601
|
Genton L, Lazarevic V, Stojanovic O, Spiljar M, Djaafar S, Koessler T, Dutoit V, Gaïa N, Mareschal J, Macpherson AJ, Herrmann F, Trajkovski M, Schrenzel J. Metataxonomic and Metabolic Impact of Fecal Microbiota Transplantation From Patients With Pancreatic Cancer Into Germ-Free Mice: A Pilot Study. Front Cell Infect Microbiol 2021; 11:752889. [PMID: 34737977 PMCID: PMC8560705 DOI: 10.3389/fcimb.2021.752889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Body weight (BW) loss is prevalent in patients with pancreatic cancer (PC). Gut microbiota affects BW and is known to directly shape the host immune responses and antitumor immunity. This pilot study evaluated the link between gut microbiota, metabolic parameters and inflammatory/immune parameters, through the fecal material transplantation (FMT) of PC patients and healthy volunteers into germ-free (GF) mice. Methods We transplanted the feces from five PC patients and five age- and gender-matched healthy volunteers into two GF mice each. Mouse BW and energy intake were measured every 1-5 days, oral glucose on day 21, insulin tolerance on day 26, fecal bacterial taxonomic profile by 16S rRNA gene sequencing on day 5, 10, 15 and 30, and gut-associated lymphoid tissue T cells, plasma cytokines and weights of fat and muscle mass at sacrifice (day 34). Results are presented as mean ± SD. The continuous parameters of mice groups were compared by linear univariate regressions, and their bacterial communities by Principal Coordinates Analysis (PCoA), Bray-Curtis similarity and ANCOM test. Results Recipients of feces from PC patients and healthy volunteers had similar BW gain and food intake. Visceral fat was lower in recipients of feces from PC patients than from healthy individuals (0.72 ± 0.17 vs. 0.92 ± 0.14 g; coeff -0.19, 95% CI -0.38, -0.02, p=0.035). The other non-metataxonomic parameters did not differ between groups. In PCoA, microbiota from PC patients clustered apart from those of healthy volunteers and the same pattern was observed in transplanted mice. The proportions of Clostridium bolteae, Clostridium scindens, Clostridium_g24_unclassified and Phascolarctobacterium faecium were higher, while those of Alistipes obesi, Lachnospiraceae PAC000196_s and Coriobacteriaceae_unclassified species were lower in PC patients and in mice transplanted with the feces from these patients. Conclusion In this pilot study, FMT from PC patients was associated with a decrease in visceral fat as compared to FMT from healthy individuals. Some of the differences in fecal microbiota between PC and control samples are common to humans and mice. Further research is required to confirm that feces contain elements involved in metabolic and immune alterations.
Collapse
Affiliation(s)
- Laurence Genton
- Clinical Nutrition, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | | | - Ozren Stojanovic
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Martina Spiljar
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Souad Djaafar
- Clinical Nutrition, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Thibaud Koessler
- Oncology, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology and Translational Research Center for Oncoheamatology, University of Geneva, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, University of Geneva, Geneva, Switzerland
| | - Julie Mareschal
- Clinical Nutrition, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Andrew James Macpherson
- Department of Biomedical Research, University Hospital of Bern and University of Bern, Bern, Switzerland
| | - Francois Herrmann
- Rehabilitation and Geriatrics, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, University of Geneva, Geneva, Switzerland.,Infectious Diseases, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| |
Collapse
|
602
|
Stater EP, Sonay AY, Hart C, Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. NATURE NANOTECHNOLOGY 2021; 16:1180-1194. [PMID: 34759355 PMCID: PMC9031277 DOI: 10.1038/s41565-021-01017-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2021] [Indexed: 05/12/2023]
Abstract
Nanoparticles are often engineered as a scaffolding system to combine targeting, imaging and/or therapeutic moieties into a unitary agent. However, mostly overlooked, the nanomaterial itself interacts with biological systems exclusive of application-specific particle functionalization. This nanoparticle biointerface has been found to elicit specific biological effects, which we term 'ancillary effects'. In this Review, we describe the current state of knowledge of nanobiology gleaned from existing studies of ancillary effects with the objectives to describe the potential of nanoparticles to modulate biological effects independently of any engineered function; evaluate how these effects might be relevant for nanomedicine design and functional considerations, particularly how they might be useful to inform clinical decision-making; identify potential clinical harm that arises from adverse nanoparticle interactions with biology; and, finally, highlight the current lack of knowledge in this area as both a barrier and an incentive to the further development of nanomedicine.
Collapse
Affiliation(s)
- Evan P Stater
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Ali Y Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cassidy Hart
- Department of General Surgery, Lankenau Medical Center, Wynnewood, PA, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
603
|
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021; 18:804-823. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal cancer characterized by late diagnosis, limited treatment success and dismal prognosis. Exocrine tumours account for 95% of pancreatic cancers and the most common pathological type is pancreatic ductal adenocarcinoma (PDAC). The occurrence and progression of PDAC involve multiple factors, including internal genetic alterations and external inflammatory stimuli. The biology and therapeutic response of PDAC are further shaped by various forms of regulated cell death, such as apoptosis, necroptosis, ferroptosis, pyroptosis and alkaliptosis. Cell death induced by local or systemic treatments suppresses tumour proliferation, invasion and metastasis. However, unrestricted cell death or tissue damage might result in an inflammation-related immunosuppressive microenvironment, which is conducive to tumour progression or recurrence. The precise extent to which cell death affects PDAC is not yet well described. A growing body of preclinical and clinical studies document significant correlations between mutations (for example, in KRAS and TP53), stress responses (such as hypoxia and autophagy), metabolic reprogramming and chemotherapeutic responses. Here, we describe the molecular machinery of cell death, discuss the complexity and multifaceted nature of lethal signalling in PDAC cells, and highlight the challenges and opportunities for activating cell death pathways through precision oncology treatments.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France. .,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China. .,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
604
|
Bansod S, Dodhiawala PB, Lim KH. Oncogenic KRAS-Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities. Cancers (Basel) 2021; 13:cancers13215481. [PMID: 34771644 PMCID: PMC8582583 DOI: 10.3390/cancers13215481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains highly refractory to treatment. While the KRAS oncogene is present in almost all PDAC cases and accounts for many of the malignant feats of PDAC, targeting KRAS or its canonical, direct effector cascades remains unsuccessful in patients. The recalcitrant nature of PDAC is also heavily influenced by its highly fibro-inflammatory tumor microenvironment (TME), which comprises an acellular extracellular matrix and various types of non-neoplastic cells including fibroblasts, immune cells, and adipocytes, underscoring the critical need to delineate the bidirectional signaling interplay between PDAC cells and the TME in order to develop novel therapeutic strategies. The impact of tumor-cell KRAS signaling on various cell types in the TME has been well covered by several reviews. In this article, we critically reviewed evidence, including work from our group, on how the feedback inflammatory signals from the TME impact and synergize with oncogenic KRAS signaling in PDAC cells, ultimately augmenting their malignant behavior. We discussed past and ongoing clinical trials that target key inflammatory pathways in PDAC and highlight lessons to be learned from outcomes. Lastly, we provided our perspective on the future of developing therapeutic strategies for PDAC through understanding the breadth and complexity of KRAS and the inflammatory signaling network.
Collapse
Affiliation(s)
- Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
| | - Paarth B. Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.B.); (P.B.D.)
- Correspondence: ; Tel.: +1-314-362-6157
| |
Collapse
|
605
|
Influence of gut and intratumoral microbiota on the immune microenvironment and anti-cancer therapy. Pharmacol Res 2021; 174:105966. [PMID: 34728366 DOI: 10.1016/j.phrs.2021.105966] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022]
Abstract
Microbiota has been implicated in the regulation of tumor progression and therapeutic efficacy. However, the effect of microbiota on disease progression is context dependent, differing according to tumor types, therapeutic regimens, and composition of the microbiota, calling for a deeper understanding of host-microbiome interactions. Previous studies have demonstrated that gut microbiota influences disease progression by regulating local and systemic immunity. Notably, with the advent of next-generation sequencing technology, intratumoral microbiota has also been found and constitutes an important component of the tumor microenvironment. In this review, we summarize recent knowledge about the identification of intra-tumor microbiota and discuss the role of gut and intratumoral microbiota in solid tumors in the angle of immune microenvironment interaction. Furthermore, we discuss how these findings may benefit current anti-cancer approaches. Key problems to be solved in ongoing and future research are highlighted.
