601
|
Ranadheera C, Antonation K, Corbett C. Comparison of fifteen SARS-CoV-2 nucleic acid amplification test assays used during the Canadian Laboratory Response Network's National SARS-CoV-2 Proficiency Program, May 2020 to June 2021. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:180-189. [PMID: 38410252 PMCID: PMC10896585 DOI: 10.14745/ccdr.v49i05a03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Background On March 11, 2020, the World Health Organization declared a pandemic caused by the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This led to increased clinical testing and decentralizing of this testing from provincial health laboratories to regional and private facilities. Leveraging the results from the Canadian Laboratory Response Network's National SARS-CoV-2 Proficiency Test (PT) Program, this study compares multiple commercial and laboratory-developed nucleic acid amplification tests, assessing both sensitivity and specificity across multiple users. Methods Each panel consisted of six blinded, contrived-clinical samples. Panels were distributed to international, provincial and territorial laboratories and subsequently to partner facilities. Participating laboratories were asked to run these sample through their respective extraction/PCR workflows and submit results to the National Microbiology Laboratory, outlining the nucleic acid extraction platform and nucleic acid amplification test employed, as well as the viral gene target and Ct values or equivalent obtained. Data were compiled for each molecular platform and gene target used. Results The PT schemes were deployed in May 2020, November 2020 and June 2021, resulting in 683 data sets using 37 different nucleic acid amplification tests. Over the course of three PT schemes, the average score obtained was 99.3% by participants demonstrating consistent testing between laboratories and testing platforms. Conclusion This study confirmed the rapid and successful implementation of a Canadian PT Program and provided comparative analysis of the various emergency use authorized and laboratory developed tests employed for the detection of SARS-CoV-2 and demonstrated an overall 99.3% test concordance nationwide.
Collapse
Affiliation(s)
- Charlene Ranadheera
- Health Security and Response Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Kym Antonation
- Health Security and Response Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| | - Cindi Corbett
- Health Security and Response Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB
| |
Collapse
|
602
|
Li H, Li Y, Gui C, Chen D, Chen L, Luo L, Huang G, Yuan Y, He R, Xia F, Wang J. Bare glassy nanopore for length-resolution reading of PCR amplicons from various pathogenic bacteria and viruses. Talanta 2023; 256:124275. [PMID: 36701856 DOI: 10.1016/j.talanta.2023.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/16/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
In this study, it is confirmed that without addition of organic solvent and embedding polymer hydrogel into glass nanopore, bare glass nanopore can faithfully measure various lengths of DNA duplexes from 200 to 3000 base pairs with 200 base pairs resolution, showing well-separated peak amplitudes of blockage currents. Furthermore, motivated by this readout capability of duplex DNA, amplicons from Polymerase Chain Reaction (PCR) amplification are straightforwardly discriminated by bare glassy nanopore without fluorescent labeling. Except simultaneous discrimination of up to 7 different segments of the same lambda genome, various pathogenic bacteria and viruses including SARS-CoV-2 and its mutants in clinical samples can be discriminated at high resolution. Moreover, quantitative measurement of PCR amplicons is obtained with detection range spanning from 0.75 aM to 7.5 pM and detection limit of 7.5 aM, which reveals that bare glass nanopore can faithfully disclose PCR results without any extra labeling.
Collapse
Affiliation(s)
- Huizhen Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yunhui Li
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Cenlin Gui
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lanfang Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Rong He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China.
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
603
|
Sun Z, Chai L, Ma R. Long-Term Care Research in the Context of COVID-19 Pandemic: A Bibliometric Analysis. Healthcare (Basel) 2023; 11:healthcare11091248. [PMID: 37174790 PMCID: PMC10178488 DOI: 10.3390/healthcare11091248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the increasing awareness of long-term care (LTC) research after the outbreak of COVID-19 pandemic, little attention was given to quantitatively describe the evolution of the research field during this period. A total of 1024 articles retrieved from the Web of Science Core Collection database were systematically analyzed using CiteSpace visualization software. The overall characteristics analysis showed that, in the context of the pandemic, attention to LTC research increased significantly-over 800 articles were published in the past two years. The USA, Canada, Italy, and England formed the leading LTC research group, which was consistent with the conclusions of existing bibliometric studies on LTC research before the outbreak. A rigorous analysis based on a dual perspective of references and keywords was applied to reveal that, compared with previous studies, in the context of the pandemic, the focus shifted from the mental and physical health status of older adults in need of LTC to the impact of the pandemic on those of older adults in LTC facilities, from the prevention of general epidemics to the prevention and response of significant public health emergencies, from providing and paying for LTC to strategies for LTC facilities to improve the quality of LTC and well-being of their residents during the pandemic. These findings can provide help and reference for academics, civil folks, and LTC practitioners, as well as help with the sustainable development of LTC research in the context of COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhaohui Sun
- Department of Law and Political Science, North China Electric Power University, Baoding 071003, China
| | - Lulu Chai
- Department of Law and Political Science, North China Electric Power University, Baoding 071003, China
| | - Ran Ma
- Department of Law and Political Science, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
604
|
Fossat N, Lundsgaard EA, Costa R, Rivera-Rangel LR, Nielsen L, Mikkelsen LS, Ramirez S, Bukh J, Scheel TKH. Identification of the viral and cellular microRNA interactomes during SARS-CoV-2 infection. Cell Rep 2023; 42:112282. [PMID: 36961814 PMCID: PMC9995319 DOI: 10.1016/j.celrep.2023.112282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had a tremendous impact worldwide. Mapping virus-host interactions is critical to understand disease progression. MicroRNAs (miRNAs) are important RNA regulators, but their interaction with SARS-CoV-2 RNA was not experimentally investigated. Here, using Argonaute (AGO) cross-linking immunoprecipitation combined with RNA proximity ligation (CLEAR-CLIP), we provide unbiased mapping of SARS-CoV-2/miRNA interactions. We identified six main regions on the viral RNA bound primarily by one specific miRNA. Targeted mutagenesis and AGO1-3 knockdown demonstrated that these interactions are not critical for virus production. Moreover, we identified perturbed regulation of cellular miRNA interactions during infection, including non-compensated viral sequestration of the miR-15 family. Transcriptome analysis further showed that mRNAs targeted by this miRNA family are derepressed. This work delineates the interphase between miRNA regulation and SARS-CoV-2 infection and further contributes to deciphering the full molecular interactome of this virus.
Collapse
Affiliation(s)
- Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Emma A Lundsgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA.
| |
Collapse
|
605
|
Kassardjian A, Sun E, Sookhoo J, Muthuraman K, Boligan KF, Kucharska I, Rujas E, Jetha A, Branch DR, Babiuk S, Barber B, Julien JP. Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 elicits broad sarbecovirus-neutralizing antibody responses. Cell Rep 2023; 42:112391. [PMID: 37053069 PMCID: PMC10067452 DOI: 10.1016/j.celrep.2023.112391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Subunit vaccines typically require co-administration with an adjuvant to elicit protective immunity, adding development hurdles that can impede rapid pandemic responses. To circumvent the need for adjuvant in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine, we engineer a thermostable immunotargeting vaccine (ITV) that leverages the pan-HLA-DR monoclonal antibody 44H10 to deliver the viral spike protein receptor-binding domain (RBD) to antigen-presenting cells. X-ray crystallography shows that 44H10 binds to a conserved epitope on HLA-DR, providing the basis for its broad HLA-DR reactivity. Adjuvant-free ITV immunization in rabbits and ferrets induces robust anti-RBD antibody responses that neutralize SARS-CoV-2 variants of concern and protect recipients from SARS-CoV-2 challenge. We demonstrate that the modular nature of the ITV scaffold with respect to helper T cell epitopes and diverse RBD antigens facilitates broad sarbecovirus neutralization. Our findings support anti-HLA-DR immunotargeting as an effective means to induce strong antibody responses to subunit antigens without requiring an adjuvant.
Collapse
Affiliation(s)
- Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric Sun
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jamie Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Krithika Muthuraman
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Edurne Rujas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria, Spain
| | - Arif Jetha
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Donald R Branch
- Canadian Blood Services, Keenan Research Centre, Toronto, ON M5B 1W8, Canada; University of Toronto, Departments of Medicine and Laboratory Medicine and Pathobiology, Toronto, ON M5S 1A8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Brian Barber
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
606
|
Vreman S, van der Heijden EMDL, Ravesloot L, Ludwig IS, van den Brand JMA, Harders F, Kampfraath AA, Egberink HF, Gonzales JL, Oreshkova N, Broere F, van der Poel WHM, Gerhards NM. Immune Responses and Pathogenesis following Experimental SARS-CoV-2 Infection in Domestic Cats. Viruses 2023; 15:v15051052. [PMID: 37243138 DOI: 10.3390/v15051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats (n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Lars Ravesloot
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Irene S Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Andries A Kampfraath
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Herman F Egberink
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jose L Gonzales
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nadia Oreshkova
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| | - Nora M Gerhards
- Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
| |
Collapse
|
607
|
Armoh SY, Aryeetey S, Kamasah JS, Boahen KG, Owusu M, Adjei-Boateng A, Agbenyega O, Kwarteng A, Hingley-Wilson S, Obiri-Danso K, Ansong D, Sylverken AA. Solid waste motor tricycle operators in Kumasi, Ghana, harbour respiratory pathogens; a public health threat. PLoS One 2023; 18:e0284985. [PMID: 37093881 PMCID: PMC10124853 DOI: 10.1371/journal.pone.0284985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The use of motor tricycles in transporting municipal solid waste (MSW) within urban and peri-urban towns in Ghana is on the increase. This activity often leads to the introduction of pathogen-containing bioaerosols into the environment, as well as to the tricycle operators. We sought to investigate the prevalence and associated risk factors of respiratory pathogens among solid waste tricycle operators. METHODS A cross-sectional study was conducted among 155 solid waste transporters who use motor tricycles using semi-structured interviews. Nasopharyngeal swabs were obtained from participants and screened for respiratory pathogens using Polymerase Chain Reaction (PCR). RESULTS Pathogens detected in participants were SARS-CoV-2 (n = 10, 6.5%) and Streptococcus pneumoniae (n = 10, 6.5%), constituting an overall prevalence of 12.9% and co-infection rate of 1.3%. The most common self-reported symptoms were cough (n = 67, 43.2%), sore throat (n = 44, 28.4%) and difficulty in breathing (n = 22, 14.2%). Adherence to the use of gloves (n = 117, 75.5%) and nose mask (n = 110, 71.0%) was high. There was a significant association between the detection of respiratory pathogens and the use of gloves, use of more than one PPE and exposure to other pollutants (p < 0.05). Individuals who were exposed to "other pollutants" significantly had lower odds of becoming infected with respiratory pathogens (Adj. OR (95% CI): 0.119(0.015,0.938). CONCLUSION Although prevalence of respiratory pathogens is generally low, strict adherence to PPE use could further reduce its rates to even lower levels. Governmental health institutions and informal solid waste transporters should address challenges related to exposure to pollutants, use of gloves, and multiple PPE.
