different bacterial species based on colony colour alone was not accurate for any of the four agars.
Collapse
|
607
|
Complete Genome Sequences of IncI1 Plasmids Carrying Extended-Spectrum β-Lactamase Genes. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00859-14. [PMID: 25169863 PMCID: PMC4148731 DOI: 10.1128/genomea.00859-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extended spectrum beta-lactamases (ESBLs) confer resistance to clinically relevant antibiotics. Often, the resistance genes are carried by conjugative plasmids which are responsible for dissemination. Five IncI1 plasmids carrying ESBLs from commensal and clinical Escherichia coli isolates were completely sequenced and annotated along with a non-ESBL carrying IncI1 plasmid.
Collapse
|
608
|
Wijetunge DSS, Karunathilake KHEM, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, Kariyawasam S. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 2014; 14:203. [PMID: 25164788 PMCID: PMC4155114 DOI: 10.1186/s12866-014-0203-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli is the most predominant Gram-negative bacterial pathogen associated with neonatal meningitis. Previous studies indicated that the prototypic neonatal meningitis E. coli (NMEC) strain RS218 (O18:K1:H7) harbors one large plasmid. Objectives of the present study were to analyze the complete nucleotide sequence of this large plasmid (pRS218) and its contribution to NMEC pathogenesis using in vitro and in vivo models of neonatal meningitis. RESULTS The plasmid is 114,231 bp in size, belongs to the incompatibility group FIB/IIA (IncFIB/IIA), and contains a genetic load region that encodes several virulence and fitness traits such as enterotoxicity, iron acquisition and copper tolerance. The nucleotide sequence of pRS218 showed a 41- 46% similarity to other neonatal meningitis-causing E. coli (NMEC) plasmids and remarkable nucleotide sequence similarity (up to 100%) to large virulence plasmids of E. coli associated with acute cystitis. Some genes located on pRS218 were overly represented by NMEC strains compared to fecal E. coli isolated from healthy individuals. The plasmid-cured strain was significantly attenuated relative to the RS218 wild-type strain as determined in vitro by invasion potential to human cerebral microvascular endothelial cells and in vivo by mortalities, histopathological lesions in the brain tissue, and bacterial recovery from the cerebrospinal fluid of infected rat pups. CONCLUSIONS The pRS218 is an IncFIB/IIA plasmid which shares a remarkable nucleotide sequence similarity to large plasmids of E. coli associated with cystitis. Both in vitro and in vivo experiments indicated that pRS218 plays an important role in NMEC pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
609
|
Rodrigues C, Machado E, Ramos H, Peixe L, Novais Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int J Med Microbiol 2014; 304:1100-8. [PMID: 25190354 DOI: 10.1016/j.ijmm.2014.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to characterize by a multi-level approach extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae isolates other than E. coli from Portuguese hospitals. Eighty-eight ESBL-producing clinical isolates (69 Klebsiella pneumoniae, 13 Enterobacter cloacae complex, 3 Klebsiella oxytoca, 1 Enterobacter asburiae, 1 Proteus mirabilis and 1 Serratia marcescens) recovered from hospitals located in the North (A) or Centre (B, C) regions during two time periods (2006-7 and 2010) were analyzed. Standard methods were used for bacterial identification, antibiotic susceptibility testing, ESBL characterization, clonal (PFGE, MLST) and plasmid (S1-PFGE, I-CeuI-PFGE, replicon typing, hybridization) analysis. Isolates produced mostly CTX-M-15 (47%) or SHV-12 (30%), and less frequently other SHV- (15%; SHV-2, -5, -28, -55, -106) or TEM- (9%; TEM-10, -24, -199)-types, with marked local and temporal variations. The increase of CTX-M-15 and diverse SHV ESBL-types observed in Hospital A was associated with the amplification of multidrug-resistant (MDR) K. pneumoniae epidemic clones (ST15, ST147, ST336). SHV-12 and TEM-type ESBLs were mostly identified in diverse isolates of different Enterobacteriaceae species in Hospitals B and C in 2006-7. Particular plasmid types were linked to blaCTX-M-15 (IncR or non-typeable plasmids), blaSHV-12 (IncR or IncHI2), blaSHV-28/-55/-106 (IncFIIK1 or IncFIIK5), blaTEM-10 (IncL/M) or blaTEM-24 (IncA/C), mostly in epidemic clones. In our country, the amplification of CTX-M-15 and diverse SHV-type ESBL among non-E. coli Enterobacteriaceae is linked to international MDR K. pneumoniae clones (ST15, ST147, ST336) and plasmid types (IncR, IncFIIK). Furthermore, we highlight the potential of IncFIIK plasmids (here firstly associated with blaSHV-2/-28/-55/-106) to disseminate as antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Carla Rodrigues
