601
|
Volz T, Biedermann T. Natürliche Immunität und ihre Bedeutung für das Mikrobiom. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
602
|
Natsuga K, Cipolat S, Watt FM. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. J Invest Dermatol 2016; 136:99-106. [PMID: 26763429 PMCID: PMC4759621 DOI: 10.1038/jid.2015.383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/24/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance.
Collapse
Key Words
- amp, antimicrobial protein
- epi-/- mice, mice lacking envoplakin, periplakin, and involucrin
- fish, fluorescence in situ hybridization
- mpo, myeloperoxidase
- nkg2d, natural killer group 2d
- spf, specific pathogen free
- tpa, tetradecanoylphorbol-13-acetate
- wt, wild-type
Collapse
Affiliation(s)
- Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sara Cipolat
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
603
|
Ruane D, Chorny A, Lee H, Faith J, Pandey G, Shan M, Simchoni N, Rahman A, Garg A, Weinstein EG, Oropallo M, Gaylord M, Ungaro R, Cunningham-Rundles C, Alexandropoulos K, Mucida D, Merad M, Cerutti A, Mehandru S. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses. J Exp Med 2015; 213:53-73. [PMID: 26712806 PMCID: PMC4710201 DOI: 10.1084/jem.20150567] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Ruane et al. demonstrate a role for the microbiota in modulating protective immunity to intranasal vaccination via the ability of lung dendritic cells to induce B cell IgA class switching. Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103+ and CD24+CD11b+ DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell–dependent or –independent pathways. Compared with lung DCs (LDC), lung CD64+ macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid–dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT–specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs.
Collapse
Affiliation(s)
- Darren Ruane
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alejo Chorny
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Haekyung Lee
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jeremiah Faith
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Meimei Shan
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Noa Simchoni
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adeeb Rahman
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aakash Garg
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Erica G Weinstein
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michael Oropallo
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Michelle Gaylord
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan Ungaro
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| | - Miriam Merad
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Andrea Cerutti
- The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
604
|
Lopes MEM, Carneiro MBH, dos Santos LM, Vieira LQ. Indigenous microbiota and Leishmaniasis. Parasite Immunol 2015; 38:37-44. [DOI: 10.1111/pim.12279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022]
Affiliation(s)
- M. E. M. Lopes
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - M. B. H. Carneiro
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - L. M. dos Santos
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - L. Q. Vieira
- Departamento de Bioquímica e Imunologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
605
|
Vongsa RA, Minerath RA, Busch MA, Tan J, Koenig DW. In vitro evaluation of nutrients that selectively confer a competitive advantage to lactobacilli. Benef Microbes 2015; 7:299-304. [PMID: 26689232 DOI: 10.3920/bm2015.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An assay was developed that tested the ability of Lactobacillus acidophilus to outcompete a challenge of Escherichia coli in a mixed culture containing different test nutrients. Using this assay, addition of fructo-oligosaccharide to the media allowed L. acidophilus to outcompete a challenge of E. coli, whereas in a mixed culture without the prebiotic the trend was reversed. Growth curves generated for E. coli in a single culture showed that fructo-oligosaccharide did not affect growth, indicating that the carbohydrate was not toxic to E. coli. This indicates that fructo-oligosaccharides may increase the ability of beneficial microbes to outcompete a pathogenic challenge. These results were confirmed using a skin simulant model that incorporates growth of the organisms at an air-surface interface to mimic the vulvar environment. It is possible to use a co-culture assay as an in vitro screening tool to define nutrients that confer a competitive advantage to beneficial flora specific to the female urogenital tract.
Collapse
Affiliation(s)
- R A Vongsa
- 1 Kimberly Clark Corporation, 2100 County Rd II, Neenah, WI 54946, USA
| | - R A Minerath
- 1 Kimberly Clark Corporation, 2100 County Rd II, Neenah, WI 54946, USA
| | - M A Busch
- 1 Kimberly Clark Corporation, 2100 County Rd II, Neenah, WI 54946, USA
| | - J Tan
- 1 Kimberly Clark Corporation, 2100 County Rd II, Neenah, WI 54946, USA
| | - D W Koenig
- 1 Kimberly Clark Corporation, 2100 County Rd II, Neenah, WI 54946, USA
| |
Collapse
|
606
|
Campbell DJ. Control of Regulatory T Cell Migration, Function, and Homeostasis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2507-13. [PMID: 26342103 DOI: 10.4049/jimmunol.1500801] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Foxp3(+) regulatory T cells (Tregs) are essential for preventing autoimmunity and uncontrolled inflammation, and they modulate immune responses during infection and the development of cancer. Accomplishing these tasks requires the widespread distribution of Tregs in both lymphoid and nonlymphoid tissues, and the selective recruitment of Tregs to different tissue sites has emerged as a key checkpoint that controls tissue inflammation in autoimmunity, infection, and cancer development, as well as in the context of allograft acceptance or rejection. Additionally, Tregs are functionally diverse, and it has become clear that some of this diversity segregates with Treg localization to particular tissue sites. In this article, I review the progress in understanding the mechanisms of Treg trafficking and discuss factors controlling their homeostatic maintenance and function in distinct tissue sites.
Collapse
Affiliation(s)
- Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
607
|
Eyerich K, Eyerich S, Biedermann T. The Multi-Modal Immune Pathogenesis of Atopic Eczema. Trends Immunol 2015; 36:788-801. [DOI: 10.1016/j.it.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
608
|
Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KPC, Harris RN, Belden LK, Gratwicke B. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc Biol Sci 2015; 282:rspb.2014.2881. [PMID: 25788591 DOI: 10.1098/rspb.2014.2881] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Symbiotic microbes can dramatically impact host health and fitness, and recent research in a diversity of systems suggests that different symbiont community structures may result in distinct outcomes for the host. In amphibians, some symbiotic skin bacteria produce metabolites that inhibit the growth of Batrachochytrium dendrobatidis (Bd), a cutaneous fungal pathogen that has caused many amphibian population declines and extinctions. Treatment with beneficial bacteria (probiotics) prevents Bd infection in some amphibian species and creates optimism for conservation of species that are highly susceptible to chytridiomycosis, the disease caused by Bd. In a laboratory experiment, we used Bd-inhibitory bacteria from Bd-tolerant Panamanian amphibians in a probiotic development trial with Panamanian golden frogs, Atelopus zeteki, a species currently surviving only in captive assurance colonies. Approximately 30% of infected golden frogs survived Bd exposure by either clearing infection or maintaining low Bd loads, but this was not associated with probiotic treatment. Survival was instead related to initial composition of the skin bacterial community and metabolites present on the skin. These results suggest a strong link between the structure of these symbiotic microbial communities and amphibian host health in the face of Bd exposure and also suggest a new approach for developing amphibian probiotics.
