601
|
Abstract
AbstractChronic lymphocytic leukemia (CLL) is a malignancy of mature B cells that depend on host factors in the tissue microenvironment for survival and proliferation. In vitro, CLL cells rapidly undergo apoptosis unless microenvironmental factors are provided that support their survival. Signaling pathways activated in the microenvironment in vivo include the B-cell receptor (BCR) and NF-κB pathways. Thus, CLL is a disease “addicted to the host” and is dependent on pathways that promote normal B-cell development, expansion, and survival; this is particularly true in the case of the BCR signaling cascade. Small-molecule inhibitors of kinases that are essential for BCR signal transduction abrogate the stimulating effects of the microenvironment on CLL cells. The orally administered tyrosine kinase inhibitors fostamatinib and ibrutinib and the phosphatidylinositol 3-kinase inhibitor GS-1101 have induced impressive responses in relapsed and refractory CLL patients, mostly with moderate side effects. Reductions in lymphadenopathy and splenomegaly are seen within weeks and are frequently accompanied by a transient rise in absolute lymphocyte count that is asymptomatic and probably the result of changes in CLL cell trafficking. This review discusses the biologic basis for kinase inhibitors as targeted therapy of CLL and summarizes the exciting early clinical experience with these agents.
Collapse
|
602
|
|
603
|
Nastoupil LJ, Flowers CR. Management of relapsed chronic lymphocytic leukemia: applying guidelines to practice. COMMUNITY ONCOLOGY 2012; 9:S85-S92. [PMID: 23316119 PMCID: PMC3541037 DOI: 10.1016/j.cmonc.2012.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
604
|
Hutcheson J, Vanarsa K, Bashmakov A, Grewal S, Sajitharan D, Chang BY, Buggy JJ, Zhou XJ, Du Y, Satterthwaite AB, Mohan C. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Res Ther 2012; 14:R243. [PMID: 23136880 PMCID: PMC3674619 DOI: 10.1186/ar4086] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. METHODS B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. RESULTS In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. CONCLUSIONS These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.
Collapse
Affiliation(s)
- Jack Hutcheson
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Kamala Vanarsa
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Anna Bashmakov
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Simer Grewal
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Deena Sajitharan
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Betty Y Chang
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94085, USA
| | - Joseph J Buggy
- Pharmacyclics, Inc., 995 East Arques Avenue, Sunnyvale, California 94085, USA
| | - Xin J Zhou
- University of Texas Southwestern Medical Center, Department of Pathology, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Yong Du
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Anne B Satterthwaite
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| | - Chandra Mohan
- University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Rheumatic Diseases, 5323 Harry Hines Blvd., Dallas, TX 75390-8884, USA
| |
Collapse
|
605
|
B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides. Blood 2012; 120:3978-85. [DOI: 10.1182/blood-2012-05-431783] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L–stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
Collapse
|
606
|
Karmali R, Paganessi LA, Frank RR, Jagan S, Larson ML, Venugopal P, Gregory SA, Christopherson KW. Aggressive disease defined by cytogenetics is associated with cytokine dysregulation in CLL/SLL patients. J Leukoc Biol 2012; 93:161-70. [PMID: 23136257 DOI: 10.1189/jlb.0612301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early treatment of CLL/SLL does not impact survival-reflecting limitations in detecting progression early and identifying asymptomatic patients likely to benefit from early treatment. Improved understanding of CLL/SLL biology would identify better prognostic/predictive markers. This study attempts to address these issues by determining the relationship between cytokine aberrations and poor clinical outcomes in CLL/SLL in the context of a genetic-based prognostic model. Fifty-nine serum cytokines/chemokines were measured in 28 untreated CLL/SLL patients. Patients were stratified as GR or int/PR using cytogenetics. Comparison of CLL/SLL with 28 HCs revealed increased expression of Th2 cytokines (IL-10, IL-5, sIL-2Rα; P≤0.01) and decreased levels of Th1 cytokines (IL-17, IL-23, IFN-γ; P≤0.003). In a multivariate analysis of GR versus int/PR groups, differential expression of sIL-2Rα maintained significance with increased expression in int/PR CLL/SLL. With median follow-up of 54.3 months after diagnosis, four patients incurred disease progression, with an IL-17/sIL-2Rα model predicting need for treatment in all cases. In summary, specific cytokine signatures are associated with genetically defined aggressive disease and predict need for therapy. This suggests utility in detecting disease progression early, identifying those likely to incur a survival advantage with early treatment, and directing future therapy.
Collapse
Affiliation(s)
- Reem Karmali
- Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
607
|
Scupoli MT, Pizzolo G. Signaling pathways activated by the B-cell receptor in chronic lymphocytic leukemia. Expert Rev Hematol 2012; 5:341-8. [PMID: 22780213 DOI: 10.1586/ehm.12.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past decade, several features of the B-cell receptor (BCR) complex have emerged as major markers for prognostic classification of B-cell chronic lymphocytic leukemia (B-CLL). In particular, the absence of somatic mutations within the immunoglobulin variable heavy chain genes (IGHV), the presence of ZAP-70 and a higher ability of the BCR to translate signals within the cell have been associated with an aggressive clinical course. Indeed, the stratification of patients with B-CLL based on BCR features suggests that heterogeneity of B-CLL clinical courses may reflect BCR signaling differences that have arisen during the evolution of leukemia. Therefore, characterizing BCR signaling profiles may help to identify signaling markers useful for patient stratification, disease monitoring and therapeutic targeting in B-CLL.
