651
|
Asselin-Labat ML, Filby CE. Adult lung stem cells and their contribution to lung tumourigenesis. Open Biol 2013; 2:120094. [PMID: 22977734 PMCID: PMC3438537 DOI: 10.1098/rsob.120094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022] Open
Abstract
The isolation and characterization of lung stem and progenitor cells represent an important step towards the understanding of lung repair after injury, lung disease pathogenesis and the identification of the target cells of transformation in lung carcinogenesis. Different approaches using prospective isolation of progenitor cells by flow cytometry or lineage-tracing experiments in mouse models of lung injury have led to the identification of distinct progenitor subpopulations in different morphological regions of the adult lung. Genetically defined mouse models of lung cancer are offering new perspectives on the cells of origin of different subtypes of lung cancer. These mouse models pave the way to further investigate human lung progenitor cells at the origin of lung cancers, as well as to define the nature of the lung cancer stem cells. It will be critical to establish the link between oncogenic driver mutations recently discovered in lung cancers, target cells of transformation and subtypes of lung cancers to enable better stratification of patients for improved therapeutic strategies.
Collapse
Affiliation(s)
- Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | |
Collapse
|
652
|
Itakura A, McCarty OJT. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol 2013; 305:C348-54. [PMID: 23720022 DOI: 10.1152/ajpcell.00108.2013] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy is an essential cellular mechanism for cell homeostasis and survival by which damaged cellular proteins are sequestered in autophagosomal vesicles and cleared through lysosomal machinery. The autophagy pathway also plays an important role in immunity and inflammation via pathogen clearance mechanisms mediated by immune cells, including macrophages and neutrophils. In particular, recent studies have revealed that autophagic activity is required for the release of neutrophil extracellular traps (NETs), representing a distinct form of active neutrophil death, namely NETosis. Although NET formation is beneficial during host defense against invading pathogens, the mechanisms that promote excessive NETosis under pathological conditions remain ill defined. In the present study, we aimed to characterize the role of the mammalian target of rapamycin (mTOR) in NETosis. As mTOR kinase is known as a key regulator of autophagy in many mammalian cells including neutrophils, we hypothesized that mTOR may play a regulatory role in NET release by regulating autophagic activity. Our data show that the pharmacological inhibition of the mTOR pathway accelerated the rate of NET release following neutrophil stimulation with the bacteria-derived peptide formyl-Met-Leu-Phe (fMLP), while autophagosome formation was enhanced by mTOR inhibitors. This increased mTOR-dependent NET release was sensitive to inhibition of respiratory burst or blockade of cytoskeletal dynamics. Overall, this study demonstrates a pivotal role for the mTOR pathway in coordinating intracellular signaling events downstream of neutrophil activation leading to NETosis.
Collapse
Affiliation(s)
- Asako Itakura
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon, USA.
| | | |
Collapse
|
653
|
Armstrong SM, Mubareka S, Lee WL. The lung microvascular endothelium as a therapeutic target in severe influenza. Antiviral Res 2013; 99:113-8. [PMID: 23685311 DOI: 10.1016/j.antiviral.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
Severe infections with influenza virus are characterized by acute respiratory distress syndrome (ARDS), a life-threatening disorder in which the alveolocapillary membrane in the lung becomes leaky. This leads to alveolar flooding, hypoxemia and respiratory failure. Recent data suggest that influenza virus can exert both direct and indirect effects on the lung endothelium, activating it and inducing microvascular leak. These findings raise the possibility that enhancing lung endothelial barrier integrity or modulating lung endothelial activation may prove therapeutically useful for severe influenza. In this paper, we review evidence that lung endothelial activation and vascular leak are a "final common pathway" in severe influenza, as has been reported in bacterial sepsis, and that enhancing endothelial barrier function may improve the outcome of illness. We describe a number of experimental therapies that have shown promise in preventing or reversing increased vascular leak in animal models of sepsis or influenza.
Collapse
|
654
|
Garcia CC, Weston-Davies W, Russo RC, Tavares LP, Rachid MA, Alves-Filho JC, Machado AV, Ryffel B, Nunn MA, Teixeira MM. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury. PLoS One 2013; 8:e64443. [PMID: 23696894 PMCID: PMC3655967 DOI: 10.1371/journal.pone.0064443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/15/2013] [Indexed: 01/30/2023] Open
Abstract
Influenza virus A (IAV) causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 10(4) PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1) or inoculated with PBS (Mock). We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF) upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs) formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.
Collapse
Affiliation(s)
- Cristiana C. Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Remo C. Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana P. Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milene A. Rachid
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José C. Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre V. Machado
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- CNRS UMR7355, CNRS and University Orleans, France and IIDMM, University of Cape Town, Cape Town, South Africa
| | - Miles A. Nunn
- Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mauro M. Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
655
|
Gally F, Kosmider B, Weaver MR, Pate KM, Hartshorn KL, Oberley-Deegan RE. FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L64-72. [PMID: 23624787 DOI: 10.1152/ajplung.00276.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The early inflammatory response to influenza A virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which inflammatory cells invade the respiratory tract remain unclear. Uncontrolled inflammation and oxidative stress cause lung damage in response to influenza A infection. We have previously shown that the fatty acid binding protein 5 (FABP5) has anti-inflammatory properties. We speculate that, as a transporter of fatty acids, FABP5 plays an important protective role against oxidative damage to lipids during infection as well. Using FABP5-/- and wild-type (WT) mice infected with influenza A virus, we showed that FABP5-/- mice had increased cell infiltration of macrophages and neutrophils compared with WT mice. FABP5-/- mice presented lower viral burden but lost as much weight as WT mice. The adaptive immune response was also increased in FABP5-/- mice as illustrated by the accumulation of T and B cells in the lung tissues and increased levels of H1N1-specific IgG antibodies. FABP5 deficiency greatly enhanced oxidative damage and lipid peroxidation following influenza A infection and presented with sustained tissue inflammation. Interestingly, FABP5 expression decreased following influenza A infection in WT lung tissues that corresponded to a decrease in the anti-inflammatory molecule PPAR-γ activity. In conclusion, our results demonstrate a previously unknown contribution of FABP5 to influenza A virus pathogenesis by controlling excessive oxidative damage and inflammation. This property could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
656
|
Narayana Moorthy A, Narasaraju T, Rai P, Perumalsamy R, Tan KB, Wang S, Engelward B, Chow VTK. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 2013; 4:56. [PMID: 23467809 PMCID: PMC3587798 DOI: 10.3389/fimmu.2013.00056] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
Seasonal influenza virus infections may lead to debilitating disease, and account for significant fatalities annually worldwide. Most of these deaths are attributed to the complications of secondary bacterial pneumonia. Evidence is accumulating to support the notion that neutrophil extracellular traps (NETs) harbor several antibacterial proteins, and trap and kill bacteria. We have previously demonstrated the induction of NETs that contribute to lung tissue injury in severe influenza pneumonia. However, the role of these NETs in secondary bacterial pneumonia is unclear. In this study, we explored whether NETs induced during pulmonary influenza infection have functional significance against infections with Streptococcus pneumoniae and other bacterial and fungal species. Our findings revealed that NETs do not participate in killing of Streptococcus pneumoniae in vivo and in vitro. Dual viral and bacterial infection elevated the bacterial load compared to animals infected with bacteria alone. Concurrently, enhanced lung pathogenesis was observed in dual-infected mice compared to those challenged with influenza virus or bacteria alone. The intensified NETs in dual-infected mice often appeared as clusters that were frequently filled with partially degraded DNA, as evidenced by punctate histone protein staining. The severe pulmonary pathology and excessive NETs generation in dual infection correlated with exaggerated inflammation and damage to the alveolar-capillary barrier. NETs stimulation in vitro did not significantly alter the gene expression of several antimicrobial proteins, and these NETs did not exhibit any bactericidal activity. Fungicidal activity against Candida albicans was observed at similar levels both in presence or absence of NETs. These results substantiate that the NETs released by primary influenza infection do not protect against secondary bacterial infection, but may compromise lung function.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology, Infectious Diseases Program, National University of Singapore Kent Ridge, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
657
|
Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol 2013; 4:45. [PMID: 23459634 PMCID: PMC3585429 DOI: 10.3389/fimmu.2013.00045] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/07/2013] [Indexed: 01/13/2023] Open
Abstract
Neutrophils are armed with both oxidant-dependent and -independent pathways for killing pathogens. Activation of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase constitutes an emergency response to infectious threat and results in the generation of antimicrobial reactive oxidants. In addition, NADPH oxidase activation in neutrophils is linked to activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the release of nuclear and granular components that can target extracellular pathogens. NETosis is activated during microbial threat and in certain conditions mimicking sepsis, and can result in both augmented host defense and inflammatory injury. In contrast, apoptosis, the physiological form of neutrophil death, not only leads to non-inflammatory cell death but also contributes to alleviate inflammation. Although there are significant gaps in knowledge regarding the specific contribution of NETs to host defense, we speculate that the coordinated activation of NADPH oxidase and NETosis maximizes microbial killing. Work in engineered mice and limited patient experience point to varying susceptibility of bacterial and fungal pathogens to NADPH oxidase versus NET constituents. Since reactive oxidants and NET constituents can injure host tissue, it is important that these pathways be tightly regulated. Recent work supports a role for NETosis in both acute lung injury and in autoimmunity. Knowledge gained about mechanisms that modulate NETosis may lead to novel therapeutic approaches to limit inflammation-associated injury.
