601
|
Meijer JH, Schwartz WJ. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 2003; 18:235-49. [PMID: 12828281 DOI: 10.1177/0748730403018003006] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment.
Collapse
Affiliation(s)
- Johanna H Meijer
- Department of Physiology, Leiden University Medical Centre, 2300 RC Leiden, the Netherlands
| | | |
Collapse
|
602
|
Oster H, Baeriswyl S, Van Der Horst GTJ, Albrecht U. Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice. Genes Dev 2003; 17:1366-79. [PMID: 12782655 PMCID: PMC196069 DOI: 10.1101/gad.256103] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mPer1, mPer2, mCry1, and mCry2 genes play a central role in the molecular mechanism driving the central pacemaker of the mammalian circadian clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus. In vitro studies suggest a close interaction of all mPER and mCRY proteins. We investigated mPER and mCRY interactions in vivo by generating different combinations of mPer/mCry double-mutant mice. We previously showed that mCry2 acts as a nonallelic suppressor of mPer2 in the core clock mechanism. Here, we focus on the circadian phenotypes of mPer1/mCry double-mutant animals and find a decay of the clock with age in mPer1-/- mCry2-/- mice at the behavioral and the molecular levels. Our findings indicate that complexes consisting of different combinations of mPER and mCRY proteins are not redundant in vivo and have different potentials in transcriptional regulation in the system of autoregulatory feedback loops driving the circadian clock.
Collapse
Affiliation(s)
- Henrik Oster
- Department of Medicine, Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
603
|
Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:204-20. [PMID: 12791440 DOI: 10.1016/s0165-0173(03)00171-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A large number of physiological variables display 24-h or circadian rhythms. Genes dedicated to the generation and regulation of physiological circadian rhythms have now been identified in several species, including humans. These clock genes are involved in transcriptional regulatory feedback loops. The mutation of these genes in animals leads to abnormal rhythms or even to arrhythmicity in constant conditions. In this view, and given the similarities between the circadian system of humans and rodents, it is expected that mutations of clock genes in humans may give rise to health problems, in particular sleep and mood disorders. Here we first review the present knowledge of molecular mechanisms underlying circadian rhythmicity, and we then revisit human circadian rhythm syndromes in light of the molecular data.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Douglas Hospital Research Center, McGill University, 6875 LaSalle boulevard, Quebec H4H 1R3, Montreal, Canada
| | | |
Collapse
|
604
|
Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 2003; 18:227-34. [PMID: 12828280 DOI: 10.1177/0748730403018003005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An understanding of the retinal mechanisms in mammalian photoentrainment will greatly facilitate optimization of the wavelength, intensity, and duration of phototherapeutic treatments designed to phase shift endogenous biological rhythms. A small population of widely dispersed retinal ganglion cells projecting to the suprachiasmatic nucleus in the hypothalamus is the source of the critical photic input. Recent evidence has shown that many of these ganglion cells are directly photosensitive and serve as photoreceptors. Melanopsin, a presumptive photopigment, is an essential component in the phototransduction cascade within these intrinsically photosensitive ganglion cells and plays an important role in the retinal photoentrainment pathway. This review summarizes recent findings related to melanopsin and melanopsin ganglion cells and lists other retinal proteins that might serve as photopigments in the mammalian photoentrainment input pathway.
Collapse
Affiliation(s)
- Mark D Rollag
- Department of Anatomy Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
605
|
Abstract
Organisms populating the earth are under the steady influence of daily and seasonal changes resulting from the planet's rotation and orbit around the sun. This periodic pattern most prominently manifested by the light-dark cycle has led to the establishment of endogenous circadian timing systems that synchronize biological functions to the environment. The mammalian circadian system is composed of many individual, tissue-specific clocks. To generate coherent physiological and behavioral responses, the phases of this multitude of clocks are orchestrated by the master circadian pacemaker residing in the suprachiasmatic nuclei of the brain. Genetic, biochemical and genomic approaches have led to major advances in understanding the molecular and cellular basis of mammalian circadian clock components and mechanisms.
