651
|
Erdman SE, Poutahidis T. Gut microbiota modulate host immune cells in cancer development and growth. Free Radic Biol Med 2017; 105:28-34. [PMID: 27840315 PMCID: PMC5831246 DOI: 10.1016/j.freeradbiomed.2016.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Emerging evidence shows that microbe interactions with the host immune system impact diverse aspects of cancer development and treatment. As a result, exciting new opportunities exist for engineering diets and microbe cocktails to lower cancer risks with fewer adverse clinical effects than traditional strategies. Microbe-based therapies may ultimately be used to reinforce host immune balance and extinguish cancer for generations to come.
Collapse
Affiliation(s)
- Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Pathology, College of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
652
|
|
653
|
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: A review. Ann Neurol 2017; 81:369-382. [DOI: 10.1002/ana.24901] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Helen Tremlett
- Faculty of Medicine (Neurology) and the Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| | - Kylynda C. Bauer
- Microbiology and Immunology, Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
- Biochemistry and Molecular Biology; University of British Columbia; Vancouver British Columbia Canada
| | - Silke Appel-Cresswell
- Faculty of Medicine (Neurology) and the Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
- Pacific Parkinson's Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Brett B. Finlay
- Microbiology and Immunology, Michael Smith Laboratories; University of British Columbia; Vancouver British Columbia Canada
- Biochemistry and Molecular Biology; University of British Columbia; Vancouver British Columbia Canada
| | | |
Collapse
|
654
|
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7:124-136. [PMID: 29276734 PMCID: PMC5736941 DOI: 10.1016/j.ynstr.2017.03.001] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/16/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
655
|
Leheste JR, Ruvolo KE, Chrostowski JE, Rivera K, Husko C, Miceli A, Selig MK, Brüggemann H, Torres G. P. acnes-Driven Disease Pathology: Current Knowledge and Future Directions. Front Cell Infect Microbiol 2017; 7:81. [PMID: 28352613 PMCID: PMC5348501 DOI: 10.3389/fcimb.2017.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
This review discusses the biology and behavior of Propionibacterium acnes (P. acnes), a dominant bacterium species of the skin biogeography thought to be associated with transmission, recurrence and severity of disease. More specifically, we discuss the ability of P. acnes to invade and persist in epithelial cells and circulating macrophages to subsequently induce bouts of sarcoidosis, low-grade inflammation and metastatic cell growth in the prostate gland. Finally, we discuss the possibility of P. acnes infiltrating the brain parenchyma to indirectly contribute to pathogenic processes in neurodegenerative disorders such as those observed in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Joerg R Leheste
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kathryn E Ruvolo
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Joanna E Chrostowski
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kristin Rivera
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Christopher Husko
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Alyssa Miceli
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Martin K Selig
- Molecular Pathology Division, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | | | - German Torres
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| |
Collapse
|
656
|
Abstract
Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053; Center of Epilepsy, Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
657
|
Abstract
Gut microbes are capable of producing most neurotransmitters found in the human brain. Evidence is accumulating to support the view that gut microbes influence central neurochemistry and behavior. Irritable bowel syndrome is regarded as the prototypic disorder of the brain-gut-microbiota axis that can be responsive to probiotic therapy. Translational studies indicate that certain bacteria may have an impact on stress responses and cognitive functioning. Manipulating the gut microbiota with psychobiotics, prebiotics, or even antibiotics offers a novel approach to altering brain function and treating gut-brain axis disorders, such as depression and autism.
Collapse
Affiliation(s)
- Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
658
|
Kelly JR, Allen AP, Temko A, Hutch W, Kennedy PJ, Farid N, Murphy E, Boylan G, Bienenstock J, Cryan JF, Clarke G, Dinan TG. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav Immun 2017; 61:50-59. [PMID: 27865949 DOI: 10.1016/j.bbi.2016.11.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/28/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies have identified certain probiotics as psychobiotics - live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. OBJECTIVES To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. METHODS An 8week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). RESULTS There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. CONCLUSIONS L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Collapse
Affiliation(s)
- John R Kelly
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Andrew P Allen
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Ireland
| | - William Hutch
- INFANT Research Centre and Department of Pediatrics & Child Health, University College Cork, Ireland
| | - Paul J Kennedy
- APC Microbiome Institute, University College Cork, Ireland
| | - Niloufar Farid
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Eileen Murphy
- Alimentary Health Ltd., Cork Airport Business Park, Cork, Ireland
| | - Geraldine Boylan
- INFANT Research Centre and Department of Pediatrics & Child Health, University College Cork, Ireland
| | - John Bienenstock
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland.
| |
Collapse
|
659
|
Microbial lysate upregulates host oxytocin. Brain Behav Immun 2017; 61:36-49. [PMID: 27825953 PMCID: PMC5431580 DOI: 10.1016/j.bbi.2016.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.