Collapse
Affiliation(s)
- Nikolaos G Almyroudis
- Division of Infectious Diseases, Department of Medicine, University at Buffalo School of Medicine Buffalo, NY, USA ; Department of Medicine, Roswell Park Cancer Institute Buffalo, NY, USA
| | | | | | | | | | | |
Collapse
|
658
|
Repasy T, Lee J, Marino S, Martinez N, Kirschner DE, Hendricks G, Baker S, Wilson AA, Kotton DN, Kornfeld H. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 2013; 9:e1003190. [PMID: 23436998 PMCID: PMC3578792 DOI: 10.1371/journal.ppat.1003190] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 12/28/2012] [Indexed: 01/12/2023] Open
Abstract
We previously reported that Mycobacterium tuberculosis triggers macrophage necrosis in vitro at a threshold intracellular load of ∼25 bacilli. This suggests a model for tuberculosis where bacilli invading lung macrophages at low multiplicity of infection proliferate to burst size and spread to naïve phagocytes for repeated cycles of replication and cytolysis. The current study evaluated that model in vivo, an environment significantly more complex than in vitro culture. In the lungs of mice infected with M. tuberculosis by aerosol we observed three distinct mononuclear leukocyte populations (CD11b− CD11c+/hi, CD11b+/lo CD11clo/−, CD11b+/hi CD11c+/hi) and neutrophils hosting bacilli. Four weeks after aerosol challenge, CD11b+/hi CD11c+/hi mononuclear cells and neutrophils were the predominant hosts for M. tuberculosis while CD11b+/lo CD11clo/− cells assumed that role by ten weeks. Alveolar macrophages (CD11b− CD11c+/hi) were a minority infected cell type at both time points. The burst size model predicts that individual lung phagocytes would harbor a range of bacillary loads with most containing few bacilli, a smaller proportion containing many bacilli, and few or none exceeding a burst size load. Bacterial load per cell was enumerated in lung monocytic cells and neutrophils at time points after aerosol challenge of wild type and interferon-γ null mice. The resulting data fulfilled those predictions, suggesting a median in vivo burst size in the range of 20 to 40 bacilli for monocytic cells. Most heavily burdened monocytic cells were nonviable, with morphological features similar to those observed after high multiplicity challenge in vitro: nuclear condensation without fragmentation and disintegration of cell membranes without apoptotic vesicle formation. Neutrophils had a narrow range and lower peak bacillary burden than monocytic cells and some exhibited cell death with release of extracellular neutrophil traps. Our studies suggest that burst size cytolysis is a major cause of infection-induced mononuclear cell death in tuberculosis. Macrophages patrol the lung to ingest and destroy inhaled microbes. Mycobacterium tuberculosis, the bacteria causing tuberculosis, can survive within macrophages and use them as a protected environment for growth. Macrophages by themselves are poorly equipped to kill M. tuberculosis but may undergo programmed cell death (apoptosis) to limit bacterial replication. Virulent M. tuberculosis has evolved the capacity to inhibit macrophage apoptosis, thereby protecting the replication niche. In previous studies we showed that upon reaching a threshold intracellular number (burst size), virulent M. tuberculosis kills macrophages by necrosis and escapes for spreading infection. The present study was designed to test whether this mechanism seen in vitro operates during pulmonary tuberculosis in vivo. The distribution of M. tuberculosis numbers inside lung phagocytes of mice with tuberculosis conformed to predictions based on the burst size hypothesis, as did the appearance of dying cells. We identified four different types of phagocytes hosting intracellular M. tuberculosis. The distribution of M. tuberculosis load within individual phagocytes and between different types of phagocyte changed over the course of tuberculosis disease. These studies reveal the complexity of host defense in tuberculosis that must be considered as new therapies are sought.
Collapse
MESH Headings
- Animals
- Bacterial Load
- Cell Death
- Cells, Cultured
- Interferon-gamma/genetics
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/microbiology
- Lung/immunology
- Lung/microbiology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Mycobacterium tuberculosis/cytology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Neutrophils/microbiology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Teresa Repasy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gregory Hendricks
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen Baker
- Department of Quantitative Health Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew A. Wilson
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Darrell N. Kotton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
659
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
660
|
Kaukonen KM, Linko R, Herwald H, Lindbom L, Ruokonen E, Ala-Kokko T, Pettilä V. Heparin-binding protein (HBP) in critically ill patients with influenza A(H1N1) infection. Clin Microbiol Infect 2013; 19:1122-8. [PMID: 23402373 DOI: 10.1111/1469-0691.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/24/2012] [Indexed: 11/28/2022]
Abstract
Heparin-binding protein (HBP) is an inducer of vascular endothelial leakage in severe infections. Fluid accumulation into alveoli is a general finding in acute respiratory distress syndrome (ARDS). Severe acute respiratory failure with ARDS is a complication of influenza A(H1N1) infection. Accordingly, we studied the HBP levels in critically ill patients with infection of influenza A(H1N1).Critically ill patients in four intensive care units (ICUs) with polymerase chain reaction (PCR) confirmed infection of influenza A(H1N1) were prospectively evaluated. We collected clinical data and blood samples at ICU admission and on day 2. Twenty-nine patients participated in the study. Compared with normal plasma levels, the HBP concentrations were highly elevated at baseline and at day 2: 98 ng/mL (62-183 ng/mL) and 93 ng/mL (62-271 ng/mL) (p 0.876), respectively. HBP concentrations were correlated with the lowest ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PF ratio) during the ICU stay (rho = -0.321, p <0.05). In patients with and without invasive mechanical ventilation, the baseline HBP levels were 152 ng/mL (72-237 ng/mL) and 83 ng/mL (58-108 ng/mL) (p 0.088), respectively. The respective values at day 2 were 223 ng/mL (89-415 ng/mL) and 81 ng/mL (55-97 ng/mL) (p <0.05). The patients with septic shock/severe sepsis (compared with those without) did not have statistically significant differences in HBP concentrations at baseline or day 2. HBP concentrations are markedly elevated in all critically ill patients with influenza A(H1N1) infection. The increase in HBP concentrations seems to be associated with more pronounced respiratory dysfunction.