Collapse
Affiliation(s)
- Maria Teresa Scupoli
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | | |
Collapse
|
608
|
Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24:643-9. [PMID: 22960555 DOI: 10.1097/cco.0b013e3283589950] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Despite ongoing efforts to decipher the cancer genome, discoveries of new targetable genetic lesions within cancer cells are rare. Therefore, alternative approaches are needed. Signals from the microenvironment are increasingly recognized as drivers of disease progression in hematologic and solid cancers. Consequently, there is growing interest in targeting the tumor-microenvironment cross-talk. This review highlights recent therapeutic advances in targeting the microenvironment in chronic lymphocytic leukemia (CLL). RECENT FINDINGS CLL is the poster child for microenvironment-dependent malignancies, because the clonal CLL B cells are highly dependent on external signals for maintenance and expansion. These pathways recapitulate those responsible for normal B-cell expansion in germinal centers. The most prominent, conserved mechanism is B-cell receptor (BCR) signaling, which promotes CLL cell survival and expansion in lymphatic tissue areas designated proliferation centers. BCR signaling now can be targeted by new targeted kinase inhibitors. SUMMARY Small molecule inhibitors of BCR signaling kinases, Bruton's tyrosine kinase (Btk) inhibitor ibrutinib and the phosphoinositide 3'-kinase delta (PI3Kδ) inhibitor GS-1101, are currently transforming the landscape of CLL therapy. This development exemplifies that the microenvironment has become a lively successful area of translational research.
Collapse
|
609
|
Bone marrow microenvironment in cancer patients: immunological aspects and clinical implications. Cancer Metastasis Rev 2012; 32:163-78. [DOI: 10.1007/s10555-012-9397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
610
|
Novel Agents and Emerging Strategies for Targeting the B-Cell Receptor Pathway in CLL. Mediterr J Hematol Infect Dis 2012; 4:e2012067. [PMID: 23170196 PMCID: PMC3499997 DOI: 10.4084/mjhid.2012.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease of malignant CD5+ B lymphocytes that are characterized by frequent expression of autoreactive B-cell receptors (BCRs) and marked dependence on microenvironmental signals for proliferation and survival. Among the latter, signals propagated through the BCR are believed to play a key role in leukemia initiation, maintenance and evolution. Drugs that can disrupt these signals have recently emerged as potential therapeutic agents in CLL and several of them are currently being evaluated in clinical trials. Particularly promising clinical responses have been obtained with inhibitors of the kinases SYK, BTK, and PI3Kδ, which function by blocking BCR signal transduction. In addition, recent studies focusing on the phosphatase PTPN22, which is involved in the pathogenesis of multiple autoimmune diseases and is markedly overexpressed in CLL cells, suggest that it may be possible in the future to develop strategies that will selectively reprogram BCR survival signals into signals that induce leukemic cell death. This review focuses on the biological basis behind these strategies and highlights some of the most promising BCR-targeting agents in ongoing preclinical and clinical studies.
Collapse
|
611
|
Malek SN. The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia. Oncogene 2012; 32:2805-17. [PMID: 23001040 DOI: 10.1038/onc.2012.411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and remains incurable with conventional chemotherapy treatment approaches. CLL as a disease entity is defined by a relatively parsimonious set of diagnostic criteria and therefore likely constitutes an umbrella term for multiple related illnesses. Of the enduring fundamental biological processes that affect the biology and clinical behavior of CLL, few are as central to the pathogenesis of CLL as recurrent acquired genomic copy number aberrations (aCNA) and recurrent gene mutations. Here, a state-of-the-art overview of the pathological anatomy of the CLL genome is presented, including detailed descriptions of the anatomy of aCNA and gene mutations. Data from SNP array profiling and large-scale sequencing of large CLL cohorts, as well as stimulated karyotyping, are discussed. This review is organized by discussions of the anatomy, underlying pathomechanisms and clinical significance of individual genomic lesions and recurrent gene mutations. Finally, gaps in knowledge regarding the biological and clinical effects of recurrent genomic aberrations or gene mutations on CLL are outlined to provide critical stimuli for future research.