Collapse
|
660
|
Jacka FN. Nutritional Psychiatry: Where to Next? EBioMedicine 2017; 17:24-29. [PMID: 28242200 PMCID: PMC5360575 DOI: 10.1016/j.ebiom.2017.02.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
The nascent field of 'Nutritional Psychiatry' offers much promise for addressing the large disease burden associated with mental disorders. A consistent evidence base from the observational literature confirms that the quality of individuals' diets is related to their risk for common mental disorders, such as depression. This is the case across countries and age groups. Moreover, new intervention studies implementing dietary changes suggest promise for the prevention and treatment of depression. Concurrently, data point to the utility of selected nutraceuticals as adjunctive treatments for mental disorders and as monotherapies for conditions such as ADHD. Finally, new studies focused on understanding the biological pathways that mediate the observed relationships between diet, nutrition and mental health are pointing to the immune system, oxidative biology, brain plasticity and the microbiome-gut-brain axis as key targets for nutritional interventions. On the other hand, the field is currently limited by a lack of data and methodological issues such as heterogeneity, residual confounding, measurement error, and challenges in measuring and ensuring dietary adherence in intervention studies. Key challenges for the field are to now: replicate, refine and scale up promising clinical and population level dietary strategies; identify a clear set of biological pathways and targets that mediate the identified associations; conduct scientifically rigorous nutraceutical and 'psychobiotic' interventions that also examine predictors of treatment response; conduct observational and experimental studies in psychosis focused on dietary and related risk factors and treatments; and continue to advocate for policy change to improve the food environment at the population level.
Collapse
Affiliation(s)
- Felice N Jacka
- Food & Mood Centre, IMPACT Strategic Research Centre, Deakin University, Geelong 3220, Australia; Department of Psychiatry, The University of Melbourne, Parkville 3052, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia; Black Dog Institute, Sydney, Australia; International Society for Nutritional Psychiatry Research (ISNPR).
| |
Collapse
|
661
|
Averina OV, Danilenko VN. Human intestinal microbiota: Role in development and functioning of the nervous system. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
662
|
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol 2017; 8:353-370. [PMID: 28125354 DOI: 10.1146/annurev-food-030216-030256] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Collapse
Affiliation(s)
- Babasola Sola-Oladokun
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Eamonn P Culligan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , , .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
663
|
MacPherson CW, Shastri P, Mathieu O, Tompkins TA, Burguière P. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination. PLoS One 2017; 12:e0169847. [PMID: 28099447 PMCID: PMC5242491 DOI: 10.1371/journal.pone.0169847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells' transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.
Collapse
Affiliation(s)
- Chad W. MacPherson
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
- * E-mail:
| | - Padmaja Shastri
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Olivier Mathieu
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Thomas A. Tompkins
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Pierre Burguière
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| |
Collapse
|
664
|
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 2017; 16:14. [PMID: 28239408 PMCID: PMC5319175 DOI: 10.1186/s12991-017-0138-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients suffering from depression experience significant mood, anxiety, and cognitive symptoms. Currently, most antidepressants work by altering neurotransmitter activity in the brain to improve these symptoms. However, in the last decade, research has revealed an extensive bidirectional communication network between the gastrointestinal tract and the central nervous system, referred to as the "gut-brain axis." Advances in this field have linked psychiatric disorders to changes in the microbiome, making it a potential target for novel antidepressant treatments. The aim of this review is to analyze the current body of research assessing the effects of probiotics, on symptoms of depression in humans. METHODS A systematic search of five databases was performed and study selection was completed using the preferred reporting items for systematic reviews and meta-analyses process. RESULTS Ten studies met criteria and were analyzed for effects on mood, anxiety, and cognition. Five studies assessed mood symptoms, seven studies assessed anxiety symptoms, and three studies assessed cognition. The majority of the studies found positive results on all measures of depressive symptoms; however, the strain of probiotic, the dosing, and duration of treatment varied widely and no studies assessed sleep. CONCLUSION The evidence for probiotics alleviating depressive symptoms is compelling but additional double-blind randomized control trials in clinical populations are warranted to further assess efficacy.
Collapse
Affiliation(s)
- Caroline J K Wallace
- Department of Psychiatry, Queen's University, 752 King Street West, Kingston, ON K7L 4X3 Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University, 752 King Street West, Kingston, ON K7L 4X3 Canada
| |
Collapse
|
665
|
Dinan TG, Cryan JF. Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology 2017; 42:178-192. [PMID: 27319972 PMCID: PMC5143479 DOI: 10.1038/npp.2016.103] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs or diet or perhaps fecal microbiota transplantation may positively impact mental health.