Collapse
Affiliation(s)
- K-M Kaukonen
- Department of Anaesthesiology and Intensive Care Medicine, Division of Surgery, Intensive Care Units, Helsinki University Hospital, Helsinki, Finland; Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
661
|
Activin, neutrophils, and inflammation: just coincidence? Semin Immunopathol 2013; 35:481-99. [PMID: 23385857 PMCID: PMC7101603 DOI: 10.1007/s00281-013-0365-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
During the 26 years that have elapsed since its discovery, activin-A, a member of the transforming growth factor β super-family originally discovered from its capacity to stimulate follicle-stimulating hormone production by cultured pituitary gonadotropes, has been established as a key regulator of various fundamental biological processes, such as development, homeostasis, inflammation, and tissue remodeling. Deregulated expression of activin-A has been observed in several human diseases characterized by an immuno-inflammatory and/or tissue remodeling component in their pathophysiology. Various cell types have been recognized as sources of activin-A, and plentiful, occasionally contradicting, functions have been described mainly by in vitro studies. Not surprisingly, both harmful and protective roles have been postulated for activin-A in the context of several disorders. Recent findings have further expanded the functional repertoire of this molecule demonstrating that its ectopic overexpression in mouse airways can cause pathology that simulates faithfully human acute respiratory distress syndrome, a disorder characterized by strong involvement of neutrophils. This finding when considered together with the recent discovery that neutrophils constitute an important source of activin-A in vivo and earlier observations of upregulated activin-A expression in diseases characterized by strong activation of neutrophils may collectively imply a more intimate link between activin-A expression and neutrophil reactivity. In this review, we provide an outline of the functional repertoire of activin-A and suggest that this growth factor functions as a guardian of homeostasis, a modulator of immunity and an orchestrator of tissue repair activities. In this context, a relationship between activin-A and neutrophils may be anything but coincidental.
Collapse
|
662
|
Kanchana S, Kanchana S, Vijitsopa T, Thammakumpee K, Yamwong S, Sawanyawisuth K. Clinical factors predictive of pneumonia caused by pandemic 2009 H1N1 influenza virus. Am J Trop Med Hyg 2013; 88:461-3. [PMID: 23382162 DOI: 10.4269/ajtmh.12-0132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pneumonia was the most common cause of death during the 2009 pandemic H1N1 influenza virus infection. Clinical risk factors for pneumonia caused by this virus are limited. We enrolled consecutive patients treated at the H1N1 Clinic in Thungsong Hospital in Nakhon Si Thammarat, Thailand, during June-December 2009 who had positive polymerase chain reaction results for H1N1 virus. Clinical features for patients given a diagnosis with and without pneumonia were studied. There were 441 patients with positive polymerase chain reaction results for H1N1 virus. Of these patients, 51 (11.56%) had pneumonia. Three independent clinical factors for H1N1 pneumonia were myalgia, dyspnea, and an absolute neutrophil count > 7,700 cells/μL. Adjusted odds ratios (95% confidence intervals) for these three variables were 0.413 (0.173-0.988), 2.625 (1.230-5.604), and 4.475 (1.882-10.644), respectively. Clinical features may be a useful tool for predicting risk for pneumonia caused by H1N1 virus.
Collapse
Affiliation(s)
- Sawan Kanchana
- Department of Medicine, Thungsong Hospital, Walailak University School of Medicine, Nakhon Si Thammarat, Thailand.
| | | | | | | | | | | |
Collapse
|
663
|
Sanders CJ, Vogel P, McClaren JL, Bajracharya R, Doherty PC, Thomas PG. Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels. Am J Physiol Lung Cell Mol Physiol 2013; 304:L481-8. [PMID: 23355384 DOI: 10.1152/ajplung.00343.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During influenza virus infection, it is unclear how much alveolar cell loss can be tolerated before the host succumbs to the disease. We sought to define relevant correlates of disease severity in the mouse influenza model, hypothesizing that a susceptibility threshold exists for alveolar epithelial cell loss. We compared lung pathology, virus spread, alveolar epithelial cell depletion, arterial blood oxygenation, physiological responses measured by unrestrained plethysmography, and oxygen consumption and carbon dioxide production by gas analysis in mice at intervals after infection with virus strains and doses that cause mild (x31) or severe (PR/8) influenza. Both mild and severe infections showed similar degrees of lung damage and virus dissemination until day 6 after inoculation but diverged in survival outcomes from day 9. Day 6 PR/8-infected mice had normal respiratory and gas exchange functions with 10% type I cell loss. However, day 10 PR/8-infected mice had 40% type I cell loss with a concomitant drastic decreases in tidal and minute volumes, Vo(2), Vco(2), and arterial blood oxygenation, compared with a maximum 3% type I cell loss for x31 on day 10 when they recovered body weight and respiratory functions. Alterations in breaths per minute, expiratory time, and metabolic rate were observed in both infections. A threshold for maintenance of proper respiratory function appears to be crossed once 10% of alveolar type I cells are lost. These data indicate that lethality in influenza virus infection is a matter of degree rather than quality.
Collapse
Affiliation(s)
- Catherine J Sanders
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
664
|
Cheng OZ, Palaniyar N. NET balancing: a problem in inflammatory lung diseases. Front Immunol 2013; 4:1. [PMID: 23355837 PMCID: PMC3553399 DOI: 10.3389/fimmu.2013.00001] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/01/2013] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are beneficial antimicrobial defense structures that can help fight against invading pathogens in the host. However, recent studies reveal that NETs exert adverse effects in a number of diseases including those of the lung. Many inflammatory lung diseases are characterized with a massive influx of neutrophils into the airways. Neutrophils contribute to the pathology of these diseases. To date, NETs have been identified in the lungs of cystic fibrosis (CF), acute lung injury (ALI), allergic asthma, and lungs infected with bacteria, virus, or fungi. These microbes and several host factors can stimulate NET formation, or NETosis. Different forms of NETosis have been identified and are dependent on varying types of stimuli. All of these pathways however appear to result in the formation of NETs that contain DNA, modified extracellular histones, proteases, and cytotoxic enzymes. Some of the NET components are immunogenic and damaging to host tissue. Innate immune collectins, such as pulmonary surfactant protein D (SP-D), bind NETs, and enhance the clearance of dying cells and DNA by alveolar macrophages. In many inflammatory lung diseases, bronchoalveolar SP-D levels are altered and its deficiency results in the accumulation of DNA in the lungs. Some of the other therapeutic molecules under consideration for treating NET-related diseases include DNases, antiproteases, myeloperoxidase (MPO) inhibitors, peptidylarginine deiminase-4 inhibitors, and anti-histone antibodies. NETs could provide important biological advantage for the host to fight against certain microbial infections. However, too much of a good thing can be a bad thing. Maintaining the right balance of NET formation and reducing the amount of NETs that accumulate in tissues are essential for harnessing the power of NETs with minimal damage to the hosts.
Collapse
Affiliation(s)
- Olivia Z Cheng
- Program in Physiology and Experimental Medicine, Lung Innate Immunity Research Laboratory, SickKids Research Institute Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
665
|
Parker H, Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 2013; 3:424. [PMID: 23346086 PMCID: PMC3549523 DOI: 10.3389/fimmu.2012.00424] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/23/2012] [Indexed: 12/20/2022] Open
Abstract
Neutrophils release extracellular traps (NETs) in response to a variety of inflammatory stimuli. These structures are composed of a network of chromatin strands associated with a variety of neutrophil-derived proteins including the enzyme myeloperoxidase (MPO). Studies into the mechanisms leading to the formation of NETs indicate a complex process that differs according to the stimulus. With some stimuli an active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required. However, assigning specific reactive oxygen species involved downstream of the oxidase is a difficult task and definitive proof for any single oxidant is still lacking. Pharmacological inhibition of MPO and the use of MPO-deficient neutrophils indicate active MPO is required with phorbol myristate acetate as a stimulus but not necessarily with bacteria. Reactive oxidants and MPO may also play a role in NET-mediated microbial killing. MPO is present on NETs and maintains activity at this site. Therefore, MPO has the potential to generate reactive oxidants in close proximity to trapped microorganisms and thus effect microbial killing. This brief review discusses current evidence for the involvement of reactive oxidants and MPO in NET formation and their potential contribution to NET antimicrobial activity.