Collapse
Affiliation(s)
- S N Malek
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109-0936, USA.
| |
Collapse
|
612
|
Cahill N, Bergh AC, Kanduri M, Göransson-Kultima H, Mansouri L, Isaksson A, Ryan F, Smedby KE, Juliusson G, Sundström C, Rosén A, Rosenquist R. 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia 2012; 27:150-8. [DOI: 10.1038/leu.2012.245] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
613
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
614
|
Abstract
Targeted therapy with imatinib and other selective tyrosine kinase inhibitors has transformed the treatment of chronic myeloid leukemia. Unlike chronic myeloid leukemia, chronic lymphocytic leukemia (CLL) lacks a common genetic aberration amenable to therapeutic targeting. However, our understanding of normal B-cell versus CLL biology points to differences in properties of B-cell receptor (BCR) signaling that may be amenable to selective therapeutic targeting. The application of mouse models has further expanded this understanding and provides information about targets in the BCR signaling pathway that may have other important functions in cell development or long-term health. In addition, overexpression or knockout of selected targets offers the potential to validate targets genetically using new mouse models of CLL. The initial success of BCR-targeted therapies has promoted much excitement in the field of CLL. At the present time, GS-1101, which reversibly inhibits PI3Kδ, and ibrutinib (PCI-32765), an irreversible inhibitor of Bruton tyrosine kinase, have generated the most promising early results in clinical trials including predominately refractory CLL where durable disease control has been observed. This review provides a summary of BCR signaling, tools for studying this pathway relevant to drug development in CLL, and early progress made with therapeutics targeting BCR-related kinases.
Collapse
|
615
|
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B cells that depend on host factors in the tissue microenvironment for survival and proliferation. In vitro, CLL cells rapidly undergo apoptosis unless microenvironmental factors are provided that support their survival. Signaling pathways activated in the microenvironment in vivo include the B-cell receptor (BCR) and NF-κB pathways. Thus, CLL is a disease "addicted to the host" and is dependent on pathways that promote normal B-cell development, expansion, and survival; this is particularly true in the case of the BCR signaling cascade. Small-molecule inhibitors of kinases that are essential for BCR signal transduction abrogate the stimulating effects of the microenvironment on CLL cells. The orally administered tyrosine kinase inhibitors fostamatinib and ibrutinib and the phosphatidylinositol 3-kinase inhibitor GS-1101 have induced impressive responses in relapsed and refractory CLL patients, mostly with moderate side effects. Reductions in lymphadenopathy and splenomegaly are seen within weeks and are frequently accompanied by a transient rise in absolute lymphocyte count that is asymptomatic and probably the result of changes in CLL cell trafficking. This review discusses the biologic basis for kinase inhibitors as targeted therapy of CLL and summarizes the exciting early clinical experience with these agents.
Collapse
|
616
|
Lim KH, Yang Y, Staudt LM. Pathogenetic importance and therapeutic implications of NF-κB in lymphoid malignancies. Immunol Rev 2012; 246:359-78. [PMID: 22435566 DOI: 10.1111/j.1600-065x.2012.01105.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be 'addicted' to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
617
|
Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs 2012; 21:921-947. [PMID: 22612424 DOI: 10.1517/13543784.2012.685650] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the last few years, several tyrosine kinase inhibitors (TKIs) have been synthesized and become available for preclinical studies and clinical trials. This article summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity, as well as the emerging role of TKIs in lymphoid malignancies, allergic diseases, and autoimmune disorders. AREAS COVERED A literature review was conducted of the MEDLINE database PubMed for articles in English. Publications from 2000 through January 2012 were scrutinized. The search terms used were Bruton's tyrosine kinase (Btk) inhibitors, PCI-32765, GDC-0834, LFM-A13, AVL-101, AVL-292, spleen tyrosine kinase (Syk) inhibitors, R343, R406, R112, R788, fostamatinib, BAY-61-3606, C-61, piceatannol, Lyn, imatinib, nilotinib, bafetinib, dasatinib, GDC-0834, PP2, SU6656 in conjunction with lymphoid malignancy, NHL, CLL, autoimmune disease, allergic disease, asthma, and rheumatoid arthritis. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION The use of TKIs, especially inhibitors of Btk, Syk, and Lyn, is a promising new strategy for targeted treatment of B-cell lymphoid malignancies, autoimmune disorders and allergic diseases. However, definitive data from ongoing and future clinical trials will aid in better defining the status of TKIs in the treatment of these disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| | | |
Collapse
|
618
|
Abstract
Targeted therapy with imatinib and other selective tyrosine kinase inhibitors has transformed the treatment of chronic myeloid leukemia. Unlike chronic myeloid leukemia, chronic lymphocytic leukemia (CLL) lacks a common genetic aberration amenable to therapeutic targeting. However, our understanding of normal B-cell versus CLL biology points to differences in properties of B-cell receptor (BCR) signaling that may be amenable to selective therapeutic targeting. The application of mouse models has further expanded this understanding and provides information about targets in the BCR signaling pathway that may have other important functions in cell development or long-term health. In addition, overexpression or knockout of selected targets offers the potential to validate targets genetically using new mouse models of CLL. The initial success of BCR-targeted therapies has promoted much excitement in the field of CLL. At the present time, GS-1101, which reversibly inhibits PI3Kδ, and ibrutinib (PCI-32765), an irreversible inhibitor of Bruton tyrosine kinase, have generated the most promising early results in clinical trials including predominately refractory CLL where durable disease control has been observed. This review provides a summary of BCR signaling, tools for studying this pathway relevant to drug development in CLL, and early progress made with therapeutics targeting BCR-related kinases.
Collapse
|
619
|
Deng C, Lee S, O'Connor OA. New Strategies in the Treatment of Mantle Cell Lymphoma. Clin Cancer Res 2012; 18:3499-508. [DOI: 10.1158/1078-0432.ccr-11-3152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
620
|
Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120:1877-87. [PMID: 22689860 DOI: 10.1182/blood-2011-12-396853] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.