Collapse
|
606
|
Smorodin EP. Prospects and Challenges of the Study of Anti-Glycan Antibodies and Microbiota for the Monitoring of Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms222111608. [PMID: 34769037 PMCID: PMC8584091 DOI: 10.3390/ijms222111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, a large amount of data has been accumulated in various subfields of glycobiology. However, much clinically relevant data and many tools are still not widely used in medicine. Synthetic glycoconjugates with the known structure of glycans are an accurate tool for the study of glycan-binding proteins. We used polyacrylamide glycoconjugates (PGs) including PGs with tumour-associated glycans (TAGs) in immunoassays to assess the prognostic potential of the serum level of anti-glycan antibodies (AG Abs) in gastrointestinal cancer patients and found an association of AG Abs with survival. The specificity of affinity-isolated AG Abs was investigated using synthetic and natural glycoconjugates. AG Abs showed mainly a low specificity to tumour-associated and tumour-derived mucins; therefore, the protective role of the examined circulating AG Abs against cancer remains a challenge. In this review, our findings are analysed and discussed in the context of the contribution of bacteria to the AG Abs stimulus and cancer progression. Examples of the influence of pathogenic bacteria colonising tumours on cancer progression and patient survival through mechanisms of interaction with tumours and dysregulated immune response are considered. The possibilities and problems of the integrative study of AG Abs and the microbiome using high-performance technologies are discussed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
607
|
Wen S, He L, Zhong Z, Zhao R, Weng S, Mi H, Liu F. Stigmasterol Restores the Balance of Treg/Th17 Cells by Activating the Butyrate-PPARγ Axis in Colitis. Front Immunol 2021; 12:741934. [PMID: 34691046 PMCID: PMC8526899 DOI: 10.3389/fimmu.2021.741934] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with gut microbiota disequilibrium and regulatory T (Treg)/T helper 17 (Th17) immune imbalance. Stigmasterol, a plant-derived sterol, has shown anti-inflammatory effects. Our study aimed to identify the effects of stigmasterol on experimental colitis and the related mechanisms. Stigmasterol treatment restored the Treg/Th17 balance and altered the gut microbiota in a dextran sodium sulfate (DSS)-induced colitis model. Transplantation of the faecal microbiota of stigmasterol-treated mice significantly alleviated inflammation. Additionally, stigmasterol treatment enhanced the production of gut microbiota-derived short-chain fatty acids (SCFAs), particularly butyrate. Next, human naïve CD4+ T cells sorted from IBD patients were cultured under Treg- or Th17-polarizing conditions; butyrate supplementation increased the differentiation of Tregs and decreased Th17 cell differentiation. Mechanistically, butyrate activated peroxisome proliferator-activated receptor gamma (PPARγ) and reprogrammed energy metabolism, thereby promoting Treg differentiation and inhibiting Th17 differentiation. Our results demonstrate that butyrate-mediated PPARγ activation restores the balance of Treg/Th17 cells, and this may be a possible mechanism, by which stigmasterol attenuates IBD.
Collapse
Affiliation(s)
- Shuting Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Long He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuotai Zhong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyuan Zhao
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Senhui Weng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
608
|
Nalluri H, Jensen E, Staley C. Role of biliary stent and neoadjuvant chemotherapy in the pancreatic tumor microbiome. BMC Microbiol 2021; 21:280. [PMID: 34656097 PMCID: PMC8520243 DOI: 10.1186/s12866-021-02339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Intra-tumor microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) development, treatment response and post-treatment survivorship. Moreover, therapeutic interventions targeting microbiota may improve the response to chemotherapy and immunotherapy, further emphasizing the critical need to understand the origins of and growth of bacteria within the pancreatic tumor microenvironment. Here, we studied the role of several clinical factors on the bacterial colonization of PDAC. RESULTS We obtained matched tumor and normal pancreatic tissue specimens from 27 patients who had undergone surgical resection for PDAC between 2011 and 2015 from the University of Minnesota Biological Materials Procurement Network (BioNet). We found that 26 (48%) out of 54 pancreatic tissue samples harbored detectable bacterial communities using real-time PCR targeting the 16S rRNA gene. Bacterial colonization was detected significantly more frequently in samples from patients who had pancreatic head tumors, underwent Whipple procedure, or had preoperative biliary stent placement. There was also a significantly greater relative abundance of microbiota from the family Enterobacteriaceae among samples from patients who underwent biliary stent placement or neoadjuvant treatment with a combination of Gemcitabine and Paclitaxel. CONCLUSIONS These findings suggest that biliary stent placement and neoadjuvant chemotherapy are associated with specific alterations that promote the infiltration and growth of intra-tumor bacteria in the setting of PDAC. Further studies exploring whether specific bacterial communities could contribute to increased chemoresistance will be essential for optimizing medical therapies in the future.
Collapse
Affiliation(s)
- Harika Nalluri
- Department of Surgery, University of Minnesota, Minneapolis, MN USA
| | - Eric Jensen
- Department of Surgery, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Christopher Staley
- Department of Surgery, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
- Biotechnology Institute, University of Minnesota, St. Paul, MN USA
| |
Collapse
|
609
|
Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? J Exp Clin Cancer Res 2021; 40:327. [PMID: 34656142 PMCID: PMC8520212 DOI: 10.1186/s13046-021-02128-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
The efficacy of cancer immunotherapy largely depends on the tumor microenvironment, especially the tumor immune microenvironment. Emerging studies have claimed that microbes reside within tumor cells and immune cells, suggesting that these microbes can impact the state of the tumor immune microenvironment. For the first time, this review delineates the landscape of intra-tumoral microbes and their products, herein defined as the tumor microbe microenvironment. The role of the tumor microbe microenvironment in the tumor immune microenvironment is multifaceted: either as an immune activator, inhibitor, or bystander. The underlying mechanisms include: (I) the presentation of microbial antigens by cancer cells and immune cells, (II) microbial antigens mimicry shared with tumor antigens, (III) microbe-induced immunogenic cell death, (IV) microbial adjuvanticity mediated by pattern recognition receptors, (V) microbe-derived metabolites, and (VI) microbial stimulation of inhibitory checkpoints. The review further suggests the use of potential modulation strategies of the tumor microbe microenvironment to enhance the efficacy and reduce the adverse effects of checkpoint inhibitors. Lastly, the review highlights some critical questions awaiting to be answered in this field and provides possible solutions. Overall, the tumor microbe microenvironment modulates the tumor immune microenvironment, making it a potential target for improving immunotherapy. It is a novel field facing major challenges and deserves further exploration.
Collapse
Affiliation(s)
- Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingjuan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Die Hu
- Xiangya Medical College, Central South University, Changsha, 410013, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
610
|
Lee K, Oh HJ, Kang MS, Kim S, Ahn S, Kim MJ, Kim SW, Chang S. Metagenomic analysis of gut microbiome reveals a dynamic change in Alistipes onderdonkii in the preclinical model of pancreatic cancer, suppressing its proliferation. Appl Microbiol Biotechnol 2021; 105:8343-8358. [PMID: 34648062 DOI: 10.1007/s00253-021-11617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is a lethal cancer with aggressive and invasive characteristics. By the time it is diagnosed, patients already have tumors extended to other organs and show extremely low survival rates. The gut microbiome is known to be associated with many diseases and its imbalance affects the pathogenesis of pancreatic cancer. In this study, we established an orthotopic, patient-derived xenograft model to identify how the gut microbiome is linked to pancreatic ductal adenocarcinoma (PDAC). Using the 16S rDNA metagenomic sequencing, we revealed that the levels of Alistipes onderdonkii and Roseburia hominis decreased in the gut microbiome of the PDAC model. To explore the crosstalk between the two bacteria and PDAC cells, we collected the supernatant of the bacteria or cancer cell culture medium and treated it in a cross manner. While the cancer cell medium did not affect bacterial growth, we observed that the A. onderdonkii medium suppressed the growth of the pancreatic primary cancer cells. Using the bromodeoxyuridine/7-amino-actinomycin D (BrdU/7-AAD) staining assay, we confirmed that the A. onderdonkii medium inhibited the proliferation of the pancreatic primary cancer cells. Furthermore, RNA-seq analysis revealed that the A. onderdonkii medium induced unique transcriptomic alterations in the PDAC cells, compared to the normal pancreatic cells. Altogether, our data suggest that the reduction in the A. onderdonkii in the gut microbiome provides a proliferation advantage to the pancreatic cancer cells. KEY POINTS: • Metagenome analysis of pancreatic cancer model reveals A. onderdonkii downregulation. • A. onderdonkii culture supernatant suppressed the proliferation of pancreatic cancer cells. • RNA seq data reveals typical gene expression changes induced by A. onderdonkii.