Collapse
Affiliation(s)
- Stephen Yaw Armoh
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sherihane Aryeetey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Japhet Senyo Kamasah
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kennedy Gyau Boahen
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Adjei-Boateng
- Research and Development Unit, Waste Management Department, Kumasi Metropolitan Assembly, Kumasi, Ghana
| | - Olivia Agbenyega
- Department of Agroforestry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Suzanne Hingley-Wilson
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Ansong
- Department of Child Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
608
|
Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN, Candido DS, Sales FCS, Manuli ER, de Jesus JG, de Paula A, Felix AC, Andrade PDS, Pinho MC, Souza WM, Amorim MR, Proenca-Modena JL, Kallas EG, Levi JE, Faria NR, Sabino EC, Loman NJ, Quick J. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res 2023; 6:241. [PMID: 37224315 PMCID: PMC10189296 DOI: 10.12688/wellcomeopenres.17170.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 12/08/2023] Open
Abstract
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.
Collapse
Affiliation(s)
- Ingra M. Claro
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariana S. Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Thais M. Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Camila A. M. da Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Ian N. Valenca
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Darlan S. Candido
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Flavia C. S. Sales
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Jaqueline G. de Jesus
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Anderson de Paula
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Pamela dos Santos Andrade
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, 01246-904, Brazil
| | - Mariana C. Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - William M. Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariene R. Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, 13083-862, Brazil
| | - Esper G. Kallas
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - José Eduardo Levi
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- DASA, Sao Paulo, 06455-010, Brazil
| | - Nuno Rodrigues Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Quick
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
609
|
Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN, Candido DS, Sales FCS, Manuli ER, de Jesus JG, de Paula A, Felix AC, Andrade PDS, Pinho MC, Souza WM, Amorim MR, Proenca-Modena JL, Kallas EG, Levi JE, Faria NR, Sabino EC, Loman NJ, Quick J. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res 2023; 6:241. [PMID: 37224315 PMCID: PMC10189296 DOI: 10.12688/wellcomeopenres.17170.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/26/2023] Open
Abstract
Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5' end of RNA Template) is a popular approach for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, a sequencing agnostic approach 'SMART-9N' and a version compatible rapid adapters available from Oxford Nanopore Technologies 'Rapid SMART-9N'. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.
Collapse
Affiliation(s)
- Ingra M. Claro
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariana S. Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Thais M. Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Camila A. M. da Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Ian N. Valenca
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Darlan S. Candido
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Flavia C. S. Sales
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Jaqueline G. de Jesus
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Anderson de Paula
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Pamela dos Santos Andrade
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, 01246-904, Brazil
| | - Mariana C. Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - William M. Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mariene R. Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, 13083-862, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, 13083-862, Brazil
| | - Esper G. Kallas
- Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - José Eduardo Levi
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- DASA, Sao Paulo, 06455-010, Brazil
| | - Nuno Rodrigues Faria
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, SW7 2AZ, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, 05403-000, Brazil
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Quick
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
610
|
Boukli N, Flamand C, Chea KL, Heng L, Keo S, Sour K, In S, Chhim P, Chhor B, Kruy L, Feenstra JDM, Gandhi M, Okafor O, Ulekleiv C, Auerswald H, Horm VS, Karlsson EA. One assay to test them all: Multiplex assays for expansion of respiratory virus surveillance. Front Med (Lausanne) 2023; 10:1161268. [PMID: 37168265 PMCID: PMC10165998 DOI: 10.3389/fmed.2023.1161268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular multiplex assays (MPAs) for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza and respiratory syncytial virus (RSV) in a single RT-PCR reaction reduce time and increase efficiency to identify multiple pathogens with overlapping clinical presentation but different treatments or public health implications. Clinical performance of XpertXpress® SARS-CoV-2/Flu/RSV (Cepheid, GX), TaqPath™ COVID-19, FluA/B, RSV Combo kit (Thermo Fisher Scientific, TP), and PowerChek™ SARS-CoV-2/Influenza A&B/RSV Multiplex RT-PCR kit II (KogeneBiotech, PC) was compared to individual Standards of Care (SoC). Thirteen isolates of SARS-CoV-2, human seasonal influenza, and avian influenza served to assess limit of detection (LoD). Then, positive and negative residual nasopharyngeal specimens, collected under public health surveillance and pandemic response served for evaluation. Subsequently, comparison of effectiveness was assessed. The three MPAs confidently detect all lineages of SARS-CoV-2 and influenza viruses. MPA-LoDs vary from 1 to 2 Log10 differences from SoC depending on assay and strain. Clinical evaluation resulted in overall agreement between 97 and 100%, demonstrating a high accuracy to detect all targets. Existing differences in costs, testing burden and implementation constraints influence the choice in primary or community settings. TP, PC and GX, reliably detect SARS-CoV-2, influenza and RSV simultaneously, with reduced time-to-results and simplified workflows. MPAs have the potential to enhance diagnostics, surveillance system, and epidemic response to drive policy on prevention and control of viral respiratory infections.
Collapse
Affiliation(s)
- Narjis Boukli
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Claude Flamand
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, CNRS, Paris, France
| | - Kim Lay Chea
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Leangyi Heng
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Seangmai Keo
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Kimhoung Sour
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sophea In
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Panha Chhim
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Bunthea Chhor
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lomor Kruy
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco CA, United States
| | - Obiageli Okafor
- Thermo Fisher Scientific, South San Francisco CA, United States
| | | | - Heidi Auerswald
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Viseth Srey Horm
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Erik A. Karlsson
- Virology Unit, National Influenza Center, WHO H5 Regional Reference Laboratory, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
611
|
Winkler KF, Panse L, Maiwald C, Hayeß J, Fischer P, Fehlau M, Neubauer P, Kurreck A. Screening the Thermotoga maritima genome for new wide-spectrum nucleoside and nucleotide kinases. J Biol Chem 2023:104746. [PMID: 37094698 DOI: 10.1016/j.jbc.2023.104746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Enzymes from thermophilic organisms are interesting biocatalysts for a wide variety of applications in organic synthesis, biotechnology and molecular biology. Next to an increased stability at elevated temperatures, they were described to show a wider substrate spectrum than their mesophilic counterparts. To identify thermostable biocatalysts for the synthesis of nucleotide analogs, we performed a database search on the carbohydrate and nucleotide metabolism of T. maritima. After expression and purification of 13 enzyme candidates involved in nucleotide synthesis, these enzymes were screened for their substrate scope. We found that the synthesis of 2'-deoxynucleoside 5'-monophosphates (dNMPs) and uridine 5'-monophosphate from nucleosides was catalyzed by the already known wide-spectrum thymidine kinase (TK) and the ribokinase. In contrast, no NMP-forming activity was detected for adenosine-specific kinase, uridine kinase or nucleotidase. The NMP kinases (NMPKs) and the pyruvate-phosphate-dikinase of T. maritima exhibited a rather specific substrate spectrum for the phosphorylation of NMPs, while pyruvate kinase, acetate kinase and three of the NMPKs showed a broad substrate scope with (2'-deoxy)nucleoside 5'-diphosphates as substrates. Based on these promising results, TmNMPKs were applied in enzymatic cascade reactions for nucleoside 5'-triphosphate synthesis using four modified pyrimidine nucleosides and four purine NMPs as substrates, and we determined that base- and sugar-modified substrates were accepted. In summary, besides the already reported TmTK, NMPKs of T. maritima were identified to be interesting enzyme candidates for the enzymatic production of modified nucleotides.
Collapse
Affiliation(s)
- Katja F Winkler
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Lena Panse
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | | | - Josefine Hayeß
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Pascal Fischer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Maryke Fehlau
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany; BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany
| | - Anke Kurreck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Bioprocess Engineering, Ackerstraße 76, 13355 Berlin, Germany; BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| |
Collapse
|
612
|
Seitz T, Setz C, Rauch P, Schubert U, Hellerbrand C. Lipid Accumulation in Host Cells Promotes SARS-CoV-2 Replication. Viruses 2023; 15:v15041026. [PMID: 37113005 PMCID: PMC10142250 DOI: 10.3390/v15041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is still affecting the lives of people around the globe and remains a major public health threat. Lipid levels in the host cells have been shown to promote SARS-CoV-2 replication, and since the start of COVID-19 pandemic, several studies have linked obesity and other components of the metabolic syndrome with severity of illness, as well as mortality in patients with COVID-19. The aim of this study was to obtain insights into the pathophysiological mechanisms of these associations. First, we established an in vitro model simulating high fatty acid levels and showed that this situation induced the uptake of fatty acids and triglyceride accumulation in human Calu-3 lung cells. Importantly, we found that lipid accumulation significantly enhanced the replication of SARS-CoV-2 Wuhan type or the variant of concern, Delta, in Calu-3 cells. In summary, these findings indicate that hyperlipidemia as found in patients with obesity promotes viral replication and herewith the disease course of COVID-19.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
613
|
Kreye J, Reincke SM, Edelburg S, Jeworowski LM, Kornau HC, Trimpert J, Hombach P, Halbe S, Nölle V, Meyer M, Kattenbach S, Sánchez-Sendin E, Schmidt ML, Schwarz T, Rose R, Krumbholz A, Merz S, Adler JM, Eschke K, Abdelgawad A, Schmitz D, Sander LE, Janssen U, Corman VM, Prüss H. Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron. iScience 2023; 26:106323. [PMID: 36925720 PMCID: PMC9979625 DOI: 10.1016/j.isci.2023.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Edelburg
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Lara M Jeworowski
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Peter Hombach
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Sophia Halbe
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Martin Meyer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Elisa Sánchez-Sendin
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marie L Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
- Labor Dr. Krause & Kollegen MVZ GmbH, 24106 Kiel, Germany
| | - Sophie Merz
- IDEXX Laboratories, 70806 Kornwestheim, Germany
| | - Julia M Adler
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Kathrin Eschke
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Azza Abdelgawad
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Neuroscience Research Center (NWFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Uwe Janssen
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Victor M Corman
- Berlin Institute of Health at Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), 10117 Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
614
|
Atari N, Erster O, Shteinberg YH, Asraf H, Giat E, Mandelboim M, Goldstein I. Proof-of-concept for effective antiviral activity of an in silico designed decoy synthetic mRNA against SARS-CoV-2 in the Vero E6 cell-based infection model. Front Microbiol 2023; 14:1113697. [PMID: 37152730 PMCID: PMC10157240 DOI: 10.3389/fmicb.2023.1113697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The positive-sense single-stranded (ss) RNA viruses of the Betacoronavirus (beta-CoV) genus can spillover from mammals to humans and are an ongoing threat to global health and commerce, as demonstrated by the current zoonotic pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current anti-viral strategies focus on vaccination or targeting key viral proteins with antibodies and drugs. However, the ongoing evolution of new variants that evade vaccination or may become drug-resistant is a major challenge. Thus, antiviral compounds that circumvent these obstacles are needed. Here we describe an innovative antiviral modality based on in silico designed fully synthetic mRNA that is replication incompetent in uninfected cells (termed herein PSCT: parasitic anti-SARS-CoV-2 transcript). The PSCT sequence was engineered to include key untranslated cis-acting regulatory RNA elements of the SARS-CoV-2 genome, so as to effectively compete for replication and packaging with the standard viral genome. Using the Vero E6 cell-culture based SARS-CoV-2 infection model, we determined that the intracellular delivery of liposome-encapsulated PSCT at 1 hour post infection significantly reduced intercellular SARS-CoV-2 replication and release into the extracellular milieu as compared to mock treatment. In summary, our findings are a proof-of-concept for the therapeutic feasibility of in silico designed mRNA compounds formulated to hinder the replication and packaging of ssRNA viruses sharing a comparable genomic-structure with beta-CoVs.