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; CEBIMED/FP-ENAS, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Elisabete Machado
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; CEBIMED/FP-ENAS, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Helena Ramos
- Centro Hospitalar do Porto - Hospital Geral de Santo António, 4099-001 Porto, Portugal
| | - Luísa Peixe
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
610
|
Moura A, Araújo S, Alves MS, Henriques I, Pereira A, Correia ACM. The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters. Front Microbiol 2014; 5:419. [PMID: 25161650 PMCID: PMC4129628 DOI: 10.3389/fmicb.2014.00419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 11/25/2022] Open
Abstract
To understand the contribution of animal- and human-derived fecal pollution sources in shaping integron prevalence and diversity in beach waters, 414 Escherichia coli strains were collected from beach waters (BW, n = 166), seagull feces (SF, n = 179), and wastewaters (WW, n = 69), on the World Biosphere Reserve of the Berlenga Island, Portugal. Statistical differences were found between the prevalence of integrons in BW (21%) and WW (10%), but not between BW and SF (19%). The majority of integrase-positive (intI+)-strains affiliated to commensal phylogroups B1 (37%), A0 (24%), and A1 (20%). Eighteen different gene cassette arrays were detected, most of them coding for resistances to aminoglycosides, trimethoprim, chloramphenicol, and quaternary ammonia compounds. Common arrays were found among strains from different sources. Multi-resistance to three or more different classes of antibiotics was observed in 89, 82, and 57% of intI+-strains from BW, SF and WW, respectively. Plasmids were detected in 79% of strains (60/76) revealing a high diversity of replicons in all sources, mostly belonging to IncF (Frep, FIA, and FIB subgroups), IncI1, IncN, IncY, and IncK incompatibility groups. In 20% (15/76) of strains, integrons were successfully mobilized through conjugation to E. coli CV601. Results obtained support the existence of a diverse integron pool in the E. coli strains from this coastal environment, associated with different resistance traits and plasmid incompatibility groups, mainly shaped by animal fecal pollution inputs. These findings underscore the role of wild life in dissemination of integrons and antibiotic resistance traits in natural environments.
Collapse
Affiliation(s)
- Alexandra Moura
- Department of Biology and CESAM, University of Aveiro Aveiro, Portugal
| | - Susana Araújo
- Department of Biology and CESAM, University of Aveiro Aveiro, Portugal
| | - Marta S Alves
- Department of Biology and CESAM, University of Aveiro Aveiro, Portugal
| | - Isabel Henriques
- Department of Biology and CESAM, University of Aveiro Aveiro, Portugal
| | - Anabela Pereira
- Department of Biology and CESAM, University of Aveiro Aveiro, Portugal
| | | |
Collapse
|
611
|
Emergence of KPC-2-Producing Salmonella enterica Serotype Schwarzengrund in Argentina. Antimicrob Agents Chemother 2014; 58:6335-6. [PMID: 25114136 DOI: 10.1128/aac.03322-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
612
|
Valentin L, Sharp H, Hille K, Seibt U, Fischer J, Pfeifer Y, Michael GB, Nickel S, Schmiedel J, Falgenhauer L, Friese A, Bauerfeind R, Roesler U, Imirzalioglu C, Chakraborty T, Helmuth R, Valenza G, Werner G, Schwarz S, Guerra B, Appel B, Kreienbrock L, Käsbohrer A. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: an approach to quantify the distribution of ESBL types between different reservoirs. Int J Med Microbiol 2014; 304:805-16. [PMID: 25213631 DOI: 10.1016/j.ijmm.2014.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Escherichia (E.) coli producing extended-spectrum beta-lactamases (ESBLs) are an increasing problem for public health. The success of ESBLs may be due to spread of ESBL-producing bacterial clones, transfer of ESBL gene-carrying plasmids or exchange of ESBL encoding genes on mobile elements. This makes it difficult to identify transmission routes and sources for ESBL-producing bacteria. The objectives of this study were to compare the distribution of genotypic and phenotypic properties of E. coli isolates from different animal and human sources collected in studies in the scope of the national research project RESET. ESBL-producing E. coli from two longitudinal and four cross-sectional studies in broiler, swine and cattle farms, a cross-sectional and a case-control study in humans and diagnostic isolates from humans and animals were used. In the RESET consortium, all laboratories followed harmonized