Collapse
Affiliation(s)
- Kihak Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Hyo Jae Oh
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Min-Su Kang
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sehee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
611
|
Basu M, Philipp LM, Baines JF, Sebens S. The Microbiome Tumor Axis: How the Microbiome Could Contribute to Clonal Heterogeneity and Disease Outcome in Pancreatic Cancer. Front Oncol 2021; 11:740606. [PMID: 34631577 PMCID: PMC8495218 DOI: 10.3389/fonc.2021.740606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers. It is characterized by a poor prognosis with a 5-year survival rate of only around 10% and an ongoing increase in death rate. Due to the lack of early and specific symptoms, most patients are diagnosed at an advanced or even metastasized stage, essentially limiting curative treatment options. However, even curative resection of the primary tumor and adjuvant therapy often fails to provide a long-term survival benefit. One reason for this dismal situation can be seen in the evolution of therapy resistances. Furthermore, PDAC is characterized by high intratumor heterogeneity, pointing towards an abundance of cancer stem cells (CSCs), which are regarded as essential for tumor initiation and drug resistance. Additionally, it was shown that the gut microbiome is altered in PDAC patients, promotes Epithelial-Mesenchymal-Transition (EMT), determines responses towards chemotherapy, and affects survival in PDAC patients. Given the established links between CSCs and EMT as well as drug resistance, and the emerging role of the microbiome in PDAC, we postulate that the composition of the microbiome of PDAC patients is a critical determinant for the abundance and plasticity of CSC populations and thus tumor heterogeneity in PDAC. Unravelling this complex interplay might pave the way for novel treatment strategies.
Collapse
Affiliation(s)
- Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
612
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
613
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
614
|
Lundy J, Gearing LJ, Gao H, West AC, McLeod L, Deswaerte V, Yu L, Porazinski S, Pajic M, Hertzog PJ, Croagh D, Jenkins BJ. TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 2021; 40:6007-6022. [PMID: 34400766 DOI: 10.1038/s41388-021-01992-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, and is plagued by a paucity of targeted treatment options and tumour resistance to chemotherapeutics. The causal link between chronic inflammation and PDAC suggests that molecular regulators of the immune system promote disease pathogenesis and/or therapeutic resistance, yet their identity is unclear. Here, we couple endoscopic ultrasound-guided fine-needle aspiration, which captures tumour biopsies from all stages, with whole transcriptome profiling of PDAC patient primary tumours to reveal enrichment of the innate immune Toll-like receptor 2 (TLR2) molecular pathway. Augmented TLR2 expression associated with a 4-gene "TLR2 activation" signature, and was prognostic for survival and predictive for gemcitabine-based chemoresistance. Furthermore, antibody-mediated anti-TLR2 therapy suppressed the growth of human PDAC tumour xenografts, independent of a functional immune system. Our results support TLR2-based therapeutic targeting for precision medicine in PDAC, with further clinical utility that TLR2 activation is prognostic and predictive for chemoresponsiveness.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hugh Gao
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Sean Porazinski
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
615
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|
616
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
617
|
Biopsy bacterial signature can predict patient tissue malignancy. Sci Rep 2021; 11:18535. [PMID: 34535726 PMCID: PMC8448740 DOI: 10.1038/s41598-021-98089-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023] Open
Abstract
Considerable recent research has indicated the presence of bacteria in a variety of human tumours and matched normal tissue. Rather than focusing on further identification of bacteria within tumour samples, we reversed the hypothesis to query if establishing the bacterial profile of a tissue biopsy could reveal its histology / malignancy status. The aim of the present study was therefore to differentiate between malignant and non-malignant fresh breast biopsy specimens, collected specifically for this purpose, based on bacterial sequence data alone. Fresh tissue biopsies were obtained from breast cancer patients and subjected to 16S rRNA gene sequencing. Progressive microbiological and bioinformatic contamination control practices were imparted at all points of specimen handling and bioinformatic manipulation. Differences in breast tumour and matched normal tissues were probed using a variety of statistical and machine-learning-based strategies. Breast tumour and matched normal tissue microbiome profiles proved sufficiently different to indicate that a classification strategy using bacterial biomarkers could be effective. Leave-one-out cross-validation of the predictive model confirmed the ability to identify malignant breast tissue from its bacterial signature with 84.78% accuracy, with a corresponding area under the receiver operating characteristic curve of 0.888. This study provides proof-of-concept data, from fit-for-purpose study material, on the potential to use the bacterial signature of tissue biopsies to identify their malignancy status.
Collapse
|
618
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
619
|
An Y, Zhang W, Liu T, Wang B, Cao H. The intratumoural microbiota in cancer: new insights from inside. Biochim Biophys Acta Rev Cancer 2021; 1876:188626. [PMID: 34520804 DOI: 10.1016/j.bbcan.2021.188626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023]
Abstract
The human body harbors a vast array of microbiota that modulates host pathophysiological processes and modifies the risk of diseases including cancer. With the advent of metagenomic sequencing studies, the intratumoural microbiota has been found as a component of the tumor microenvironment, imperceptibly affecting the tumor progression and response to current antitumor treatments. The underlying carcinogenic mechanisms of intratumoural microbiota, mainly including inducing DNA damages, activating oncogenic signaling pathways and suppressing the immune response, differ significantly in varied organs and are not fully understood. Some native or genetically engineered microbial species can specifically accumulate and replicate within tumors to initiate antitumor immunity, which will be conducive to pursue precise cancer therapies. In this review, we summarized the community characteristics and therapeutic potential of intratumoural microbiota across diverse tumor types. It may provide new insights for a better understanding of tumor biology and hint at the significance of manipulating intratumoural microbiota.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
620
|
Brandi G, Turroni S, McAllister F, Frega G. The Human Microbiomes in Pancreatic Cancer: Towards Evidence-Based Manipulation Strategies? Int J Mol Sci 2021; 22:9914. [PMID: 34576078 PMCID: PMC8471697 DOI: 10.3390/ijms22189914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic "hub" interfaced between the gut and the host.
Collapse
Affiliation(s)
- Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Florencia McAllister
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giorgio Frega
- Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
621
|
Riquelme E, McAllister F. Bacteria and fungi: The counteracting modulators of immune responses to radiation therapy in cancer. Cancer Cell 2021; 39:1173-1175. [PMID: 34478640 PMCID: PMC11073472 DOI: 10.1016/j.ccell.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Cancer Cell, Shiao et al. reveal the counteracting role of bacteria and fungi in antitumoral immune responses to radiation therapy (RT). While bacterial depletion impairs the response, fungal depletion improves efficacy of RT. An interplay between innate and adaptive immunity is implicated and orchestrated by Dectin-1.