Collapse
Affiliation(s)
- Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
666
|
Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112:399-412. [DOI: 10.1016/j.neuropharm.2016.07.002] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 02/07/2023]
|
667
|
Adjuvant thiamine improved standard treatment in patients with major depressive disorder: results from a randomized, double-blind, and placebo-controlled clinical trial. Eur Arch Psychiatry Clin Neurosci 2016; 266:695-702. [PMID: 26984349 DOI: 10.1007/s00406-016-0685-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/02/2016] [Indexed: 12/26/2022]
Abstract
Given that antidepressants (ADs) work slowly, there is interest in means to accelerate their therapeutic effect and to reduce side effects. In this regard, thiamine (vitamin B1) is attracting growing interest. Thiamine is an essential nutrient, while thiamine deficiency leads to a broad variety of disorders including irritability and symptoms of depression. Here, we tested the hypothesis that adjuvant thiamine would reduce depression, compared to placebo. A total of 51 inpatients (mean age: 35.2 years; 53 % females) with MDD (Hamilton Depression Rating Scale score (HDRS) at baseline: >24) took part in the study. A standardized treatment with SSRI was introduced and kept at therapeutic levels throughout the study. Patients were randomly assigned either to the thiamine or the placebo condition. Experts rated (HDRS) symptoms of depression at baseline, and after 3, 6, and 12 weeks (end of the study). Between baseline and the end of the study, depression had reduced in both groups. Compared to placebo, adjuvant thiamine improved symptoms of depression after 6 week of treatment, and improvements remained fairly stable until the end of the study, though mean differences at week 12 were not statistically significant anymore. No adverse side effects were reported in either group. Results suggest that among younger patients with MDD adjuvant thiamine alleviated symptoms of depression faster compared to placebo. Importantly, improvements were observed within 6 weeks of initiation of treatment. Thus, thiamine might have the potential to counteract the time lag in the antidepressant effects of ADs.
Collapse
|
668
|
McKean J, Naug H, Nikbakht E, Amiet B, Colson N. Probiotics and Subclinical Psychological Symptoms in Healthy Participants: A Systematic Review and Meta-Analysis. J Altern Complement Med 2016; 23:249-258. [PMID: 27841940 DOI: 10.1089/acm.2016.0023] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION/AIM Interest in the gut-brain axis and emerging evidence that the intestinal microbiota can influence central nervous system function has led to the hypothesis that probiotic supplementation can have a positive effect on mood and psychological symptoms such as depression and anxiety. Although several human clinical trials have investigated this, results have been inconsistent. Therefore, a systematic review and meta-analytic approach was chosen to examine if probiotic consumption has an effect on psychological symptoms. METHODS The online databases PubMed, Scopus, and the Cochrane Library were searched for relevant studies up to July 2016. Those that were randomized and placebo controlled and measured preclinical psychological symptoms of depression, anxiety, and perceived stress in healthy volunteers pre and post supplementation with a probiotic were included. To control for differences in scales of measurement, data were converted to percentage change, and the standardized mean difference between the probiotic and control groups was investigated using Revman software. A random effects model was used for analysis. Heterogeneity was assessed using the I2 statistic. Quality assessment was undertaken using the Rosendal scale. RESULTS Seven studies met the inclusion criteria and provided data for nine comparisons. All studies passed the quality analysis. The meta-analysis showed that supplementation with probiotics resulted in a statistically significant improvement in psychological symptoms (standardized mean difference 0.34; 95% confidence interval 0.07-0.61, Z = 2.49) compared with placebo. CONCLUSION These results show that probiotic consumption may have a positive effect on psychological symptoms of depression, anxiety, and perceived stress in healthy human volunteers.
Collapse
Affiliation(s)
- Jennifer McKean
- 1 School of Medical Science, Griffith University , Gold Coast, Australia
| | - Helen Naug
- 1 School of Medical Science, Griffith University , Gold Coast, Australia .,2 Menzies Health Institute , Gold Coast, Australia
| | - Elham Nikbakht
- 1 School of Medical Science, Griffith University , Gold Coast, Australia .,2 Menzies Health Institute , Gold Coast, Australia
| | - Bianca Amiet
- 1 School of Medical Science, Griffith University , Gold Coast, Australia .,2 Menzies Health Institute , Gold Coast, Australia
| | - Natalie Colson
- 1 School of Medical Science, Griffith University , Gold Coast, Australia .,2 Menzies Health Institute , Gold Coast, Australia
| |
Collapse
|
669
|
Kramer P, Bressan P. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes, and Other Selfish Entities Shape Our Behavior. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2016; 10:464-81. [PMID: 26177948 DOI: 10.1177/1745691615583131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psychologists and psychiatrists tend to be little aware that (a) microbes in our brains and guts are capable of altering our behavior; (b) viral DNA that was incorporated into our DNA millions of years ago is implicated in mental disorders; (c) many of us carry the cells of another human in our brains; and (d) under the regulation of viruslike elements, the paternally inherited and maternally inherited copies of some genes compete for domination in the offspring, on whom they have opposite physical and behavioral effects. This article provides a broad overview, aimed at a wide readership, of the consequences of our coexistence with these selfish entities. The overarching message is that we are not unitary individuals but superorganisms, built out of both human and nonhuman elements; it is their interaction that determines who we are.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Italy