Collapse
Affiliation(s)
- Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oran Erster
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
| | | | - Hadar Asraf
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
| | - Eitan Giat
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel HaShomer, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Itamar Goldstein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Department of Medicine, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
615
|
Ivanov A, Kryshen E, Semenova E. Nonlinear interdependence of the results of measuring anti-SARS-CoV-2 IgG levels using Abbott and Euroimmun test systems. J Clin Virol 2023; 164:105448. [PMID: 37146518 PMCID: PMC10116115 DOI: 10.1016/j.jcv.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND There are significant number of tests used to determine the level of antibodies to SARS-CoV-2 which differ both in the methods underlying testing and in the antigenic targets used and classes of measured immunoglobulins. Comparison of the results obtained using various tests reveals their significant discrepancy when converted to the WHO recommended standard unit for measuring the level of specific immunoglobulins BAU/mL. The aim of this study is a comparison of anty-SARS-CoV-2 IgG levels, measured using test systems based on different methodological platforms - EuroImmun assay and Abbott assay. METHOD Abbott uses the immunochemiluminescence method CLIA, EuroImmun uses the enzyme immunoassay method ELISA. The dependences of the measurement error on the level of antibodies for the two test systems were approximated by power functions using the least squares method. The nonlinear relation of antibody levels values measured by Abbott assay and Euroimmun assay was approximated by an asymptotic function. RESULTS The study involved 112 people. Our results confirm the fallacy of using a single conversion coefficient in BAU/mL for anti-SARS-CoV-2 IgG levels measured by Abbott and EuroImmun. To describe the interdependence of anti-SARS-CoV-2 IgG Abbott and EuroImmun levels, we offer the function y = 18/π arctan(0.0009x) and a calculator that allows to easily recalculate the results obtained using these tests. CONCLUSION The non-linear nature of the interdependence of the measured anti-SARS-CoV-2 antibodies levels on the levels magnitude is one of the main reasons for the discrepancy between the tests results when converted to BAU/mL using a single conversion coefficient.
Collapse
Affiliation(s)
- Andrei Ivanov
- Saint-Petersburg State University Hospital, 154, Fontanka river embankment, Saint-Petersburg, 198103, Russian Federation; Almazov National Medical Research Centre, Saint-Petersburg, 2 Akkuratova str., 197341, Russian Federation; North-West Centre for Evidence-Based Medicine JSC, 28A Pulkovskoe shosse, Saint-Petersburg, 196247, Russian Federation.
| | - Evgeni Kryshen
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, 188300, Russian Federation
| | - Elena Semenova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, 188300, Russian Federation
| |
Collapse
|
616
|
da Silva Santos Y, Gamon THM, de Azevedo MSP, Telezynski BL, de Souza EE, de Oliveira DBL, Dombrowski JG, Rosa-Fernandes L, Palmisano G, de Moura Carvalho LJ, Luvizotto MCR, Wrenger C, Covas DT, Curi R, Marinho CRF, Durigon EL, Epiphanio S. Virulence Profiles of Wild-Type, P.1 and Delta SARS-CoV-2 Variants in K18-hACE2 Transgenic Mice. Viruses 2023; 15:v15040999. [PMID: 37112979 PMCID: PMC10146242 DOI: 10.3390/v15040999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.
Collapse
Affiliation(s)
- Yasmin da Silva Santos
- Laboratory of Cellular and Molecular Immunopathology of Malaria, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Thais Helena Martins Gamon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcela Santiago Pacheco de Azevedo
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruna Larotonda Telezynski
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Danielle Bruna Leal de Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
| | - Jamille Gregório Dombrowski
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Livia Rosa-Fernandes
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo 05508-000, Brazil
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
| | | | | | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Dimas Tadeu Covas
- Butantan Institute, São Paulo 05508-040, Brazil
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rui Curi
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo 08060-070, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo 05503-900, Brazil
| | - Claudio Romero Farias Marinho
- Laboratory of Experimental Immunoparasitology, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Plataform Pasteur/USP, University of São Paulo, São Paulo 05508-020, Brazil
| | - Sabrina Epiphanio
- Laboratory of Cellular and Molecular Immunopathology of Malaria, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
617
|
Stricker S, Ziegahn N, Karsten M, Boeckel T, Stich-Boeckel H, Maske J, Rugo E, Balazs A, Millar Büchner P, Dang-Heine C, Schriever V, Eils R, Lehmann I, Sander LE, Ralser M, Corman VM, Mall MA, Sawitzki B, Roehmel J. RECAST: Study protocol for an observational study for the understanding of the increased REsilience of Children compared to Adults in SARS-CoV-2 infecTion. BMJ Open 2023; 13:e065221. [PMID: 37068896 PMCID: PMC10111194 DOI: 10.1136/bmjopen-2022-065221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION The SARS-CoV-2 pandemic remains a threat to public health. Soon after its outbreak, it became apparent that children are less severely affected. Indeed, opposing clinical manifestations between children and adults are observed for other infections. The SARS-CoV-2 outbreak provides the unique opportunity to study the underlying mechanisms. This protocol describes the methods of an observational study that aims to characterise age dependent differences in immune responses to primary respiratory infections using SARS-CoV-2 as a model virus and to assess age differences in clinical outcomes including lung function. METHODS AND ANALYSIS The study aims to recruit at least 120 children and 60 adults that are infected with SARS-CoV-2 and collect specimen for a multiomics analysis, including single cell RNA sequencing of nasal epithelial cells and peripheral blood mononuclear cells, mass cytometry of whole blood samples and nasal cells, mass spectrometry-based serum and plasma proteomics, nasal epithelial cultures with functional in vitro analyses, SARS-CoV-2 antibody testing, sequencing of the viral genome and lung function testing. Data obtained from this multiomics approach are correlated with medical history and clinical data. Recruitment started in October 2020 and is ongoing. ETHICS AND DISSEMINATION The study was reviewed and approved by the Ethics Committee of Charité - Universitätsmedizin Berlin (EA2/066/20). All collected specimens are stored in the central biobank of Charité - Universitätsmedizin Berlin and are made available to all participating researchers and on request. TRIAL REGISTRATION NUMBER DRKS00025715, pre-results publication.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Karsten
- Karsten, Rugo, Wagner, Paediatric Practice, Berlin, Germany
| | - Thomas Boeckel
- Boeckel, Haverkaemper, Paediatric Practice and Practice for Paediatric Cardiology, Berlin, Germany
| | | | - Jakob Maske
- Maske, Pankok, Paediatric Practice, Berlin, Germany
| | - Evelyn Rugo
- Karsten, Rugo, Wagner, Paediatric Practice, Berlin, Germany
| | - Anita Balazs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pamela Millar Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center (CSC), Berlin Institute of Health at Charité, Berlin, Germany
| | - Valentin Schriever
- Department of Paediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at Charité, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité, Berlin, Germany
| | - Irina Lehmann
- Center for Digital Health, Berlin Institute of Health at Charité, Berlin, Germany
- German Center for Lung Research, Giessen, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Victor M Corman
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Giessen, Germany
| | - Birgit Sawitzki
- Berlin Institute of Health, Berlin, Germany
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
618
|
Liu Y, Wang Z, Zhuang X, Zhang S, Chen Z, Zou Y, Sheng J, Li T, Tai W, Yu J, Wang Y, Zhang Z, Chen Y, Tong L, Yu X, Wu L, Chen D, Zhang R, Jin N, Shen W, Zhao J, Tian M, Wang X, Cheng G. Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants. Nat Commun 2023; 14:2179. [PMID: 37069158 PMCID: PMC10107573 DOI: 10.1038/s41467-023-37926-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.
Collapse
Grants
- National Key R&D Program of China (2021YFC2300200, 2020YFC1200104, 2018YFA0507202, 2021YFC2302405, 2022YFC2302204), the National Natural Science Foundation of China (32188101, 31825001, 81730063, and 81961160737), the Yunnan Cheng gong expert workstation (202005AF150034), Innovation Team Project of Yunnan Science and Technology Department (202105AE160020), and Tsinghua-Foshan Innovation Special Fund (2022THFS6124).
- National Key R&D Program of China (2022YFC2303403)
- National Key R&D Program of China (2021YFC2300104, 2022YFF1203103), the National Natural Science Foundation of China (32171202), and Vanke Special Fund for Public Health and Health Discipline Development, Tsinghua University (20221080056).
Collapse
Affiliation(s)
- Yubin Liu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhicheng Chen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Yan Zou
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Jie Sheng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Tianpeng Li
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Yunfeng Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linjuan Wu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dong Chen
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weijun Shen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China.
| |
Collapse
|
619
|
Koutsakos M, Reynaldi A, Lee WS, Nguyen J, Amarasena T, Taiaroa G, Kinsella P, Liew KC, Tran T, Kent HE, Tan HX, Rowntree LC, Nguyen THO, Thomas PG, Kedzierska K, Petersen J, Rossjohn J, Williamson DA, Khoury D, Davenport MP, Kent SJ, Wheatley AK, Juno JA. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 2023; 56:879-892.e4. [PMID: 36958334 PMCID: PMC9970913 DOI: 10.1016/j.immuni.2023.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julie Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - George Taiaroa
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul Kinsella
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jan Petersen
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - David Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
620
|
Verma AK, Noumani A, Yadav AK, Solanki PR. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics (Basel) 2023; 13:diagnostics13081375. [PMID: 37189476 DOI: 10.3390/diagnostics13081375] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
Förster resonance energy transfer (FRET)-based biosensors are being fabricated for specific detection of biomolecules or changes in the microenvironment. FRET is a non-radiative transfer of energy from an excited donor fluorophore molecule to a nearby acceptor fluorophore molecule. In a FRET-based biosensor, the donor and acceptor molecules are typically fluorescent proteins or fluorescent nanomaterials such as quantum dots (QDs) or small molecules that are engineered to be in close proximity to each other. When the biomolecule of interest is present, it can cause a change in the distance between the donor and acceptor, leading to a change in the efficiency of FRET and a corresponding change in the fluorescence intensity of the acceptor. This change in fluorescence can be used to detect and quantify the biomolecule of interest. FRET-based biosensors have a wide range of applications, including in the fields of biochemistry, cell biology, and drug discovery. This review article provides a substantial approach on the FRET-based biosensor, principle, applications such as point-of-need diagnosis, wearable, single molecular FRET (smFRET), hard water, ions, pH, tissue-based sensors, immunosensors, and aptasensor. Recent advances such as artificial intelligence (AI) and Internet of Things (IoT) are used for this type of sensor and challenges.