Collapse
|
621
|
The novel cyclin-dependent kinase inhibitor dinaciclib (SCH727965) promotes apoptosis and abrogates microenvironmental cytokine protection in chronic lymphocytic leukemia cells. Leukemia 2012; 26:2554-7. [PMID: 22791353 DOI: 10.1038/leu.2012.144] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
622
|
Jaglowski SM, Byrd JC. Novel therapies and their integration into allogeneic stem cell transplant for chronic lymphocytic leukemia. Biol Blood Marrow Transplant 2012; 18:S132-8. [PMID: 22226097 DOI: 10.1016/j.bbmt.2011.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Over the past decade, numerous advances have been made in elucidating the biology of and improving treatment for chronic lymphocytic leukemia (CLL). These studies have led to identification of select CLL patient groups that generally have short survival dating from time of treatment or initial disease relapse who benefit from more aggressive therapeutic interventions. Allogeneic transplantation represents the only potentially curative option for CLL, but fully ablative regimens applied in the past have been associated with significant morbidity and mortality. Reduced-intensity preparative regimens has made application of allogeneic transplant to CLL patients much more feasible and increased the number of patients proceeding to this modality. Arising from this has been establishment of guidelines where allogeneic stem cell transplantation should be considered in CLL. Introduction of new targeted therapies with less morbidity, which can produce durable remissions has the potential to redefine where transplantation is initiated in CLL. This review briefly summarizes the field of allogeneic stem cell transplant in CLL and the interface of new therapeutics with this modality.
Collapse
Affiliation(s)
- Samantha M Jaglowski
- Department of Internal Medicine, Division of Hematology and Oncology, Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
623
|
Abstract
Mantle cell lymphoma is a mature B cell neoplasm constituting 5-7% of all non-Hodgkin lymphoma. Overall prognosis with current therapeutics remains poor, thus numerous novel agents are currently under investigation. In this review we focus on early phase trials that have demonstrated promise in mantle cell. Constitutive activation of signaling components downstream of the B cell receptor play an important role in the pathobiology of mantle cell lymphoma. Targeting of this signaling pathway has become a focus with specific agents under development including inhibitors of spleen tyrosine kinase, phosphoinositide 3-kinase and Bruton's tyrosine kinase. Promising data also supports further development of BH-3 mimetics, a crucial component of anti-apoptotic signaling. Histone deacetylase inhibitors have an established role in cutaneous T-cell lymphoma and are now under investigation in mantle cell lymphoma as well. With further understanding of cellular signaling, the armamentarium of treatment options will be enhanced, with the hope of improving the prognosis of this disease.
Collapse
Affiliation(s)
- Marcus S Noel
- University of Rochester Medical Center, James P. Wilmot Cancer Center, 601 Elmwood Avenue, Box 704, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
624
|
Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 2012; 119:3744-56. [DOI: 10.1182/blood-2011-12-397919] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
On antigen binding by the B-cell receptor (BCR), B cells up-regulate protein expression of the key downstream signaling molecule Bruton tyrosine kinase (Btk), but the effects of Btk up-regulation on B-cell function are unknown. Here, we show that transgenic mice overexpressing Btk specifically in B cells spontaneously formed germinal centers and manifested increased plasma cell numbers, leading to antinuclear autoantibody production and systemic lupus erythematosus (SLE)–like autoimmune pathology affecting kidneys, lungs, and salivary glands. Autoimmunity was fully dependent on Btk kinase activity, because Btk inhibitor treatment (PCI-32765) could normalize B-cell activation and differentiation, and because autoantibodies were absent in Btk transgenic mice overexpressing a kinase inactive Btk mutant. B cells overexpressing wild-type Btk were selectively hyperresponsive to BCR stimulation and showed enhanced Ca2+ influx, nuclear factor (NF)–κB activation, resistance to Fas-mediated apoptosis, and defective elimination of selfreactive B cells in vivo. These findings unravel a crucial role for Btk in setting the threshold for B-cell activation and counterselection of autoreactive B cells, making Btk an attractive therapeutic target in systemic autoimmune disease such as SLE. The finding of in vivo pathology associated with Btk overexpression may have important implications for the development of gene therapy strategies for X-linked agammaglobulinemia, the immunodeficiency associated with mutations in BTK.
Collapse
|
625
|
Abstract
In this issue of Blood, Sampath and colleagues provide an important missing link in how microRNAs (miRs) can be silenced in chronic lymphocytic leukemia (CLL):histone deacetylases (HDACs) that are overexpressed in CLL block critical miRs in the malignant B cell resulting in pro-survival signals. Thus,HDAC inhibition is an attractive new therapeutic strategy in CLL.