| | - Paola Bressan
- Department of General Psychology, University of Padua, Italy
| |
Collapse
|
670
|
Sayar GH, Cetin M. Psychobiotics: The Potential Therapeutic Promise of Microbes in Psychiatry. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20160531111208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gokben Hizli Sayar
- Uskudar University NP Istanbul Hospital, Psychiatry Clinic, Istanbul - Turkey
| | - Mesut Cetin
- Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Pychopharmacology, Istanbul - Turkey
| |
Collapse
|
671
|
Prescott SL, Logan AC. Transforming Life: A Broad View of the Developmental Origins of Health and Disease Concept from an Ecological Justice Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111075. [PMID: 27827896 PMCID: PMC5129285 DOI: 10.3390/ijerph13111075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
The influential scientist Rene J. Dubos (1901–1982) conducted groundbreaking studies concerning early-life environmental exposures (e.g., diet, social interactions, commensal microbiota, housing conditions) and adult disease. However, Dubos looked beyond the scientific focus on disease, arguing that “mere survival is not enough”. He defined mental health as fulfilling human potential, and expressed concerns about urbanization occurring in tandem with disappearing access to natural environments (and elements found within them); thus modernity could interfere with health via “missing exposures”. With the advantage of emerging research involving green space, the microbiome, biodiversity and positive psychology, we discuss ecological justice in the dysbiosphere and the forces—financial inequity, voids in public policy, marketing and otherwise—that interfere with the fundamental rights of children to thrive in a healthy urban ecosystem and learn respect for the natural environment. We emphasize health within the developmental origins of health and disease (DOHaD) rubric and suggest that greater focus on positive exposures might uncover mechanisms of resiliency that contribute to maximizing human potential. We will entrain our perspective to socioeconomic disadvantage in developed nations and what we have described as “grey space”; this is a mental as much as a physical environment, a space that serves to insidiously reinforce unhealthy behavior, compromise positive psychological outlook and, ultimately, trans-generational health. It is a dwelling place that cannot be fixed with encephalobiotics or the drug-class known as psychobiotics.
Collapse
Affiliation(s)
- Susan L Prescott
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), 35 Stirling Hwy, Crawley 6009, Australia.
- School of Paediatrics and Child Health Research, University of Western Australia, P.O. Box D184, Princess Margaret Hospital, Perth 6001, Australia.
| | - Alan C Logan
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), 35 Stirling Hwy, Crawley 6009, Australia.
- PathLight Synergy, 23679 Calabassas Road, Suite 542, Calabassas, CA 91302, USA.
| |
Collapse
|
672
|
What’s bugging your teen?—The microbiota and adolescent mental health. Neurosci Biobehav Rev 2016; 70:300-312. [DOI: 10.1016/j.neubiorev.2016.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
|
673
|
Kennedy PJ, Murphy AB, Cryan JF, Ross PR, Dinan TG, Stanton C. Microbiome in brain function and mental health. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
674
|
Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 2016; 6:e939. [PMID: 27801892 PMCID: PMC5314114 DOI: 10.1038/tp.2016.191] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/04/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023] Open
Abstract
The emerging concept of psychobiotics-live microorganisms with a potential mental health benefit-represents a novel approach for the management of stress-related conditions. The majority of studies have focused on animal models. Recent preclinical studies have identified the B. longum 1714 strain as a putative psychobiotic with an impact on stress-related behaviors, physiology and cognitive performance. Whether such preclinical effects could be translated to healthy human volunteers remains unknown. We tested whether psychobiotic consumption could affect the stress response, cognition and brain activity patterns. In a within-participants design, healthy volunteers (N=22) completed cognitive assessments, resting electroencephalography and were exposed to a socially evaluated cold pressor test at baseline, post-placebo and post-psychobiotic. Increases in cortisol output and subjective anxiety in response to the socially evaluated cold pressor test were attenuated. Furthermore, daily reported stress was reduced by psychobiotic consumption. We also observed subtle improvements in hippocampus-dependent visuospatial memory performance, as well as enhanced frontal midline electroencephalographic mobility following psychobiotic consumption. These subtle but clear benefits are in line with the predicted impact from preclinical screening platforms. Our results indicate that consumption of B. longum 1714 is associated with reduced stress and improved memory. Further studies are warranted to evaluate the benefits of this putative psychobiotic in relevant stress-related conditions and to unravel the mechanisms underlying such effects.
Collapse
|
675
|
Harrell CS, Gillespie CF, Neigh GN. Energetic stress: The reciprocal relationship between energy availability and the stress response. Physiol Behav 2016; 166:43-55. [PMID: 26454211 PMCID: PMC4826641 DOI: 10.1016/j.physbeh.2015.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant.
Collapse
Affiliation(s)
- C S Harrell
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - C F Gillespie
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - G N Neigh
- Department of Physiology, Emory University, Atlanta, GA 30322, USA;; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
676
|
Wang H, Lee IS, Braun C, Enck P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J Neurogastroenterol Motil 2016; 22:589-605. [PMID: 27413138 PMCID: PMC5056568 DOI: 10.5056/jnm16018] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.