Collapse
Affiliation(s)
- Heather Parker
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch Christchurch, New Zealand
| | | |
Collapse
|
666
|
Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, Pittet JF, Tracey K, Thannickal VJ, Abraham E, Zmijewski JW. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 2013; 304:L342-9. [PMID: 23316068 DOI: 10.1152/ajplung.00151.2012] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although neutrophil extracellular traps (NETs) form to prevent dissemination of pathogenic microorganisms, excessive release of DNA and DNA-associated proteins can also perpetuate sterile inflammation. In this study, we found that the danger-associated molecular pattern protein high-mobility group box 1 (HMGB1) can induce NET formation. NET formation was found after exposure of wild-type and receptor for advanced glycation end products-deficient neutrophil to HMGB1, whereas deficiency of Toll-like receptor (TLR)4 diminished the ability of neutrophils to produce NETs. Incubation of neutrophils with HMGB1 significantly increased the amount of DNA and histone 3 released as well as intracellular histone 3 citrullination, a signaling event that precedes chromatin decondensation. In vivo, neutrophils isolated from bronchoalveolar lavages of mice exposed to LPS and HMGB1 showed consistently greater ability to produce NETs compared with pulmonary neutrophils from mice that received LPS alone. In contrast, mice treated with LPS and neutralizing antibody to HMGB1 had decreased amounts of the inflammatory cytokines TNF-α and macrophage inflammatory protein 2, as well as of free DNA and histone 3 in bronchoalveolar lavage fluids. Airway neutrophils from LPS-exposed mice that had been treated with anti-HMGB1 antibodies showed decreased citrullination of histone 3. These results demonstrate that interactions between HMGB1 and TLR4 enhance the formation of NETs and provide a novel mechanism through which HMGB1 may contribute to the severity of neutrophil-associated inflammatory conditions.
Collapse
Affiliation(s)
- Jean-Marc Tadie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
667
|
Nakazawa D, Tomaru U, Suzuki A, Masuda S, Hasegawa R, Kobayashi T, Nishio S, Kasahara M, Ishizu A. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. ACTA ACUST UNITED AC 2013; 64:3779-87. [PMID: 22777766 DOI: 10.1002/art.34619] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Neutrophil extracellular traps (NETs) are composed of DNA and antimicrobial proteins, including myeloperoxidase (MPO). Recent studies have demonstrated that impaired regulation of NETs could trigger an autoimmune response. Propylthiouracil (PTU), an antithyroid drug, is associated with a risk of MPO antineutrophil cytoplasmic antibody (ANCA) production and MPO ANCA-associated vasculitis (MPO AAV). This study was undertaken to clarify the mechanism of MPO ANCA production, using the PTU-induced model of MPO AAV. METHODS NETs were induced by treating human neutrophils with phorbol myristate acetate (PMA) in vitro. We examined whether the addition of PTU influenced the NET formation induced by PMA and the degradation of NETs by DNase I, which is regarded as a regulator of NETs. Furthermore, we examined whether NETs generated by the combination of PMA and PTU induced MPO ANCA and MPO AAV in vivo in rats. RESULTS When NETs were induced by PMA with PTU using human neutrophils in vitro, abnormal conformation of NETs was observed. Interestingly, the abnormal NETs were hardly digested by DNase I. Moreover, rats immunized with the abnormal NETs, which had been induced by PMA with PTU using rat neutrophils, produced MPO ANCA and developed pulmonary capillaritis. When rats were given oral PTU with intraperitoneal injection of PMA, pauci-immune glomerulonephritis and pulmonary capillaritis occurred with MPO ANCA production in the serum. CONCLUSION Our findings indicate that abnormal conformation and impaired degradation of NETs induced by PTU are involved in the pathogenesis of PTU-induced MPO ANCA production and MPO AAV. These findings suggest that disordered NETs can be critically implicated in the pathogenesis of MPO AAV.
Collapse
|
668
|
Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, Uehata T, Iwasaki H, Omori H, Yamaoka S, Yamamoto N, Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 2013; 12:109-16. [PMID: 22817992 DOI: 10.1016/j.chom.2012.05.015] [Citation(s) in RCA: 527] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/27/2012] [Accepted: 05/18/2012] [Indexed: 12/12/2022]
Abstract
Neutrophils contribute to pathogen clearance by producing neutrophil extracellular traps (NETs), which are genomic DNA-based net-like structures that capture bacteria and fungi. Although NETs also express antiviral factors, such as myeloperoxidase and α-defensin, the involvement of NETs in antiviral responses remains unclear. We show that NETs capture human immunodeficiency virus (HIV)-1 and promote HIV-1 elimination through myeloperoxidase and α-defensin. Neutrophils detect HIV-1 by Toll-like receptors (TLRs) TLR7 and TLR8, which recognize viral nucleic acids. Engagement of TLR7 and TLR8 induces the generation of reactive oxygen species that trigger NET formation, leading to NET-dependent HIV-1 elimination. However, HIV-1 counteracts this response by inducing C-type lectin CD209-dependent production of interleukin (IL)-10 by dendritic cells to inhibit NET formation. IL-10 suppresses the reactive oxygen species-dependent generation of NETs induced upon TLR7 and TLR8 engagement, resulting in disrupted NET-dependent HIV-1 elimination. Therefore, NET formation is an antiviral response that is counteracted by HIV-1.
Collapse
Affiliation(s)
- Tatsuya Saitoh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
669
|
|
670
|
Prince A. Innate Immune Responses in Ventilator-Associated Pneumonia. MUCOSAL IMMUNOLOGY OF ACUTE BACTERIAL PNEUMONIA 2013. [PMCID: PMC7121904 DOI: 10.1007/978-1-4614-5326-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ventilator-associated pneumonia (VAP) is a common complication of mechanical ventilation, resulting in substantial morbidity, mortality, and health care cost. Early upper airway colonization by pathogenic bacteria and microaspiration are the primary pathogenic events leading to VAP. Patients at risk for VAP have defects in structural/mechanical defenses of the respiratory tract. In addition, critical illness, including sepsis, trauma, and postoperative states, is associated with profound defects in both innate and acquired antibacterial immunity, influencing antimicrobial effector functions of both leukocytes and structural/parenchymal cells. Factors present within the lung microenvironment, including alveolar stretch, cyclical atelectasis, changes in oxygen tension, and respiratory tract microbiota, substantially impact antibacterial host responses. Mechanisms accounting for dysregulated immune homeostasis are incompletely understood, but likely involve: (1) alterations in the balance of pro- and anti-inflammatory cytokines; (2) changes in pathogen recognition receptor and G-protein coupled receptor expression and downstream signaling cascades; and (3) dysregulated cell death responses. Antibiotics and preventive strategies are the mainstay of therapy in patients with VAP. However, novel approaches are needed to reverse immunological reprogramming that occurs during critical illness and/or mechanical ventilation, and to identify patients who are most likely to benefit from immunomodulatory therapy.
Collapse
|
671
|
Possible implication of disordered neutrophil extracellular traps in the pathogenesis of MPO-ANCA-associated vasculitis. Clin Exp Nephrol 2012; 17:631-633. [PMID: 23224024 DOI: 10.1007/s10157-012-0738-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
Neutrophil extracellular traps (NETs) are characterized by the presence of extracellular DNA fibers studded with antimicrobial proteins, including myeloperoxidase (MPO). Although NETs play an important role in the innate immune system, the scattered extracellular enzymes, such as MPO, pose risks to the host. Therefore, NETs are strictly regulated by DNase I in the serum, which prevents them from persisting. Recent studies have demonstrated that dysregulation of NETs could be involved in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus. In this review, we interpret the association of disordered NETs with autoimmune diseases, especially propylthiouracil-induced MPO-ANCA-associated vasculitis.
Collapse
|
672
|
Lu T, Kobayashi SD, Quinn MT, Deleo FR. A NET Outcome. Front Immunol 2012; 3:365. [PMID: 23227026 PMCID: PMC3514450 DOI: 10.3389/fimmu.2012.00365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Neutrophils constitute a critical part of innate immunity and are well known for their ability to phagocytose and kill invading microorganisms. The microbicidal processes employed by neutrophils are highly effective at killing most ingested bacteria and fungi. However, an alternative non-phagocytic antimicrobial mechanism of neutrophils has been proposed whereby microorganisms are eliminated by neutrophil extracellular traps (NETs). NETs are comprised of DNA, histones, and antimicrobial proteins extruded by neutrophils during NETosis, a cell death pathway reported to be distinct from apoptosis, phagocytosis-induced cell death, and necrosis. Although multiple laboratories have reported NETs using various stimuli in vitro, the molecular mechanisms involved in this process have yet to be definitively elucidated, and many questions regarding the formation and putative role or function of NETs in innate host defense remain unanswered. It is with these questions in mind that we provide some reflection and perspective on NETs and NETosis.
