651
|
|
652
|
Abstract
Single-molecule spectroscopy is an important new approach for studying the intrinsically heterogeneous process of protein folding. This Review illustrates how different single-molecule fluorescence techniques have improved our understanding of mechanistic aspects in protein folding, exemplified by a series of recent experiments on a small protein.
Collapse
Affiliation(s)
- Benjamin Schuler
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| |
Collapse
|
653
|
|
654
|
Eckel R, Walhorn V, Pelargus C, Martini J, Enderlein J, Nann T, Anselmetti D, Ros R. Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:44-9. [PMID: 17294466 DOI: 10.1002/smll.200600130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Rainer Eckel
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
655
|
Finke JM, Jennings PA, Lee JC, Onuchic JN, Winkler JR. Equilibrium unfolding of the poly(glutamic acid)20 helix. Biopolymers 2007; 86:193-211. [PMID: 17370320 DOI: 10.1002/bip.20719] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The equilibrium structural ensemble of a 20-residue polyglutamic acid peptide (E(20)) was studied with FRET, circular dichroism, and molecular dynamics (MD) simulations. A FRET donor, o-aminobenzamide, and acceptor, 3-nitrotyrosine, were introduced at the N- and C-termini, respectively. Circular dichroism, steady state FRET, and time-resolved FRET measurements were employed to characterize the fraction helix and end-to-end distance under different pH conditions: pH 4 (60% alpha-helix), pH 6 (0% alpha-helix), and pH 9 (0% alpha-helix). At pH 4, the end-to-end distance was measured at 24 A and determined to be considerably less than the 31 A predicted for an alpha-helix of the same length. At pH 6 and 9, the end-to-end distance was measured at > 31 and 39 A respectively, both which are determined to be considerably greater than the 27 A predicted for a freely jointed random coil of the same length. To better understand the physical forces underlying the unusual helix-coil transition in this peptide, three theoretical MD models of E(20) were constructed: (1) a pure alpha-helix, (2) an alpha-helix with equivalent attractive intramolecular contacts, and (3) a weak alpha-helix with termini-weighted intramolecular contacts ("sticky ends"). Using MD simulations, the bent helix structure calculated from Model 3 was found to be the closest in agreement with the experimental data.
Collapse
Affiliation(s)
- John M Finke
- Department of Chemistry, Oakland University, Rochester, MI 48309-4477, USA.
| | | | | | | | | |
Collapse
|
656
|
Uversky VN, Kabanov AV, Lyubchenko YL. Nanotools for megaproblems: probing protein misfolding diseases using nanomedicine modus operandi. J Proteome Res 2006; 5:2505-22. [PMID: 17022621 PMCID: PMC1880889 DOI: 10.1021/pr0603349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Misfolding and self-assembly of proteins in nanoaggregates of different sizes and morphologies (nanoensembles, primary nanofilaments, nanorings, filaments, protofibrils, fibrils, etc.) is a common theme unifying a number of human pathologies termed protein misfolding diseases. Recent studies highlight increasing recognition of the public health importance of protein misfolding diseases, including various neurodegenerative disorders and amyloidoses. It is understood now that the first essential elements in the vast majority of neurodegenerative processes are misfolded and aggregated proteins. Altogether, the accumulation of abnormal protein nanoensembles exerts toxicity by disrupting intracellular transport, overwhelming protein degradation pathways, and/or disturbing vital cell functions. In addition, the formation of inclusion bodies is known to represent a major problem in the production of recombinant therapeutic proteins. Formulation of these therapeutic proteins into delivery systems and their in vivo delivery are often complicated by protein association. Thus, protein folding abnormalities and subsequent events underlie a multitude of human pathologies and difficulties with protein therapeutic applications. The field of medicine therefore can be greatly advanced by establishing a fundamental understanding of key factors leading to misfolding and self-assembly responsible for various protein folding pathologies. This article overviews protein misfolding diseases and outlines some novel and advanced nanotechnologies, including nanoimaging techniques, nanotoolboxes and nanocontainers, complemented by appropriate ensemble techniques, all focused on the ultimate goal to establish etiology and to diagnose, prevent, and cure these devastating disorders.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
657
|
Brownlee C. Ready for their close-ups: investigating single molecules. ACS Chem Biol 2006; 1:741-3. [PMID: 17240969 DOI: 10.1021/cb6004799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
658
|
Abstract
Single-molecule fluorescence measurements can provide a new perspective on the conformations, dynamics, and interactions of proteins. Recent examples are described illustrating the application of single-molecule fluorescence spectroscopy to calcium signaling proteins with an emphasis on the new information available in single-molecule fluorescence burst measurements, resonance energy transfer, and polarization modulation methods. Calcium signaling pathways are crucial in many cellular processes. The calcium binding protein calmodulin (CaM) serves as a molecular switch to regulate a network of calcium signaling pathways. Single-molecule spectroscopic methods can yield insights into conformations and dynamics of CaM and CaM-regulated proteins. Examples include studies of the conformations and dynamics of CaM, binding of target peptides, and interaction with the plasma-membrane Ca2+ pump. Single-molecule resonance energy transfer measurements revealed conformational substates of CaM, and single-molecule polarization modulation spectroscopy was used to probe interactions between CaM and the plasma-membrane Ca2+-ATPase.