Collapse
Affiliation(s)
- Huiying Wang
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - In-Seon Lee
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany.,MEG Center, University Hospital Tübingen, Germany.,Graduate Training Center of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University Hospital Tübingen, Germany.,CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University of Tübingen, Germany
| |
Collapse
|
677
|
Manook A, Hiergeist A, Rupprecht R, Baghai TC. Dickdarmmikrobiom und Depression. DER NERVENARZT 2016; 87:1227-1240. [DOI: 10.1007/s00115-016-0230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
678
|
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the Manipulation of Bacteria-Gut-Brain Signals. Trends Neurosci 2016; 39:763-781. [PMID: 27793434 PMCID: PMC5102282 DOI: 10.1016/j.tins.2016.09.002] [Citation(s) in RCA: 624] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023]
Abstract
Psychobiotics were previously defined as live bacteria (probiotics) which, when ingested, confer mental health benefits through interactions with commensal gut bacteria. We expand this definition to encompass prebiotics, which enhance the growth of beneficial gut bacteria. We review probiotic and prebiotic effects on emotional, cognitive, systemic, and neural variables relevant to health and disease. We discuss gut–brain signalling mechanisms enabling psychobiotic effects, such as metabolite production. Overall, knowledge of how the microbiome responds to exogenous influence remains limited. We tabulate several important research questions and issues, exploration of which will generate both mechanistic insights and facilitate future psychobiotic development. We suggest the definition of psychobiotics be expanded beyond probiotics and prebiotics to include other means of influencing the microbiome. Psychobiotics are beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that influence bacteria–brain relationships. Psychobiotics exert anxiolytic and antidepressant effects characterised by changes in emotional, cognitive, systemic, and neural indices. Bacteria–brain communication channels through which psychobiotics exert effects include the enteric nervous system and the immune system. Current unknowns include dose-responses and long-term effects. The definition of psychobiotics should be expanded to any exogenous influence whose effect on the brain is bacterially-mediated.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Soili M Lehto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, FI-70211, Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, FI-70211, Kuopio, Finland
| | - Siobhán Harty
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
679
|
Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 2016; 213:2603-2620. [PMID: 27810921 PMCID: PMC5110012 DOI: 10.1084/jem.20151345] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Kigerl et al. show that spinal cord injury causes profound changes in gut microbiota and that these changes in gut ecology are associated with activation of GALT immune cells. They show that feeding mice probiotics after SCI confers neuroprotection and improves functional recovery. The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Jodie C E Hall
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
680
|
Poutahidis T, Erdman SE. Commensal bacteria modulate the tumor microenvironment. Cancer Lett 2016; 380:356-8. [PMID: 26739062 PMCID: PMC4942371 DOI: 10.1016/j.canlet.2015.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
It has been recently shown that gut microbes modulate whole host immune and hormonal factors impacting the fate of distant preneoplastic lesions toward malignancy or regression. This raises the possibility that the tumor microenvironment interacts with broader systemic microbial-immune networks. These accumulated findings suggest novel therapeutic opportunities for holobiont engineering in emerging tumor microenvironments.
Collapse
Affiliation(s)
- Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece 54124
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
681
|
Hannan AJ. Thinking with your stomach? Gut feelings on microbiome modulation of brain structure and function (Commentary on Luczynski et al
.). Eur J Neurosci 2016; 44:2652-2653. [DOI: 10.1111/ejn.13399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health; Melbourne Brain Centre; University of Melbourne; Parkville Vic 3010 Australia
- Department of Anatomy and Neuroscience; University of Melbourne; Parkville Vic 3010 Australia
| |
Collapse
|
682
|
Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Ota M, Koga N, Hattori K, Kunugi H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord 2016; 202:254-7. [PMID: 27288567 DOI: 10.1016/j.jad.2016.05.038] [Citation(s) in RCA: 405] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bifidobacterium and Lactobacillus in the gut have been suggested to have a beneficial effect on stress response and depressive disorder. We examined whether these bacterial counts are reduced in patients with major depressive disorder (MDD) than in healthy controls. METHOD Bifidobacterium and Lactobacillus counts in fecal samples were estimated in 43 patients and 57 controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction RESULTS The patients had significantly lower Bifidobacterium counts (P=0.012) and tended to have lower Lactobacillus counts (P=0.067) than the controls. Individuals whose bacterial counts below the optimal cut-off point (9.53 and 6.49log10 cells/g for Bifidobacterium and Lactobacillus, respectively) were significantly more common in the patients than in the controls for both bacteria (Bifidobacterium: odds ratio 3.23, 95% confidence interval [CI] 1.38-7.54, P=0.010; Lactobacillus: 2.57, 95% CI 1.14-5.78, P=0.027). Using the same cut-off points, we observed an association between the bacterial counts and Irritable bowel syndrome. Frequency of fermented milk consumption was associated with higher Bifidobacterium counts in the patients. LIMITATIONS The findings should be interpreted with caution since effects of gender and diet were not fully taken into account in the analysis. CONCLUSION Our results provide direct evidence, for the first time, that individuals with lower Bifidobacterium and/or Lactobacillus counts are more common in patients with MDD compared to controls. Our findings provide new insight into the pathophysiology of MDD and will enhance future research on the use of pro- and prebiotics in the treatment of MDD.