Collapse
Affiliation(s)
- Matthew H Becker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shawna Cikanek
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Anna E Savage
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Nichole Mattheus
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | | | | | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
609
|
Induction, Propagation, and Activity of Host Nitric Oxide: Lessons from Leishmania Infection. Trends Parasitol 2015; 31:653-664. [DOI: 10.1016/j.pt.2015.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|
610
|
Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol Res 2015; 3:103-9. [PMID: 25660553 DOI: 10.1158/2326-6066.cir-14-0225] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myeloid cells represent a major component of the tumor microenvironment, where they play divergent dual roles. They can induce antitumor immune responses, but mostly they promote immune evasion, tumor progression, and metastasis formation. Thus, strategies aiming at reprogramming the tumor microenvironment represent a promising immunotherapy approach. Myeloid cells respond to environmental factors including signals derived from commensal microbes. In this Cancer Immunology at the Crossroads overview, we discuss recent advances on the effects of the commensal microbiota on myeloid-cell functions and how they affect the response to cancer therapy.
Collapse
Affiliation(s)
- Romina S Goldszmid
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland. Leidos Biomedical Research, Inc., Bethesda, Maryland
| | - Sophie Viaud
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud, Kremlin Bicêtre, France
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
611
|
Levy M, Thaiss CA, Elinav E. Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Med 2015; 7:120. [PMID: 26589591 PMCID: PMC4654884 DOI: 10.1186/s13073-015-0249-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The human microbiome, often referred to as the 'second genome', encompasses up to 100-fold more genes than the host genome. In contrast to the human genome, the microbial genome is flexible and amenable to change during the host's lifetime. As the composition of the microbial metagenome has been associated with the development of human disease, the mechanisms controlling the composition and function of the metagenome are of considerable interest and therapeutic potential. In the past few years, studies have revealed how the host immune system is involved in determining the microbial metagenome, and, in turn, how the microbiota regulates gene expression in the immune system. This species-specific bidirectional interaction is required for homeostatic health, whereas aberrations in the tightly controlled regulatory circuits that link the host immunogenome and the microbial metagenome drive susceptibility to common human diseases. Here, we summarize some of the major principles orchestrating this cross-talk between microbial and host genomes, with a special focus on the interaction between the intestinal immune system and the gut microbiome. Understanding the reciprocal genetic and epigenetic control between host and microbiota will be an important step towards the development of novel therapies against microbiome-driven diseases.
Collapse
Affiliation(s)
- Maayan Levy
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel
| | - Christoph A Thaiss
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 100 Herzl Street, Rehovot, 76100, Israel.
| |
Collapse
|
612
|
The role of innate immune signaling in the pathogenesis of atopic dermatitis and consequences for treatments. Semin Immunopathol 2015; 38:29-43. [DOI: 10.1007/s00281-015-0544-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
|
613
|
Yuan JY, Zhou YH. Regulation of mucosal immunity and preventing infectious disease occurrence by intestinal microbiota. Shijie Huaren Xiaohua Zazhi 2015; 23:4852-4858. [DOI: 10.11569/wcjd.v23.i30.4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria are colonizing in the mammalian intestine, and most of these bacteria have co-evolved with the host in a symbiotic relationship. A principal function of the intestinal microbiota is to regulate the gut immune response and protect the intestine against pathogen infection. In this review, we provide an overview of the current understanding of the role of intestinal microbiota both in the development of intestinal lymphoid tissue and immune cells, and in directly or indirectly preventing the occurrence of infectious diseases.
Collapse
|
614
|
Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS One 2015; 10:e0141067. [PMID: 26510097 PMCID: PMC4624846 DOI: 10.1371/journal.pone.0141067] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Interactions between the immune system and skin bacteria are of major importance in the pathophysiology of atopic dermatitis (AD), yet our understanding of them is limited. From a cohort of very young AD children (1 to 3 years old), sensitized to Dermatophagoides pteronyssinus allergens (Der p), we conducted culturomic analysis of skin microbiota, cutaneous transcript profiling and quantification of anti-Der p CD4+ T cells. This showed that the presence of S. aureus in inflamed skin of AD patients was associated with a high IgE response, increased expression of inflammatory and Th2/Th22 transcripts and the prevalence of a peripheral Th2 anti-Der p response. Monocyte-derived dendritic cells (moDC) exposed to the S. aureus and S. epidermidis secretomes were found to release pro-inflammatory IFN-γ and anti-inflammatory IL-10, respectively. Allogeneic moDC exposed to the S. aureus secretome also induced the proliferation of CD4+ T cells and this effect was counteracted by concurrent exposure to the S. epidermidis secretome. In addition, whereas the S. epidermidis secretome promoted the activity of regulatory T cells (Treg) in suppressing the proliferation of conventional CD4+ T cells, the Treg lost this ability in the presence of the S. aureus secretome. We therefore conclude that S. aureus may cause and promote inflammation in the skin of AD children through concomitant Th2 activation and the silencing of resident Treg cells. Commensals such as S. epidermidis may counteract these effects by inducing the release of IL-10 by skin dendritic cells.
Collapse
|
615
|
Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response. Infect Immun 2015; 84:205-15. [PMID: 26502910 DOI: 10.1128/iai.00822-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection.