methodologies for antimicrobial susceptibility testing, confirmation of the ESBL phenotype, specific PCR assays for the detection of bla(TEM), bla(CTX), and bla(SHV) genes and sequence analysis of the complete ESBL gene as well as a multiplex PCR for the detection of the four major phylogenetic groups of E. coli. Most ESBL genes were found in both, human and non-human populations but quantitative differences for distinct ESBL-types were detectable. The enzymes CTX-M-1 (63.3% of all animal isolates, 29.3% of all human isolates), CTX-M-15 (17.7% vs. 48.0%) and CTX-M-14 (5.3% vs. 8.7%) were the most common ones. More than 70% of the animal isolates and more than 50% of the human isolates contained the broadly distributed ESBL genes bla(CTX-M-1), bla(CTX-M-15), or the combinations bla(SHV-12)+bla(TEM) or bla(CTX-M-1)+bla(TEM). While the majority of animal isolates carried bla(CTX-M-1) (37.5%) or the combination bla(CTX-M-1)+bla(TEM) (25.8%), this was the case for only 16.7% and 12.6%, respectively, of the human isolates. In contrast, 28.2% of the human isolates carried bla(CTX-M-15) compared to 10.8% of the animal isolates. When grouping data by ESBL types and phylogroups bla(CTX-M-1) genes, mostly combined with phylogroup A or B1, were detected frequently in all settings. In contrast, bla(CTX-M-15) genes common in human and animal populations were mainly combined with phylogroup A, but not with the more virulent phylogroup B2 with the exception of companion animals, where a few isolates were detectable. When E. coli subtype definition included ESBL types, phylogenetic grouping and antimicrobial susceptibility data, the proportion of isolates allocated to common clusters was markedly reduced. Nevertheless, relevant proportions of same subtypes were detected in isolates from the human and livestock and companion animal populations included in this study, suggesting exchange of bacteria or bacterial genes between these populations or a common reservoir. In addition, these results clearly showed that there is some similarity between ESBL genes, and bacterial properties in isolates from the different populations. Finally, our current approach provides good insight into common and population-specific clusters, which can be used as a basis for the selection of ESBL-producing isolates from interesting clusters for further detailed characterizations, e.g. by whole genome sequencing.
Collapse
Affiliation(s)
- Lars Valentin
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Hannah Sharp
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Katja Hille
- Department of Biometry, Epidemiology and Information Processing, WHO-Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Hannover, Germany
| | - Uwe Seibt
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Jennie Fischer
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| | | | - Silke Nickel
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Judith Schmiedel
- Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; German Center for Infection Research (DZIF), Partnersite Giessen-Marburg-Langen, Campus Giessen, Germany
| | - Linda Falgenhauer
- Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; German Center for Infection Research (DZIF), Partnersite Giessen-Marburg-Langen, Campus Giessen, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Free University Berlin, Berlin, Germany
| | - Rolf Bauerfeind
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Free University Berlin, Berlin, Germany
| | - Can Imirzalioglu
- Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; German Center for Infection Research (DZIF), Partnersite Giessen-Marburg-Langen, Campus Giessen, Germany
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany; German Center for Infection Research (DZIF), Partnersite Giessen-Marburg-Langen, Campus Giessen, Germany
| | - Reiner Helmuth
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | | | - Guido Werner
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Beatriz Guerra
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Bernd Appel
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO-Collaborating Centre for Research and Training in Veterinary Public Health, University of Veterinary Medicine, Hannover, Germany
| | - Annemarie Käsbohrer
- Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany.
| |
Collapse
|
613
|
Lau AF, Wang H, Weingarten RA, Drake SK, Suffredini AF, Garfield MK, Chen Y, Gucek M, Youn JH, Stock F, Tso H, DeLeo J, Cimino JJ, Frank KM, Dekker JP. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2014; 52:2804-12. [PMID: 24850353 PMCID: PMC4136129 DOI: 10.1128/jcm.00694-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/13/2014] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak.