Collapse
Affiliation(s)
- Emiko Aizawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norie Koga
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
683
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
684
|
Kali A. Psychobiotics: An emerging probiotic in psychiatric practice. Biomed J 2016; 39:223-4. [PMID: 27621125 PMCID: PMC6140288 DOI: 10.1016/j.bj.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Intestinal microbial flora plays critical role in maintenance of health. Probiotic organisms have been recognized as an essential therapeutic component in the treatment of intestinal dysbiosis. Current research suggests their health benefits extends beyond intestinal disorders. The neuroactive molecules produced by the gut microbiota has been found to modulate neural signals which affect neurological and psychiatric parameters like sleep, appetite, mood and cognition. Use of these novel probiotics opens up the possibility of restructuring of intestinal microbiota for effective management of various psychiatric disorders.
Collapse
Affiliation(s)
- Arunava Kali
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India.
| |
Collapse
|
685
|
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. Int J Neuropsychopharmacol 2016; 19:pyw020. [PMID: 26912607 PMCID: PMC5006193 DOI: 10.1093/ijnp/pyw020] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pauline Luczynski
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Karen-Anne McVey Neufeld
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Clara Seira Oriach
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute (Ms Luczynski, Dr McVey Neufeld, Ms Oriach, Dr Clarke, Dr Dinan, and Dr Cryan), Department of Psychiatry and Neurobehavioral Science (Ms Oriach, Dr Clarke, and Dr Dinan), and Department of Anatomy and Neuroscience (Dr Cryan), University College Cork, Cork, Ireland.
| |
Collapse
|
686
|
Parmar A. Gut-brain axis, psychobiotics, and mental health. Asian J Psychiatr 2016; 22:84-5. [PMID: 27520903 DOI: 10.1016/j.ajp.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/06/2016] [Accepted: 05/14/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Arpit Parmar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
687
|
Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 2016; 6:30046. [PMID: 27416816 PMCID: PMC4945902 DOI: 10.1038/srep30046] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a crucial role in the bi-directional gut–brain axis, a communication that integrates the gut and central nervous system (CNS) activities. Animal studies reveal that gut bacteria influence behaviour, Brain-Derived Neurotrophic Factor (BDNF) levels and serotonin metabolism. In the present study, we report for the first time an analysis of the microbiota–gut–brain axis in zebrafish (Danio rerio). After 28 days of dietary administration with the probiotic Lactobacillus rhamnosus IMC 501, we found differences in shoaling behaviour, brain expression levels of bdnf and of genes involved in serotonin signalling/metabolism between control and treated zebrafish group. In addition, in microbiota we found a significant increase of Firmicutes and a trending reduction of Proteobacteria. This study demonstrates that selected microbes can be used to modulate endogenous neuroactive molecules in zebrafish.
Collapse
|
688
|
Maysinger D, Zhang I. Nutritional and Nanotechnological Modulators of Microglia. Front Immunol 2016; 7:270. [PMID: 27471505 PMCID: PMC4945637 DOI: 10.3389/fimmu.2016.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Microglia are the essential responders to alimentary, pharmacological, and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota, and nanotechnological products have been investigated in microglia at the single-cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| |
Collapse
|
689
|
Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2016; 27:30971. [PMID: 27389418 PMCID: PMC4937721 DOI: 10.3402/mehd.v27.30971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
The symbiotic gut microbiota plays an important role in the development and homeostasis of the host organism. Its physiological, biochemical, behavioral, and communicative effects are mediated by multiple low molecular weight compounds. Recent data on small molecules produced by gut microbiota in mammalian organisms demonstrate the paramount importance of these biologically active molecules in terms of biology and medicine. Many of these molecules are pleiotropic mediators exerting effects on various tissues and organs. This review is focused on the functional roles of gaseous molecules that perform neuromediator and/or endocrine functions. The molecular mechanisms that underlie the effects of microbial fermentation-derived gaseous metabolites are not well understood. It is possible that these metabolites produce their effects via immunological, biochemical, and neuroendocrine mechanisms that involve endogenous and microbial modulators and transmitters; of considerable importance are also changes in epigenetic transcriptional factors, protein post-translational modification, lipid and mitochondrial metabolism, redox signaling, and ion channel/gap junction/transporter regulation. Recent findings have revealed that interactivity among such modulators/transmitters is a prerequisite for the ongoing dialog between microbial cells and host cells, including neurons. Using simple reliable methods for the detection and measurement of short-chain fatty acids (SCFAs) and small gaseous molecules in eukaryotic tissues and prokaryotic cells, selective inhibitors of enzymes that participate in their synthesis, as well as safe chemical and microbial donors of pleiotropic mediators and modulators of host intestinal microbial ecology, should enable us to apply these chemicals as novel therapeutics and medical research tools.