Collapse
|
616
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
617
|
Affiliation(s)
- Gyohei Egawa
- Immune Imaging Program, The Centenary Institute, Locked Bag No. 6, Newtown, New South Wales 2042, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, Locked Bag No. 6, Newtown, New South Wales 2042, Australia
- Discipline of Dermatology, Sydney Medical School, Sydney, New South Wales 2006, Australia
- Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
618
|
Lood R, Waldetoft KW, Nordenfelt P. Localization-triggered bacterial pathogenesis. Future Microbiol 2015; 10:1659-68. [PMID: 26437846 DOI: 10.2217/fmb.15.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial infections are becoming an increasing problem worldwide and there is a need for a deeper understanding of how bacteria turn pathogenic. Here, we suggest that one answer may be found by taking into account the localization of the bacteria, both at an anatomical level and at a microenvironment level. Both commensals and traditional pathogens alter their interaction with the human host depending on the local surroundings--turning either more or less virulent. These localization effects could derive from the characteristics of different anatomical sites but also from local differences within a microenvironment. In order to understand the adaptive functions of bacterial virulence factors, we need to study the bacteria in the environments where they have evolved.
Collapse
Affiliation(s)
- Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| | | | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
619
|
Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 2015; 6:1050. [PMID: 26500616 PMCID: PMC4594012 DOI: 10.3389/fmicb.2015.01050] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022] Open
Abstract
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo Brazil
| | - Mauro Napolitano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo Brazil
| |
Collapse
|
620
|
Gern JE. Promising candidates for allergy prevention. J Allergy Clin Immunol 2015; 136:23-8. [PMID: 26145984 DOI: 10.1016/j.jaci.2015.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Recent advances in understanding environmental risk factors for allergic diseases in children have led to renewed efforts aimed at prevention. Factors that modify the probability of developing allergies include prenatal exposures, mode of delivery, diet, patterns of medication use, and exposure to pets and farm animals. Recent advances in microbial detection techniques demonstrate that exposure to diverse microbial communities in early life is associated with a reduction in allergic disease. In fact, microbes and their metabolic products might be essential for normal immune development. Identification of these risk factors has provided new targets for prevention of allergic diseases, and possibilities of altering microbial exposure and colonization to reduce the incidence of allergies is a promising approach. This review examines the rationale, feasibility, and potential effect for the prevention of childhood allergic diseases and explores possible strategies for enhancing exposure to beneficial microbes.
Collapse
Affiliation(s)
- James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin-Madison, Madison, Wis.
| |
Collapse
|
621
|
[Scalp folliculitis: Dissequans or decalvans?]. Ann Dermatol Venereol 2015; 142:629-32. [PMID: 26428395 DOI: 10.1016/j.annder.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/16/2015] [Accepted: 08/05/2015] [Indexed: 01/10/2023]
|
622
|
The role of IL-10 in microbiome-associated immune modulation and disease tolerance. Cytokine 2015; 75:291-301. [DOI: 10.1016/j.cyto.2014.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
|
623
|
|
624
|
Abstract
Innate and adaptive immunity are activated by both infections and tumors. The immune cells infiltrating infected tissues are similar to those infiltrating neoplastic tissues, but their function in the first setting is quite different from that in the latter. Infected tissues are usually characterized by an acute inflammatory environment that favors the generation of protective immunity, whereas tumors are characterized by chronic inflammation that suppresses antitumor immune responses and promotes tumor growth and escape from the immune system. During resolution of the immune response to infection or in chronic infections, immunosuppressive mechanisms that are typical of the tumor microenvironment are observed in infected tissues. Conversely, immunotherapy and chemotherapy may redirect the tumor microenvironment and allow the activation of effective anticancer immune responses. The transformation of neoplastic cells is determined by intrinsic genetic alteration but tumor progression is controlled by the tumor microenvironment and by the inflammatory and immune response to the tumors. Commensal microorganisms live in great numbers in all our barrier epithelia and control inflammation and immunity both locally and systemically. The commensal microbiota is essential for optimal immune response to pathogens and for the establishment of autoimmunity. It also modulates inflammation and immune responses that affect tumor growth and it is required for the effectiveness of anticancer immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
625
|
Shpigel NY, Pasternak Z, Factor G, Gottlieb Y. Diversity of Bacterial Biofilm Communities on Sprinklers from Dairy Farm Cooling Systems in Israel. PLoS One 2015; 10:e0139111. [PMID: 26407190 PMCID: PMC4634551 DOI: 10.1371/journal.pone.0139111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
On dairy farms in hot climates worldwide, cows suffer from heat stress, which is alleviated by the use of water cooling systems. Sprinklers and showerheads are known to support the development of microbial biofilms, which can be a source of infection by pathogenic microorganisms. The aim of this study was to investigate the presence of microbial biofilms in dairy cooling systems, and to analyze their population compositions using culture-independent technique, 16S rRNA gene sequencing. Biofilm samples were collected on eight dairy farms from 40 sprinklers and the microbial constituents were identified by deep sequencing of the 16S rRNA gene. A total of 9,374 operational taxonomic units (OTUs) was obtained from all samples. The mean richness of the samples was 465 ± 268 OTUs which were classified into 26 different phyla; 76% of the reads belonged to only three phyla: Proteobacteria, Actinobacteria and Firmicutes. Although the most prevalent OTUs (Paracoccus, Methyloversatilis, Brevundimonas, Porphyrobacter, Gp4, Mycobacterium, Hyphomicrobium, Corynebacterium and Clostridium) were shared by all farms, each farm formed a unique microbial pattern. Some known potential human and livestock pathogens were found to be closely related to the OTUs found in this study. This work demonstrates the presence of biofilm in dairy cooling systems which may potentially serve as a live source for microbial pathogens.