Collapse
Affiliation(s)
- Anna F Lau
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca A Weingarten
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark K Garfield
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Frida Stock
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Hanna Tso
- Laboratory for Informatics Development, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jim DeLeo
- Laboratory for Informatics Development, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - James J Cimino
- Laboratory for Informatics Development, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen M Frank
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
614
|
Titelman E, Hasan C, Iversen A, Nauclér P, Kais M, Kalin M, Giske C. Faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae is common 12 months after infection and is related to strain factors. Clin Microbiol Infect 2014; 20:O508-15. [DOI: 10.1111/1469-0691.12559] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/13/2013] [Accepted: 12/15/2013] [Indexed: 11/30/2022]
|
615
|
Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. MICROBIOLOGY-SGM 2014; 160:2253-2263. [PMID: 25063046 DOI: 10.1099/mic.0.079335-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Anton Kurakov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
616
|
Huang H, Dong Y, Yang ZL, Luo H, Zhang X, Gao F. Complete sequence of pABTJ2, a plasmid from Acinetobacter baumannii MDR-TJ, carrying many phage-like elements. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:172-7. [PMID: 25046542 PMCID: PMC4411360 DOI: 10.1016/j.gpb.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is an important opportunistic pathogen in hospital, and the multidrug-resistant isolates of A. baumannii have been increasingly reported in recent years. A number of different mechanisms of resistance have been reported, some of which are associated with plasmid-mediated acquisition of genes. Therefore, studies on plasmids in A. baumannii have been a hot issue lately. We have performed complete genome sequencing of A. baumannii MDR-TJ, which is a multidrug-resistant isolate. Finalizing the remaining large scaffold of the previous assembly, we found a new plasmid pABTJ2, which carries many phage-like elements. The plasmid pABTJ2 is a circular double-stranded DNA molecule, which is 110,967bp in length. We annotated 125 CDSs from pABTJ2 using IMG ER and ZCURVE_V, accounting for 88.28% of the whole plasmid sequence. Many phage-like elements and a tRNA-coding gene were detected in pABTJ2, which is rarely reported among A. baumannii. The tRNA gene is specific for asparagine codon GTT, which may be a small chromosomal sequence picked up through incorrect excision during plasmid formation. The phage-like elements may have been acquired during the integration process, as the GC content of the region carrying phage-like elements was higher than that of the adjacent regions. The finding of phage-like elements and tRNA-coding gene in pABTJ2 may provide a novel insight into the study of A. baumannii pan-plasmidome.
Collapse
Affiliation(s)
- He Huang
- MOE Key Laboratory of Systems Bioengineering, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Dong
- MOE Key Laboratory of Systems Bioengineering, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi-Liang Yang
- MOE Key Laboratory of Systems Bioengineering, Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Xi Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
617
|
High rates of intestinal colonisation with fluoroquinolone-resistant ESBL-harbouring Enterobacteriaceae in hospitalised patients with antibiotic-associated diarrhoea. Eur J Clin Microbiol Infect Dis 2014; 33:2215-21. [DOI: 10.1007/s10096-014-2193-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
|
618
|
Ewers C, Stamm I, Pfeifer Y, Wieler LH, Kopp PA, Schønning K, Prenger-Berninghoff E, Scheufen S, Stolle I, Günther S, Bethe A. Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J Antimicrob Chemother 2014; 69:2676-80. [DOI: 10.1093/jac/dku217] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
619
|
Diarra MS, Malouin F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front Microbiol 2014; 5:282. [PMID: 24987390 PMCID: PMC4060556 DOI: 10.3389/fmicb.2014.00282] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities.
Collapse
Affiliation(s)
- Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food CanadaAgassiz, BC, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Centre d'Étude et de Valorisation de la Diversité Microbienne, Université de SherbrookeSherbrooke, QC, Canada
| |
Collapse
|
620
|
Wang J, Stephan R, Power K, Yan Q, Hächler H, Fanning S. Nucleotide sequences of 16 transmissible plasmids identified in nine multidrug-resistant Escherichia coli isolates expressing an ESBL phenotype isolated from food-producing animals and healthy humans. J Antimicrob Chemother 2014; 69:2658-68. [PMID: 24920651 DOI: 10.1093/jac/dku206] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Nine extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from healthy humans and food-producing animals were found to transfer their cefotaxime resistance marker at high frequency in laboratory conjugation experiments. The objective of this study was to completely characterize 16 transmissible plasmids that were detected in these bacterial isolates. METHODS The nucleotide sequences of all 16 plasmids were determined from transconjugants using next-generation sequencing technology. Open reading frames were assigned using Rapid Annotation using Subsystem Technology and analysed by BLASTn and BLASTp. The standard method was used for plasmid multilocus sequence typing (pMLST) analysis. Plasmid structures were subsequently confirmed by PCR amplification of selected regions. RESULTS The complete circularized nucleotide sequence of 14 plasmids was determined, along with that of a further two plasmids that could not be confirmed as closed. These ranged in size from 1.8 to 166.6 kb. Incompatibility groups and pMLSTs identified included IncI1/ST3, IncI1/ST36, IncN/ST1, IncF and IncB/O, and those of the same Inc types presented a similar backbone structure despite being isolated from different sources. Eight plasmids contained bla(CTX-M-1) genes that were associated with either ISEcp1 or IS26 insertion sequence elements. Six plasmids isolated from humans and chickens were identical or closely related to the IncI1 reference plasmid, R64. CONCLUSIONS These data, based on comparative sequence analysis, highlight the successful spread of blaESBL-harbouring plasmids of different Inc types among isolates of human and food-producing animal origin and provide further evidence for potential dissemination routes.