Collapse
Affiliation(s)
- Urs Albrecht
- Institute of Biochemistry, University of Fribourg, Rue du Museé 5, 1700 Fribourg, Switzerland.
| | | |
Collapse
|
606
|
Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, Foster RG. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 2003; 17:1793-801. [PMID: 12752778 DOI: 10.1046/j.1460-9568.2003.02616.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Melanopsin-expressing ganglion cells have been proposed as the photoreceptors mediating non-rod, non-cone ocular responses to light. Here we use the aged (approximately 2 years) rodless and coneless (rd/rd cl) mouse to assess the impact of progressive inner retinal cell loss on melanopsin expression, circadian entrainment and pupillary constriction. Aged rd/rd cl mice show substantial transneuronal retinal degeneration leaving only the ganglion cell layer and little of the inner nuclear layer. Despite this loss, quantitative reverse transcriptase-polymerase chain reaction showed normal levels of melanopsin expression, and immunocytochemistry demonstrated both the presence and normal cellular appearance of these cells. Furthermore, the optic nerves of the two genotypes (rd/rd cl and +/+) were not obviously different in animals older than 2 years. However, this massive level of retinal degeneration left both pupillary and circadian responses to light intact, even in rd/rd cl mice older than 2 years. Our data provide the first positive correlation between the persistence of melanopsin-expressing cells and the maintenance of both circadian and pupillary responses to light in the absence of rods and cones. These findings, together with recent studies on melanopsin knockout mice, are consistent with the hypothesis that melanopsin-expressing ganglion cells are photosensitive and mediate a range of irradiance-detection tasks.
Collapse
Affiliation(s)
- Ma'ayan Semo
- Department of Integrative & Molecular Neuroscience, Division of Neuroscience & Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | | | |
Collapse
|
607
|
Challet E, Caldelas I, Graff C, Pévet P. Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 2003; 384:711-9. [PMID: 12817467 DOI: 10.1515/bc.2003.079] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular clockwork in mammals involves various clock genes with specific temporal expression patterns. Synchronization of the master circadian clock located in the suprachiasmatic nucleus (SCN) is accomplished mainly via daily resetting of the phase of the clock by light stimuli. Phase shifting responses to light are correlated with induction of Per1, Per2 and Dec1 expression and a possible reduction of Cry2 expression within SCN cells. The timing of peripheral oscillators is controlled by the SCN when food is available ad libitum. Time of feeding, as modulated by temporal restricted feeding, is a potent 'Zeitgeber' (synchronizer) for peripheral oscillators with only weak synchronizing influence on the SCN clockwork. When restricted feeding is coupled with caloric restriction, however, timing of clock gene expression is altered within the SCN, indicating that the SCN function is sensitive to metabolic cues. The components of the circadian timing system can be differentially synchronized according to distinct, sometimes conflicting, temporal (time of light exposure and feeding) and homeostatic (metabolic) cues.
Collapse
Affiliation(s)
- Etienne Challet
- Laboratory of Neurobiology of Rhythms, Centre National de la Recherche Scientifique (UMR7518), University Louis Pasteur, Neuroscience Federation (IFR37), 12 rue de l'université, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
608
|
Refinetti R. Effects of prolonged exposure to darkness on circadian photic responsiveness in the mouse. Chronobiol Int 2003; 20:417-40. [PMID: 12868538 DOI: 10.1081/cbi-120021443] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Circadian rhythms in mammals are generated by an endogenous pacemaker but are modulated by environmental cycles, principally the alternation of light and darkness. Although much is known about nonparametric effects of light on the circadian system, little is known about other effects of photic stimulation. In the present study, which consists of a series of five experiments in mice, various manipulations of photic stimulation were used to dissect the mechanisms responsible for a variation in the magnitude of light-induced phase-shifts that results from prolonged exposure to darkness. The results confirmed previous observations that prolonged exposure to darkness causes an increase in the magnitude of phase shifts (both phase advances and phase delays) evoked by discrete light pulses. The results also indicated that the increase in responsiveness results from the lack of exposure to light per se and not from collateral effects of exposure to constant darkness such as the lack of previous entrainment. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system but with a much slower temporal course. The results suggest that circadian dark adaptation may take place at the retinal level, but it is not clear whether it involves a change in the sensitivity or maximal responsiveness of the system.