Collapse
Affiliation(s)
- Nahum Y. Shpigel
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gilad Factor
- Hachaklait, Mutual Society for Veterinary Services, Caesarea Industrial Park, Caesarea, Israel
| | - Yuval Gottlieb
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
626
|
Powers CE, McShane DB, Gilligan PH, Burkhart CN, Morrell DS. Microbiome and pediatric atopic dermatitis. J Dermatol 2015; 42:1137-42. [PMID: 26388516 DOI: 10.1111/1346-8138.13072] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis is a chronic inflammatory skin condition with drastic impacts on pediatric health. The pathogenesis of this common disease is not well understood, and the complex role of the skin microbiome in the pathogenesis and progression of atopic dermatitis is being elucidated. Skin commensal organisms promote normal immune system functions and prevent the colonization of pathogens. Alterations in the skin microbiome may lead to increased Staphylococcus aureus colonization and atopic dermatitis progression. Despite the evidence for their important role, probiotics have not been deemed efficacious for the treatment of atopic dermatitis, although studies suggest that probiotics may be effective at preventing the development of atopic dermatitis when given to young infants. This review will cover the most recent published work on the microbiome and pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Claire E Powers
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Diana B McShane
- Department of Dermatology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter H Gilligan
- Clinical Microbiology-Immunology Laboratories, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA
| | - Craig N Burkhart
- Department of Dermatology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dean S Morrell
- Department of Dermatology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
627
|
Befus M, Lowy FD, Miko BA, Mukherjee DV, Herzig CTA, Larson EL. Obesity as a Determinant of Staphylococcus aureus Colonization Among Inmates in Maximum-Security Prisons in New York State. Am J Epidemiol 2015; 182:494-502. [PMID: 26292691 DOI: 10.1093/aje/kwv062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Obesity increases a person's susceptibility to a variety of infections, including Staphylococcus aureus infections, which is an important cause of morbidity in correctional settings. Using a cross-sectional design, we assessed the association between obesity and S. aureus colonization, a risk factor for subsequent infection, in New York State maximum-security prisons (2011-2013). Anterior nares and oropharyngeal cultures were collected. Structured interviews and medical records were used to collect demographic, behavioral, and medical data. Body mass index (BMI; weight (kg)/height (m(2))) was categorized as 18.5-24.9, 25-29.9, 30-34.9, or ≥35. The association between BMI and S. aureus colonization was assessed using log-binomial regression. Thirty-eight percent of 638 female inmates and 26% of 794 male inmates had a BMI of 30 or higher. More than 40% of inmates were colonized. Female inmates with a BMI of 25-29.9 (prevalence ratio (PR) = 1.37, 95% confidence interval (CI): 1.06, 1.76), 30-34.9 (PR = 1.52, 95% CI: 1.17, 1.98), or ≥35 (PR = 1.49, 95% CI: 1.13, 1.96) had a higher likelihood of colonization than did those with a BMI of 18.5-24.9 after we controlled for age, educational level, smoking status, diabetes status, and presence of human immunodeficiency virus. Colonization was higher among male inmates with a BMI of 30-34.9 (PR = 1.27, 95% CI: 1.01, 1.61). Our findings demonstrate an association between BMI and S. aureus colonization among female prisoners. Potential contributory biologic and behavioral factors should be explored.
Collapse
|
628
|
Christian N, Whitaker BK, Clay K. Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 2015; 6:869. [PMID: 26441846 PMCID: PMC4561359 DOI: 10.3389/fmicb.2015.00869] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.
Collapse
Affiliation(s)
- Natalie Christian
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | - Briana K. Whitaker
- *Correspondence: Natalie Christian and Briana K. Whitaker, Evolution, Ecology and Behavior Program, Department of Biology, Indiana University, Jordan Hall, 1001 East 3rd Street, Bloomington, IN 47405, USA, ;
| | | |
Collapse
|
629
|
Gimblet C, Loesche MA, Carvalho L, Carvalho EM, Grice EA, Artis D, Scott P. IL-22 Protects against Tissue Damage during Cutaneous Leishmaniasis. PLoS One 2015; 10:e0134698. [PMID: 26285207 PMCID: PMC4540492 DOI: 10.1371/journal.pone.0134698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/13/2015] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a disease characterized by ulcerating skin lesions, the resolution of which requires an effective, but regulated, immune response that limits parasite growth without causing permanent tissue damage. While mechanisms that control the parasites have been well studied, the factors regulating immunopathologic responses are less well understood. IL-22, a member of the IL-10 family of cytokines, can contribute to wound healing, but in other instances promotes pathology. Here we investigated the role of IL-22 during leishmania infection, and found that IL-22 limits leishmania-induced pathology when a certain threshold of damage is induced by a high dose of parasites. Il22-/- mice developed more severe disease than wild-type mice, with significantly more pathology at the site of infection, and in some cases permanent loss of tissue. The increased inflammation was not due to an increased parasite burden, but rather was associated with the loss of a wound healing phenotype in keratinocytes. Taken together, these studies demonstrate that during cutaneous leishmaniasis, IL-22 can play a previously unappreciated role in controlling leishmania-induced immunopathology.
Collapse
Affiliation(s)
- Ciara Gimblet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Michael A. Loesche
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Lucas Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciências e Tecnologia—Doenças Tropicais, Salvador, Bahia, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| |
Collapse
|
630
|
Scholz F, Naik S, Sutterwala FS, Kaplan DH. Langerhans Cells Suppress CD49a+ NK Cell-Mediated Skin Inflammation. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209621 DOI: 10.4049/jimmunol.1500935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recruitment of innate immune effector cells into sites of infection is a critical component of resistance to pathogen infection. Using a model of intradermal footpad injection of Candida albicans, we observed that inflammation as measured by footpad thickness and neutrophil recruitment occurred independent of adoptive immunity but was significantly reduced in MyD88(-/-) and IL-6(-/-) mice. Unexpectedly, huLangerin-DTA mice (ΔLC) that lack Langerhans cells (LC) developed increased skin inflammation and expressed higher amounts of IL-6, suggesting a suppressive role for LC. Increased inflammation also occurred in Rag1(-/-) ΔLC mice but was reversed by Ab-mediated ablation of NK cells. CXCR6(+)CD49a(+) NK cells are a liver-resident subset that can mediate inflammatory skin responses. We found that exaggerated skin inflammation was absent in ΔLC × CXCR6(-/-) mice. Moreover, the exaggerated response in ΔLC mice could be adoptively transferred with liver CD49a(+) NK cells. Finally, CD49a(+) NK cells in ΔLC but not control mice were recruited to the skin, and inhibition of their recruitment prevented the exaggerated response. Thus, in the absence of LC, CD49a(+) liver NK cells display an inappropriately proinflammatory phenotype that results in increased local skin inflammation. These data reveal a novel function for LC in the regulation of this recently described subset of skin tropic NK cells.