Collapse
Affiliation(s)
- Erick Riquelme
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile; FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
622
|
van den Berg FF, Hugenholtz F, Boermeester MA, Zaborina O, Alverdy JC. Spatioregional assessment of the gut microbiota in experimental necrotizing pancreatitis. BJS Open 2021; 5:zrab061. [PMID: 34518874 PMCID: PMC8438261 DOI: 10.1093/bjsopen/zrab061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infectious complications following experimental pancreatitis involve major disruptions in the gut microbiota. The aim of this study was to characterize this disruption by examining the spatioregional distribution in microbial community structure and function following experimental pancreatitis associated with pancreatic infection. METHODS Mice were subjected to infusion of the pancreatic duct with either taurocholate to induce necrotizing pancreatitis or normal saline (control group). The spatial (lumen versus mucosa) and regional composition and function of the microbiota from the duodenum, ileum, caecum, colon, pancreas and blood were evaluated using 16S rRNA gene amplicon sequencing. RESULTS Mice that developed necrotizing pancreatitis demonstrated a decrease in microbial richness and significantly altered microbiota in distal parts of the gastrointestinal tract, compared with controls. Among the most differentially increased taxa were the mucus-degrading Akkermansia muciniphila, and there was a decrease of butyrate-producing bacteria following pancreatitis. Application of the SourceTracker tool to the generated metadata indicated that the duodenum was the most probable source of bacteria that subsequently infected pancreatic tissue in this model. The functional prediction annotation using pathway analyses indicated a diminished capacity of the caecal microbiota to metabolize carbohydrate, and fatty and amino acids. DISCUSSION The distal gut microbiota was significantly impacted in this model of experimental necrotizing pancreatitis. Data suggest that the duodenal microbiota might also play a role in bacterial translation and secondary infections.
Collapse
Affiliation(s)
- F F van den Berg
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - F Hugenholtz
- Centre for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Boermeester
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - O Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - J C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
623
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
624
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
625
|
Guo W, Zhang Y, Guo S, Mei Z, Liao H, Dong H, Wu K, Ye H, Zhang Y, Zhu Y, Lang J, Hu L, Jin G, Kong X. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol 2021; 4:1019. [PMID: 34465850 PMCID: PMC8408135 DOI: 10.1038/s42003-021-02557-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the uniform mortality in pancreatic adenocarcinoma (PDAC), clinical disease heterogeneity exists with limited genomic differences. A highly aggressive tumor subtype termed 'basal-like' was identified to show worse outcomes and higher inflammatory responses. Here, we focus on the microbial effect in PDAC progression and present a comprehensive analysis of the tumor microbiome in different PDAC subtypes with resectable tumors using metagenomic sequencing. We found distinctive microbial communities in basal-like tumors and identified an increasing abundance of Acinetobacter, Pseudomonas and Sphingopyxis to be highly associated with carcinogenesis. Functional characterization of microbial genes suggested the potential to induce pathogen-related inflammation. Host-microbiota interplay analysis provided new insights into the tumorigenic role of specific microbiome compositions and demonstrated the influence of host genetics in shaping the tumor microbiome. Taken together, these findings indicated that the tumor microbiome is closely related to PDAC oncogenesis and the induction of inflammation. Additionally, our data revealed the microbial basis of PDAC heterogeneity and proved the predictive value of the microbiome, which will contribute to the intervention and treatment of disease.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Fudan University, Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zi Mei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Huiping Liao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hang Dong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haocheng Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuhang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yufei Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jingyu Lang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Xiangyin Kong
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
626
|
Li JJ, Zhu M, Kashyap PC, Chia N, Tran NH, McWilliams RR, Bekaii-Saab TS, Ma WW. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev 2021; 40:777-789. [PMID: 34455517 PMCID: PMC8402962 DOI: 10.1007/s10555-021-09982-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Recent studies of the human microbiome have offered new insights into how the microbiome can impact cancer development and treatment. Specifically, in pancreatic ductal adenocarcinoma (PDAC), the microbiota has been shown to modulate PDAC risk, contribute to tumorigenesis, impact the tumor microenvironment, and alter treatment response. These findings provide rationale for further investigations into leveraging the microbiome to develop new strategies to diagnose and treat PDAC patients. There is growing evidence that microbiome analyses have the potential to become easily performed, non-invasive diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. More excitingly, there is now emerging interest in developing interventions based on the modulation of microbiota. Fecal microbiota transplantation, probiotics, dietary changes, and antibiotics are all potential strategies to augment the efficacy of current therapeutics and reduce toxicities. While there are still challenges to overcome, this is a rapidly growing field that holds promise for translation into clinical practice and provides a new approach to improving patient outcomes.
Collapse
Affiliation(s)
- Jenny Jing Li
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Mojun Zhu
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna C Kashyap
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nguyen H Tran
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Robert R McWilliams
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Mayo Clinic, 2779 E. Mayo Boulevard, Phoenix, AZ, USA
| | - Wen Wee Ma
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
627
|
Chapek MA, Martindale RG. Nutrition in Cancer Therapy: Overview for the Cancer Patient. JPEN J Parenter Enteral Nutr 2021; 45:33-40. [PMID: 34459006 DOI: 10.1002/jpen.2259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022]
Abstract
Despite significant advances in oncologic treatment, cancer-associated metabolic derangements remain largely poorly understood and often neglected in cancer care. Cancer cachexia and metabolic changes exhibited by neoplastic cells pose formidable barriers to improving outcomes and quality of life. Although cancer has traditionally been viewed as a proliferative disease caused by genetic mutations, newer perspectives suggest that it is primarily a metabolic disease. This paper discusses the etiology of cachexia and sarcopenia, and nutritional interventions that can address these wasting disorders. The role of inflammation in cancer and the methods for preventing and resolving inflammation with nutrition intervention are also explored. Several nutritional recommendations aimed at overcoming cachexia, resolving inflammation and improving cancer outcomes are provided based on current literature. This manuscript selected only a few areas in which to focus and is not all inclusive of the expansive literature available on the topic of cachexia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Robert G Martindale
- Professor of Surgery, Division of GI and General Surgery, Oregon Health Sciences University, Portland, Oregon, United States
| |
Collapse
|
628
|
Aquilani R, Brugnatelli S, Maestri R, Boschi F, Filippi B, Perrone L, Barbieri A, Buonocore D, Dossena M, Verri M. Peripheral Blood Lymphocyte Percentage May Predict Chemotolerance and Survival in Patients with Advanced Pancreatic Cancer. Association between Adaptive Immunity and Nutritional State. Curr Oncol 2021; 28:3280-3296. [PMID: 34449579 PMCID: PMC8395458 DOI: 10.3390/curroncol28050285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic Carcinoma (PC) cells have the ability to induce patient immunosuppression and to escape immunosurveillance. Low circulating lymphocytes are associated with an advanced stage of PC and reduced survival. Blood lymphocytes expressed as a percentage of Total White Blood Cells (L% TWBC) could predict chemotolerance (n° of tolerated cycles), survival time and Body Weight (BW) more effectively than lymphocytes expressed as an absolute value (LAB > 1500 n°/mm3) or lymphocytes >22%, which is the lowest limit of normal values in our laboratory. Forty-one patients with advanced PC, treated with chemotherapy, were selected for this observational retrospective study. Patients were evaluated at baseline (pre-chemotherapy), and at 6, 12 and 18 months, respectively, after diagnosis of PC. The study found L ≥ 29.7% to be a better predictor of survival (COX model, using age, sex, BW, serum creatinine, bilirubin and lymphocytes as covariates), chemotolerance (r = +0.50, p = 0.001) and BW (r = +0.35, p = 0.027) than LAB > 1500 or L > 22%. BW did not significantly correlate with chemotolerance or survival. The preliminary results of this study suggest that L ≥ 29.7% is more effective than LAB > 1500 or L > 22% at predicting chemotolerance, survival time and nutritional status. A possible impact of nutritional status on chemotherapy and survival seems to be lymphocyte-mediated given the association between BW and L%. This study may serve as the basis for future research to explore whether nutritional interventions can improve lymphopenia, and if so, how this may be possible.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Silvia Brugnatelli
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Lorenzo Perrone
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Annalisa Barbieri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| |
Collapse
|
629
|
Wandmacher AM, Letsch A, Sebens S. Challenges and Future Perspectives of Immunotherapy in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13164235. [PMID: 34439389 PMCID: PMC8391691 DOI: 10.3390/cancers13164235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Immunotherapeutic agents harness the patient’s immune system to fight cancer cells. Especially immune checkpoint inhibitors, a certain group of immunotherapeutic agents, have recently improved treatment options for many cancer types. Unfortunately, clinical trials testing of these agents in pancreatic cancer patients have not confirmed promising results from laboratory experiments. Several characteristics of pancreatic cancer biology, especially the profound tumour microenvironment that inhibits the successful identification and elimination of tumour cells by immune cells seems to be responsible for the lacking efficacy of immunotherapeutics in pancreatic cancer. We summarise recently published clinical trials investigating immunotherapeutic strategies in pancreatic cancer patients and available data on how these treatments influence pancreatic cancer biology. Moreover, we identify potential strategies to improve experimental and clinical studies in order to generate more conclusive data and improve patient outcomes in the future. Abstract To date, extensive efforts to harness immunotherapeutic strategies for the treatment of pancreatic ductal adenocarcinoma (PDAC) have yielded disappointing results in clinical trials. These strategies mainly focused on cancer vaccines and immune checkpoint inhibitors alone or in combination with chemotherapeutic or targeted agents. However, the growing preclinical and clinical data sets from these efforts have established valuable insights into the immunological characteristics of PDAC biology. Most notable are the immunosuppressive role of the tumour microenvironment (TME) and PDAC’s characteristically poor immunogenicity resulting from tumour intrinsic features. Moreover, PDAC tumour heterogeneity has been increasingly well characterized and may additionally limit a “one-fits-all” immunotherapeutic strategy. In this review, we first outline mechanisms of immunosuppression and immune evasion in PDAC. Secondly, we summarize recently published data on preclinical and clinical efforts to establish immunotherapeutic strategies for the treatment of PDAC including diverse combinatorial treatment approaches aiming at overcoming this resistance towards immunotherapeutic strategies. Particularly, these combinatorial treatment approaches seek to concomitantly increase PDAC antigenicity, boost PDAC directed T-cell responses, and impair the immunosuppressive character of the TME in order to allow immunotherapeutic agents to unleash their full potential. Eventually, the thorough understanding of the currently available data on immunotherapeutic treatment strategies of PDAC will enable researchers and clinicians to develop improved treatment regimens and to design innovative clinical trials to overcome the pronounced immunosuppression of PDAC.