Collapse
Affiliation(s)
- Juan Wang
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Karen Power
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Qiongqiong Yan
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Herbert Hächler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin 4, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| |
Collapse
|
621
|
Comparative genomics of an IncA/C multidrug resistance plasmid from Escherichia coli and Klebsiella isolates from intensive care unit patients and the utility of whole-genome sequencing in health care settings. Antimicrob Agents Chemother 2014; 58:4814-25. [PMID: 24914121 DOI: 10.1128/aac.02573-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The IncA/C plasmids have been implicated for their role in the dissemination of β-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A bla(FOX-5) gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC β-lactamase upon admission to the ICU, suggesting that the AmpC β-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing bla(FOX-5) were selected for sequencing based on their plasmid profiles. An ∼ 167-kb IncA/C plasmid encoding the FOX-5 β-lactamase, a CARB-2 β-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 β-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings.
Collapse
|
622
|
Resistance determinants and mobile genetic elements of an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One 2014; 9:e99209. [PMID: 24905728 PMCID: PMC4048246 DOI: 10.1371/journal.pone.0099209] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/12/2014] [Indexed: 01/12/2023] Open
Abstract
Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge. These strains can accumulate many antibiotic resistance genes though horizontal transfer of genetic elements, those for β-lactamases being of particular concern. Some β-lactamases are active on a broad spectrum of β-lactams including the last-resort carbapenems. The gene for the broad-spectrum and carbapenem-active metallo-β-lactamase NDM-1 is rapidly spreading. We present the complete genome of Klebsiella pneumoniae ATCC BAA-2146, the first U.S. isolate found to encode NDM-1, and describe its repertoire of antibiotic-resistance genes and mutations, including genes for eight β-lactamases and 15 additional antibiotic-resistance enzymes. To elucidate the evolution of this rich repertoire, the mobile elements of the genome were characterized, including four plasmids with varying degrees of conservation and mosaicism and eleven chromosomal genomic islands. One island was identified by a novel phylogenomic approach, that further indicated the cps-lps polysaccharide synthesis locus, where operon translocation and fusion was noted. Unique plasmid segments and mosaic junctions were identified. Plasmid-borne blaCTX-M-15 was transposed recently to the chromosome by ISEcp1. None of the eleven full copies of IS26, the most frequent IS element in the genome, had the expected 8-bp direct repeat of the integration target sequence, suggesting that each copy underwent homologous recombination subsequent to its last transposition event. Comparative analysis likewise indicates IS26 as a frequent recombinational junction between plasmid ancestors, and also indicates a resolvase site. In one novel use of high-throughput sequencing, homologously recombinant subpopulations of the bacterial culture were detected. In a second novel use, circular transposition intermediates were detected for the novel insertion sequence ISKpn21 of the ISNCY family, suggesting that it uses the two-step transposition mechanism of IS3. Robust genome-based phylogeny showed that a unified Klebsiella cluster contains Enterobacter aerogenes and Raoultella, suggesting the latter genus should be abandoned.