Collapse
|
626
|
|
627
|
Balakrishnan K, Gandhi V. Protein kinases: emerging therapeutic targets in chronic lymphocytic leukemia. Expert Opin Investig Drugs 2012; 21:409-23. [PMID: 22409342 DOI: 10.1517/13543784.2012.668526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Although protein kinases are primary targets for inhibition in hematological malignancies, until recently their contribution to chronic lymphocytic leukemia (CLL) was poorly understood. Insights into B-cell receptor signaling and its role in regulating key cellular functions have shed light on candidate protein kinases that are aberrantly activated in CLL. In this regard, protein kinases are now considered as potential drug targets in CLL. AREA COVERED This review has covered signaling pathways and associated protein kinases in CLL and the kinase inhibitors currently available in preclinical and clinical investigations. Individual protein kinases that are abnormally active in CLL and the functional consequences of their inhibition are discussed. EXPERT OPINION A growing body of evidence suggests that protein kinases are druggable targets for patients with CLL. The emergence of novel and bio-available kinase inhibitors and their promising clinical activity in CLL underscore the oncogenic role of kinases in leukemogenesis. Further investigations directed towards their role as single agents or in combinations may provide insight into understanding the substantial role of kinase-mediated signal transduction pathways and their inhibition in B- CLL.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- The University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX 77030, USA.
| | | |
Collapse
|
628
|
Burger JA. Inhibiting B-cell receptor signaling pathways in chronic lymphocytic leukemia. Curr Hematol Malig Rep 2012; 7:26-33. [PMID: 22105489 DOI: 10.1007/s11899-011-0104-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
B-cell receptor (BCR) signaling is a central pathologic mechanism in B-cell malignancies, including chronic lymphocytic leukemia (CLL), in which it promotes leukemia cell survival and proliferation, and modulates CLL cell migration and tissue homing. BCR signaling now can be targeted with new, small molecule inhibitors of the spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), or phosphoinositide 3'-kinase (PI3K) isoform p110δ (PI3Kδ), which have recently entered the clinical stage and show promising results in patients with CLL. During the first weeks of therapy, these agents characteristically induce rapid resolution of lymphadenopathy and organomegaly, accompanied by a transient surge in lymphocyte counts due to "mobilization" of tissue-resident CLL cells into the blood. Then, often after months of continuous therapy, a major proportion of patients achieve remissions. This article reviews key biologic aspects of BCR-associated kinases in CLL and other B cell neoplasias, and develops perspectives for future development of this exciting new class of kinase inhibitors.
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230-1402, USA.
| |
Collapse
|
629
|
Chapman CM, Sun X, Roschewski M, Aue G, Farooqui M, Stennett L, Gibellini F, Arthur D, Pérez-Galán P, Wiestner A. ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin Cancer Res 2012; 18:1979-91. [PMID: 22351695 DOI: 10.1158/1078-0432.ccr-11-2113] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL), a malignancy of mature B cells, is incurable with chemotherapy. Signals from the microenvironment support leukemic cell survival and proliferation and may confer chemotherapy resistance. ON 01910.Na (Rigosertib), a multikinase phosphoinositide 3-kinase (PI3K) inhibitor, is entering phase III trials for myelodysplastic syndrome. Our aim was to analyze the efficacy of ON 01910.Na against CLL cells in vitro and investigate the molecular effects of this drug on tumor biology. EXPERIMENTAL DESIGN Cytotoxicity of ON 01910.Na against CLL cells from 34 patients was determined in vitro with flow cytometry of cells stained with Annexin V and CD19. Global gene expression profiling on Affymetrix microarrays, flow cytometry, Western blotting, and cocultures with stroma cells were used to delineate ON 01910.Na mechanism of action. RESULTS ON 01910.Na induced apoptosis in CLL B cells without significant toxicity against T cells or normal B cells. ON 01910.Na was equally active against leukemic cells associated with a more aggressive disease course [immunoglobulin heavy-chain variable region unmutated, adverse cytogenetics] than against cells without these features. Gene expression profiling revealed two main mechanisms of action: PI3K/AKT inhibition and induction of ROS that resulted in an oxidative stress response through activating protein 1 (AP-1), c-jun-NH(2)-terminal kinase, and ATF3 culminating in the upregulation of NOXA. ROS scavengers and shRNA mediated knockdown of ATF3- and NOXA-protected cells from drug-induced apoptosis. ON 01910.Na also abrogated the prosurvival effect of follicular dendritic cells on CLL cells and reduced SDF-1-induced migration of leukemic cells. CONCLUSIONS These data support the clinical development of ON 01910.Na in CLL.