Collapse
Affiliation(s)
- Anna Maxi Wandmacher
- Department of Internal Medicine II, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (A.M.W.); (A.L.)
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anne Letsch
- Department of Internal Medicine II, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (A.M.W.); (A.L.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Correspondence:
| |
Collapse
|
630
|
Li T, Liu T, Zhu W, Xie S, Zhao Z, Feng B, Guo H, Yang R. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211035540. [PMID: 34408525 PMCID: PMC8365012 DOI: 10.1177/11795549211035540] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Abstract
Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Wenjie Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Shangxun Xie
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Baofu Feng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, People's Republic of China
| |
Collapse
|
631
|
Yu ZK, Xie RL, You R, Liu YP, Chen XY, Chen MY, Huang PY. The role of the bacterial microbiome in the treatment of cancer. BMC Cancer 2021; 21:934. [PMID: 34412621 PMCID: PMC8375149 DOI: 10.1186/s12885-021-08664-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is defined as the microorganisms that reside in or on the human body, such as bacteria, viruses, fungi, and protozoa, and their genomes. The human microbiome participates in the modulation of human metabolism by influencing several intricate pathways. The association between specific bacteria or viruses and the efficacy of cancer treatments and the occurrence of treatment-related toxicity in cancer patients has been reported. However, the understanding of the interaction between the host microbiome and the cancer treatment response is limited, and the microbiome potentially plays a greater role in the treatment of cancer than reported to date. Here, we provide a thorough review of the potential role of the gut and locally resident bacterial microbiota in modulating responses to different cancer therapeutics to demonstrate the association between the gut or locally resident bacterial microbiota and cancer therapy. Probable mechanisms, such as metabolism, the immune response and the translocation of microbiome constituents, are discussed to promote future research into the association between the microbiome and other types of cancer. We conclude that the interaction between the host immune system and the microbiome may be the basis of the role of the microbiome in cancer therapies. Future research on the association between host immunity and the microbiome may improve the efficacy of several cancer treatments and provide insights into the cause of treatment-related side effects.
Collapse
Affiliation(s)
- Zi-Kun Yu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Rui-Ling Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Xu-Yin Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China.
| |
Collapse
|
632
|
Lu H, Wang Q, Liu W, Wen Z, Li Y. Precision strategies for cancer treatment by modifying the tumor-related bacteria. Appl Microbiol Biotechnol 2021; 105:6183-6197. [PMID: 34402938 DOI: 10.1007/s00253-021-11491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Research on the roles of the bacteria in tumor development and progression is a rapidly emerging field. Increasing evidence links bacteria with the modification of the tumor immune microenvironment, which greatly influences the antitumor response. In view of the individual immune effects of various bacteria in various tumors, developing personalized bacteria-modulating therapy may be a key to successful antitumor treatment. This review emphasizes the critical role of the bacteria in immune regulation, including both the tumor bacteria and gut bacteria. Aiming at tumor-related bacteria, we focus on various precise modulation strategies and discuss their impact and potential for tumor suppression. Finally, engineered bacteria with tumor-targeting ability could achieve precise delivery of various payloads into tumors, acting as a precision tool. Therefore, a precise tumor-related bacteria therapy may be a promising approach to suppress the development of tumors, as well as an adjuvant therapy to improve the antitumor efficacy of other approaches. KEY POINTS: • The mini-review updates the knowledge on complex effect of bacteria in TME. • Insight into the interaction and adjustment of bacteria in gut for TME. • Prospects and limitations of bacteria-related personalized therapy in the clinical anticancer therapy.
Collapse
Affiliation(s)
- Huazhen Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
633
|
Knippel RJ, Drewes JL, Sears CL. The Cancer Microbiome: Recent Highlights and Knowledge Gaps. Cancer Discov 2021; 11:2378-2395. [PMID: 34400408 DOI: 10.1158/2159-8290.cd-21-0324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Knowledge of the human microbiome, which is likely a critical factor in the initiation, progression, and prognosis of multiple forms of cancer, is rapidly expanding. In this review, we focus on recent investigations to discern putative, causative microbial species and the microbiome composition and structure currently associated with procarcinogenesis and tumorigenesis at select body sites. We specifically highlight forms of cancer, gastrointestinal and nongastrointestinal, that have significant bacterial associations and well-defined experimental evidence with the aim of generating directions for future experimental and translational investigations to develop a clearer understanding of the multifaceted mechanisms by which microbiota affect cancer formation. SIGNIFICANCE: Emerging and, for some cancers, strong experimental and translational data support the contribution of the microbiome to cancer biology and disease progression. Disrupting microbiome features and pathways contributing to cancer may provide new approaches to improving cancer outcomes in patients.
Collapse
Affiliation(s)
- Reece J Knippel
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia L Drewes
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
634
|
Derosa L, Routy B, Desilets A, Daillère R, Terrisse S, Kroemer G, Zitvogel L. Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology? Cancer Discov 2021; 11:2396-2412. [PMID: 34400407 DOI: 10.1158/2159-8290.cd-21-0236] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
The cancer-immune dialogue subject to immuno-oncological intervention is profoundly influenced by microenvironmental factors. Indeed, the mucosal microbiota-and more specifically, the intestinal ecosystem-influences the tone of anticancer immune responses and the clinical benefit of immunotherapy. Antibiotics blunt the efficacy of immune checkpoint inhibitors (ICI), and fecal microbial transplantation may restore responsiveness of ICI-resistant melanoma. Here, we review the yin and yang of intestinal bacteria at the crossroads between the intestinal barrier, metabolism, and local or systemic immune responses during anticancer therapies. We discuss diagnostic tools to identify gut dysbiosis and the future prospects of microbiota-based therapeutic interventions. SIGNIFICANCE: Given the recent proof of concept of the potential efficacy of fecal microbial transplantation in patients with melanoma primarily resistant to PD-1 blockade, it is timely to discuss how and why antibiotics compromise the efficacy of cancer immunotherapy, describe the balance between beneficial and harmful microbial species in play during therapies, and introduce the potential for microbiota-centered interventions for the future of immuno-oncology.