Collapse
Affiliation(s)
- Felix Scholz
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Shruti Naik
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Fayyaz S Sutterwala
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and Veterans Affairs Medical Center, Iowa City, IA 52241
| | - Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
631
|
Zielinski CE. Microbe driven T-helper cell differentiation: lessons from Candida albicans and Staphylococcus aureus. Exp Dermatol 2015; 23:795-8. [PMID: 25040443 DOI: 10.1111/exd.12493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
T-helper cells integrate signals from their T-cell receptor, co-stimulatory molecules and cytokine receptors to polarize into effector T-helper subsets with specialized functions in antigen clearance or tolerance. To this end, antigen presenting cells and the local microenvironment tailor effector T-helper cells to respond appropriately to microbial challenges. These challenges comprise protection from pathogens on the one hand and tolerance for the commensal microbiota on the other hand. To accomplish these complex tasks, the host immune system needs to be highly specialized and stringently regulated. In this viewpoint article, we will concentrate on how microbes shape human T-helper cell responses and how this could relate to the emergence of chronic inflammatory diseases. Understanding the intricate communication between adaptive immunity and microbes will be important for the rational design of novel immunomodulatory therapies and also for anticipating infectious complications upon therapeutic intervention with cytokine depleting therapies, such as biologicals in dermatology.
Collapse
Affiliation(s)
- Christina E Zielinski
- Cellular Immunoregulation Group, Department of Dermatology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg-Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
632
|
Abstract
The human microbiome, i.e. the collection of microbes that live on, in and interact with the human body, is extraordinarily diverse; microbiota have been detected in every tissue of the human body interrogated to date. Resident microbiota interact extensively with immune cells and epithelia at mucosal surfaces including the airways, and chronic inflammatory and allergic respiratory disorders are associated with dysbiosis of the airway microbiome. Chronic rhinosinusitis (CRS) is a heterogeneous disease with a large socioeconomic impact, and recent studies have shown that sinus inflammation is associated with decreased sinus bacterial diversity and the concomitant enrichment of specific sinus pathogens. Here, we discuss the potential role for probiotic supplementation for CRS in light of this increasing understanding of the airway microbiome and microbial interactions with the host. We focus on the ecological significance of microbiome-based probiotic supplementation and potential interactions with the gastrointestinal tract and consider microbial administration methods for treatment of CRS.
Collapse
|
633
|
Abstract
Leading scientists in microbiome research met at Lake Titisee, Germany, in April 2014 to discuss the current state of the field, the most urgent and unresolved questions, state-of-the-art technological advances, and new avenues of future research. We summarize some of the concepts and themes discussed at this meeting.
Collapse
Affiliation(s)
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
634
|
Biedermann T, Skabytska Y, Kaesler S, Volz T. Regulation of T Cell Immunity in Atopic Dermatitis by Microbes: The Yin and Yang of Cutaneous Inflammation. Front Immunol 2015. [PMID: 26217343 PMCID: PMC4500098 DOI: 10.3389/fimmu.2015.00353] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease predominantly mediated by T helper cells. While numerous adaptive immune mechanisms in AD pathophysiology have been elucidated in detail, deciphering the impact of innate immunity in AD pathogenesis has made substantial progress in recent years and is currently a fast evolving field. As innate and adaptive immunity are intimately linked, cross-talks between these two branches of the immune system are critically influencing the resulting immune response and disease. Innate immune recognition of the cutaneous microbiota was identified to substantially contribute to immune homeostasis and shaping of protective adaptive immunity in the absence of inflammation. Disturbances in the composition of the skin microbiome with reduced microbial diversity and overabundance of Staphylococcus spp. have been shown to be associated with AD inflammation. Distinct Staphylococcus aureus associated microbial associated molecular patterns (MAMPs) binding to TLR2 heterodimers could be identified to initiate long-lasting cutaneous inflammation driven by T helper cells and consecutively local immune suppression by induction of myeloid-derived suppressor cells further favoring secondary skin infections as often seen in AD patients. Moreover dissecting cellular and molecular mechanisms in cutaneous innate immune sensing in AD pathogenesis paved the way for exploiting regulatory and anti-inflammatory pathways to attenuate skin inflammation. Activation of the innate immune system by MAMPs of non-pathogenic bacteria on AD skin alleviated cutaneous inflammation. The induction of tolerogenic dendritic cells, interleukin-10 expression and regulatory Tr1 cells were shown to mediate this beneficial effect. Thus, activation of innate immunity by MAMPs of non-pathogenic bacteria for induction of regulatory T cell phenotypes seems to be a promising strategy for treatment of inflammatory skin disorders such as AD. These new findings demonstrate how detailed analyses identify partly opposing consequences of microbe sensing by the innate immune system and how these mechanisms translate into AD pathogenesis as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Tilo Biedermann
- Department of Dermatology and Allergy, Technische Universität München , Munich , Germany
| | - Yuliya Skabytska
- Department of Dermatology, University Hospital , Tübingen , Germany
| | - Susanne Kaesler
- Department of Dermatology, University Hospital , Tübingen , Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, Technische Universität München , Munich , Germany
| |
Collapse
|
635
|
Inflammation induces dermal Vγ4+ γδT17 memory-like cells that travel to distant skin and accelerate secondary IL-17-driven responses. Proc Natl Acad Sci U S A 2015; 112:8046-51. [PMID: 26080440 DOI: 10.1073/pnas.1508990112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gamma delta (γδ) T cells represent a major IL-17 committed T-cell population (γδT17 cells) in the mouse dermis. Following exposure to the inflammatory agent imiquimod (IMQ) the Vγ4(+) subset of γδT cells produce IL-17 in the skin and expand rapidly in draining lymph nodes (LNs). Local IMQ treatment in humans is known to exacerbate psoriasis skin lesion activity at distant sites. Whether expanded γδT17 cells sensitize distant sites to inflammation has been unknown. Here we show that expanded Vγ4(+) γδT17 cells egress from LNs in a fingolimod (FTY720)-sensitive manner and use C-C chemokine receptor type 2 to accumulate in inflamed skin where they augment neutrophil recruitment and inflammation. They also travel to noninflamed skin and peripheral LNs and remain in elevated numbers at these distant sites for at least 3 mo. Sensitized mice show more rapid skin inflammation and greater proliferation and IL-17 production by Vγ4(+) γδT cells upon imiquimod challenge. Transfer experiments confirm that memory-like Vγ4(+) γδT17 cells respond more rapidly. Memory-like Vγ4(+) γδT17 cells are distinguished by greater IL-1R1 expression and more proliferation in response to IL-1β. These findings establish that local skin inflammation leads to faster and stronger secondary responses to the same stimulus through long-term and systemic changes in the composition and properties of the dermal γδT-cell population.