Collapse
Affiliation(s)
- Alexander V Oleskin
- General Ecology Department, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Boris A Shenderov
- Moscow Research Institute of Epidemiology and Microbiology after G.N. Gabrichevsky, Moscow, Russia; ;
| |
Collapse
|
690
|
Sun J, Wang F, Ling Z, Yu X, Chen W, Li H, Jin J, Pang M, Zhang H, Yu J, Liu J. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res 2016; 1642:180-188. [PMID: 27037183 DOI: 10.1016/j.brainres.2016.03.042] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022]
Abstract
Diabetes is known to exacerbate cerebral ischemia/reperfusion (I/R) injury. Here, we investigated the effects of Clostridium butyricum on cerebral I/R injury in the diabetic mice subjected to 30min of bilateral common carotid arteries occlusion (BCCAO). The cognitive impairment, the blood glucose level, neuronal injury, apoptosis, and expressions of Akt, phospho-Akt (p-Akt), and caspase-3 level were assessed. Meanwhile, the changes of gut microbiota in composition and diversity in the colonic feces were evaluated. Our results showed that diabetic mice subjected to BCCAO exhibited worsened cognitive impairment, cell damage and apoptosis. These were all attenuated by C. butyricum. Moreover, C. butyricum reversed cerebral I/R induced decreases in p-Akt expression and increases in caspase-3 expression, leading to inhibiting neuronal apoptosis. C. butyricum partly restored cerebral I/R induced decreases of fecal microbiota diversity, changes of fecal microbiota composition. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut-brain axis and suggest that certain probiotics might prove to be useful therapeutic adjuncts in cerebral I/R injury with diabetes.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, 109 College West Road, Wenzhou, Zhejiang 325027, PR China
| | - Fangyan Wang
- Departments of Pathophysiology, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Xichong Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Wenqian Chen
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Haixiao Li
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Jiangtao Jin
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Mengqi Pang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Huiqing Zhang
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Junjie Yu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China
| | - Jiaming Liu
- School of Environmental Science and Public Health, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
691
|
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 2016; 7:979. [PMID: 27446020 PMCID: PMC4923077 DOI: 10.3389/fmicb.2016.00979] [Citation(s) in RCA: 1067] [Impact Index Per Article: 118.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon.
Collapse
Affiliation(s)
| | | | | | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
692
|
Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res 2016; 36:889-898. [PMID: 27632908 DOI: 10.1016/j.nutres.2016.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Gastrointestinal microbiota, consisting of microbial communities in the gastrointestinal tract, play an important role in digestive, metabolic, and immune functioning. Preclinical studies on rodents have linked behavioral and neurochemical changes in the central nervous system with deficits or alterations in these bacterial communities. Moreover, probiotic supplementation in rodents has been shown to markedly change behavior, with correlated changes in central neurochemistry. While such studies have documented behavioral and mood-related supplementation effects, the significance of these effects in humans, especially in relation to anxiety and depression symptoms, are relatively unknown. Thus, the purpose of this paper was to systematically evaluate current literature on the impact of probiotic supplementation on anxiety and depression symptoms in humans. To this end, multiple databases, including Medline, PsycINFO, PubMed, Scopus, and Web of Science were searched for randomized controlled trials published between January 1990 and January 2016. Search results led to a total of 10 randomized controlled trials (4 in clinically diagnosed and 6 in non-clinical samples) that provided limited support for the use of some probiotics in reducing human anxiety and depression. Despite methodological limitations of the included trials and the complex nature of gut-brain interactions, results suggest the detection of apparent psychological benefits from probiotic supplementation. Nevertheless a better understanding of developmental, modulatory, and metagenomic influences on the GI microbiota, specifically as they relate to mood and mental health, represent strong priorities for future research in this area.
Collapse
Affiliation(s)
- Meysam Pirbaglou
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joel Katz
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada
| | - Russell J de Souza
- Department of Clinical Epidemiology & Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | | | - Mehras Motamed
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Paul Ritvo
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada; Department of Psychology, York University, Toronto, Ontario, Canada; University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| |
Collapse
|
693
|
Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens. Anaerobe 2016; 39:39-44. [DOI: 10.1016/j.anaerobe.2016.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
|
694
|
Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress. Appl Environ Microbiol 2016; 82:3649-58. [PMID: 27208120 DOI: 10.1128/aem.04134-15] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Stress-induced abdominal dysfunction is an attractive target for probiotics. To investigate the effects of the probiotic Lactobacillus casei strain Shirota on abdominal dysfunction, a double-blind, placebo-controlled trial was conducted with healthy medical students undertaking an authorized nationwide examination for academic advancement. For 8 weeks, until the day before the examination, 23 and 24 subjects consumed an L. casei strain Shirota-fermented milk and a placebo milk daily, respectively. In addition to assessments of abdominal symptoms, psychophysical state, and salivary stress markers, gene expression changes in peripheral blood leukocytes and composition of the gut microbiota were analyzed using DNA microarray analysis and 16S rRNA gene amplicon sequence analysis, respectively, before and after the intervention. Stress-induced increases in a visual analog scale measuring feelings of stress, the total score of abdominal dysfunction, and the number of genes with changes in expression of more than 2-fold in leukocytes were significantly suppressed in the L. casei strain Shirota group compared with those in the placebo group. A significant increase in salivary cortisol levels before the examination was observed only in the placebo group. The administration of L. casei strain Shirota, but not placebo, significantly reduced gastrointestinal symptoms. Moreover, 16S rRNA gene amplicon sequencing demonstrated that the L. casei strain Shirota group had significantly higher numbers of species, a marker of the alpha-diversity index, in their gut microbiota and a significantly lower percentage of Bacteroidaceae than the placebo group. Our findings indicate that the daily consumption of probiotics, such as L. casei strain Shirota, preserves the diversity of the gut microbiota and may relieve stress-associated responses of abdominal dysfunction in healthy subjects exposed to stressful situations. IMPORTANCE A novel clinical trial was conducted with healthy medical students under examination stress conditions. It was demonstrated that the daily consumption of lactic acid bacteria provided health benefits to prevent the onset of stress-associated abdominal symptoms and a good change of gut microbiota in healthy medical students.