Collapse
Affiliation(s)
- Awadhesh Kumar Verma
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashab Noumani
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amit K Yadav
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratima R Solanki
- Lab D NanoBiolab, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
621
|
Brnić D, Lojkić I, Krešić N, Zrnčić V, Ružanović L, Mikuletič T, Bosilj M, Steyer A, Keros T, Habrun B, Jemeršić L. Circulation of SARS-CoV-Related Coronaviruses and Alphacoronaviruses in Bats from Croatia. Microorganisms 2023; 11:microorganisms11040959. [PMID: 37110383 PMCID: PMC10143505 DOI: 10.3390/microorganisms11040959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.
Collapse
Affiliation(s)
- Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Nina Krešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Vida Zrnčić
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Lea Ružanović
- Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
| | - Tina Mikuletič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Martin Bosilj
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Tomislav Keros
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Boris Habrun
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Lorena Jemeršić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
622
|
Pham VH, Pham HT, Balzanelli MG, Distratis P, Lazzaro R, Nguyen QV, Tran VQ, Tran DK, Phan LD, Pham SM, Pham BT, Duc CV, Nguyen HM, Nguyen DNT, Tran NV, Pham ST, Queck C, Nguyen KDC, Inchingolo F, Del Prete R, Nguyen NHD, Santacroce L, Gargiulo Isacco C. Multiplex RT Real-Time PCR Based on Target Failure to Detect and Identify Different Variants of SARS-CoV-2: A Feasible Method That Can Be Applied in Clinical Laboratories. Diagnostics (Basel) 2023; 13:diagnostics13081364. [PMID: 37189465 DOI: 10.3390/diagnostics13081364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Shortly after its emergence, Omicron and its sub-variants have quickly replaced the Delta variant during the current COVID-19 outbreaks in Vietnam and around the world. To enable the rapid and timely detection of existing and future variants for epidemiological surveillance and diagnostic applications, a robust, economical real-time PCR method that can specifically and sensitively detect and identify multiple different circulating variants is needed. The principle of target- failure (TF) real-time PCR is simple. If a target contains a deletion mutation, then there is a mismatch with the primer or probe, and the real-time PCR will fail to amplify the target. In this study, we designed and evaluated a novel multiplex RT real-time PCR (MPL RT-rPCR) based on the principle of target failure to detect and identify different variants of SARS-CoV-2 directly from the nasopharyngeal swabs collected from COVID-19 suspected cases. The primers and probes were designed based on the specific deletion mutations of current circulating variants. To evaluate the results from the MPL RT-rPCR, this study also designed nine pairs of primers for amplifying and sequencing of nine fragments from the S gene containing mutations of known variants. We demonstrated that (i) our MPL RT-rPCR was able to accurately detect multiple variants that existed in a single sample; (ii) the limit of detection of the MPL RT-rPCR in the detection of the variants ranged from 1 to 10 copies for Omicron BA.2 and BA.5, and from 10 to 100 copies for Delta, Omicron BA.1, recombination of BA.1 and BA.2, and BA.4; (iii) between January and September 2022, Omicron BA.1 emerged and co-existed with the Delta variant during the early period, both of which were rapidly replaced by Omicron BA.2, and this was followed by Omicron BA.5 as the dominant variant toward the later period. Our results showed that SARS-CoV-2 variants rapidly evolved within a short period of time, proving the importance of a robust, economical, and easy-to-access method not just for epidemiological surveillance but also for diagnoses around the world where SARS-CoV-2 variants remain the WHO's highest health concern. Our highly sensitive and specific MPL RT-rPCR is considered suitable for further implementation in many laboratories, especially in developing countries.
Collapse
Affiliation(s)
- Van Hung Pham
- Department of Microbiology, Phan Chau Trinh University, Dien Ban 550000, Vietnam
| | - Huong Thien Pham
- International Research Institute of Gene and Immunology, Ho Chi Minh City 700000, Vietnam
| | - Mario G Balzanelli
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy
| | - Pietro Distratis
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy
| | - Rita Lazzaro
- SET-118, Department of Pre-Hospital and Emergency, SG Giuseppe Moscati Hospital, 74010 Taranto, Italy
| | | | | | | | - Luan Duy Phan
- Nam Khoa Co., Ltd., Ho Chi Minh City 700000, Vietnam
| | | | | | - Chien Vo Duc
- Nguyen Tri Phuong Hospital, Ho Chi Minh City 700000, Vietnam
| | - Ha Minh Nguyen
- Nguyen Tri Phuong Hospital, Ho Chi Minh City 700000, Vietnam
| | | | - Ngoc Van Tran
- HCMC Society of Medicine, Ho Chi Minh City 700000, Vietnam
| | | | - Camelia Queck
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Kieu Diem Cao Nguyen
- Department of Interdisciplinary Medicine, Section of Dentistry, Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dentistry, Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Section of Dentistry, Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Nam Hai Dinh Nguyen
- Department of Microbiology, Phan Chau Trinh University, Dien Ban 550000, Vietnam
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, Section of Dentistry, Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dentistry, Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
623
|
Mannino RG, Nehl EJ, Farmer S, Peagler AF, Parsell MC, Claveria V, Ku D, Gottfried DS, Chen H, Lam WA, Brand O. The critical role of engineering in the rapid development of COVID-19 diagnostics: Lessons from the RADx Tech Test Verification Core. SCIENCE ADVANCES 2023; 9:eade4962. [PMID: 37027461 PMCID: PMC10081837 DOI: 10.1126/sciadv.ade4962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Engineering plays a critical role in the development of medical devices, and this has been magnified since 2020 as severe acute respiratory syndrome coronavirus 2 swept over the globe. In response to the coronavirus disease 2019, the National Institutes of Health launched the Rapid Acceleration of Diagnostics (RADx) initiative to help meet the testing needs of the United States and effectively manage the pandemic. As the Engineering and Human Factors team for the RADx Tech Test Verification Core, we directly assessed more than 30 technologies that ultimately contributed to an increase of the country's total testing capacity by 1.7 billion tests to date. In this review, we present central lessons learned from this "apples-to-apples" comparison of novel, rapidly developed diagnostic devices. Overall, the evaluation framework and lessons learned presented in this review may serve as a blueprint for engineers developing point-of-care diagnostics, leaving us better prepared to respond to the next global public health crisis rapidly and effectively.
Collapse
Affiliation(s)
- Robert G. Mannino
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J. Nehl
- Behavioral, Social, and Health Education Sciences, Emory University, Atlanta, GA 30322, USA
| | - Sarah Farmer
- Center for Advanced Communications Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amanda Foster Peagler
- Center for Advanced Communications Policy, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Maren C. Parsell
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viviana Claveria
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Ku
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David S. Gottfried
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hang Chen
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wilbur A. Lam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oliver Brand
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
624
|
Maltezou HC, Papamichalopoulos N, Horefti E, Tseroni M, Karapanou A, Gamaletsou MN, Veneti L, Ioannidis A, Panagiotou M, Dimitroulia E, Vasilogiannakopoulos A, Angelakis E, Chatzipanagiotou S, Sipsas NV. Effectiveness of a Self-Decontaminating Coating Containing Usnic Acid in Reducing Environmental Microbial Load in Tertiary-Care Hospitals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085434. [PMID: 37107716 PMCID: PMC10138069 DOI: 10.3390/ijerph20085434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Surfaces have been implicated in the transmission of pathogens in hospitals. This study aimed to assess the effectiveness of an usnic-acid-containing self-decontaminating coating in reducing microbial surface contamination in tertiary-care hospitals. Samples were collected from surfaces 9 days before coating application, and 3, 10, and 21 days after its application (phases 1, 2, 3, and 4, respectively). Samples were tested for bacteria, fungi, and SARS-CoV2. In phase 1, 53/69 (76.8%) samples tested positive for bacteria, 9/69 (13.0%) for fungi, and 10/139 (7.2%) for SARS-CoV-2. In phase 2, 4/69 (5.8%) samples tested positive for bacteria, while 69 and 139 samples were negative for fungi and SARS-CoV-2, respectively. In phase 3, 3/69 (4.3%) samples were positive for bacteria, 1/139 (0.7%) samples tested positive for SARS-CoV-2, while 69 samples were negative for fungi. In phase 4, 1/69 (1.4%) tested positive for bacteria, while no fungus or SARS-CoV-2 were detected. After the coating was applied, the bacterial load was reduced by 87% in phase 2 (RR = 0.132; 95% CI: 0.108-0.162); 99% in phase 3 (RR = 0.006; 95% CI: 0.003-0.015); and 100% in phase 4 (RR = 0.001; 95% CI: 0.000-0.009). These data indicate that the usnic-acid-containing coating was effective in eliminating bacterial, fungal, and SARS-CoV-2 contamination on surfaces in hospitals.Our findings support the benefit ofan usnic-acid-containing coating in reducing the microbial load on healthcare surfaces.
Collapse
Affiliation(s)
- Helena C. Maltezou
- Directorate of Research, Studies, and Documentation, National Public Health Organization, 15123 Athens, Greece
- Correspondence:
| | - Nikolaos Papamichalopoulos
- Department of Medical Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 72–74 Vas. Sophias Ave, 11528 Athens, Greece
| | - Elina Horefti
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 127 Vas. Sophias Ave, 11521 Athens, Greece
| | - Maria Tseroni
- Directorate of Epidemiological Surveillance for Infectious Diseases, National Public Health Organization, 15123 Athens, Greece
| | - Amalia Karapanou
- Infection Control Committee, Laiko General Hospital, 11527 Athens, Greece
| | - Maria N. Gamaletsou
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Anastasios Ioannidis
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece
| | - Marina Panagiotou
- Infection Control Committee, Henry Dunant Hospital Center, 11526 Athens, Greece
| | | | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 127 Vas. Sophias Ave, 11521 Athens, Greece
| | - Stylianos Chatzipanagiotou
- Department of Medical Biopathology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, 72–74 Vas. Sophias Ave, 11528 Athens, Greece
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
625
|
Doucette EJ, Gray J, Fonseca K, Charlton C, Kanji JN, Tipples G, Kuhn S, Dunn J, Sayers P, Symonds N, Wu G, Freedman SB, Kellner JD. A longitudinal seroepidemiology study to evaluate antibody response to SARS-CoV-2 virus infection and vaccination in children in Calgary, Canada from July 2020 to April 2022: Alberta COVID-19 Childhood Cohort (AB3C) Study. PLoS One 2023; 18:e0284046. [PMID: 37023007 PMCID: PMC10079115 DOI: 10.1371/journal.pone.0284046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Measurement of SARS-CoV-2 antibody seropositivity is important to accurately understand exposure to infection and/or vaccination in specific populations. This study aimed to estimate the serologic response to SARS-CoV-2 virus infection and vaccination in children in Calgary, Alberta over a two-year period. METHODS Children with or without prior SARS-CoV-2 infections, were enrolled in Calgary, Canada in 2020. Venous blood was sampled 4 times from July 2020 to April 2022 for SARS-CoV-2 nucleocapsid and spike antibodies. Demographic and clinical information was obtained including SARS-CoV-2 testing results and vaccination records. RESULTS 1035 children were enrolled and 88.9% completed all 4 visits; median age 9 years (IQR: 5,13); 519 (50.1%) female; and 815 (78.7%) Caucasian. Before enrolment, 118 (11.4%) had confirmed or probable SARS-CoV-2. By April 2022, 39.5% of previously uninfected participants had a SARS-CoV-2 infection. Nucleocapsid antibody seropositivity declined to 16.4% of all infected children after more than 200 days post diagnosis. Spike antibodies remained elevated in 93.6% of unvaccinated infected children after more than 200 days post diagnosis. By April 2022, 408 (95.6%) children 12 years and older had received 2 or more vaccine doses, and 241 (61.6%) 5 to 11 year-old children had received 2 vaccine doses. At that time, all 685 vaccinated children had spike antibodies, compared with 94/176 (53.4%) of unvaccinated children. CONCLUSIONS In our population, after the first peak of Omicron variant infections and introduction of COVID-19 vaccines for children, all vaccinated children, but just over one-half of unvaccinated children, had SARS-CoV-2 spike antibodies indicating infection and/or vaccination, highlighting the benefit of vaccination. It is not yet known whether a high proportion of seropositivity at the present time predicts sustained population-level protection against future SARS-CoV-2 transmission, infection or severe COVID-19 outcomes in children.