Collapse
Affiliation(s)
- Thea Lu
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | | | | | |
Collapse
|
673
|
Wu YC, Sureshbabu M, Fang YC, Wu YH, Lan YH, Chang FR, Chang YW, Hwang TL. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum. Toxicol Appl Pharmacol 2012. [PMID: 23201462 DOI: 10.1016/j.taap.2012.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl)-1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O₂·⁻) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O₂·⁻ production. The peak cytosolic calcium concentration ([Ca²⁺](i)) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca²⁺](i) was significantly shortened. In a calcium-free solution, changes in [Ca²⁺](i) caused by the addition of extracellular Ca²⁺ were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca²⁺](i) changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE.
Collapse
Affiliation(s)
- Yang-Chang Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Ivan FX, Tan KS, Phoon MC, Engelward BP, Welsch RE, Rajapakse JC, Chow VT. Neutrophils infected with highly virulent influenza H3N2 virus exhibit augmented early cell death and rapid induction of type I interferon signaling pathways. Genomics 2012. [PMID: 23195410 DOI: 10.1016/j.ygeno.2012.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We developed a model of influenza virus infection of neutrophils by inducing differentiation of the MPRO promyelocytic cell line. After 5 days of differentiation, about 20-30% of mature neutrophils could be detected. Only a fraction of neutrophils were infected by highly virulent influenza (HVI) virus, but were unable to support active viral replication compared with MDCK cells. HVI infection of neutrophils augmented early and late apoptosis as indicated by annexin V and TUNEL assays. Comparison between the global transcriptomic responses of neutrophils to HVI and low virulent influenza (LVI) revealed that the IFN regulatory factor and IFN signaling pathways were the most significantly overrepresented pathways, with activation of related genes in HVI as early as 3 h. Relatively consistent results were obtained by real-time RT-PCR of selected genes associated with the type I IFN pathway. Early after HVI infection, comparatively enhanced expression of apoptosis-related genes was also elicited.
Collapse
Affiliation(s)
- Fransiskus X Ivan
- Computation and Systems Biology Program, Singapore-MIT Alliance, Singapore
| | - K S Tan
- Infectious Diseases Program, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | - M C Phoon
- Infectious Diseases Program, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore
| | | | - Roy E Welsch
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jagath C Rajapakse
- BioInformatics Research Centre, Nanyang Technological University, Singapore
| | - Vincent T Chow
- Infectious Diseases Program, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
675
|
Halbwachs L, Lesavre P. Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol 2012; 23:1449-61. [PMID: 22942199 DOI: 10.1681/asn.2012020119] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The two salient features of ANCA-associated vasculitis (AAV) are the restricted microvessel localization and the mechanism of inflammatory damage, independent of vascular immune deposits. The microvessel localization of the disease is due to the ANCA antigen accessibility, which is restricted to the membrane of neutrophils engaged in β2-integrin-mediated adhesion, while these antigens are cytoplasmic and inaccessible in resting neutrophils. The inflammatory vascular damage is the consequence of maximal proinflammatory responses of neutrophils, which face cumulative stimulations by TNF-α, β2-integrin engagement, C5a, and ANCA by the FcγRII receptor. This results in the premature intravascular explosive release by adherent neutrophils of all of their available weapons, normally designed to kill IgG-opsonized bacteria after migration in infected tissues.
Collapse
Affiliation(s)
- Lise Halbwachs
- Institut National de la Santé et de la Recherche Medicale INSERM U845, Université Paris Descartes, Sorbonne Paris Cité, France
| | | |
Collapse
|
676
|
Differential pathological and immune responses in newly weaned ferrets are associated with a mild clinical outcome of pandemic 2009 H1N1 infection. J Virol 2012; 86:13187-201. [PMID: 23055557 DOI: 10.1128/jvi.01456-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Young children are typically considered a high-risk group for disease associated with influenza virus infection. Interestingly, recent clinical reports suggested that young children were the smallest group of cases with severe pandemic 2009 H1N1 (H1N1pdm) influenza virus infection. Here we established a newly weaned ferret model for the investigation of H1N1pdm infection in young age groups compared to adults. We found that young ferrets had a significantly milder fever and less weight loss than adult ferrets, which paralleled the mild clinical symptoms in the younger humans. Although there was no significant difference in viral clearance, disease severity was associated with pulmonary pathology, where newly weaned ferrets had an earlier pathology improvement. We examined the immune responses associated with protection of the young age group during H1N1pdm infection. We found that interferon and regulatory interleukin-10 responses were more robust in the lungs of young ferrets. In contrast, myeloperoxidase and major histocompatibility complex responses were persistently higher in the adult lungs; as well, the numbers of inflammation-prone granulocytes were highly elevated in the adult peripheral blood. Importantly, we observed that H1N1pdm infection triggered formation of lung structures that resembled inducible bronchus-associated lymphoid tissues (iBALTs) in young ferrets which were associated with high levels of homeostatic chemokines CCL19 and CXCL13, but these were not seen in the adult ferrets with severe disease. These results may be extrapolated to a model of the mild disease seen in human children. Furthermore, these mechanistic analyses provide significant new insight into the developing immune system and effective strategies for intervention and vaccination against respiratory viruses.
Collapse
|
677
|
Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 2012; 92:841-9. [DOI: 10.1189/jlb.1211601] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
678
|
Farley K, Stolley JM, Zhao P, Cooley J, Remold-O'Donnell E. A serpinB1 regulatory mechanism is essential for restricting neutrophil extracellular trap generation. THE JOURNAL OF IMMUNOLOGY 2012; 189:4574-81. [PMID: 23002442 DOI: 10.4049/jimmunol.1201167] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NETosis (neutrophil extracellular trap [NET] generation), a programmed death pathway initiated in mature neutrophils by pathogens and inflammatory mediators, can be a protective process that sequesters microbes and prevents spread of infection, but it can also be a pathological process that causes inflammation and serious tissue injury. Little is known about the regulatory mechanism. Previously, we demonstrated that serpinb1-deficient mice are highly susceptible to pulmonary bacterial and viral infections due to inflammation and tissue injury associated with increased neutrophilic death. In this study, we used in vitro and in vivo approaches to investigate whether SerpinB1 regulates NETosis. We found that serpinb1-deficient bone marrow and lung neutrophils are hypersusceptible to NETosis induced by multiple mediators in both an NADPH-dependent and -independent manner, indicating a deeply rooted regulatory role in NETosis. This role is further supported by increased nuclear expansion (representing chromatin decondensation) of PMA-treated serpinb1-deficient neutrophils compared with wild-type, by migration of SerpinB1 from the cytoplasm to the nucleus of human neutrophils that is coincident with or preceding early conversion of lobulated (segmented) nuclei to delobulated (spherical) morphology, as well as by the finding that exogenous human recombinant SerpinB1 abrogates NET production. NETosis of serpinb1-deficient neutrophils is also increased in vivo during Pseudomonas aeruginosa lung infection. The findings identify a previously unrecognized regulatory mechanism involving SerpinB1 that restricts the production of NETs.
Collapse
Affiliation(s)
- Kalamo Farley
- Immune Disease Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
679
|
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2689-95. [PMID: 22956760 PMCID: PMC3439169 DOI: 10.4049/jimmunol.1201719] [Citation(s) in RCA: 878] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.
Collapse
Affiliation(s)
- Mariana J. Kaplan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163
| |
Collapse
|
680
|
Rogers E, Wang BX, Cui Z, Rowley DR, Ressler SJ, Vyakarnam A, Fish EN. WFDC1/ps20: a host factor that influences the neutrophil response to murine hepatitis virus (MHV) 1 infection. Antiviral Res 2012; 96:158-68. [PMID: 22960155 PMCID: PMC7114264 DOI: 10.1016/j.antiviral.2012.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
The whey acidic protein family member, WFDC1/ps20 is a permissivity factor in HIV infection. Herein we describe a contrasting role for ps20 in limiting MHV-1 infection. Intranasal MHV-1 infection produces a respiratory infection in mice. Using ps20 knockout mice we provide evidence that intranasal MHV-1 infection results in increased lung viral titers in ps20−/− compared to ps20+/+ mice. Accompanying MHV-1 infection we observe an increase in the number of neutrophils infiltrating the BAL and an increase in the percentage of neutrophils in the lung draining lymph nodes of ps20−/− compared with ps20+/+ mice. Gene expression levels for the neutrophil chemoattractants CXCL1 and CXCL2 are elevated in the lungs of ps20−/− mice post-MHV-1 infection. Characterization of the immune cell profile in naïve ps20−/− mice revealed an increase in circulating neutrophils compared to ps20+/+ mice. No notable differences in other immune cell profiles were observed between the ps20+/+ and ps20−/− mice. Accordingly, we examined MHV-1 infection of neutrophils and provide evidence that neutrophils isolated from ps20−/− mice are more susceptible to MHV-1 infection than neutrophils isolated from ps20+/+ mice. These data suggest roles for ps20 in regulating expression of neutrophil-specific chemotactic factors, thereby potentially modulating neutrophil migration, and in modulating neutrophil susceptibility to MHV-1 infection.