Collapse
Affiliation(s)
- Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif, France. .,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Antoine Desilets
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | | | - Safae Terrisse
- Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Saclay, Ile-de-France, France.,EverImmune, Gustave Roussy Cancer Campus, Villejuif, France.,Centre de Recherche des Cordeliers, INSERM U1138, Equipe Labellisée-Ligue contre le Cancer, Université de Paris, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France. .,Université Paris-Saclay, Ile-de-France, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Cancer Medicine Department, Gustave Roussy, Villejuif, France.,EverImmune, Gustave Roussy Cancer Campus, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
635
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
636
|
Elaskandrany M, Patel R, Patel M, Miller G, Saxena D, Saxena A. Fungi, host immune response, and tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2021; 321:G213-G222. [PMID: 34231392 PMCID: PMC8410104 DOI: 10.1152/ajpgi.00025.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in -omics analyses have tremendously enhanced our understanding of the role of the microbiome in human health and disease. Most research is focused on the bacteriome, but scientists have now realized the significance of the virome and microbial dysbiosis as well, particularly in noninfectious diseases such as cancer. In this review, we summarize the role of mycobiome in tumorigenesis, with a dismal prognosis, and attention to pancreatic ductal adenocarcinoma (PDAC). We also discuss bacterial and mycobial interactions to the host's immune response that is prevalently responsible for resistance to cancer therapy, including immunotherapy. We reported that the Malassezia species associated with scalp and skin infections, colonize in human PDAC tumors and accelerate tumorigenesis via activating the C3 complement-mannose-binding lectin (MBL) pathway. PDAC tumors thrive in an immunosuppressive microenvironment with desmoplastic stroma and a dysbiotic microbiome. Host-microbiome interactions in the tumor milieu pose a significant threat in driving the indolent immune behavior of the tumor. Microbial intervention in multimodal cancer therapy is a promising novel approach to modify an immunotolerant ("cold") tumor microenvironment to an immunocompetent ("hot") milieu that is effective in eliminating tumorigenesis.
Collapse
Affiliation(s)
- Miar Elaskandrany
- 1Biology Department, Brooklyn College, City University of New York, New York, New York,2Macaulay Honors Academy, Brooklyn College, City University of New York, New York, New York
| | - Rohin Patel
- 1Biology Department, Brooklyn College, City University of New York, New York, New York
| | - Mintoo Patel
- 3Natural Sciences, South Florida State College, Avon Park, Florida
| | - George Miller
- 4New York City Health & Hospitals (Woodhull), New York, New York
| | - Deepak Saxena
- 5Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York,6Department of Surgery, New York University School of Medicine, New York, New York
| | - Anjana Saxena
- 1Biology Department, Brooklyn College, City University of New York, New York, New York,7Biology and Biochemistry Programs, Graduate Center, City
University of New York (CUNY), New York, New York
| |
Collapse
|
637
|
Swislocki A. Fatty Pancreas: An Underappreciated Intersection of the Metabolic Profile and Pancreatic Adenocarcinoma. Metab Syndr Relat Disord 2021; 19:317-324. [PMID: 33656378 DOI: 10.1089/met.2020.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the prevalence of pancreatic cancer is increasing, treatment strategies remain limited, and success is rare. A growing body of evidence links pancreatic cancer to pre-existing metabolic disorders, including, but not limited to, type 2 diabetes mellitus and obesity. An infrequently described finding, fatty pancreas, initially described in the context of obesity in the early 20th century, appears to be at the crossroads of type 2 diabetes and obesity on the one hand, and the development of pancreatic cancer on the other. Similarly, other conditions of the pancreas, such as intrapancreatic mucinous neoplasms, also seem to be related to diabetes while increasing the subsequent risk of pancreatic cancer. In this review, the author explores the diagnostic criteria for, and prevalence of, fatty pancreas and the potential link to other pancreatic conditions, including pancreatic cancer. Diagnostic limitations, and areas of controversy are also addressed, as are potential therapeutic approaches to fatty pancreas intended to reduce the subsequent risk of pancreatic cancer.
Collapse
Affiliation(s)
- Arthur Swislocki
- Medical Service (612/111), Veterans Affairs Northern California Health Care System (VANCHCS), Martinez, California, USA
- Department of Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
638
|
Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021; 21:510-525. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in KRAS drive common metabolic programmes that facilitate tumour survival, growth and immune evasion in colorectal carcinoma, non-small-cell lung cancer and pancreatic ductal adenocarcinoma. However, the impacts of mutant KRAS signalling on malignant cell programmes and tumour properties are also dictated by tumour suppressor losses and physiological features specific to the cell and tissue of origin. Here we review convergent and disparate metabolic networks regulated by oncogenic mutant KRAS in colon, lung and pancreas tumours, with an emphasis on co-occurring mutations and the role of the tumour microenvironment. Furthermore, we explore how these networks can be exploited for therapeutic gain.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
639
|
Ammer-Herrmenau C, Asendorf T, Beyer G, Buchholz SM, Cameron S, Damm M, Frost F, Henker R, Jaster R, Phillip V, Placzek M, Ratei C, Sirtl S, van den Berg T, Weingarten MJ, Woitalla J, Mayerle J, Ellenrieder V, Neesse A. Study protocol P-MAPS: microbiome as predictor of severity in acute pancreatitis-a prospective multicentre translational study. BMC Gastroenterol 2021; 21:304. [PMID: 34332533 PMCID: PMC8325304 DOI: 10.1186/s12876-021-01885-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Acute pancreatitis (AP) is an inflammatory disorder that causes a considerable economic health burden. While the overall mortality is low, around 20% of patients have a complicated course of disease resulting in increased morbidity and mortality. There is an emerging body of evidence that the microbiome exerts a crucial impact on the pathophysiology and course of AP. For several decades multiple clinical and laboratory parameters have been evaluated, and complex scoring systems were developed to predict the clinical course of AP upon admission. However, the majority of scoring systems are determined after several days and achieve a sensitivity around 70% for early prediction of severe AP. Thus, continued efforts are required to investigate reliable biomarkers for the early prediction of severity in order to guide early clinical management of AP patients.
Methods We designed a multi-center, prospective clinical-translational study to test whether the orointestinal microbiome may serve as novel early predictor of the course, severity and outcome of patients with AP. We will recruit 400 AP patients and obtain buccal and rectal swabs within 72 h of admission to the hospital. Following DNA extraction, microbiome analysis will be performed using 3rd generation sequencing Oxford Nanopore Technologies (ONT) for 16S rRNA and metagenomic sequencing. Alpha- and beta-diversity will be determined and correlated to the revised Atlanta classification and additional clinical outcome parameters such as the length of hospital stay, number and type of complications, number of interventions and 30-day mortality. Discussion If AP patients show a distinct orointestinal microbiome dependent on the severity and course of the disease, microbiome sequencing could rapidly be implemented in the early clinical management of AP patients in the future. Trial registration: ClinicalTrials.gov Identifier: NCT04777812
Collapse
Affiliation(s)
- C Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - T Asendorf
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - G Beyer
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - S M Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - S Cameron
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - M Damm
- Department of Medicine I, University Hospital Halle, Halle, Germany
| | - F Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - R Henker
- Division of Gastroenterology, Medical Department II, University Hospital of Leipzig, Leipzig, Germany
| | - R Jaster
- Department of Medicine II, University Hospital Rostock, Rostock, Germany
| | - V Phillip
- Department of Medicine II, University Hospital rechts der Isar, Technical University Munich, Munich, Germany
| | - M Placzek
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - C Ratei
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - S Sirtl
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - T van den Berg
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - M J Weingarten
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - J Woitalla
- Department of Medicine II, University Hospital Rostock, Rostock, Germany
| | - J Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - V Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany
| | - A Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Robert-Kochsstraße 40, 37075, Göttingen, Germany.