Collapse
|
695
|
[Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis]. MMW Fortschr Med 2016; 158 Suppl 4:12-6. [PMID: 27221556 DOI: 10.1007/s15006-016-8304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. METHOD Overview RESULTS AND CONCLUSIONS Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.
Collapse
|
696
|
Foster JA, Lyte M, Meyer E, Cryan JF. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience. Int J Neuropsychopharmacol 2016; 19:pyv114. [PMID: 26438800 PMCID: PMC4886662 DOI: 10.1093/ijnp/pyv114] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan).
| | - Mark Lyte
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - Emeran Meyer
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - John F Cryan
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| |
Collapse
|
697
|
Logan AC, Jacka FN, Craig JM, Prescott SL. The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:131-47. [PMID: 27121424 PMCID: PMC4857870 DOI: 10.9758/cpn.2016.14.2.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Relationships between gastrointestinal viscera and human emotions have been documented by virtually all medical traditions known to date. The focus on this relationship has waxed and waned through the centuries, with noted surges in interest driven by cultural forces. Here we explore some of this history and the emerging trends in experimental and clinical research. In particular, we pay specific attention to how the hygiene hypothesis and emerging research on traditional dietary patterns has helped re-ignite interest in the use of microbes to support mental health. At present, the application of microbes and their structural parts as a means to positively influence mental health is an area filled with promise. However, there are many limitations within this new paradigm shift in neuropsychiatry. Impediments that could block translation of encouraging experimental studies include environmental forces that work toward dysbiosis, perhaps none more important than westernized dietary patterns. On the other hand, it is likely that specific dietary choices may amplify the value of future microbial-based therapeutics. Pre-clinical and clinical research involving microbiota and allergic disorders has predated recent work in psychiatry, an early start that provides valuable lessons. The microbiome is intimately connected to diet, nutrition, and other lifestyle variables; microbial-based psychopharmacology will need to consider this contextual application, otherwise the ceiling of clinical expectations will likely need to be lowered.
Collapse
Affiliation(s)
- Alan C Logan
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia
| | - Felice N Jacka
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,International Society for Nutritional Psychiatry Research (ISNPR), Geelong, Australia.,The Centre for Innovation in Mental and Physical Health and Clinical Treatment, School of Medicine, Deakin University, Geelong, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Psychiatry, University of Melbourne, Melbourne, Australia.,Black Dog Institute, Sydney, Australia
| | - Jeffrey M Craig
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,Group of Early Life Epigenetics, Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Susan L Prescott
- International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN), Geelong, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, Australia
| |
Collapse
|
698
|
Forsythe P, Kunze W, Bienenstock J. Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Med 2016; 14:58. [PMID: 27090095 PMCID: PMC4836158 DOI: 10.1186/s12916-016-0604-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.
Collapse
Affiliation(s)
- Paul Forsythe
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada. .,Firestone Institute for Respiratory Health, St. Joseph's Healthcare, Hamilton, Ontario, Canada.
| | - Wolfgang Kunze
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - John Bienenstock
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,McMaster Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| |
Collapse
|
699
|
Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiol 2016; 11:585-600. [PMID: 27070955 DOI: 10.2217/fmb.16.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the use of microorganisms as therapeutics for over a century, the scientific and clinical admiration of their potential is a recent phenomenon. Genome sequencing and genetic engineering has enabled researchers to develop novel strategies, such as bioengineered probiotics or pharmabiotics, which may become a therapeutic strategy. Bioengineered probiotics with multiple immunogenic or antagonistic properties could be a viable option to improve human health. The bacteria are tailored to deliver drugs, therapeutic proteins or gene therapy vectors with precision and a higher degree of site specificity than conventional drug administration regimes. This article provides an overview of methodological concepts, thereby encouraging research and interest in this topic, with the ultimate goal of using designer probiotics as therapeutics in clinical practice.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| | - Ashok Kumar Yadav
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Ravinder Nagpal
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo
| | - Rajkumar Hemalatha
- Department of Clinical Microbiology & Immunology, National Institute of Nutrition, ICMR Hyderabad, India
| |
Collapse
|
700
|
Abstract
There is a growing realization that the gut–brain axis plays a key role in maintaining brain health and the stress response. Recently, the gut microbiota has emerged as a master regulator of this axis. Thus, opportunities to exploit the microbiome to treat stress-related psychiatric disorders are materializing. Clinical validation of such strategies is now warranted.
Collapse
Affiliation(s)
- Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, T12 YN60, Ireland. .,APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland.
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|