Collapse
Affiliation(s)
- Colby M Chapman
- Hematology Branch, NHLBI, NIH, Bld 10, CRC 3-5140, 10 Center Drive, 20892-1202 Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Zhong J, Kim MS, Chaerkady R, Wu X, Huang TC, Getnet D, Mitchell CJ, Palapetta SM, Sharma J, O'Meally RN, Cole RN, Yoda A, Moritz A, Loriaux MM, Rush J, Weinstock DM, Tyner JW, Pandey A. TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteomics 2012; 11:M112.017764. [PMID: 22345495 DOI: 10.1074/mcp.m112.017764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine that plays diverse roles in the regulation of immune responses. TSLP requires a heterodimeric receptor complex consisting of IL-7 receptor α subunit and its unique TSLP receptor (gene symbol CRLF2) to transmit signals in cells. Abnormal TSLP signaling (e.g. overexpression of TSLP or its unique receptor TSLPR) contributes to the development of a number of diseases including asthma and leukemia. However, a detailed understanding of the signaling pathways activated by TSLP remains elusive. In this study, we performed a global quantitative phosphoproteomic analysis of the TSLP signaling network using stable isotope labeling by amino acids in cell culture. By employing titanium dioxide in addition to antiphosphotyrosine antibodies as enrichment methods, we identified 4164 phosphopeptides on 1670 phosphoproteins. Using stable isotope labeling by amino acids in cell culture-based quantitation, we determined that the phosphorylation status of 226 proteins was modulated by TSLP stimulation. Our analysis identified activation of several members of the Src and Tec families of kinases including Btk, Lyn, and Tec by TSLP for the first time. In addition, we report TSLP-induced phosphorylation of protein phosphatases such as Ptpn6 (SHP-1) and Ptpn11 (Shp2), which has also not been reported previously. Co-immunoprecipitation assays showed that Shp2 binds to the adapter protein Gab2 in a TSLP-dependent manner. This is the first demonstration of an inducible protein complex in TSLP signaling. A kinase inhibitor screen revealed that pharmacological inhibition of PI-3 kinase, Jak family kinases, Src family kinases or Btk suppressed TSLP-dependent cellular proliferation making them candidate therapeutic targets in diseases resulting from aberrant TSLP signaling. Our study is the first phosphoproteomic analysis of the TSLP signaling pathway that greatly expands our understanding of TSLP signaling and provides novel therapeutic targets for TSLP/TSLPR-associated diseases in humans.
Collapse
Affiliation(s)
- Jun Zhong
- McKusick-Nathans Institute of Genetic Medicine and Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, 21205 Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
631
|
de Paula Careta F, Gobessi S, Panepucci RA, Bojnik E, Morato de Oliveira F, Mazza Matos D, Falcão RP, Laurenti L, Zago MA, Efremov DG. The Aurora A and B kinases are up-regulated in bone marrow-derived chronic lymphocytic leukemia cells and represent potential therapeutic targets. Haematologica 2012; 97:1246-54. [PMID: 22331265 DOI: 10.3324/haematol.2011.054668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The malignant B cells in chronic lymphocytic leukemia receive signals from the bone marrow and lymph node microenvironments which regulate their survival and proliferation. Characterization of these signals and the pathways that propagate them to the interior of the cell is important for the identification of novel potential targets for therapeutic intervention. DESIGN AND METHODS We compared the gene expression profiles of chronic lymphocytic leukemia B cells purified from bone marrow and peripheral blood to identify genes that are induced by the bone marrow microenvironment. Two of the differentially expressed genes were further studied in cell culture experiments and in an animal model to determine whether they could represent appropriate therapeutic targets in chronic lymphocytic leukemia. RESULTS Functional classification analysis revealed that the majority of differentially expressed genes belong to gene ontology categories related to cell cycle and mitosis. Significantly up-regulated genes in bone marrow-derived tumor cells included important cell cycle regulators, such as Aurora A and B, survivin and CDK6. Down-regulation of Aurora A and B by RNA interference inhibited proliferation of chronic lymphocytic leukemia-derived cell lines and induced low levels of apoptosis. A similar effect was observed with the Aurora kinase inhibitor VX-680 in primary chronic lymphocytic leukemia cells that were induced to proliferate by CpG-oligonucleotides and interleukin-2. Moreover, VX-680 significantly blocked leukemia growth in a mouse model of chronic lymphocytic leukemia. CONCLUSIONS Aurora A and B are up-regulated in proliferating chronic lymphocytic leukemia cells and represent potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Francisco de Paula Careta
- Hematology Division and Center for Cell-Based Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
632
|
Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119:2854-62. [PMID: 22308293 DOI: 10.1182/blood-2011-12-395673] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genetic lesions identified to date do not fully recapitulate the molecular pathogenesis of chronic lymphocytic leukemia (CLL) and do not entirely explain the development of severe complications such as chemorefractoriness. In the present study, BIRC3, a negative regulator of noncanonical NF-κB signaling, was investigated in different CLL clinical phases. BIRC3 lesions were absent in monoclonal B-cell lymphocytosis (0 of 63) and were rare in CLL at diagnosis (13 of 306, 4%). Conversely, BIRC3 disruption selectively affected 12 of 49 (24%) fludarabine-refractory CLL cases by inactivating mutations and/or gene deletions that distributed in a mutually exclusive fashion with TP53 abnormalities. In contrast to fludarabine-refractory CLL, progressive but fludarabine-sensitive patients were consistently devoid of BIRC3 abnormalities, suggesting that BIRC3 genetic lesions associate specifically with a chemorefractory phenotype. By actuarial analysis in newly diagnosed CLL (n = 306), BIRC3 disruption identified patients with a poor outcome similar to that associated with TP53 abnormalities and exerted a prognostic role that was independent of widely accepted clinical and genetic risk factors. Consistent with the role of BIRC3 as a negative regulator of NF-κB, biochemical studies revealed the presence of constitutive noncanonical NF-κB activation in fludarabine-refractory CLL patients harboring molecular lesions of BIRC3. These data identify BIRC3 disruption as a recurrent genetic lesion of high-risk CLL devoid of TP53 abnormalities.