| |
Collapse
|
640
|
Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci 2021; 9:5732-5744. [PMID: 34313267 DOI: 10.1039/d1bm00634g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cancer therapy strategies utilizing live tumor-targeting bacteria have presented unique advantages. Engineered bacteria have the particular ability to distinguish tumors from normal tissues with less toxicity. Live bacteria are naturally capable of homing to tumors, resulting in high levels of local colonization because of insufficient oxygen and low pH in the tumor microenvironment. Bacteria initiate their antitumor effects by directly killing the tumor or by activating innate and adaptive antitumor immune responses. The bacterial vectors can be reprogrammed following advanced DNA synthesis, sophisticated genetic bioengineering, and biosensors to engineer microorganisms with complex functions, and then produce and deliver anticancer agents based on clinical needs. However, because of the lack of knowledge on the mechanisms and side effects of microbial cancer therapy, developing such smart microorganisms to treat or prevent cancer remains a significant challenge. In this review, we summarized the potential, status, opportunities and challenges of this growing field. We illustrated the mechanism of tumor regression induced by engineered bacteria and discussed the recent advances in the application of bacteria-mediated cancer therapy to improve efficacy, safety and drug delivery. Finally, we shared our insights into the future directions of tumor-targeting bacteria in cancer therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | |
Collapse
|
641
|
Stasiewicz M, Kwaśniewski M, Karpiński TM. Microbial Associations with Pancreatic Cancer: A New Frontier in Biomarkers. Cancers (Basel) 2021; 13:3784. [PMID: 34359685 PMCID: PMC8345173 DOI: 10.3390/cancers13153784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic cancer (PC) remains a global health concern with high mortality and is expected to increase as a proportion of overall cancer cases in the coming years. Most patients are diagnosed at a late stage of disease progression, which contributes to the extremely low 5-year survival rates. Presently, screening for PC remains costly and time consuming, precluding the use of widespread testing. Biomarkers have been explored as an option by which to ameliorate this situation. The authors conducted a search of available literature on PubMed to present the current state of understanding as it pertains to the use of microbial biomarkers and their associations with PC. Carriage of certain bacteria in the oral cavity (e.g., Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus sp.), gut (e.g., Helicobacter pylori, Synergistetes, Proteobacteria), and pancreas (e.g., Fusobacterium sp., Enterobacteriaceae, Pseudomonadaceae) has been associated with an increased risk of developing PC. Additionally, the fungal genus Malassezia has likewise been associated with PC development. This review further outlines potential oncogenic mechanisms involved in the microbial-associated development of PC.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Marek Kwaśniewski
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
642
|
Abdul Rahman R, Lamarca A, Hubner RA, Valle JW, McNamara MG. The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153779. [PMID: 34359684 PMCID: PMC8345056 DOI: 10.3390/cancers13153779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancers. It is a difficult cancer to treat, and the complexity surrounding the pancreatic tumour is one of the contributing factors. The microbiome is the collection of microorganisms within an environment and its genetic material. They reside on body surfaces and most abundantly within the human gut in symbiotic balance with their human host. Disturbance in the balance can lead to many diseases, including cancers. Significant advances have been made in cancer treatment since the introduction of immunotherapy, and the microbiome may play a part in the outcome and survival of patients with cancer, especially those treated with immunotherapy. Immunotherapy use in pancreatic cancer remains challenging. This review will focus on the potential interaction of the microbiome with pancreas cancer and how this could be manipulated. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is projected to be the second most common cause of cancer-related death by 2030, with an overall 5-year survival rate between 7% and 9%. Despite recent advances in surgical, chemotherapy, and radiotherapy techniques, the outcome for patients with PDAC remains poor. Poor prognosis is multifactorial, including the likelihood of sub-clinical metastatic disease at presentation, late-stage at presentation, absence of early and reliable diagnostic biomarkers, and complex biology surrounding the extensive desmoplastic PDAC tumour micro-environment. Microbiota refers to all the microorganisms found in an environment, whereas microbiome is the collection of microbiota and their genome within an environment. These organisms reside on body surfaces and within mucosal layers, but are most abundantly found within the gut. The commensal microbiome resides in symbiosis in healthy individuals and contributes to nutritive, metabolic and immune-modulation to maintain normal health. Dysbiosis is the perturbation of the microbiome that can lead to a diseased state, including inflammatory bowel conditions and aetiology of cancer, such as colorectal and PDAC. Microbes have been linked to approximately 10% to 20% of human cancers, and they can induce carcinogenesis by affecting a number of the cancer hallmarks, such as promoting inflammation, avoiding immune destruction, and microbial metabolites can deregulate host genome stability preceding cancer development. Significant advances have been made in cancer treatment since the advent of immunotherapy. The microbiome signature has been linked to response to immunotherapy and survival in many solid tumours. However, progress with immunotherapy in PDAC has been challenging. Therefore, this review will focus on the available published evidence of the microbiome association with PDAC and explore its potential as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Rozana Abdul Rahman
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Juan W. Valle
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Correspondence:
| |
Collapse
|
643
|
Loilome W, Dokduang H, Suksawat M, Padthaisong S. Therapeutic challenges at the preclinical level for targeted drug development for Opisthorchis viverrini-associated cholangiocarcinoma. Expert Opin Investig Drugs 2021; 30:985-1006. [PMID: 34292795 DOI: 10.1080/13543784.2021.1955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelium with the highest incidence found in Thailand. Some patients are considered suitable for adjuvant therapy and surgical resection is currently the curative treatment for CCA patients. Tumor recurrence is still a hurdle after treatment; hence, finding novel therapeutic strategies to combat CCA is necessary for improving outcome for patients. AREAS COVERED We discuss targeted therapies and other novel treatment approaches which include protein kinase inhibitors, natural products, amino acid transporter-based inhibitors, immunotherapy, and drug repurposing. We also examine the challenges of tumor heterogeneity, cancer stem cells (CSCs), the tumor microenvironment, exosomes, multiomics studies, and the potential of precision medicine. EXPERT OPINION Because CCA is difficult to diagnose at the early stage, the traditional treatment approaches are not effective for many patients and most tumors recur. Consequently, researchers are exploring multi-aspect molecular carcinogenesis to uncover molecular targets for further development of novel targeted drugs.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sureerat Padthaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen Thailand.,Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
644
|
Temraz S, Nassar F, Kreidieh F, Mukherji D, Shamseddine A, Nasr R. Hepatocellular Carcinoma Immunotherapy and the Potential Influence of Gut Microbiome. Int J Mol Sci 2021; 22:ijms22157800. [PMID: 34360566 PMCID: PMC8346024 DOI: 10.3390/ijms22157800] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Disruptions in the human gut microbiome have been associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut microbiota can promote the development of hepatocellular carcinoma through the persistence of this inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome is known for its effect on host metabolism and immune response, it comes as no surprise that the gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma. Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as summarize the current findings to support the potential critical role of gut microbiome in hepatocellular carcinoma (HCC) immunotherapy.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
- Correspondence: (S.T.); (R.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Firas Kreidieh
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon; (F.N.); (F.K.); (D.M.); (A.S.)
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon
- Correspondence: (S.T.); (R.N.)
| |
Collapse
|
645
|
Ding G, Gong Q, Ma J, Liu X, Wang Y, Cheng X. Immunosuppressive activity is attenuated by Astragalus polysaccharides through remodeling the gut microenvironment in melanoma mice. Cancer Sci 2021; 112:4050-4063. [PMID: 34289209 PMCID: PMC8486201 DOI: 10.1111/cas.15078] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Astragalus polysaccharides (APS), the main effective component of Astragalus membranaceus, can inhibit tumor growth, but the underlying mechanisms remain unclear. Previous studies have suggested that APS can regulate the gut microenvironment, including the gut microbiota and fecal metabolites. In this work, our results showed that APS could control tumor growth in melanoma-bearing mice. It could reduce the number of myeloid-derived suppressor cells (MDSC), as well as the expression of MDSC-related molecule Arg-1 and cytokines IL-10 and TGF-β, so that CD8+ T cells could kill tumor cells more effectively. However, while APS were administered with an antibiotic cocktail (ABX), MDSC could not be reduced, and the growth rate of tumors was accelerated. Consistent with the changes in MDSC, the serum levels of IL-6 and IL-1β were lowest in the APS group. Meanwhile, we found that fecal suspension from mice in the APS group could also reduce the number of MDSC in tumor tissues. These results revealed that APS regulated the immune function in tumor-bearing mice through remodeling the gut microbiota. Next, we focused on the results of 16S rRNA, which showed that APS significantly regulated most microorganisms, such as Bifidobacterium pseudolongum, Lactobacillus johnsonii and Lactobacillus. According to the Spearman analysis, the changes in abundance of these microorganisms were related to the increase of metabolites like glutamate and creatine, which could control tumor growth. The present study demonstrates that APS attenuate the immunosuppressive activity of MDSC in melanoma-bearing mice by remodeling the gut microbiota and fecal metabolites. Our findings reveal the therapeutic potential of APS to control tumor growth.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianyi Gong
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Liu
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
646
|
Hu JX, Zhao CF, Chen WB, Liu QC, Li QW, Lin YY, Gao F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol 2021; 27:4298-4321. [PMID: 34366606 PMCID: PMC8316912 DOI: 10.3748/wjg.v27.i27.4298] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite rapid advances in modern medical technology and significant improvements in survival rates of many cancers, pancreatic cancer is still a highly lethal gastrointestinal cancer with a low 5-year survival rate and difficulty in early detection. At present, the incidence and mortality of pancreatic cancer are increasing year by year worldwide, no matter in the United States, Europe, Japan, or China. Globally, the incidence of pancreatic cancer is projected to increase to 18.6 per 100000 in 2050, with the average annual growth of 1.1%, meaning that pancreatic cancer will pose a significant public health burden. Due to the special anatomical location of the pancreas, the development of pancreatic cancer is usually diagnosed at a late stage with obvious clinical symptoms. Therefore, a comprehensive understanding of the risk factors for pancreatic cancer is of great clinical significance for effective prevention of pancreatic cancer. In this paper, the epidemiological characteristics, developmental trends, and risk factors of pancreatic cancer are reviewed and analyzed in detail.