Collapse
Affiliation(s)
- Erin Rogers
- Toronto General Research Institute, Division of Cell and Molecular Biology, University Health Network, 67 College Street, Toronto, Ontario, Canada M5G 2M1
| | | | | | | | | | | | | |
Collapse
|
681
|
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122:2731-40. [PMID: 22850883 DOI: 10.1172/jci60331] [Citation(s) in RCA: 1376] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Departments of Medicine and Anesthesia, UCSF, San Francisco, CA, USA.
| | | | | |
Collapse
|
682
|
Poole JA, Gleason AM, Bauer C, West WW, Alexis N, van Rooijen N, Reynolds SJ, Romberger DJ, Kielian TL. CD11c(+)/CD11b(+) cells are critical for organic dust-elicited murine lung inflammation. Am J Respir Cell Mol Biol 2012; 47:652-9. [PMID: 22822029 DOI: 10.1165/rcmb.2012-0095oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Organic dust exposure in the agricultural industry results in significant lung disease. Macrophage infiltrates are increased in the lungs after organic dust exposures, yet the phenotype and functional importance of these cells remain unclear. Using an established intranasal inhalation murine model of dust-induced lung inflammation, animals were treated once or daily for 3 weeks with swine confinement organic dust extract (DE). Repetitive DE treatment for 3 weeks resulted in significant increases in CD11c(+)/CD11b(+) macrophages in whole lung-associated tissue. These cells displayed increased costimulatory molecule (CD80 and CD86) expression, enhanced phagocytic ability, and an increased production of IL-6, CXCL1, and CXCL2. Similar findings were observed with the CD11c(+)/CD11b(+) macrophage infiltrate after repetitive exposure to peptidoglycan, a major DE component. To determine the functional importance of macrophages in mediating DE-induced airway inflammation, lung macrophages were selectively depleted using a well-established intranasal clodronate liposome depletion/suicide strategy. First, macrophage depletion by clodronate liposomes resulted in significant reductions in airway neutrophil influx and TNF-α and IL-6 production after a single exposure to DE. In contrast, after repetitive 3-week exposure to DE, airway lavage fluid and lung tissue neutrophils were significantly increased in clodronate liposome-treated mice compared with control mice. A histological examination of lung tissue demonstrated striking increases in alveolar and bronchiolar inflammation, as well as in the size and distribution of cellular aggregates in clodronate-liposome versus saline-liposome groups repetitively exposed to DE. These studies demonstrate that DE elicits activated CD11c(+)/CD11b(+) macrophages in the lung, which play a critical role in regulating the outcome of DE-induced airway inflammation.
Collapse
Affiliation(s)
- Jill A Poole
- Pulmonary, Critical Care, Sleep, and Allergy Division, Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
683
|
Damjanovic D, Small CL, Jeyananthan M, McCormick S, Xing Z. Immunopathology in influenza virus infection: Uncoupling the friend from foe. Clin Immunol 2012; 144:57-69. [DOI: 10.1016/j.clim.2012.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
|
684
|
Allen C, Thornton P, Denes A, McColl BW, Pierozynski A, Monestier M, Pinteaux E, Rothwell NJ, Allan SM. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:381-92. [PMID: 22661091 PMCID: PMC3381844 DOI: 10.4049/jimmunol.1200409] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.
Collapse
Affiliation(s)
- Charlotte Allen
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Adam Denes
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
,To whom correspondence should be addressed: Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK,
| | | | - Adam Pierozynski
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marc Monestier
- Department of Microbiology and Immunity, School of Medicine, Temple University, PA 19140
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Nancy J. Rothwell
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
685
|
|
686
|
Seeley EJ, Matthay MA, Wolters PJ. Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L355-63. [PMID: 22707617 DOI: 10.1152/ajplung.00069.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis and septic shock lead to considerable morbidity and mortality in developed and developing countries. Despite advances in understanding the innate immune events that lead to septic shock, molecular therapies based on these advances have failed to improve sepsis mortality. The clinical failure of laboratory-derived therapies may be, in part, due to the pleiotropic consequences of the acute inflammatory response, which is the focus of this review. A brisk response to infecting organism is essential for pathogen containment and eradication. However, systemic spread of inflammation beyond a single focus leads to organ injury and higher mortality. The primary goal of this article is to discuss recent animal- and human-based scientific advances in understanding the host response to infection and to highlight how these defense mechanisms can be locally beneficial but systemically detrimental. There are other factors that determine the severity of sepsis that are beyond the scope of this review, including the virulence of the pathogen and regulation by Toll-like receptors. Specifically, this review focuses on how the effector mechanisms of platelets, mast cells, neutrophil extracellular traps (NETs), and the endothelium participate in combating local infections yet can induce organ injury during systemic infection.
Collapse
Affiliation(s)
- Eric J Seeley
- Division of Pulmonary, Critical Care and Sleep Medicine, Univ. of California, San Francisco, San Francisco, CA 94143-0111, USA.
| | | | | |
Collapse
|
687
|
Tan KS, Olfat F, Phoon MC, Hsu JP, Howe JLC, Seet JE, Chin KC, Chow VTK. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection. J Gen Virol 2012; 93:1269-1277. [DOI: 10.1099/vir.0.040824-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus has caused a number of pandemics in past decades, including the recent H1N1-2009 pandemic. Viperin is an interferon (IFN)-inducible protein of innate immunity, and acts as a broad-spectrum antiviral protein. We explored the antiviral activities and mechanisms of viperin during influenza virus (IFV) infection in vitro and in vivo. Wild-type (WT) HeLa and viperin-expressing HeLa cells were infected with influenza A/WSN/33/H1N1 (WSN33) virus, and subjected to virological, light and electron microscopic analyses. Viperin expression reduced virus replication and titres, and restricted viral budding. Young and old viperin-knockout (KO) mice and WT control animals were challenged with influenza WSN33 at lethal doses of 103 and 104 p.f.u. via the intratracheal route. Lungs were subjected to histopathological, virological and molecular studies. Upon lethal IFV challenge, both WT and KO mice revealed similar trends of infection and recovery with similar mortality rates. Viral quantification assay and histopathological evaluation of lungs from different time points showed no significant difference in viral loads and lung damage scores between the two groups of mice. Although the in vitro studies demonstrated the ability of viperin to restrict influenza H1N1 virus replication, the viperin-deficient mouse model indicated that absence of viperin enhanced neither the viral load nor pulmonary damage in the lungs of infected mice. This may be due to the compensation of IFN-stimulated genes in the lungs and/or the influenza non-structural protein 1-mediated IFN antagonism dampening the IFN response, thereby rendering the loss of viperin insignificant. Nevertheless, further investigations that exploit the antiviral mechanisms of viperin as prophylaxis are still warranted.