Collapse
|
623
|
Guo YF, Zhang WH, Ren SQ, Yang L, Lü DH, Zeng ZL, Liu YH, Jiang HX. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China. PLoS One 2014; 9:e96738. [PMID: 24816748 PMCID: PMC4016023 DOI: 10.1371/journal.pone.0096738] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives To obtain a broad molecular epidemiological characterization of plasmid-mediated AmpC β-lactamase CMY-2 in Escherichia coli isolates from food animals in China. Methods A total of 1083 E. coli isolates from feces, viscera, blood, drinking water, and sub-surface soil were examined for the presence of CMY-2 β-lactamases. CMY-2-producing isolates were characterized as follows: the blaCMY-2 genotype was determined using PCR and sequencing, characterization of the blaCMY-2 genetic environment, plasmid sizing using S1 nuclease pulsed-field gel electrophoresis (PFGE), PCR-based replicon typing, phylogenetic grouping, XbaI-PFGE, and multi-locus sequence typing (MLST). Results All 31 CMY-2 producers were only detected in feces, and presented with multidrug resistant phenotypes. All CMY-2 strains also co-harbored genes conferring resistance to other antimicrobials, including extended spectrum β-lactamases genes (blaCTX-M-14 or blaCTX-M-55), plasmid-mediated quinolone resistance determinants (qnr, oqxA, and aac-(6′)-Ib-cr), floR and rmtB. The co-transferring of blaCMY-2 with qnrS1 and floR (alone and together) was mainly driven by the Inc A/C type plasmid, with sizes of 160 or 200 kb. Gene cassette arrays inserted in the class 1 or class 2 integron were amplified among 12 CMY-2 producers. CMY-2 producers belonged to avirulent groups B1 (n = 12) and A (n = 11), and virulent group D (n = 8). There was a good correlation between phylogenetic groups and sequence types (ST). Twenty-four STs were identified, of which the ST complexes (STC) 101/B1 (n = 6), STC10/A (n = 5), and STC155/B1 (n = 3) were dominant. Conclusions CMY-2 is the dominant AmpC β-lactamase in food animals and is associated with a transferable replicon IncA/C plasmid in the STC101, STC10, and STC155 strains.
Collapse
Affiliation(s)
- Yu-Fang Guo
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Wen-Hui Zhang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Si-Qi Ren
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Lin Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Dian-Hong Lü
- Laboratory of Clinical Microbiology, Institute of Veterinary Medicine, Guangdong Academy of Agriculture Sciences, Guangzhou, China
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Ya-Hong Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Hong-Xia Jiang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
- * E-mail:
| |
Collapse
|
624
|
Raz Y, Tannenbaum ED. Repression/depression of conjugative plasmids and their influence on the mutation-selection balance in static environments. PLoS One 2014; 9:e96839. [PMID: 24811122 PMCID: PMC4014554 DOI: 10.1371/journal.pone.0096839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/13/2014] [Indexed: 01/16/2023] Open
Abstract
We study the effect that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance of a population in a static environment. We consider a model whereby a population of unicellular organisms, capable of conjugation, comes to mutation-selection balance in the presence of an antibiotic, which induces a first-order death rate constant for genomes that are not resistant. We explicitly take into consideration the repression/de-repression dynamics of the conjugative plasmid, and assume that a de-repressed plasmid remains temporarily de-repressed after copying itself into another cell. We assume that both repression and de-repression are characterized by first-order rate constants and , respectively. We find that conjugation has a deleterious effect on the mean fitness of the population, suggesting that HGT does not provide a selective advantage in a static environment, but is rather only useful for adapting to new environments. This effect can be ameliorated by repression, suggesting that while HGT is not necessarily advantageous for a population in a static environment, its deleterious effect on the mean fitness can be negated via repression. Therefore, it is likely that HGT is much more advantageous in a dynamic landscape. Furthermore, in the limiting case of a vanishing spontaneous de-repression rate constant, we find that the fraction of conjugators in the population undergoes a phase transition as a function of population density. Below a critical population density, the fraction of conjugators is zero, while above this critical population density the fraction of conjugators rises continuously to one. Our model for conjugation-mediated HGT is related to models of infectious disease dynamics, where the conjugators play the role of the infected (I) class, and the non-conjugators play the role of the susceptible (S) class.
Collapse
Affiliation(s)
- Yoav Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva, Israel
- * E-mail:
| | | |
Collapse
|
625
|
Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 2014; 52:2530-5. [PMID: 24808234 DOI: 10.1128/jcm.00088-14] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, we report the early expansion, evolution, and characterization of a multiresistant Klebsiella pneumoniae clone that was isolated with increasing frequency from inpatients in a tertiary-care university hospital in Brazil. Seven carbapenem- and quinolone-resistant and polymyxin B-susceptible or -resistant K. pneumoniae isolates isolated between December 2012 and February 2013 were investigated. Beta-lactamase- and plasmid-mediated quinolone resistance (PMQR)-encoding genes and the genetic environment were investigated using PCR, sequencing, and restriction fragment length polymorphism (RFLP). Clonal relatedness was established using XbaI-pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylogenetic group characterization. Plasmid analyses included PCR-based replicon typing (PBRT) and hybridization of the S1-PFGE product, plasmid MLST, and conjugation experiments. Virulence potential was assessed by PCR by searching for 10 virulence factor-encoding genes (ureA, fimH, kfuBC, uge, wabG, magA, mrkD, allS, rmpA, and cf29a) and by phenotypic tests to analyze the hypermucoviscous phenotype. The genetic context of a multidrug-resistant and extensively drug-resistant K. pneumoniae ST11-KpI clone harboring IncFIIk-Tn4401a-blaKPC-2, qnrS1, and blaCTX-M-2 was found. Moreover, three isolates displayed high resistance to polymyxin B (MICs = 32, 32, and 128 mg/liter) as well as mucous and hypermucoviscous phenotypes. These bacteria also harbored ureA, fimH, uge, wabG, and mrkD, which code for virulence factors associated with binding, biofilm formation, and the ability to colonize and escape from phagocytosis. Our study describes the association of important coresistance and virulence factors in the K. pneumoniae ST11 international high-risk clone, which makes this pathogen successful at infections and points to the quick expansion and evolution of this multiresistant and virulent clone, leading to a pandrug-resistant phenotype and persistent bacteria in a Brazilian hospital.