Collapse
Affiliation(s)
- Emily J. Doucette
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joslyn Gray
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Alberta, Canada
| | - Carmen Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Jamil N. Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Alberta, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Kuhn
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Dunn
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Payton Sayers
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicola Symonds
- School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Guosong Wu
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Stephen B. Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Emergency Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James D. Kellner
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
626
|
Temmam S, Montagutelli X, Herate C, Donati F, Regnault B, Attia M, Baquero Salazar E, Chretien D, Conquet L, Jouvion G, Pipoli Da Fonseca J, Cokelaer T, Amara F, Relouzat F, Naninck T, Lemaitre J, Derreudre‐Bosquet N, Pascal Q, Bonomi M, Bigot T, Munier S, Rey FA, Le Grand R, van der Werf S, Eloit M. SARS-CoV-2-related bat virus behavior in human-relevant models sheds light on the origin of COVID-19. EMBO Rep 2023; 24:e56055. [PMID: 36876574 PMCID: PMC10074129 DOI: 10.15252/embr.202256055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023] Open
Abstract
Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics LaboratoryParisFrance
| | - Cécile Herate
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory VirusesParisFrance
| | - Béatrice Regnault
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Mikael Attia
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Eduard Baquero Salazar
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology UnitParisFrance
| | - Delphine Chretien
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics LaboratoryParisFrance
| | - Grégory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie PathologiqueMaisons‐AlfortFrance
- Université Paris Est Créteil, EnvA, ANSES, Unité DYNAMYCCréteilFrance
| | | | - Thomas Cokelaer
- Biomics Platform, C2RTInstitut Pasteur, Université Paris CitéParisFrance
| | - Faustine Amara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Francis Relouzat
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Julien Lemaitre
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Nathalie Derreudre‐Bosquet
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Quentin Pascal
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics UnitParisFrance
| | - Thomas Bigot
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Bioinformatic and Biostatistic Hub – Computational Biology DepartmentInstitut Pasteur, Université Paris CitéParisFrance
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Structural Virology UnitParisFrance
| | - Roger Le Grand
- Center for Immunology of Viral, Auto‐immune, Hematological and Bacterial Diseases (IMVA‐HB/IDMIT)Université Paris‐Saclay, Inserm, CEAFontenay‐aux‐RosesFrance
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses UnitParisFrance
- Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory VirusesParisFrance
| | - Marc Eloit
- Institut Pasteur, Université Paris Cité, Pathogen Discovery LaboratoryParisFrance
- Institut Pasteur, Université Paris Cité, The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal PathogensParisFrance
- Ecole Nationale Vétérinaire d'AlfortUniversity of Paris‐EstMaisons‐AlfortFrance
| |
Collapse
|
627
|
Carbo EC, Mourik K, Boers SA, Munnink BO, Nieuwenhuijse D, Jonges M, Welkers MRA, Matamoros S, van Harinxma Thoe Slooten J, Kraakman MEM, Karelioti E, van der Meer D, Veldkamp KE, Kroes ACM, Sidorov I, de Vries JJC. A comparison of five Illumina, Ion Torrent, and nanopore sequencing technology-based approaches for whole genome sequencing of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 2023; 42:701-713. [PMID: 37017810 PMCID: PMC10075175 DOI: 10.1007/s10096-023-04590-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Rapid identification of the rise and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern remains critical for monitoring of the efficacy of diagnostics, therapeutics, vaccines, and control strategies. A wide range of SARS-CoV-2 next-generation sequencing (NGS) methods have been developed over the last years, but cross-sequence technology benchmarking studies have been scarce. In the current study, 26 clinical samples were sequenced using five protocols: AmpliSeq SARS-CoV-2 (Illumina), EasySeq RC-PCR SARS-CoV-2 (Illumina/NimaGen), Ion AmpliSeq SARS-CoV-2 (Thermo Fisher), custom primer sets (Oxford Nanopore Technologies (ONT)), and capture probe-based viral metagenomics (Roche/Illumina). Studied parameters included genome coverage, depth of coverage, amplicon distribution, and variant calling. The median SARS-CoV-2 genome coverage of samples with cycle threshold (Ct) values of 30 and lower ranged from 81.6 to 99.8% for, respectively, the ONT protocol and Illumina AmpliSeq protocol. Correlation of coverage with PCR Ct values varied per protocol. Amplicon distribution signatures differed across the methods, with peak differences of up to 4 log10 at disbalanced positions in samples with high viral loads (Ct values ≤ 23). Phylogenetic analyses of consensus sequences showed clustering independent of the workflow used. The proportion of SARS-CoV-2 reads in relation to background sequences, as a (cost-)efficiency metric, was the highest for the EasySeq protocol. The hands-on time was the lowest when using EasySeq and ONT protocols, with the latter additionally having the shortest sequence runtime. In conclusion, the studied protocols differed on a variety of the studied metrics. This study provides data that assist laboratories when selecting protocols for their specific setting.
Collapse
Affiliation(s)
- Ellen C Carbo
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Mourik
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan A Boers
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bas Oude Munnink
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - David Nieuwenhuijse
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastien Matamoros
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost van Harinxma Thoe Slooten
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margriet E M Kraakman
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Karin Ellen Veldkamp
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aloys C M Kroes
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Igor Sidorov
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jutte J C de Vries
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
628
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
629
|
Lou L, Liang H, Wang Z. Deep-Learning-Based COVID-19 Diagnosis and Implementation in Embedded Edge-Computing Device. Diagnostics (Basel) 2023; 13:diagnostics13071329. [PMID: 37046553 PMCID: PMC10093656 DOI: 10.3390/diagnostics13071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
The rapid spread of coronavirus disease 2019 (COVID-19) has posed enormous challenges to the global public health system. To deal with the COVID-19 pandemic crisis, the more accurate and convenient diagnosis of patients needs to be developed. This paper proposes a deep-learning-based COVID-19 detection method and evaluates its performance on embedded edge-computing devices. By adding an attention module and mixed loss into the original VGG19 model, the method can effectively reduce the parameters of the model and increase the classification accuracy. The improved model was first trained and tested on the PC X86 GPU platform using a large dataset (COVIDx CT-2A) and a medium dataset (integrated CT scan); the weight parameters of the model were reduced by around six times compared to the original model, but it still approximately achieved 98.80%and 97.84% accuracy, outperforming most existing methods. The trained model was subsequently transferred to embedded NVIDIA Jetson devices (TX2, Nano), where it achieved 97% accuracy at a 0.6−1 FPS inference speed using the NVIDIA TensorRT engine. The experimental results demonstrate that the proposed method is practicable and convenient; it can be used on a low-cost medical edge-computing terminal. The source code is available on GitHub for researchers.
Collapse
Affiliation(s)
- Lu Lou
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Liang
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou 570100, China
| |
Collapse
|
630
|
Nouailles G, Adler JM, Pennitz P, Peidli S, Teixeira Alves LG, Baumgardt M, Bushe J, Voss A, Langenhagen A, Langner C, Martin Vidal R, Pott F, Kazmierski J, Ebenig A, Lange MV, Mühlebach MD, Goekeri C, Simmons S, Xing N, Abdelgawad A, Herwig S, Cichon G, Niemeyer D, Drosten C, Goffinet C, Landthaler M, Blüthgen N, Wu H, Witzenrath M, Gruber AD, Praktiknjo SD, Osterrieder N, Wyler E, Kunec D, Trimpert J. Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters. Nat Microbiol 2023; 8:860-874. [PMID: 37012419 PMCID: PMC10159847 DOI: 10.1038/s41564-023-01352-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.
Collapse
Affiliation(s)
- Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia M Adler
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Peidli
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Morris Baumgardt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bushe
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Anne Voss
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | - Alina Langenhagen
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Aileen Ebenig
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Mona V Lange
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Michael D Mühlebach
- Product Testing of IVMPs, Division of Veterinary Medicines, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research (DZIF), partner site Gießen-Marburg-Langen, Giessen, Germany
| | - Cengiz Goekeri
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Szandor Simmons
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Xing
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Herwig
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günter Cichon
- Department of Gynecology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB) Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, Berlin, Germany
| | | | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
631
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
632
|
Hernández-Terrones LM, Carrillo-Reyes J, Ayala-Godoy JA, Guerrero-Ruiz E, Vargas LMG, Prado-Guevara BA, Rodríguez-Abraham MF, Buitrón G. Monitoring of SARS-CoV-2 RNA in wastewater: A surveillance tool to foresee infection's evolution in the Mexican Caribbean. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10859. [PMID: 37002800 DOI: 10.1002/wer.10859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The study aims to determine SARS-CoV-2 RNA in sewage of Cancun wastewater treatment plants, the main touristic destination of Mexico, and to estimate the infected persons during the sampling period. SARS-CoV-2 RNA traces were detected in the inlet of the five plants during almost all the sampling months. However, there is no presence of SARS-CoV-2 RNA traces in the effluent of the five WWTPs during the study period. ANOVA analysis showed differences in the concentrations of RNA traces of SARS-CoV-2 between the sample dates, but no differences were found from one WWTP to another. Estimated infected individuals by Markov chain Monte Carlo simulation are higher (between 77% and 91%) than the cases reported by the health authority. Wastewater monitoring and the estimation of infected individuals are a helpful tool, because estimation provides early warning signs on how broadly SARS-CoV-2 is circulating in the city, and led to the authorities to take measures wisely. PRACTITIONER POINTS: There is no presence of SARS-CoV-2 RNA traces in the effluent of the facilities, suggesting the effectiveness of treatment. Surveillance of viral RNA concentrations at treatment plants revealed presence in the influent of five plants Estimated infected individuals by MCMC simulation are higher than cases reported by health authority Environmental surveillance approach in wastewater influent is helpful to identify the clusters and to take informed decisions.