Collapse
|
633
|
Alinari L, Christian B, Baiocchi RA. Novel targeted therapies for mantle cell lymphoma. Oncotarget 2012; 3:203-11. [PMID: 22361516 PMCID: PMC3326650 DOI: 10.18632/oncotarget.426] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/21/2012] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell malignancy characterized by short median survival despite intensive therapies. The clinical behavior of MCL may be due to the complex pathophysiology of the disease which includes its genetic hallmark, the chromosomal translocation t(11;14) resulting in aberrant expression of cyclin D1, alteration in the DNA damage response, and constitutive activation of key anti-apoptotic pathways such as phosphatidyl-inositol 3-kinase (PI3K)/Akt and nuclear factor-kB (NF-kB). Collectively, these changes result in cell cycle dysregulation and give rise to profound genetic instability. Given this complex pathophysiology, the limited number of options for patients with relapsed/refractory MCL, and the difficulty in achieving long-lasting remissions with conventional approaches, it is essential to explore new treatment options targeting the numerous dysregulated pathways that are operable in MCL. We have recently reported that milatuzumab, a fully humanized anti-CD74 monoclonal antibody (mAb), in combination with anti-CD20 mAbs has significant preclinical and clinical activity in MCL. Here we discuss these results, provide additional insights into milatuzumab-mediated MCL cell death, and report preliminary data on the activity of other targeted biologic agents including PCI-32765 and CAL-101 currently undergoing evaluation at our institution and others.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD20/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- B-Lymphocytes/pathology
- Cell Cycle/physiology
- Clinical Trials as Topic
- Cyclin D1/metabolism
- DNA Repair
- Female
- Histocompatibility Antigens Class II/immunology
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Male
- Middle Aged
- Molecular Targeted Therapy
- NF-kappa B/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Piperidines
- Proto-Oncogene Proteins c-akt/metabolism
- Purines/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Quinazolinones/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Translocation, Genetic
Collapse
Affiliation(s)
- Lapo Alinari
- Division of Hematology, Department of Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
634
|
The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119:2590-4. [PMID: 22279054 DOI: 10.1182/blood-2011-11-390989] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.
Collapse
|
635
|
Noe MC, Gilbert AM. Targeted Covalent Enzyme Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY VOLUME 47 2012. [DOI: 10.1016/b978-0-12-396492-2.00027-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
636
|
Burger JA. The times they are a-changin': prognostic markers in the new era of BCR-targeting therapies for CLL. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2012; 6:49-57. [PMID: 23480620 DOI: 10.1517/17530059.2012.637108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Given the highly variable clinical presentation and prognosis in patients with chronic lymphocytic leukemia (CLL), prognostic markers have typically been used for estimating the risk of disease progression and prognosis in individual patients. The traditional clinical staging systems continue to be used for treatment decisions, but they do not allow for predictions in early-stage patients. Molecular and cytogenetic risk factors allow us to predict the risk for disease progression response to 'standard' therapy and prognosis. Increasing evidence indicates robust connections of several CLL risk factor markers to B-cell receptor (BCR) function and signaling. AREAS COVERED Several CLL risk factors (immunoglobulin heavy chain variable region mutational status, CD38 and ZAP-70 expression, CCL3 plasma levels) are related to the function of the BCR, a key factor in CLL pathogenesis. Their implications in the context of novel BCR-targeted therapies will be discussed. EXPERT OPINION With the emergence of inhibitors of BCR-associated kinases (Btk-, Syk- and PI3 kinase inhibitors) in CLL and other B cell malignancies, BCR-related risk factors may help with identification of patients who are likely to respond and/or for response assessment (i.e., CCL3 plasma levels). The negative prognostic impact of BCR-related risk factors may improve with the use of these new, targeted agents.
Collapse
Affiliation(s)
- Jan A Burger
- The University of Texas MD Anderson Cancer Center, Department of Leukemia , Unit 428, PO Box 301402, Houston, TX 77230 1402 , USA +1 713 563 1487 or +1 713 792 1865 ; +1 713 794 4297 ;
| |
Collapse
|
637
|
Smith SM. What is the best strategy for incorporating new agents into the current treatment of follicular lymphoma? Am Soc Clin Oncol Educ Book 2012:481-7. [PMID: 24451784 DOI: 10.14694/edbook_am.2012.32.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although there is increasing knowledge about the pathobiology of follicular lymphoma (FL), the incorporation of new agents is challenged by the long clinical course and inherent heterogeneity of the disease. Furthermore, a longstanding concept in FL is that although most patients have an indolent initial phase of disease, this is typically followed by sequentially shorter remission durations and justifies the continued intense search for new rationally designed agents. Ideally, there would be personalized prognostic tools, preemptive target identification, and means to predict response in individual patients. Short of having these tools, one conceptual approach is to consider FL as a series of clinical disease states divided between treatment-naïve (low tumor burden and high tumor burden), relapsed (typically still chemoimmunotherapy-sensitive), and multiply relapsed (usually chemoimmunotherapy-resistant) disease. By applying what is known about the biology of FL along with the available agents, new treatment options can be better defined and tested within these clinical contexts. During the last few years, novel chemotherapeutics, biologic agents, monoclonal antibodies, antibody drug conjugates, and maintenance strategies are all either replacing or adding onto existing strategies. These new agents and approaches challenge the notion of inevitably shorter response durations, and offer hope of improved clinical outcomes compared with traditional sequential cytotoxic therapy.