Collapse
|
636
|
Abstract
PURPOSE OF REVIEW Research on atopic dermatitis is actively growing and continuously completing our knowledge on the pathophysiology of this complex disease. RECENT FINDINGS Genome-wide association studies revealed new susceptibility loci for atopic dermatitis. In addition, different tissue-specific patterns of DNA methylation have been identified as first evidence for the relevance of epigenetic modifications in atopic dermatitis. Moreover, interest is emerging on the role of the skin and gut microbiome in atopic dermatitis. Signals mediated via pattern recognition receptors of the innate immune system have been analyzed in more detail, and the role of cytokines, such as IL-22, IL-25, IL-31 and IL-33 as well as innate lymphoid cells, has been studied. SUMMARY Taken together, better knowledge of atopic dermatitis pathways will form the basis for the development of rationale-based therapeutic approaches in the future.
Collapse
|
637
|
Sanin DE, Prendergast CT, Bourke CD, Mountford AP. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive. PLoS Pathog 2015; 11:e1004841. [PMID: 25974019 PMCID: PMC4431738 DOI: 10.1371/journal.ppat.1004841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. The skin is a major barrier protecting the host from pathogen infection, but is also a site for immune regulation. Using a murine model of repeated percutaneous exposure to infectious Schistosoma mansoni cercariae, we show that, in the skin, CD4+ T cells that do not express markers of conventional regulatory T cells are the main early source of immunoregulatory IL-10 and are functionally suppressive of adaptive immune responses. We demonstrate that the production of regulatory IL-10 in the skin is greatly enhanced after repeated schistosome infection compared to levels present after a single infection and that it limits both neutrophil recruitment and local CD4+ T cell proliferation, thereby preventing excessive inflammation and tissue damage. Initially (day 1), IL-10 producing CD4+ T cells are reactive towards skin commensal bacteria, although over succeeding days they progressively become specific for schistosome antigens. Consequently, our findings highlight a role for early IL-10 produced by dermal CD4+ T cells to mediate immune regulation in advance of later stage chronic infection conventionally associated with the presence of IL-10. Our work provides a mechanistic insight into the triggers of early IL-10 production at barrier sites like the skin, and suggests how tolerance and pathogen clearance might be co-regulated early after exposure to infectious agents.
Collapse
Affiliation(s)
- David E. Sanin
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Catriona T. Prendergast
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Claire D. Bourke
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Adrian P. Mountford
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
638
|
Abstract
Each individual harbours a unique set of commensal microorganisms, collectively referred to as the microbiota. Notably, these microorganisms exceed the number of cells in the human body by 10-fold. This finding has accelerated a shift in our understanding of human physiology, with the realization that traits necessary for health are both encoded and influenced by the human genome and the microbiota. Our understanding of the aetiology of complex diseases has, therefore, evolved with increasing awareness that the human microbiota has an active and critical role in maintaining health and inducing disease. Indeed, findings from bioinformatic studies indicate that the microbiota and microbiome have multiple effects on the innate and adaptive immune systems, with effects on infection, autoimmune disease and cancer. In this Review, we first address the important statistical and informatics aspects that should be considered when characterizing the composition of microbiota. We next highlight the effects of the microbiota on the immune system and the implications of these effects on organ failure and transplantation. Finally, we reflect on the future perspectives for studies of the microbiota, including novel diagnostic tests and therapeutics.
Collapse
|
639
|
Abstract
The mammalian immune system communicates with skin-resident microbes, and some of these microbes provide benefits to the host. In a recent paper in Nature, Naik et al. (2015) provide evidence that the murine epidermis permits S. epidermidis, a skin-specific bacterium, to shape the immune response.
Collapse
Affiliation(s)
- Richard L Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
640
|
Nutten S. Atopic dermatitis: global epidemiology and risk factors. ANNALS OF NUTRITION AND METABOLISM 2015; 66 Suppl 1:8-16. [PMID: 25925336 DOI: 10.1159/000370220] [Citation(s) in RCA: 735] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease posing a significant burden on health-care resources and patients' quality of life. It is a complex disease with a wide spectrum of clinical presentations and combinations of symptoms. AD affects up to 20% of children and up to 3% of adults; recent data show that its prevalence is still increasing, especially in low-income countries. First manifestations of AD usually appear early in life and often precede other allergic diseases such as asthma or allergic rhinitis. Individuals affected by AD usually have genetically determined risk factors affecting the skin barrier function or the immune system. However, genetic mutations alone might not be enough to cause clinical manifestations of AD, and it is merely the interaction of a dysfunctional epidermal barrier in genetically predisposed individuals with harmful effects of environmental agents which leads to the development of the disease. AD has been described as an allergic skin disease, but today, the contribution of allergic reactions to the initiation of AD is challenged, and it is proposed that allergy is rather a consequence of AD in subjects with a concomitant underlying atopic constitution. Treatment at best achieves symptom control rather than cure; there is thus a strong need to identify alternatives for disease prevention.
Collapse
Affiliation(s)
- Sophie Nutten
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| |
Collapse
|
641
|
Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, Kong HH, Amagai M, Nagao K. Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity 2015; 42:756-66. [PMID: 25902485 PMCID: PMC4407815 DOI: 10.1016/j.immuni.2015.03.014] [Citation(s) in RCA: 388] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/16/2014] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17(fl/fl)Sox9-(Cre) mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotics specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis.