Collapse
Affiliation(s)
| | - Julián Carrillo-Reyes
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Jairo A Ayala-Godoy
- Statistical Institute and Computerized Information Systems, Faculty of Business Administration, University of Puerto Rico Río Piedras Campus, San Juan, Puerto Rico
| | - Eugenio Guerrero-Ruiz
- Department of Basic Sciences and Engineering, Universidad del Caribe, Cancún, Quintana Roo, Mexico
| | | | | | | | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
633
|
Jiang C, Mu X, Liu S, Liu Z, Liu B, Du B, Tong Z. A Study of the Detection of SARS-CoV-2 by the Use of Electrochemiluminescent Biosensor Based on Asymmetric Polymerase Chain Reaction Amplification Strategy. IEEE SENSORS JOURNAL 2023; 23:8094-8100. [PMID: 37216192 PMCID: PMC10168129 DOI: 10.1109/jsen.2022.3201507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 05/24/2023]
Abstract
A new and reliable method has been constructed for detecting severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) open reading frames 1ab (ORF1ab) gene via highly sensitive electrochemiluminescence (ECL) biosensor technology based on highly efficient asymmetric polymerase chain reaction (asymmetric PCR) amplification strategy. This method uses magnetic particles coupled with biotin-labeled one complementary nucleic acid sequence of the SARS-CoV-2 ORF1ab gene as the magnetic capture probes, and [Formula: see text]-labeled amino-modified another complementary nucleic acid sequence as the luminescent probes, and then a detection model of magnetic capture probes-asymmetric PCR amplification nucleic acid products-[Formula: see text]-labeled luminescent probes is formed, which combines the advantages of highly efficient asymmetric PCR amplification strategy and highly sensitive ECL biosensor technology, enhancing the method sensitivity of detecting the SARS-CoV-2 ORF1ab gene. The method enables the rapid and sensitive detection of the ORF1ab gene and has a linear range of 1-[Formula: see text] copies/[Formula: see text], a regression equation of [Formula: see text] = [Formula: see text] + 2919.301 ([Formula: see text] = 0.9983, [Formula: see text] = 7), and a limit of detection (LOD) of 1 copy/[Formula: see text]. In summary, it can meet the analytical requirements for simulated saliva and urine samples and has the benefits of easy operation, reasonable reproducibility, high sensitivity, and anti-interference abilities, which can provide a reference for developing efficient field detection methods for SARS-CoV-2.
Collapse
Affiliation(s)
- Chunying Jiang
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Shuai Liu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Bing Liu
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Bin Du
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for CivilianBeijing102205China
| |
Collapse
|
634
|
Time to result advantage of point-of-care SARS-CoV-2 PCR testing to confirm COVID-19 in emergency department: a retrospective multicenter study. Eur J Emerg Med 2023; 30:132-134. [PMID: 36815473 DOI: 10.1097/mej.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
635
|
Mafi S, Rogez S, Darreye J, Alain S, Hantz S. Performance of the SureScreen Diagnostics COVID-19 antibody rapid test in comparison with three automated immunoassays. Diagn Microbiol Infect Dis 2023; 105:115900. [PMID: 36716586 PMCID: PMC9829606 DOI: 10.1016/j.diagmicrobio.2023.115900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Lateral flow immunoassays (LFIA) for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are used for population surveillance and potentially individual risk assessment. The performance of the SureScreen Diagnostics LFIA targeting the spike protein was evaluated in comparison with 3 automated assays (Abbott Alinity-i SARS-CoV-2 IgG, DiaSorin Liaison® SARS-CoV-2 S1/S2 IgG, Wantai SARS-CoV-2 Ab ELISA). We assessed sensitivity using 110 serum samples from PCR confirmed COVID-19 infected patients. Specificity was evaluated using 120 prepandemic samples, including potential cross-reactive antibodies samples. Sensitivity ranged between 93.3% and 98.7% on samples collected >14 days postsymptom onset. All assays achieved a specificity >98%. Moreover, its performance seems not to be affected by Alpha, Beta or Delta variants over a wide range of antibody titers. The latter showed a very good agreement with the Wantai and the Abbott assays and a substantial agreement with the DiaSorin assay. Our data demonstrate the good clinical performance of the SureScreen Diagnostics LFIA for SARS-CoV-2 seroprevalence screening.
Collapse
Affiliation(s)
- Sarah Mafi
- Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France; INSERM, RESINFIT, U1092, Limoges, France.
| | - Sylvie Rogez
- Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| | - Jérôme Darreye
- Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France
| | - Sophie Alain
- Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France; INSERM, RESINFIT, U1092, Limoges, France
| | - Sébastien Hantz
- Laboratoire de Bactériologie-Virologie-Hygiène, CHU Limoges, Limoges, France; INSERM, RESINFIT, U1092, Limoges, France.
| |
Collapse
|
636
|
MacDonald C, Desruisseaux C, Eckbo E, Li L, Locher K, Wong T, Grant J, Lavergne V, Schaeffer DF, Hoang LMN, Charles M. Abbott ID NOW™ COVID-19 assay: do not discard the swab. Diagn Microbiol Infect Dis 2023; 105:115832. [PMID: 36731196 PMCID: PMC9556880 DOI: 10.1016/j.diagmicrobio.2022.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 02/05/2023]
Abstract
We compared the performance of ID NOW™ COVID-19 assay nasal swabs with RT-PCR of nasopharyngeal swabs for SARS-CoV-2 in an outbreak setting, determining whether addition of RT-PCR of residual nasal swabs (rNS) (post ID NOW™ elution) would increase overall analytic sensitivity. Devices were placed at 2 long term and 1 acute care sites and 51 participants were recruited. Prospective paired nasopharyngeal and nasal samples were collected for RT-PCR and ID NOW™. ID NOW™ had a positive and negative categorical agreement of 86% and 93% compared to RT-PCR of nasopharyngeal swabs. Sensitivity and specificity of the ID NOW™ was 86% and 100%, positive and negative predictive value was 100% and 95% (COVID-19 positivity rate: 8%). Addition of rNS RT-PCR increased the positive and negative categorical agreement to 93% and 97%. Based on these results, we propose an alternative workflow which includes complementary testing of rNS on a secondary assay.
Collapse
Affiliation(s)
- Clayton MacDonald
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Claudine Desruisseaux
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Eric Eckbo
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Lisa Li
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Kerstin Locher
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Titus Wong
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jennifer Grant
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Valery Lavergne
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda M N Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Marthe Charles
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine, Vancouver Coastal Health, Vancouver, British Columbia, Canada.
| |
Collapse
|
637
|
Bossuyt X, Vulsteke JB, Van Elslande J, Boon L, Wuyts G, Willebrords S, Frans G, Geukens N, Carpentier S, Tejpar S, Wildiers H, Blockmans D, De Langhe E, Vermeersch P, Derua R. Antinuclear antibodies in individuals with COVID-19 reflect underlying disease: Identification of new autoantibodies in systemic sclerosis (CDK9) and malignancy (RNF20, RCC1, TRIP13). Autoimmun Rev 2023; 22:103288. [PMID: 36738952 PMCID: PMC9893804 DOI: 10.1016/j.autrev.2023.103288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
A high prevalence of antinuclear antibodies (ANA) in COVID-19 has been insinuated, but the nature of the target antigens is poorly understood. We studied ANA by indirect immunofluorescence in 229 individuals with COVID-19. The target antigens of high titer ANA (≥1:320) were determined by immunoprecipitation (IP) combined with liquid-chromatography-mass spectrometry (MS). High titer ANA (≥1:320) were found in 14 (6%) of the individuals with COVID-19. Of the 14 COVID-19 cases with high titer ANA, 6 had an underlying autoimmune disease and 5 a malignancy. IP-MS revealed known target antigens associated with autoimmune disease as well as novel autoantigens, including CDK9 (in systemic sclerosis) and RNF20, RCC1 and TRIP13 (in malignancy). The novel autoantigens were confirmed by IP-Western blotting. In conclusion, in depth analysis of the targets of high titer ANA revealed novel autoantigens in systemic sclerosis and in malignant disease.
Collapse
Affiliation(s)
- Xavier Bossuyt
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU, Leuven, Belgium.
| | - Jean-Baptiste Vulsteke
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Van Elslande
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Lise Boon
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU, Leuven, Belgium
| | - Greet Wuyts
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology and Transplantation, KU, Leuven, Belgium
| | | | - Glynis Frans
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Nick Geukens
- KU Leuven, PharmAbs: The KU Leuven Antibody Center, Herestraat 49 Box 820, 3000 Leuven, Belgium
| | | | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Gastroenterology, University Hospitals Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Daniel Blockmans
- General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ellen De Langhe
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Rheumatology, University Hospitals Leuven, Belgium
| | - Pieter Vermeersch
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rita Derua
- SyBioMa, KU Leuven, Belgium; Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Belgium
| |
Collapse
|
638
|
Duran E, Kilic L, Durhan G, Inkaya AÇ, Guven GS, Karakaya G, Ariyurek OM, Karadag O. Vital corner of diagnostic challenge: eosinophilic granulomatosis with polyangiitis or COVID-19 pneumonia? Ann Rheum Dis 2023; 82:e85. [PMID: 32709679 PMCID: PMC7392629 DOI: 10.1136/annrheumdis-2020-218533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Emine Duran
- Department of Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Levent Kilic
- Department of Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gamze Durhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Çağkan Inkaya
- Department of Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulay Sain Guven
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gul Karakaya
- Department of Chest Diseases, Division of Immunology and Allergy, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Orhan Macit Ariyurek
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Omer Karadag
- Department of Internal Medicine, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Vasculitis Research Centre, Hacettepe University, Ankara, Turkey
| |
Collapse
|
639
|
Bonde JPE, Begtrup LM, Jensen JH, Flachs EM, Schlünssen V, Kolstad HA, Jakobsson K, Nielsen C, Nilsson K, Rylander L, Vilhelmsson A, Petersen KKU, Soegaard Toettenborg S. Occupational risk of SARS-CoV-2 infection: a nationwide register-based study of the Danish workforce during the COVID-19 pandemic, 2020-2021. Occup Environ Med 2023; 80:202-208. [PMID: 36813540 PMCID: PMC10086477 DOI: 10.1136/oemed-2022-108713] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE Most earlier studies on occupational risk of COVID-19 covering the entire workforce are based on relatively rare outcomes such as hospital admission and mortality. This study examines the incidence of SARS-CoV-2 infection by occupational group based on real-time PCR (RT-PCR) tests. METHODS The cohort includes 2.4 million Danish employees, 20-69 years of age. All data were retrieved from public registries. The incidence rate ratios (IRRs) of first-occurring positive RT-PCR test from week 8 of 2020 to week 50 of 2021 were computed by Poisson regression for each four-digit Danish Version of the International Standard Classification of Occupations job code with more than 100 male and 100 female employees (n=205). Occupational groups with low risk of workplace infection according to a job exposure matrix constituted the reference group. Risk estimates were adjusted by demographic, social and health characteristics including household size, completed COVID-19 vaccination, pandemic wave and occupation-specific frequency of testing. RESULTS IRRs of SARS-CoV-2 infection were elevated in seven healthcare occupations and 42 occupations in other sectors, mainly social work activities, residential care, education, defence and security, accommodation and transportation. No IRRs exceeded 2.0. The relative risk in healthcare, residential care and defence/security declined across pandemic waves. Decreased IRRs were observed in 12 occupations. DISCUSSION We observed a modestly increased risk of SARS-CoV-2 infection among employees in numerous occupations, indicating a large potential for preventive actions. Cautious interpretation of observed risk in specific occupations is needed because of methodological issues inherent in analyses of RT-PCR test results and because of multiple statistical tests.