Collapse
Affiliation(s)
- Carey K Johnson
- Department of Chemistry, 1251 Wescoe Drive, University of Kansas, Lawrence, Kansas 66045-7582, USA.
| |
Collapse
|
659
|
Abstract
The field of carbon nanotube-amphiphile self assembly has been reviewed to address the ongoing debate regarding their binding. Based on our spectrophotometry and transmission electron microscopy studies, this report shows the binding of lysophospholipids onto carbon nanotubes is dependent on the charge and geometry of the lipids and the pH of the solvent, and independent of solvent temperature. From molecular dynamics simulations, the binding of lysophospholipids onto carbon nanotubes does not fully obey any of the models proposed in the literature. We also studied carbon nanotube diffusion using single-molecule fluorescence microscopy, and carbon nanotube-lipid binding and dissociation using the technique of fluorescence resonance energy transfer. The use of carbon nanotube-lipid assembly for enabling nanotoxicological studies is demonstrated by the uptake of the assembly in the living organism Daphnia magna.
Collapse
Affiliation(s)
- Pu Chun Ke
- Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA.
| |
Collapse
|
660
|
Szöllősi J, Damjanovich S, Nagy P, Vereb G, Mátyus L. Principles of Resonance Energy Transfer. ACTA ACUST UNITED AC 2006; Chapter 1:Unit1.12. [DOI: 10.1002/0471142956.cy0112s38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Péter Nagy
- University Medical School of Debrecen Debrecen Hungary
| | - György Vereb
- University Medical School of Debrecen Debrecen Hungary
| | - László Mátyus
- University Medical School of Debrecen Debrecen Hungary
| |
Collapse
|
661
|
Fückel B, Hinze G, Diezemann G, Nolde F, Müllen K, Gauss J, Basché T. Flexibility of phenylene oligomers revealed by single molecule spectroscopy. J Chem Phys 2006; 125:144903. [PMID: 17042646 DOI: 10.1063/1.2355488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rigidity of a p-phenylene oligomer (p-terphenyl) has been investigated by single molecule confocal fluorescence microscopy. Two different rylene diimide dyes attached to the terminal positions of the oligomer allowed for wavelength selective excitation of the two chromophores. In combination with polarization modulation the spatial orientation of the transition dipoles of both end groups could be determined independently. We have analyzed 597 single molecules in two different polymer hosts, polymethylmethacrylate and Zeonex. On average we find a 22 degrees deviation from the linear gas phase geometry (T = 0 K), indicating a rather high flexibility of the p-phenylene oligomer independent of the matrix. To substantiate our experimental results, we have performed quantum chemical calculations at the density functional theory level for the molecular geometry and the electronic excitations. Our findings are in agreement with former experiments on the persistence length of poly(p-phenylenes).
Collapse
Affiliation(s)
- Burkhard Fückel
- Institut für Physikalische Chemie, Universität Mainz, Jakob-Welderweg 11, D-55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
662
|
Joo C, McKinney SA, Nakamura M, Rasnik I, Myong S, Ha T. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 2006; 126:515-27. [PMID: 16901785 DOI: 10.1016/j.cell.2006.06.042] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/16/2006] [Accepted: 06/20/2006] [Indexed: 11/27/2022]
Abstract
RecA and its homologs help maintain genomic integrity through recombination. Using single-molecule fluorescence assays and hidden Markov modeling, we show the most direct evidence that a RecA filament grows and shrinks primarily one monomer at a time and only at the extremities. Both ends grow and shrink, contrary to expectation, but a higher binding rate at one end is responsible for directional filament growth. Quantitative rate determination also provides insights into how RecA might control DNA accessibility in vivo. We find that about five monomers are sufficient for filament nucleation. Although ordinarily single-stranded DNA binding protein (SSB) prevents filament nucleation, single RecA monomers can easily be added to an existing filament and displace SSB from DNA at the rate of filament extension. This supports the proposal for a passive role of RecA-loading machineries in SSB removal.