Collapse
|
626
|
Compain F, Poisson A, Le Hello S, Branger C, Weill FX, Arlet G, Decré D. Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae. Int J Med Microbiol 2014; 304:236-42. [DOI: 10.1016/j.ijmm.2013.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/19/2013] [Accepted: 09/28/2013] [Indexed: 11/29/2022] Open
|
627
|
Arcilla MS, van Hattem JM, Bootsma MCJ, van Genderen PJ, Goorhuis A, Schultsz C, Stobberingh EE, Verbrugh HA, de Jong MD, Melles DC, Penders J. The Carriage Of Multiresistant Bacteria After Travel (COMBAT) prospective cohort study: methodology and design. BMC Public Health 2014; 14:410. [PMID: 24775515 PMCID: PMC4020574 DOI: 10.1186/1471-2458-14-410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the major threats to public health around the world. Besides the intense use and misuse of antimicrobial agents as the major force behind the increase in antimicrobial resistance, the exponential increase of international travel may also substantially contribute to the emergence and spread of AMR. However, knowledge on the extent to which international travel contributes to this is still limited. The Carriage Of Multiresistant Bacteria After Travel (COMBAT) study aims to 1. determine the acquisition rate of multiresistant Enterobacteriaceae during foreign travel 2. ascertain the duration of carriage of these micro-organisms 3. determine the transmission rate within households 4. identify risk factors for acquisition, persistence of carriage and transmission of multiresistant Enterobacteriaceae. METHODS/DESIGN The COMBAT-study is a large-scale multicenter longitudinal cohort study among travellers (n = 2001) and their non-travelling household members (n = 215). Faecal samples are collected before and immediately after travel and 1 month after return from all participants. Follow-up faecal samples are collected 3, 6 and 12 months after return from travellers (and their non-travelling household members) who acquired multiresistant Enterobacteriaceae. Questionnaires are collected from all participants at each time-point. Faecal samples are screened phenotypically for the presence of extended-spectrum beta-lactamase (ESBL) or carbapenemase-producing Enterobacteriaceae. Positive post-travel isolates from travellers with negative pre-travel samples are genotypically analysed for ESBL and carbapenemase genes with microarray and gene sequencing. DISCUSSION The design and scale of the COMBAT-study will enable us to provide much needed detailed insights into the risks and dynamics of introduction and spread of ESBL- and carbapenemase-producing Enterobacteriaceae by healthy travellers and the potential need and measures to monitor or manage these risks. TRIAL REGISTRATION The study is registered at clinicaltrials.gov under accession number NCT01676974.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John Penders
- Department of Medical Microbiology, School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, PO 5800, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
628
|
Abstract
![]()
Quinolones
are one of the most commonly prescribed classes of antibacterials
in the world and are used to treat a variety of bacterial infections
in humans. Because of the wide use (and overuse) of these drugs, the
number of quinolone-resistant bacterial strains has been growing steadily
since the 1990s. As is the case with other antibacterial agents, the
rise in quinolone resistance threatens the clinical utility of this
important drug class. Quinolones act by converting their targets,
gyrase and topoisomerase IV, into toxic enzymes that fragment the
bacterial chromosome. This review describes the development of the
quinolones as antibacterials, the structure and function of gyrase
and topoisomerase IV, and the mechanistic basis for quinolone action
against their enzyme targets. It will then discuss the following three
mechanisms that decrease the sensitivity of bacterial cells to quinolones.