Collapse
MESH Headings
- ADAM Proteins/deficiency
- ADAM Proteins/genetics
- ADAM Proteins/immunology
- ADAM17 Protein
- Animals
- Anti-Bacterial Agents/pharmacology
- Corynebacterium/immunology
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/microbiology
- Dysbiosis/drug therapy
- Dysbiosis/genetics
- Dysbiosis/immunology
- Dysbiosis/microbiology
- Eczema/drug therapy
- Eczema/genetics
- Eczema/immunology
- Eczema/microbiology
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/microbiology
- Integrases/genetics
- Integrases/immunology
- Langerhans Cells/drug effects
- Langerhans Cells/immunology
- Langerhans Cells/microbiology
- Langerhans Cells/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- SOX9 Transcription Factor/genetics
- SOX9 Transcription Factor/immunology
- Signal Transduction
- Skin/drug effects
- Skin/immunology
- Skin/microbiology
- Skin/pathology
- Staphylococcus aureus/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/microbiology
- T-Lymphocytes, Helper-Inducer/pathology
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan, PC160-8582; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Glatz
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan, PC160-8582
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan, PC160-8582
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu, Japan, PC 501-1194
| | - Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Heidi H Kong
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan, PC160-8582
| | - Keisuke Nagao
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan, PC160-8582; Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
642
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
643
|
SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell Mol Life Sci 2015; 72:1499-515. [PMID: 25548803 PMCID: PMC4376244 DOI: 10.1007/s00018-014-1812-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
The skin is colonized by an assemblage of microorganisms which, for the most part, peacefully coexist with their hosts. In some cases, these communities also provide vital functions to cutaneous health through the modulation of host factors. Recent studies have illuminated the role of anatomical skin site, gender, age, and the immune system in shaping the cutaneous ecosystem. Alterations to microbial communities have also been associated with, and likely contribute to, a number of cutaneous disorders. This review focuses on the host factors that shape and maintain skin microbial communities, and the reciprocal role of microbes in modulating skin immunity. A greater understanding of these interactions is critical to elucidating the forces that shape cutaneous populations and their contributions to skin homeostasis. This knowledge can also inform the tendency of perturbations to predispose and/or bring about certain skin disorders.
Collapse
Affiliation(s)
- Adam SanMiguel
- Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd, 1007 Biomedical Research Building II/III, Philadelphia, PA 19104 USA
| | - Elizabeth A. Grice
- Department of Dermatology, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd, 1007 Biomedical Research Building II/III, Philadelphia, PA 19104 USA
| |
Collapse
|
644
|
Arndts K, Klarmann-Schulz U, Batsa L, Debrah AY, Epp C, Fimmers R, Specht S, Layland LE, Hoerauf A. Reductions in microfilaridermia by repeated ivermectin treatment are associated with lower Plasmodium-specific Th17 immune responses in Onchocerca volvulus-infected individuals. Parasit Vectors 2015; 8:184. [PMID: 25889652 PMCID: PMC4391604 DOI: 10.1186/s13071-015-0786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/05/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND 37 million individuals are currently infected with Onchocerca volvulus (O. volvulus), a parasitic nematode that elicits various dermal manifestations and eye damage in man. Disease control is primarily based on distributing ivermectin in mass drug administration (MDA) programmes which aim at breaking transmission by eliminating microfilariae (MF), the worm's offspring. The majority of infected individuals present generalized onchocerciasis, which is characterized by hyporesponsive immune responses and high parasite burden including MF. Recently, in areas that have been part of MDA programmes, individuals have been identified that present nodules but are amicrofilaridermic (a-MF) and our previous study showed that this group has a distinct immune profile. Expanding on those findings we determined the immune responses of O. volvulus-infected individuals to a Plasmodium-derived antigen MSP-1 (merozoite surface protein-1), which is required by the parasite to enter erythrocytes. METHODS Isolated PBMCs from O. volvulus-infected individuals (164 MF(+) and 46 a-MF) and non-infected volunteers from the same region (NEN), were stimulated with MSP-1 and the resulting supernatant screened for the presence of IL-5, IL-13, IFN-γ, TNF-α, IL-6, IL-17A and IL-10. These findings were then further analyzed following regression analysis using the covariates MF, ivermectin (IVM) and region. The latter referred to the Central or Ashanti regions of Ghana, which, at the time sampling, had received 8 or 1 round of MDA respectively. RESULTS IL-5, IL-13 and IFN-γ responses to MSP-1 were not altered between NEN and O. volvulus-infected individuals nor were any associations revealed in the regression analysis. IL-10, IL-6 and TNF-α MSP-1 responses were, however, significantly elevated in cultures from infected individuals. Interestingly, when compared to a-MF individuals, MSP-induced IL-17A responses were significantly higher in MF(+) patients. Following multivariable regression analysis these IL-10, IL-6, TNF-α and IL-17A responses were all dominantly associated with the regional covariate. CONCLUSIONS Consequently, areas with a lowered infection pressure due to IVM MDA appear to influence bystander responses to Plasmodium-derived antigens in community members even if they have not regularly participated in the therapy.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund Freud Straße 25, Bonn, 53105, Germany.
| | - Ute Klarmann-Schulz
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund Freud Straße 25, Bonn, 53105, Germany.
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany.
| | - Linda Batsa
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
| | - Alexander Y Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana.
- Faculty of Allied Health Sciences of the Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Christian Epp
- Centre for Infectious Diseases - Parasitology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Rolf Fimmers
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany.
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund Freud Straße 25, Bonn, 53105, Germany.
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund Freud Straße 25, Bonn, 53105, Germany.
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Sigmund Freud Straße 25, Bonn, 53105, Germany.
| |
Collapse
|
645
|
Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:593-603. [PMID: 25809633 DOI: 10.1128/cvi.00493-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
Collapse
|
646
|
Hacard F, Nosbaum A, Huynh VA, Nicolas JF, Bérard F. [Diversity of cutaneous bacteria decreases inflammation]. Ann Dermatol Venereol 2015; 142 Suppl 1:S13-7. [PMID: 25749835 DOI: 10.1016/s0151-9638(15)30002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human microbiota includes all microorganisms, saprophytes and pathogens that colonize our bodies. Recent advances in metagenomic analysis techniques have expanded our knowledge of the microbiota and fundamentally changed our view of its relationships with the immune system. The commensal flora appears to be essential to the development of the immune system, and the diversity of the microbiota is correlated with good health status of individuals. These findings open up new conceptual and therapeutic approaches in chronic inflammatory diseases.