Collapse
Affiliation(s)
- Roberto Refinetti
- Circadian Rhythm Laboratory, University of South Carolina, Walterboro, South Carolina 29488, USA.
| |
Collapse
|
609
|
Abstract
The circadian rhythms are daily oscillations in various biological processes that are regulated by an endogenous clock. Disruption of these rhythms has been associated with cancer in humans. One of the cellular processes that is regulated by circadian rhythm is cell proliferation, which often shows asynchrony between normal and malignant tissues. This asynchrony highlights the importance of the circadian clock in tumour suppression in vivo and is one of the theoretical foundations for cancer chronotherapy. Investigation of the mechanisms by which the circadian clock controls cell proliferation and other cellular functions might lead to new therapeutic targets.
Collapse
Affiliation(s)
- Loning Fu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
610
|
Alvarez-Viejo M, Cernuda-Cernuda R, DeGrip WJ, Alvarez-López C, García-Fernández JM. Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis. Brain Res 2003; 969:36-43. [PMID: 12676362 DOI: 10.1016/s0006-8993(03)02273-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of the present investigation was to provide a detailed description of the encephalic photoreceptors of Xenopus laevis at the light microscopic level and to determine their relationship with the neurosecretory cells of the hypothalamus in order to further our understanding of photoperiodic regulation of seasonal rhythms. Numerous opsin-positive neurons were found in the hypothalamic magnocellular preoptic nucleus and their axonal processes were seen to run laterally towards the basal regions of the brain, reaching the neural lobe of the hypophysis. Analysis of labelling with different antisera in adjacent sections, as well as double-immunolabelling carried out on the same section, revealed that mesotocin immunoreactivity was present in most of the opsin-positive neurons; however, no evidence for opsin and vasotocin coexpression was found in any of the sections analysed. The close localization of LHRH and opsin/mesotocin fibers in some regions of the brain, such as the median eminence, suggests that some interaction between these two systems might exist. In conclusion, in this study we provide the first strong evidence that the hypothalamic mesotocinergic neurons, which have been proved to be connected to the GnRH system in other species, are directly involved in photoreception in Xenopus laevis. These findings represent a novel contribution to our understanding of how light influences the seasonal reproductive cycles in lower vertebrates.
Collapse
Affiliation(s)
- María Alvarez-Viejo
- Department of Morphology and Cellular Biology, University of Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
611
|
Abstract
The circadian clock provides a temporal structure that modulates biological functions from the level of gene expression to performance and behaviour. Pioneering work on the fruitfly Drosophila has provided a basis for understanding how the temporal sequence of daily events is controlled in mammals. New insights have come from work on mammals, specifically from studying the daily activity profiles of clock mutant mice; from more detailed recordings of clock gene expression under different experimental conditions and in different tissues; and from the discovery and analysis of a growing number of additional clock genes. These new results are moving the model paradigm away from a simple negative feedback loop to a molecular network. Understanding the coupling and interactions of this network will help us to understand the evolution of the circadian system, advance medical diagnosis and treatment, improve the health of shift workers and frequent travellers, and will generally enable the treatment of clock-related pathologies.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute for Medical Psychology, University of Munich, Goethestrasse 31, 80336 Munich, Germany.
| | | |
Collapse
|
612
|
Affiliation(s)
- Michael Menaker
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|