Target-mediated resistance is the most common and clinically significant
form of resistance. It is caused by specific mutations in gyrase and
topoisomerase IV that weaken interactions between quinolones and these
enzymes. Plasmid-mediated resistance results from extrachromosomal
elements that encode proteins that disrupt quinolone–enzyme
interactions, alter drug metabolism, or increase quinolone efflux.
Chromosome-mediated resistance results from the underexpression of
porins or the overexpression of cellular efflux pumps, both of which
decrease cellular concentrations of quinolones. Finally, this review
will discuss recent advancements in our understanding of how quinolones
interact with gyrase and topoisomerase IV and how mutations in these
enzymes cause resistance. These last findings suggest approaches to
designing new drugs that display improved activity against resistant
strains.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | |
Collapse
|
629
|
An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 2014; 171:290-7. [PMID: 24629777 DOI: 10.1016/j.vetmic.2014.02.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Worldwide, the emergence and global spread of microorganisms with acquired carbapenemases is of great concern. The reservoirs for such organisms are increasing, not only in hospitals, but also in the community and environment. A new and important development is the presence of such organisms in livestock, companion animals and wildlife. During the last three years, carbapenemase-producing Escherichia coli, Salmonella spp. (VIM-1 producers) and Acinetobacter spp. (producing OXA-23 and NDM-1) in livestock animals (poultry, cattle and swine) and their environment have been reported. In addition, the isolation of NDM-1-producing E. coli, OXA-48 in E. coli and Klebsiella pneumoniae or OXA-23 in Acinetobacter spp. from companion animals (cats, dogs or horses) has also been observed. Other reports have described the presence of NDM-1-producing Salmonella isolated from wild birds, as well as OXA-23-like-producing Acinetobacter baumannii in ectoparasites. However, until now carbapenemase producers from foods have not been detected. For humans in contrast carbapenem-producing Salmonella isolates are increasingly reported. The real prevalence of carbapenemase-encoding genes in zoonotic bacteria or commensals from animals is unknown. Consequently, there is a need for intensified surveillance on the occurrence of carbapenemase-producing bacteria in the food chain and other animal sources in order to assist in the formulation of measures to prevent their potential spread.
Collapse
|
630
|
|
631
|
Scientific Opinion on the evaluation of molecular typing methods for major food‐borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: Part 1 (evaluation of methods and applications). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3502] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
632
|
International gatherings and potential for global dissemination of São Paulo metallo-β-lactamase (SPM) from Brazil. Int J Antimicrob Agents 2013; 43:196-7. [PMID: 24359840 DOI: 10.1016/j.ijantimicag.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
|
633
|
Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol 2013; 4:258. [PMID: 24027562 PMCID: PMC3759790 DOI: 10.3389/fmicb.2013.00258] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of Escherichia coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development, and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms, and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence) among E. coli is of further concern. Co-existence and co-transfer of these "bad genes" in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR) commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the future.
Collapse
Affiliation(s)
| | - Béla Nagy
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
634
|
Markogiannakis A, Tzouvelekis LS, Psichogiou M, Petinaki E, Daikos GL. Confronting carbapenemase-producing Klebsiella pneumoniae. Future Microbiol 2013; 8:1147-61. [DOI: 10.2217/fmb.13.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ongoing spread of carbapenemase-producing (CP) multidrug-resistant enterobacteria, primarily Klebsiella pneumoniae, has undoubtedly caused a public health crisis of unprecedented dimensions. The scientific community has been struggling with these highly problematic nosocomial pathogens for more than a decade. Faced with the current situation, one cannot help but wish we could have done better, earlier. However, significant steps have been and are currently being made towards a better understanding of transmission routes of CP microorganisms and in designing strategies that could effectively curb this devastating epidemic. Most importantly, the systematic evaluation of accumulating experimental and clinical data has paved the way to a more rational management of CP-infected patients. In addition, systematic efforts of the industry have led to the development of novel antibacterial agents that are active against CP strains and expected to be introduced to clinical practice in the immediate future.
Collapse
Affiliation(s)
| | | | - Mina Psichogiou
- First Department of Propaedeutic Medicine, Medical School, University of Athens, Greece
| | - Efi Petinaki
- Department of Microbiology, Medical School, University of Thessaly, Larissa, Greece
| | - George L Daikos
- First Department of Propaedeutic Medicine, Medical School, University of Athens, Greece
| |
Collapse
|
635
|
Affiliation(s)
- W Witte
- Robert Koch Institute, Wernigerode Branch, Burgstrasse 37, 38855 Wernigerode, Germany.
| |
Collapse
|