Collapse
Affiliation(s)
- Kai Sen Tan
- Infectious Diseases Interdisciplinary Research Group, Singapore–Massachusetts Institute of Technology Alliance in Research and Technology, Singapore 117456
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597
| | - Farzad Olfat
- Infectious Diseases Interdisciplinary Research Group, Singapore–Massachusetts Institute of Technology Alliance in Research and Technology, Singapore 117456
| | - Meng Chee Phoon
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597
| | - Jung Pu Hsu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597
| | - Josephine L. C. Howe
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore 119074
| | - Keh Chuang Chin
- Singapore Immunology Network, Immunos, Biopolis, Singapore 138648
| | - Vincent T. K. Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Kent Ridge, Singapore 117597
| |
Collapse
|
688
|
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related death. The biologic processes contributing to TRALI are poorly understood. All blood products can cause TRALI, and no specific treatment is available. A "2-event model" has been proposed as the trigger. The first event may include surgery, trauma, or infection; the second involves the transfusion of antileukocyte antibodies or bioactive lipids within the blood product. Together, these events induce neutrophil activation in the lungs, causing endothelial damage and capillary leakage. Neutrophils, in response to pathogens or under stress, can release their chromatin coated with granule contents, thus forming neutrophil extracellular traps (NETs). Although protective against infection, these NETs are injurious to tissue. Here we show that NET biomarkers are present in TRALI patients' blood and that NETs are produced in vitro by primed human neutrophils when challenged with anti-HNA-3a antibodies previously implicated in TRALI. NETs are found in alveoli of mice experiencing antibody-mediated TRALI. DNase 1 inhalation prevents their alveolar accumulation and improves arterial oxygen saturation even when administered 90 minutes after TRALI onset. We suggest that NETs form in the lungs during TRALI, contribute to the disease process, and thus could be targeted to prevent or treat TRALI.
Collapse
|
689
|
Hermesh T, Moran TM, Jain D, López CB. Granulocyte colony-stimulating factor protects mice during respiratory virus infections. PLoS One 2012; 7:e37334. [PMID: 22615983 PMCID: PMC3353936 DOI: 10.1371/journal.pone.0037334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/19/2012] [Indexed: 01/13/2023] Open
Abstract
A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF) mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.
Collapse
Affiliation(s)
- Tamar Hermesh
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Thomas M. Moran
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Deepika Jain
- Department of Pathobiology School of Veterinary Medicine and Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolina B. López
- Department of Microbiology and Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pathobiology School of Veterinary Medicine and Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
690
|
Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol 2012; 5:258-66. [PMID: 22294047 PMCID: PMC3328598 DOI: 10.1038/mi.2012.2] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influenza virus infection is considered a major worldwide public health problem. Seasonal infections with the most common influenza virus strains (e.g., H1N1) can usually be resolved, but they still cause a high rate of mortality. The factors that influence the outcome of the infection remain unclear. Here, we show that deficiency of interleukin (IL)-6 or IL-6 receptor is sufficient for normally sublethal doses of H1N1 influenza A virus to cause death in mice. IL-6 is necessary for resolution of influenza infection by protecting neutrophils from virus-induced death in the lung and by promoting neutrophil-mediated viral clearance. Loss of IL-6 results in persistence of the influenza virus in the lung leading to pronounced lung damage and, ultimately, death. Thus, we demonstrate that IL-6 is a vital innate immune cytokine in providing protection against influenza A infection. Genetic or environmental factors that impair IL-6 production or signaling could increase mortality to influenza virus infection.
Collapse
|
691
|
Marois I, Cloutier A, Garneau É, Richter MV. Initial infectious dose dictates the innate, adaptive, and memory responses to influenza in the respiratory tract. J Leukoc Biol 2012; 92:107-21. [PMID: 22504848 DOI: 10.1189/jlb.1011490] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Factors from the virus and the host contribute to influenza virus pathogenicity and to the development of immunity. This study thoroughly examined the effects of an initial infectious dose of virus and unveiled new findings concerning the antiviral and inflammatory responses, innate and adaptive immunity, memory responses, and protection against secondary heterologous infection. Our results demonstrated that the initial infectious dose significantly affects the gene expression of antiviral (IFN-β) and inflammatory (TNF-α, IL-6, IL-1β) cytokines and of enzymes involved in nitrosative/oxidative stress (iNOS, HO-1, NQO1) early in the response to influenza. This response correlated with significantly increased recruitment of innate immune cells into the lungs of infected mice. We showed that this response also alters the subsequent accumulation of activated IFN-γ(+) CD44(hi) CD62L(lo) influenza-specific CD8(+) T cells into the lungs of infected mice through increased T cell-recruiting chemokine gene expression (CCL3, CCL4, CCL5, CXCL10). Furthermore, we demonstrated that the initial infectious dose determines the generation and the distribution of memory CD8(+) T cell subsets without affecting trafficking mechanisms. This impacted on immune protection against heterologous infection. Lastly, we showed that the effects on innate and adaptive immunity were not dependent on influenza strain or on the genetic background of the host. Collectively, our data show for the first time and in detail that the initial infectious dose of influenza determines the development of several aspects of antiviral immunity. This study provides new insights on virus-host interaction in the generation of the global immune response to influenza.
Collapse
Affiliation(s)
- Isabelle Marois
- Pulmonary Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centrede Recherche Clinique Étienne-Le Bel, Québec, Canada
| | | | | | | |
Collapse
|
692
|
Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJG. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog 2012; 8:e1002641. [PMID: 22496659 PMCID: PMC3320598 DOI: 10.1371/journal.ppat.1002641] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 02/29/2012] [Indexed: 12/11/2022] Open
Abstract
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88−/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes. Influenza-associated morbidity and mortality due to yearly epidemics and sporadic, devastating pandemics are a significant health and economic burden. Severe complications arising from highly virulent viruses are associated with rapid, massive inflammatory cell infiltration. Although neutrophils are the predominant cell population recruited to the lung in response to pandemic influenza viruses, the mechanisms by which they gain entry to the respiratory tract remain unclear. In this study, we show a previously unknown contribution of MMP9 to influenza pathogenesis by mediating excessive neutrophil migration into the lung, which not only controls viral replication, but also contributes to morbidity. The in vivo relevance of MMP9-derived enzymatic activity in neutrophils is controversial and understudied, but our data provide new evidence that innate recognition of influenza virus attracts neutrophils that secrete MMP9, which enables them to traverse the basement membrane of the lung by digesting the extracellular matrix. The dichotomy of MMP9 function in immunity versus pathology provides real challenges for targeting MMP9 for therapeutic purposes. Nevertheless, finding the balance to modulate neutrophil numbers following influenza virus infection will allow for innate immunity to be boosted whilst preventing pathology associated with pandemic strains.
Collapse
Affiliation(s)
- Linda M. Bradley
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mia F. Douglass
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Dhrubamitra Chatterjee
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, and Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Bas J. G. Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
693
|
Ng HH, Narasaraju T, Phoon MC, Sim MK, Seet JE, Chow VT. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Exp Mol Pathol 2012; 92:287-95. [PMID: 22421441 DOI: 10.1016/j.yexmp.2012.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/20/2012] [Accepted: 03/01/2012] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome, a severe form of acute lung injury (ALI), is a major cause of death during influenza pneumonia. We have provided evidence for the involvement of recruited neutrophils, their toxic enzymes such as myeloperoxidase and matrix metalloproteinases (MMPs), and neutrophil extracellular traps in aggravating alveolar-capillary damage. In this study, we investigated the effects of doxycycline (DOX), an inhibitor of MMPs, on influenza-induced ALI. BALB/c mice were infected with a sublethal dose of mouse-adapted virulent influenza A/Aichi/2/68 (H3N2) virus, and administered daily with 20mg/kg or 60 mg/kg DOX orally. The effects of DOX on ALI were determined by measuring inflammation, capillary leakage, and MMP activities. Furthermore, levels of T1-α (a membrane protein of alveolar type I epithelium) and thrombomodulin (an endothelial protein) in the bronchoalveolar lavage fluid were evaluated by Western blot analysis. Our results demonstrate significantly decreased inflammation and protein leakage in the lungs after DOX treatment. Levels of MMP-2 and MMP-9 activity, T1-α and thrombomodulin were also diminished in the DOX-treated group. These findings were corroborated by histopathologic analyses, which demonstrated significant reduction in lung damage. Although DOX treatment reduced ALI, there were no effects on virus titers and body weights. Taken together, these results demonstrate that DOX may be useful in ameliorating ALI during influenza pneumonia. Further studies are warranted to determine whether DOX can be used in combination with anti-viral agents to alleviate severe influenza pneumonia.