Collapse
Affiliation(s)
- Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark .,Department of Occupational and Environmental Medicine, Bispebjerg and Frederikberg Hospital, Copenhagen, Denmark
| | - Luise Moelenberg Begtrup
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederikberg Hospital, Copenhagen, Denmark
| | - Johan Høy Jensen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederikberg Hospital, Copenhagen, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederikberg Hospital, Copenhagen, Denmark
| | - Vivi Schlünssen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik A Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina Jakobsson
- Sahlgrenska Academy, University of Gothenburg, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Christel Nielsen
- Laboratory Medicine, Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Kerstin Nilsson
- Laboratory Medicine, Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Andreas Vilhelmsson
- Laboratory Medicine, Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Sandra Soegaard Toettenborg
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederikberg Hospital, Copenhagen, Denmark
| |
Collapse
|
640
|
Foresta A, Ojeda-Fernandez L, Macaluso G, Roncaglioni MC, Tettamanti M, Fortino I, Leoni O, Genovese S, Baviera M. Dipeptidyl Peptidase-4 Inhibitors, Glucagon-like Peptide-1 Receptor Agonists, and Sodium-Glucose Cotransporter-2 Inhibitors and COVID-19 Outcomes. Clin Ther 2023; 45:e115-e126. [PMID: 36933975 PMCID: PMC9974363 DOI: 10.1016/j.clinthera.2023.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
PURPOSE It has been reported that dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 RA), and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) have a role in modulation of inflammation associated with coronavirus disease 2019 (COVID-19). This study assessed the effect of these drug classes on COVID-19-related outcomes. METHODS Using a COVID-19 linkable administrative database, we selected patients aged ≥40 years with at least 2 prescriptions of DPP-4i, GLP-1 RA, or SGLT-2i or any other antihyperglycemic drug and a diagnosis of COVID-19 from February 15, 2020, to March 15, 2021. Adjusted odds ratios (ORs) with 95% CIs were used to calculate the association between treatments and all-cause and in-hospital mortality and COVID-19-related hospitalization. A sensitivity analysis was performed by using inverse probability treatment weighting. FINDINGS Overall, 32,853 subjects were included in the analysis. Multivariable models showed a reduction of the risk for COVID-19 outcomes for users of DPP-4i, GLP-1 RA, and SGLT-2i compared with nonusers, although statistical significance was reached only in DPP-4i users for total mortality (OR, 0.89; 95% CI, 0.82-0.97). The sensitivity analysis confirmed the main results reaching a significant reduction for hospital admission in GLP-1 RA users and in-hospital mortality in SGLT-2i users compared with nonusers. IMPLICATIONS This study found a beneficial effect in the risk reduction of COVID-19 total mortality in DPP-4i users compared with nonusers. A positive trend was also observed in users of GLP-1 RA and SGLT-2i compared with nonusers. Randomized clinical trials are needed to confirm the effect of these drug classes as potential therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Andreana Foresta
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Luisa Ojeda-Fernandez
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Macaluso
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria Carla Roncaglioni
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mauro Tettamanti
- Laboratory of Geriatric Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ida Fortino
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | - Olivia Leoni
- Unità Organizzativa Osservatorio Epidemiologico Regionale, Lombardy Region, Milan, Italy
| | | | - Marta Baviera
- Laboratory of Cardiovascular Prevention, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
641
|
Yaugel-Novoa M, Noailly B, Jospin F, Berger AE, Waeckel L, Botelho-Nevers E, Longet S, Bourlet T, Paul S. Prior COVID-19 Immunization Does Not Cause IgA- or IgG-Dependent Enhancement of SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:vaccines11040773. [PMID: 37112685 PMCID: PMC10141984 DOI: 10.3390/vaccines11040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Antibody-dependent enhancement (ADE) can increase the rates and severity of infection with various viruses, including coronaviruses, such as MERS. Some in vitro studies on COVID-19 have suggested that prior immunization enhances SARS-CoV-2 infection, but preclinical and clinical studies have demonstrated the contrary. We studied a cohort of COVID-19 patients and a cohort of vaccinated individuals with a heterologous (Moderna/Pfizer) or homologous (Pfizer/Pfizer) vaccination scheme. The dependence on IgG or IgA of ADE of infection was evaluated on the serum samples from these subjects (twenty-six vaccinated individuals and twenty-one PCR-positive SARS-CoV-2-infected patients) using an in vitro model with CD16- or CD89-expressing cells and the Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants of SARS-CoV-2. Sera from COVID-19 patients did not show ADE of infection with any of the tested viral variants. Some serum samples from vaccinated individuals displayed a mild IgA-ADE effect with Omicron after the second dose of the vaccine, but this effect was abolished after the completion of the full vaccination scheme. In this study, FcγRIIIa- and FcαRI-dependent ADE of SARS-CoV-2 infection after prior immunization, which might increase the risk of severe disease in a second natural infection, was not observed.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Blandine Noailly
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Fabienne Jospin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Anne-Emmanuelle Berger
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Louis Waeckel
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Stéphanie Longet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Infectious Agents and Hygiene Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
- Immunology Department, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, F42055 Saint-Etienne, France
- Correspondence:
| |
Collapse
|
642
|
Picchi SG, Lassandro G, Corvino A, Tafuri D, Caruso M, Faggian G, Cocco G, Pizzi AD, Gallo L, Quassone P, Boccatonda A, Minguzzi MT. COVID-19: Correlation between HRCT findings and clinical prognosis and analysis of parenchymal pattern evolution. J Clin Imaging Sci 2023; 13:10. [PMID: 37152439 PMCID: PMC10159294 DOI: 10.25259/jcis_22_2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVES Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2) is a single-stranded positive ribonucleic acid virus of the coronaviridae family. The disease caused by this virus has been named by the World Health Organization coronavirus disease 19 (COVID-19), whose main manifestation is interstitial pneumonia. Aim of this study is to describe the radiological features of SARS-CoV-2 infection in its original form, to correlate the high-resolution computed tomography (HRCT) patterns with clinical findings, prognosis and mortality, and to establish the need for treatment and admission to the intensive care unit. MATERIAL AND METHODS From March 2020 to May 2020, 193 patients (72 F and 121 M) who were swab positive for SARS-CoV-2 were retrospectively selected for our study. These patients underwent HRCT in the clinical suspicion of SARS-CoV-2 interstitial pneumonia. RESULTS Our results confirm the role of radiology and, in particular, of chest HRCT as a technique with high sensitivity in the recognition of the most peculiar features of COVID-19 pneumonia, in the evaluation of severity of the disease, in the correct interpretation of temporal changes of the radiological picture during the follow-up until the resolution, and in obtaining prognostic information, also to direct the treatment. CONCLUSION Chest computed tomography cannot be considered as a substitute for real-time - polymerase chain reaction in the diagnosis of COVID-19, but rather supplementary to it in the diagnostic process as it can detect parenchymal changes at an early stage and even before the positive swab, at least for patients who have been symptomatic for more than 3 days.
Collapse
Affiliation(s)
| | - Giulia Lassandro
- Department of Radiology, Ospedale del Mare, ASL NA1 Centro, Naples, Italy
| | - Antonio Corvino
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Domenico Tafuri
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Martina Caruso
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy
| | - Guido Faggian
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy
| | - Giulio Cocco
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio, Chieti, Italy
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio”, Chieti, Italy
| | - Luigi Gallo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pasquale Quassone
- Neuroradiology Department, Ospedale del Mare ASL NA1 Centro, Naples, Italy
| | - Andrea Boccatonda
- Department of Internal Medicine, Bentivoglio Hospital, AUSL Bologna, Bologna, Italy
| | - Maria Teresa Minguzzi
- Department of Radiology, Ospedale Santa Maria delle Croci, AUSL Romagna, Ravenna, Italy
| |
Collapse
|
643
|
Gatty RCR, Job AM, Shet D. How Efficient Are Isolation Protocols? Outcome of Isolation Protocol in Surgery during COVID-19 Pandemic: A Single Institute Experience. Surg Res Pract 2023; 2023:5774071. [PMID: 37033690 PMCID: PMC10081896 DOI: 10.1155/2023/5774071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/04/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Background. The timing of screening for SARS-CoV-2 preoperatively by RT-PCR/CBNAAT, isolation protocols in preoperative wards, operation theatres, and postoperative wards are not well established. Methods. Evaluating the effectiveness of maintaining three pathways of two COVID-19 negative pathways (1) immediate testing pathway (2) isolation, or quarantine for five days and testing prior to surgery pathway, and (3) the tested COVID-19-positive pathway, was the aim of the study. The primary objective was to assess the utility and outcome of the two COVID-19 negative pathways adopted before surgery in terms of infectivity (seroconversion; COVID-19 positivity rate before surgery and symptomatic COVID-19 disease after surgery). The secondary objective was to derive a practical protocol for isolation or quarantine for emergency and elective surgery. Enrolled patients were grouped based on the need for surgery; Group-1 emergency basis, Group-2 urgent basis, and Group-3 COVID-19 positive and the three channels were kept separate with separate dedicated healthcare staff for each channel. Results. There were 199 (4.56%) COVID-19-positive patients, of whom 80 (40%) were operated. COVID-19 positivity rate was low in Group 2 (3% vs. Group 1, 11%). There was no seroconversion from negative to positive in our patients during the peri-operative period. Conclusion. COVID-19 positivity rate in Group-2 was significantly less. None of the COVID-19-negative patients turned symptomatic and the probability of seroconversion from COVID-19-negative was less during the peri-operative period. The isolation protocol of non-COVID-19 positive patients with the separate channel is effective.
Collapse
|
644
|
Lai S, Liu Y, Fang S, Wu Q, Fan M, Lin D, Lin J, Feng S. Ultrasensitive detection of SARS-CoV-2 antigen using surface-enhanced Raman spectroscopy-based lateral flow immunosensor. JOURNAL OF BIOPHOTONICS 2023:e202300004. [PMID: 36999175 DOI: 10.1002/jbio.202300004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The fast spread and transmission of the coronavirus 2019 (COVID-19) has become one of serious global public health problems. Herein, a surface enhanced Raman spectroscopy-based lateral flow immunoassay (LFA) was developed for the detection of SARS-CoV-2 antigen. Using uniquely designed core-shell nanoparticle with embedded Raman probe molecules as the indicator to reveal the concentration of target protein, excellent quantitative performance with a limit of detection (LOD) of 0.03 ng/mL and detection range of 10-1000 ng/mL can be achieved within 15 min. Besides, the detection of spiked virus protein in human saliva was also performed with a portable Raman spectrometer, proposing the feasibility of the method in practical applications. This easy-to-use, rapid and accurate method would provide a point-of-care testing way as the ideal alternative for current detection requirement of virus-related biomarkers.