Collapse
Affiliation(s)
- Jian-Xiong Hu
- Intensive Care Unit (ICU), Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Cheng-Fei Zhao
- School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine in University of Fujian Province, Putian University, Putian 351100, Fujian Province, China
| | - Wen-Biao Chen
- Department of Basic Medicine, Quanzhou Medical College, Quanzhou 362011, Fujian Province, China
| | - Qi-Cai Liu
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Qu-Wen Li
- Department of Priority Laboratory for Zoonoses Research, Fujian Center for Disease Control and Prevention, Fuzhou 350001, Fujian Province, China
| | - Yan-Ya Lin
- Intensive Care Unit (ICU), Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Feng Gao
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
647
|
Mohindroo C, Hasanov M, Rogers JE, Dong W, Prakash LR, Baydogan S, Mizrahi JD, Overman MJ, Varadhachary GR, Wolff RA, Javle MM, Fogelman DR, Lotze MT, Kim MP, Katz MHG, Pant S, Tzeng CWD, McAllister F. Antibiotic use influences outcomes in advanced pancreatic adenocarcinoma patients. Cancer Med 2021; 10:5041-5050. [PMID: 34250759 PMCID: PMC8335807 DOI: 10.1002/cam4.3870] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
Recent studies defined a potentially important role of the microbiome in modulating pancreatic ductal adenocarcinoma (PDAC) and responses to therapies. We hypothesized that antibiotic usage may predict outcomes in patients with PDAC. We retrospectively analyzed clinical data of patients with resectable or metastatic PDAC seen at MD Anderson Cancer from 2003 to 2017. Demographic, chemotherapy regimen and antibiotic use, duration, type, and reason for indication were recorded. A total of 580 patients with PDAC were studied, 342 resected and 238 metastatic patients, selected retrospectively from our database. Antibiotic use, for longer than 48 hrs, was detected in 209 resected patients (61%) and 195 metastatic ones (62%). On resectable patients, we did not find differences in overall survival (OS) or progression‐free survival (PFS), based on antibiotic intake. However, in the metastatic cohort, antibiotic consumption was associated with a significantly longer OS (13.3 months vs. 9.0 months, HR 0.48, 95% CI 0.34–0.7, p = 0.0001) and PFS (4.4 months vs. 2 months, HR 0.48, 95% CI 0.34–0.68, p = <0.0001). In multivariate analysis, the impact of ATB remained significant for PFS (HR 0.59, p = 0.005) and borderline statistically significant for OS (HR 0.69, p = 0.06). When we analyzed by chemotherapy regimen, we found that patients who received gemcitabine‐based chemotherapy as first‐line therapy (n = 118) had significantly prolonged OS (HR 0.4, p 0.0013) and PFS (HR 0.55, p 0.02) if they received antibiotics, while those receiving 5FU‐based chemotherapy (n = 98) had only prolonged PFS (HR 0.54, p = 0.03). Antibiotics‐associated modulation of the microbiome is associated with better outcomes in patients with metastatic PDAC. We have analyzed the effect of antibiotics’ intake on two cohorts of patients with pancreatic adenocarcinoma, resectable, and metastatic. We have found that on the metastatic cohort, antibiotics use was significantly associated with better outcomes, particularly, on patients that received gemcitabine based‐chemotherapy as the first line.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Merve Hasanov
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane E Rogers
- Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenli Dong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura R Prakash
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan D Mizrahi
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gauri R Varadhachary
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Fogelman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Investigation Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
648
|
Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci 2021; 282:119813. [PMID: 34256042 DOI: 10.1016/j.lfs.2021.119813] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Immune checkpoint blockade has displayed substantial anti-tumor resistance in a variety of forms of cancer, but the fundamental regulation role remains unclear, and several questions continue to be addressed. PD-1/PD-L1 has been recognized as an anti-cancer drug target for several years, and through targeting the PD-1/PD-L1 signaling pathway, many monoclonal antibodies have thus far produced promising results in cancer therapy. The discovery of small-molecule inhibitors focused on the PD-1/PD-L1 signaling pathway is steadily reviving over decades, owing to the intrinsic shortcomings of the antibodies. PD-1 function and its PD-L1 or PD-L2 ligands are essential for the activation, proliferation, and cytotoxic secretion of T-cells in cancer to degenerate anti-tumor immune response. The axis PD-1/PD-L1 is important for the immune escape of cancer which has an immense impact on cancer treatment. In this review, we summarize the function of PD-1 and PD-L1 in cancer and aiming to enhance cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
649
|
The Gut Microbiome in Patients With Chronic Pancreatitis Is Characterized by Significant Dysbiosis and Overgrowth by Opportunistic Pathogens. Clin Transl Gastroenterol 2021; 11:e00232. [PMID: 33094959 PMCID: PMC7494146 DOI: 10.14309/ctg.0000000000000232] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exocrine pancreatic function is a critical host factor in determining the intestinal microbiota composition. Diseases affecting the exocrine pancreas could therefore influence the gut microbiome. We investigated the changes in gut microbiota of patients with chronic pancreatitis (CP).
Collapse
|
650
|
Bellotti R, Speth C, Adolph TE, Lass-Flörl C, Effenberger M, Öfner D, Maglione M. Micro- and Mycobiota Dysbiosis in Pancreatic Ductal Adenocarcinoma Development. Cancers (Basel) 2021; 13:cancers13143431. [PMID: 34298645 PMCID: PMC8303110 DOI: 10.3390/cancers13143431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dysbiosis of the intestinal flora has emerged as an oncogenic contributor in different malignancies. Recent findings suggest a crucial tumor-promoting role of micro- and mycobiome alterations also in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS To summarize the current knowledge about this topic, a systematic literature search of articles published until October 2020 was performed in MEDLINE (PubMed). RESULTS An increasing number of publications describe associations between bacterial and fungal species and PDAC development. Despite the high inter-individual variability of the commensal flora, some studies identify specific microbial signatures in PDAC patients, including oral commensals like Porphyromonas gingivalis and Fusobacterium nucleatum or Gram-negative bacteria like Proteobacteria. The role of Helicobacter spp. remains unclear. Recent isolation of Malassezia globosa from PDAC tissue suggest also the mycobiota as a crucial player of tumorigenesis. Based on described molecular mechanisms and interactions between the pancreatic tissue and the immune system this review proposes a model of how the micro- and the mycobial dysbiosis could contribute to tumorigenesis in PDAC. CONCLUSIONS The presence of micro- and mycobial dysbiosis in pancreatic tumor tissue opens a fascinating perspective on PDAC oncogenesis. Further studies will pave the way for novel tumor markers and treatment strategies.
Collapse
Affiliation(s)
- Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (C.L.-F.)
| | - Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Metabolism & Endocrinology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (T.E.A.); (M.E.)
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (R.B.); (D.Ö.)
- Correspondence: ; Tel.: +43-504-51280 (ext. 809)
| |
Collapse
|