Collapse
Affiliation(s)
- H H Ng
- Infectious Diseases Program, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | | | | | | | | |
Collapse
|
694
|
Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 2012; 7:e32366. [PMID: 22389696 PMCID: PMC3289648 DOI: 10.1371/journal.pone.0032366] [Citation(s) in RCA: 1006] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/26/2012] [Indexed: 12/11/2022] Open
Abstract
Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.
Collapse
Affiliation(s)
- Mona Saffarzadeh
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Christiane Juenemann
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Markus A. Queisser
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Guenter Lochnit
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Guillermo Barreto
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sebastian P. Galuska
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Juergen Lohmeyer
- Department of Internal Medicine II, Justus-Liebig-University, Giessen, Germany
| | - Klaus T. Preissner
- School of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
- * E-mail:
| |
Collapse
|
695
|
ETosis: A Microbicidal Mechanism beyond Cell Death. J Parasitol Res 2012; 2012:929743. [PMID: 22536481 PMCID: PMC3321301 DOI: 10.1155/2012/929743] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/10/2011] [Indexed: 12/20/2022] Open
Abstract
Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs), ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs). Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses.
Collapse
|
696
|
Jeyaseelan S. Comment on "innate immune collectin surfactant protein d simultaneously binds both neutrophil extracellular traps and carbohydrate ligands and promotes bacterial trapping". THE JOURNAL OF IMMUNOLOGY 2012; 188:3; author reply 3-4. [PMID: 22187479 DOI: 10.4049/jimmunol.1190063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
697
|
Rzepka JP, Haick AK, Miura TA. Virus-infected alveolar epithelial cells direct neutrophil chemotaxis and inhibit their apoptosis. Am J Respir Cell Mol Biol 2012; 46:833-41. [PMID: 22312020 DOI: 10.1165/rcmb.2011-0230oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alveolar epithelium is a critical target for pulmonary viruses and can produce proinflammatory cytokines and chemokines upon viral infection. However, the molecular interactions between virus-infected alveolar epithelial cells and inflammatory cells, including polymorphonuclear leukocytes (PMNs), have not been thoroughly characterized. Rat coronavirus (RCoV) is used as a model to study the immune response to viral infection in the lung of the natural host. We have developed an in vitro model to characterize the response of PMNs to RCoV-infected type I-like alveolar epithelial (AT1) cells, the primary target for RCoV infection in the alveoli. Multiple CXC chemokines that signal through CXCR2 were required for PMN chemotaxis toward medium from RCoV-infected AT1-like cells (RCoV-AT1). Furthermore, RCoV-AT1 inhibited spontaneous PMN apoptosis, including activation of effector caspase 3 and initiator caspases 8 and 9. Use of a selective inhibitor of CXCR2, SB265610, demonstrated that CXCR2 signaling was required for RCoV-AT1-mediated inhibition of PMN apoptosis. These data suggest that CXC chemokines produced by RCoV-infected AT1-like cells inhibit PMN apoptosis during infection. These studies provide new insight into the molecular mechanisms whereby alveolar epithelial cells direct the functions of PMNs during viral infection of the lung.
Collapse
Affiliation(s)
- Joanna P Rzepka
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
698
|
Findings in children severely infected with a novel influenza A virus of swine origin: pulmonary imaging. World J Pediatr 2012; 8:240-6. [PMID: 22886197 PMCID: PMC7101527 DOI: 10.1007/s12519-012-0364-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/22/2011] [Indexed: 11/04/2022]
Abstract
BACKGROUND This article reviews the chest radiography of children with severe infection caused by a novel influenza A (H1N1) virus of swine origin (S-OIV). We analyzed the role of their pulmonary images in predicting the severity and diagnosis of the disease. METHODS Among 97 patients with confirmed novel H1N1 infection, 42 patients treated with mechanical ventilation formed group 1, and the remaining 55 patients constituted group 2. The initial and subsequent radiograhic findings in groups 1 and 2 were compared with respect to the pattern, distribution, and extent of the abnormality. RESULTS In group 1, 24 patients presented with three or more lung zone diseases, whereas only 5 patients in group 2 demonstrated these findings (P<0.001). A pneumomediastinum or pneumothorax was observed in 24/42 patients in group 1 and in 18/55 patients in group 2 (P=0.019). Twelve patients in group 1 and 5 in group 2 developed a ground-glass opacity cyst with a honeycomb appearance (P=0.007). CONCLUSIONS The most common radiographic and computed tomography findings in children who were severely infected with S-OIV included unilateral or bilateral ground-glass opacities with or without associated focal or multifocal areas of consolidation. Children with bilateral involvement or with greater opacity on the chest radiographs were more likely to worsen and require the mechanical ventilation.
Collapse
|
699
|
Kor DJ, Talmor DS, Banner-Goodspeed VM, Carter RE, Hinds R, Park PK, Gajic O, Gong MN. Lung Injury Prevention with Aspirin (LIPS-A): a protocol for a multicentre randomised clinical trial in medical patients at high risk of acute lung injury. BMJ Open 2012; 2:bmjopen-2012-001606. [PMID: 22952165 PMCID: PMC3437429 DOI: 10.1136/bmjopen-2012-001606] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Acute lung injury (ALI) is a devastating condition that places a heavy burden on public health resources. Although the need for effective ALI prevention strategies is increasingly recognised, no effective preventative strategies exist. The Lung Injury Prevention Study with Aspirin (LIPS-A) aims to test whether aspirin (ASA) could prevent and/or mitigate the development of ALI. METHODS AND ANALYSIS LIPS-A is a multicentre, double-blind, randomised clinical trial testing the hypothesis that the early administration of ASA will result in a reduced incidence of ALI in adult patients at high risk. This investigation will enrol 400 study participants from 14 hospitals across the USA. Conditional logistic regression will be used to test the primary hypothesis that early ASA administration will decrease the incidence of ALI. ETHICS AND DISSEMINATION Safety oversight will be under the direction of an independent Data and Safety Monitoring Board (DSMB). Approval of the protocol was obtained from the DSMB prior to enrolling the first study participant. Approval of both the protocol and informed consent documents were also obtained from the institutional review board of each participating institution prior to enrolling study participants at the respective site. In addition to providing important clinical and mechanistic information, this investigation will inform the scientific merit and feasibility of a phase III trial on ASA as an ALI prevention agent. The findings of this investigation, as well as associated ancillary studies, will be disseminated in the form of oral and abstract presentations at major national and international medical specialty meetings. The primary objective and other significant findings will also be presented in manuscript form. All final, published manuscripts resulting from this protocol will be submitted to Pub Med Central in accordance with the National Institute of Health Public Access Policy.
Collapse
Affiliation(s)
- Daryl Jon Kor
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Daniel S Talmor
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie M Banner-Goodspeed
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Rickey E Carter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Richard Hinds
- Department of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Pauline K Park
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Ognjen Gajic
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Michelle N Gong
- Department of Medicine, Division of Critical Care Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
700
|
Parker H, Albrett AM, Kettle AJ, Winterbourn CC. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J Leukoc Biol 2011; 91:369-76. [PMID: 22131345 DOI: 10.1189/jlb.0711387] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A variety of inflammatory stimuli induces NETs. These structures consist of a network of chromatin strands associated with predominately granule proteins, including MPO. NETs exhibit antimicrobial activity, which is proposed to augment the more-established mechanism of phagosomal killing. They may also be detrimental to the host in situations such as chronic inflammation or severe sepsis. The objective of this study was to establish whether MPO associated with NETs is active and able to kill bacteria. Neutrophils were stimulated with PMA to release NETs. Peroxidase activity measurements were performed and showed that enzymatically active MPO was released from the neutrophils, 2-4 h after stimulation, concomitant with NET formation. Approximately 30% of the total cellular MPO was released, with the majority bound to the NETs. The bound enzyme retained its activity. Staphylococcus aureus were not killed when added to preformed NETs under our assay conditions. However, addition of H(2)O(2) to the bacteria in the presence of NETs resulted in MPO-dependent killing, which was observed with NETs in situ and with NETs when they were removed from the neutrophils by limited DNase digestion. Our results show that the enzymatic activity of MPO on NETs could contribute to antimicrobial activity or tissue injury when NETs are released from neutrophils at sites of infection or inflammation.
Collapse
Affiliation(s)
- Heather Parker
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Ave., Christchurch, New Zealand
| | | | | | | |
Collapse
|