Collapse
Affiliation(s)
- Shuxia Lai
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Yi Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Shubin Fang
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Wu
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| | - Jizhen Lin
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
645
|
Navas MC, Cerón JD, Aguilar-Jiménez W, Rugeles MT, Díaz FJ. Outbreak report of SARS-CoV-2 infection by airborne transmission: Epidemiologic and molecular evidence. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:121-130. [PMID: 37167462 PMCID: PMC10501502 DOI: 10.7705/biomedica.6695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/04/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION It has been shown that the transmission of SARS-CoV-2 occurs mainly by air, and the risk of infection is greater in closed spaces. OBJECTIVE To describe the epidemiology, virology and molecular characterization of a COVID-19 outbreak at a closed vaccination point during the third wave of SARS-CoV-2 in Colombia. MATERIALS AND METHODS Diagnostic tests, interviews, sampling, cell cultures and viral sequencing were carried out, the latter being molecular characterization and lineage identification. RESULTS Seven workers were positive for SARS-CoV-2; among these, 3 samples were analyzed, plus an additional sample belonging to the mother of the presumed index case; all samples were identified with lineage B.1.625, with a maximum of 2 nucleotides difference between them. CONCLUSIONS Variant B.1.625 was identified as the cause of the COVID-19 outbreak, and a co-worker was also identified as the index case. Unexpectedly, attending a vaccination day became a risk factor for acquiring the infection.
Collapse
Affiliation(s)
- María-Cristina Navas
- Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Juan D Cerón
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | | | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Francisco J Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
646
|
Cong Y, Mucker EM, Perry DL, Dixit S, Kollins E, Byrum R, Huzella L, Kim R, Josleyn M, Kwilas S, Stefan C, Shoemaker CJ, Koehler J, Coyne S, Delp K, Liang J, Drawbaugh D, Hischak A, Hart R, Postnikova E, Vaughan N, Asher J, St Claire M, Hanson J, Schmaljohn C, Eakin AE, Hooper JW, Holbrook MR. Evaluation of a panel of therapeutic antibody clinical candidates for efficacy against SARS-CoV-2 in Syrian hamsters. Antiviral Res 2023; 213:105589. [PMID: 37003305 PMCID: PMC10060192 DOI: 10.1016/j.antiviral.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Eric M Mucker
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Erin Kollins
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Russ Byrum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Louis Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Robert Kim
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Mathew Josleyn
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Steven Kwilas
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Christopher Stefan
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Charles J Shoemaker
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jeff Koehler
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Susan Coyne
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Korey Delp
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Amanda Hischak
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nick Vaughan
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jason Asher
- Leidos Supporting Department of Health and Human Services, Biomedical Advanced Research and Development Authority, Washington, DC, 20024, USA
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Jarod Hanson
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Connie Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA
| | - Ann E Eakin
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20892, USA
| | - Jay W Hooper
- United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Frederick, MD, 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
647
|
Amado LA, Coelho WLDCNP, Alves ADR, Carneiro VCDS, Moreira ODC, de Paula VS, Lemos AS, Duarte LA, Gutman EG, Fontes-Dantas FL, Gonçalves JPDC, Ramos CHF, Ramos Filho CHF, Cavalcanti MG, Amaro MP, Kader RL, Medronho RDA, Sarmento DJDS, Alves-Leon SV. Clinical Profile and Risk Factors for Severe COVID-19 in Hospitalized Patients from Rio de Janeiro, Brazil: Comparison between the First and Second Pandemic Waves. J Clin Med 2023; 12:2568. [PMID: 37048652 PMCID: PMC10094970 DOI: 10.3390/jcm12072568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/30/2023] Open
Abstract
Since COVID-19 was declared a pandemic, Brazil has become one of the countries most affected by this disease. A year into the pandemic, a second wave of COVID-19 emerged, with a rapid spread of a new SARS-CoV-2 lineage of concern. Several vaccines have been granted emergency-use authorization, leading to a decrease in mortality and severe cases in many countries. However, the emergence of SARS-CoV-2 variants raises the alert for potential new waves of transmission and an increase in pathogenicity. We compared the demographic and clinical data of critically ill patients infected with COVID-19 hospitalized in Rio de Janeiro during the first and second waves between July 2020 and October 2021. In total, 106 participants were included in this study; among them, 88% had at least one comorbidity, and 37% developed severe disease. Disease severity was associated with older age, pre-existing neurological comorbidities, higher viral load, and dyspnea. Laboratory biomarkers related to white blood cells, coagulation, cellular injury, inflammation, renal, and liver injuries were significantly associated with severe COVID-19. During the second wave of the pandemic, the necessity of invasive respiratory support was higher, and more individuals with COVID-19 developed acute hepatitis, suggesting that the progression of the second wave resulted in an increase in severe cases. These results can contribute to understanding the behavior of the COVID-19 pandemic in Brazil and may be helpful in predicting disease severity, which is a pivotal for guiding clinical care, improving patient outcomes, and defining public policies.
Collapse
Affiliation(s)
- Luciane Almeida Amado
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | | | - Arthur Daniel Rocha Alves
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vanessa Cristine de Souza Carneiro
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Otacilio da Cruz Moreira
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andreza Salvio Lemos
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
| | - Larissa Araujo Duarte
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Elisa Gouvea Gutman
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fabricia Lima Fontes-Dantas
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
| | - Carlos Henrique Ferreira Ramos
- Unit of Intensive Treatment, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Marta Guimarães Cavalcanti
- Epidemiology and Evaluation Service, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Marisa Pimentel Amaro
- Post-Graduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Rafael Lopes Kader
- Post-Graduate Program in Infectious and Parasitic Diseases, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | | | - Soniza Vieira Alves-Leon
- Laboratory of Translacional Neurosciences, Biomedical Institute, Federal University of the State of Rio de Janeiro-UNIRIO, Rio de Janeiro 22290-240, Brazil
- School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Department of Neurology, Reference and Research Center for Multiple Sclerosis and Other Central Nervous System Idiopathic Demyelinating Inflammatory Diseases, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
648
|
Cristina Diaconu C, Madalina Pitica I, Chivu-Economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
In the genomic medicine era, the emergence of SARS-CoV-2 was immediately followed by viral genome sequencing and world-wide sequences sharing. Almost in real-time, based on these sequences, resources were developed and applied around the world, such as molecular diagnostic tests, informed public health decisions, and vaccines. Molecular SARS-CoV-2 variant surveillance was a normal approach in this context yet, considering that the viral genome modification occurs commonly in viral replication process, the challenge is to identify the modifications that significantly affect virulence, transmissibility, reduced effectiveness of vaccines and therapeutics or failure of diagnostic tests. However, assessing the importance of the emergence of new mutations and linking them to epidemiological trend, is still a laborious process and faster phenotypic evaluation approaches, in conjunction with genomic data, are required in order to release timely and efficient control measures.
Collapse
|
649
|
Comparison of Real-time RT-PCR cycle threshold (Ct) values with clinical features and severity of COVID-19 disease among hospitalized patients in the first and second waves of COVID-19 pandemic in Chennai, India. JOURNAL OF CLINICAL VIROLOGY PLUS 2023; 3:100146. [PMID: 37016620 PMCID: PMC10043973 DOI: 10.1016/j.jcvp.2023.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) of nasopharyngeal/ oropharyngeal swab has been the gold standard test for detection of SARS-CoV-2 infection The relationship between cycle threshold (Ct) values of rRT-PCR and severity of disease remain disputable and not clearly defined in COVID-19. Methodology This is a single-centred retrospective observational study conducted at Government Corona Hospital (GCH), Guindy, Chennai. In the present study, we compared the Ct value of rRT-PCR from nasopharyngeal swab specimens with a diverse range of symptoms and disease severity among 240 individuals who were hospitalized with COVID-19, viz., mild cases (MC; n=160), moderately severe cases (MSC; n=46) and severe cases (SC; n=34) in the first and second waves of COVID-19 pandemic. Results The study included 240 hospitalized COVID-19 patients with a median age of 52 years (range 21 to 90 years). MC, MSC, and SC all had median Ct values of 25.0 (interquartile range – IQR 20.0 to 30.5), 29.5 (IQR 23.0 to 34.0), and 29.0 (IQR 24 to 37.5) for the ORF1ab gene. The Ct value differed significantly between mild vs moderate, and mild vs severe cases. The Ct value of SC group with co-morbidity of type 2 diabetes have a significant difference compared to non-diabetes group (p value <0.05). There was a significant difference in the median Ct value of ORF1ab gene among the MSC group and MC but not in the SC group in the first and second waves of the pandemic (p<0.05). Conclusion We conclude that SARS-CoV-2 Ct values of rRT-PCR alone does not have a role in aiding severity stratification among patients with COVID-19 since the viral dynamics and Ct value may vary due to the emerging variants that occur in different waves of the pandemic.
Collapse
|
650
|
Luo Y, Zhou M, Fan C, Song Y, Wang L, Xu T, Zhang X. Active Enrichment of Nanoparticles for Ultra-Trace Point-of-Care COVID-19 Detection. Anal Chem 2023; 95:5316-5322. [PMID: 36917097 PMCID: PMC10022751 DOI: 10.1021/acs.analchem.2c05381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/15/2023]
Abstract
Active enrichment can detect nucleic acid at ultra-low concentrations without relatively time-consuming polymerase chain reaction (PCR), which is an important development direction for future rapid nucleic acid detection. Here, we reported an integrated active enrichment platform for direct hand-held detection of nucleic acid of COVID-19 in nanoliter samples without PCR. The platform consists of a capillary-assisted liquid-carrying system for sampling, integrated circuit system for ultrasound output, and cell-phone-based surface-enhanced Raman scattering (SERS) system. Considering the acoustic responsiveness and SERS-enhanced performance, gold nanorods were selected for biomedical applications. Functionalized gold nanorods can effectively capture and enrich biomarkers under ultrasonic aggregation. Such approaches can actively assemble gold nanorods in 1-2 s and achieved highly sensitive (6.15 × 10-13 M) SERS detection of COVID-19 biomarkers in nanoliter (10-7 L) samples within 5 min. We further demonstrated the high stability, repeatability, and selectivity of the platform, and validated its potential for the detection of throat swab samples. This simple, portable, and ultra-trace integrated active enrichment detection platform is a promising diagnostic tool for the direct and rapid detection of COVID-19.
Collapse
Affiliation(s)
- Yong Luo
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Mengyun Zhou
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| | - Chuan Fan
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology,
College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles,
Qingdao University, Qingdao 266071, P.R.
China
| | - Lirong Wang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Tailin Xu
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Xueji Zhang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| |
Collapse
|