Collapse
Affiliation(s)
- F Hacard
- Service immunologie clinique et allergologie, CH Lyon-Sud, 69495 Pierre-Bénite Cedex, France; Inserm U1111-CIRI; Université Claude-Bernard-Lyon I
| | - A Nosbaum
- Service immunologie clinique et allergologie, CH Lyon-Sud, 69495 Pierre-Bénite Cedex, France; Inserm U1111-CIRI; Université Claude-Bernard-Lyon I; Department of Dermatology, University of California, San Francisco CA 94143-0511, United States
| | - V-A Huynh
- Service immunologie clinique et allergologie, CH Lyon-Sud, 69495 Pierre-Bénite Cedex, France
| | - J-F Nicolas
- Service immunologie clinique et allergologie, CH Lyon-Sud, 69495 Pierre-Bénite Cedex, France; Inserm U1111-CIRI; Université Claude-Bernard-Lyon I
| | - F Bérard
- Service immunologie clinique et allergologie, CH Lyon-Sud, 69495 Pierre-Bénite Cedex, France; Inserm U1111-CIRI; Université Claude-Bernard-Lyon I.
| |
Collapse
|
647
|
Khan BA, Yeh AJ, Cheung GYC, Otto M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs 2015; 24:689-704. [PMID: 25704585 DOI: 10.1517/13543784.2015.1019062] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Antibiotic resistance is a serious global health concern for developed and developing nations. MRSA represents a particularly severe public health threat that is associated with high morbidity and mortality. The lack of novel antibiotics has led scientists to explore therapies targeting bacterial virulence mechanisms and virulence regulators, including those controlling cell-cell communication. AREAS COVERED The authors discuss the role of quorum-sensing in Staphylococcus aureus infections and components of the system that are being targeted using novel investigational drugs. In particular, the authors examine the role of the accessory gene regulator (Agr) system in virulence regulation of S. aureus pathogenesis. Finally, the authors present and compare natural and synthetic compounds that have been found to interfere with Agr functionality. EXPERT OPINION There is a great need to develop new therapeutic methods to combat S. aureus infections. These include anti-virulence therapies that target key global regulators involved with the establishment and propagation of infection. Several molecules have been found to interfere with S. aureus virulence regulation, especially those targeting the Agr quorum-sensing signaling molecule. These preliminary findings warrant further investigation and validation, with the goal of refining a compound that has broad-spectrum inhibitory effects on most S. aureus strains and Agr subtypes.
Collapse
Affiliation(s)
- Burhan A Khan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , 903 S. 4th St, 1/1110, Hamilton, MT 59840 , USA
| | | | | | | |
Collapse
|
648
|
ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother 2015; 59:2223-35. [PMID: 25645827 DOI: 10.1128/aac.04564-14] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation.
Collapse
|
649
|
Zhang M, Jiang Z, Li D, Jiang D, Wu Y, Ren H, Peng H, Lai Y. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. MICROBIAL ECOLOGY 2015; 69:415-21. [PMID: 25301498 DOI: 10.1007/s00248-014-0504-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/24/2014] [Indexed: 05/24/2023]
Abstract
Antibiotic treatment eliminates commensal bacteria and impairs mucosal innate immune defenses in the gut. However, whether oral antibiotic treatment could alter the composition of the microbiota on the skin surface and influence innate immune responses remains unclear. To test this, mice were treated with vancomycin for 7 days and then wounds were made on the back skin of the mice. Five days later, scar tissue from each mouse was collected for bacterial enumeration, the bacterial composition on the scar and unwounded skin was determined using 16S RNA gene-based pyrosequencing analysis, and skin around wounds was collected for RNA extraction. Compared with the control group, the overall density and composition of skin bacteria were altered, and the proportion of Staphylococcus-related sequences was reduced in the vancomycin-treated group. Moreover, vancomycin treatment decreased the expression of RegIIIγ and interleukin (IL)-17 in the wounded skin. Taken together, our data demonstrate that antibiotic treatment decreases the bacterial density and alters the bacterial composition in skin wounds, followed by a decrease in RegIIIγ expression, which may contribute to the delayed wound repair. Our findings also indicate that antibiotic therapy should be carefully considered in the treatment of skin injury.
Collapse
Affiliation(s)
- Meiling Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, No. 500 Minhang Dongchuan Road, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
650
|
Bartman C, Chong AS, Alegre ML. The influence of the microbiota on the immune response to transplantation. Curr Opin Organ Transplant 2015; 20:1-7. [PMID: 25563985 PMCID: PMC4423793 DOI: 10.1097/mot.0000000000000150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW In the past decade, appreciation of the important effects of commensal microbes on immunity has grown exponentially. The effect of the microbiota on transplantation has only recently begun to be explored; however, our understanding of the mechanistic details of host-microbe interactions is still lacking. RECENT FINDINGS It has become clear that transplantation is associated with changes in the microbiota in many different settings, although what clinical events and therapeutic interventions contribute to these changes remains to be parsed out. Research groups have begun to identify associations between specific communities of organisms and transplant outcomes, but it remains to be established whether microbial changes precede or follow transplant rejection episodes. Finally, results from continuing exploration of basic mechanisms by which microbial communities affect innate and adaptive immunity in various animal models of disease continue to inform research on the microbiota's effects on immune responses against transplanted organs. SUMMARY Commensal microbes may alter immune responses to organ transplantation, but direct experiments are only beginning in the field to identify species and immune pathways responsible for these putative effects.
Collapse
Affiliation(s)
- Caroline Bartman
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia PA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA
| | - Anita S. Chong
- Department of Surgery, Section of Transplantation, The University of Chicago
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago
| |
Collapse
|