Collapse
Affiliation(s)
- Sonali M Smith
- From the Section of Hematology/Oncology, Lymphoma Program, The University of Chicago, Chicago, IL
| |
Collapse
|
638
|
Hillmen P. Targeted therapy for chronic lymphocytic leukemia: a glimpse into the future. J Clin Oncol 2011; 30:469-70. [PMID: 22184387 DOI: 10.1200/jco.2011.37.8612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
639
|
The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2011; 119:1182-9. [PMID: 22180443 DOI: 10.1182/blood-2011-10-386417] [Citation(s) in RCA: 527] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent.
Collapse
|
640
|
Seiffert M, Dietrich S, Jethwa A, Glimm H, Lichter P, Zenz T. Exploiting biological diversity and genomic aberrations in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 53:1023-31. [PMID: 22023519 DOI: 10.3109/10428194.2011.631638] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is remarkable heterogeneity in the clinical course and biological characteristics of patient subgroups with chronic lymphocytic leukemia (CLL). Mutations of key tumor suppressors (ATM, miR-15a/16-1 and TP53) have been identified in CLL, and these aberrations are important "drivers" of the disease and some of its clinical characteristics. While some mutations are associated with poor outcome [particularly del(17p) and TP53 mutation], others are linked to a favorable clinical course [e.g. del(13q) as sole aberration]. In addition to genetic aberrations, antigen drive and microenvironmental interactions contribute to the pathogenesis of CLL. How the genetic aberrations impact on the process of antigen drive or microenvironmental interactions is currently unclear. Our improved understanding of the biology and clinical course of specific genetic subgroups is beginning to be translated into more specific and targeted treatment approaches. As a result, genetic subgroups are treated in distinct protocols. This review summarizes the contribution of the microenvironment and the most important genetic aberrations in CLL and how our improved knowledge of the biology of CLL may translate into improved treatment results.
Collapse
Affiliation(s)
- Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
641
|
|
642
|
Cell activation by CpG ODN leads to improved electrofusion in hybridoma production. J Immunol Methods 2011; 373:102-10. [PMID: 21878337 DOI: 10.1016/j.jim.2011.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Hybridoma formation is an indispensable step in the production of monoclonal antibodies. Obtaining highly efficient fusion of an antibody-producing cell to the myeloma cell to form the hybridoma is an important step in this process. The electrofusion method is superior to chemical fusion methods such as the polyethylene glycol (PEG) method due to its high fusion efficiency. However, this method requires cell activation prior to electrofusion, a process that is time-consuming and tends to cause cell death. In this study, we achieved much higher fusion efficiency by stimulating B cells with CpG oligodeoxynucleotide (CpG ODN) over shorter periods. Splenocytes were isolated from immunized mice and cultured in the presence of a CpG ODN for 1 or 2 days. This CpG ODN stimulation evokes about one order of magnitude higher fusion efficiency than other stimulators. CpG ODN stimulation not only increases the fusion efficiency but also the number of antibody-producing cells. This leads to a substantial increase in the number of positive clones obtained. This highly efficient fusion method was used to produce a functional antibody against Gaussia luciferase. This method was found to produce greater numbers of hybridomas and to enable direct screening for antibodies with functional characteristics such as inhibition of the luminescence activity of an antigen. We were able to establish a functional antibody against Gaussia luciferase after a single fusion experiment using our electrofusion method.
Collapse
|
643
|
Abstract
The B-cell receptor (BCR) is a key survival molecule for normal B cells and for most B-cell malignancies. Recombinatorial and mutational patterns in the clonal immunoglobulin (Ig) of chronic lymphocytic leukemia (CLL) have revealed 2 major IgMD-expressing subsets and an isotype-switched variant, each developing from distinct B-cell populations. Tracking of conserved stereotypic features of Ig variable regions characteristic of U-CLL indicate circulating naive B cells as the likely cells of origin. In CLL, engagement of the BCR by antigen occurs in vivo, leading to down-regulated expression and to an unanticipated modulation of glycosylation of surface IgM, visible in blood cells, especially in U-CLL. Modulated glycoforms of sIgM are signal competent and could bind to environmental lectins. U-CLL cases express more sIgM and have increased signal competence, linking differential signaling responses to clinical behavior. Mapping of BCR signaling pathways identifies targets for blockade, aimed to deprive CLL cells of survival and proliferative signals. New inhibitors of BCR signaling appear to have clinical activity. In this Perspective, we discuss the functional significance of the BCR in CLL, and we describe strategies to target BCR signaling as an emerging therapeutic approach.
Collapse
|
644
|
Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:96-103. [PMID: 22160019 DOI: 10.1182/asheducation-2011.1.96] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL.
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA.
| |
Collapse
|