Collapse
Affiliation(s)
- Chirlmin Joo
- Howard Hughes Medical Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
663
|
Casanova D, Giaume D, Gacoin T, Boilot JP, Alexandrou A. Single Lanthanide-doped Oxide Nanoparticles as Donors in Fluorescence Resonance Energy Transfer Experiments. J Phys Chem B 2006; 110:19264-70. [PMID: 17004778 DOI: 10.1021/jp063229v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used lanthanide-ion doped oxide nanoparticles, Y(0.6)Eu(0.4)VO(4), as donors in fluorescent resonance energy transfer (FRET) experiments. The choice of these nanoparticles allows us to combine the advantages of the lanthanide-ion emission, in particular the long lifetime and the large Stokes shift between absorption and emission, with the detectability of the nanoparticles at the single-particle level. Using cyanine 5 (Cy5) organic molecules as acceptors, we demonstrated FRET down to the single-nanoparticle level. We showed that, due to the long donor lifetime, unambiguous and precise FRET measurements can be performed in solution even in the presence of large free acceptor concentrations. Highly efficient energy transfer was obtained for a large number of acceptor molecules per donor nanoparticle. We determined FRET efficiencies as a function of Cy5 concentration which are in good agreement with a multiple acceptor-multiple donor calculation. On the basis of the donor emission recovery due to acceptor photobleaching, we demonstrated energy transfer from single-nanoparticle donors in fluorescence microscopy experiments.
Collapse
Affiliation(s)
- Didier Casanova
- Laboratory for Optics and Biosciences, CNRS UMR7645, INSERM U696, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
664
|
Abstract
Recent years have seen an increasing number of biological applications of single molecule techniques, evolving from a proof of principle type to the more sophisticated studies. Here we compare the capabilities and limitations of different single molecule techniques in studying the activities of helicases. Helicases share a common catalytic activity but present a high variability in kinetic and phenomenological behavior, making their studies ideal in exemplifying the use of the new single molecule techniques to answer biological questions. Unexpected phenomena have also been observed from individual molecules suggesting extended or alternative functionality of helicases in vivo.
Collapse
Affiliation(s)
- Ivan Rasnik
- Department of Physics, Emory UniversityAtlanta, GA 30322,USA
| | - Sua Myong
- Department of Physics, University of IllinoisUrbana, IL 61801, USA
| | - Taekjip Ha
- Department of Physics, University of IllinoisUrbana, IL 61801, USA
- Howard Hughes Medical InstituteUrbana, IL 61801, USA
- To whom correspondence should be addressed. Tel: +1 271 265 0717;
| |
Collapse
|
665
|
Kukolka F, Müller BK, Paternoster S, Arndt A, Niemeyer CM, Bräuchle C, Lamb DC. A single-molecule Förster resonance energy transfer analysis of fluorescent DNA-protein conjugates for nanobiotechnology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1083-9. [PMID: 17193172 DOI: 10.1002/smll.200600202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of nanobiotechnological devices requires the ability to build various components with nanometer accuracy. DNA is a well-established nanoscale building block that self assembles due to specific interactions that are encoded in its sequence. Recently, it has become possible to couple proteins to DNA, thereby expanding the capabilities of DNA for use with molecular photonics and bioelectronics. Here, we present the design and characterization of a supramolecular Förster resonance energy transfer (FRET) system by using a fluorescent protein bound to single-stranded DNA (ssDNA), a fluorophore attached to a second ssDNA molecule, and a complementary strand for hybridizing the two fluorophores together. The FRET efficiency was studied by using both ensemble and single-pair FRET measurements. The distance between the two fluorophores was determined from the single-pair FRET efficiency and could be described by a simple cylindrical model for the DNA. Hence, DNA can be used as a scaffold for positioning fluorescent proteins, as well as traditional fluorophores, with nanometer accuracy and shows great potential for use in the future of nanobiotechnology.
Collapse
Affiliation(s)
- Florian Kukolka
- Fachbereich Chemie Biologisch-Chemische Mikrostrukturtechnik, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
666
|
Kellermayer MSZ, Karsai A, Kengyel A, Nagy A, Bianco P, Huber T, Kulcsár A, Niedetzky C, Proksch R, Grama L. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys J 2006; 91:2665-77. [PMID: 16861276 PMCID: PMC1562396 DOI: 10.1529/biophysj.106.085456] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The atomic force microscope is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. To exploit the advantages of both methods, here we developed a spatially and temporally synchronized total internal reflection fluorescence and atomic force microscope system. The instrument, which we hereby call STIRF-AFM, is a stage-scanning device in which the mechanical and optical axes are coaligned to achieve spatial synchrony. At each point of the scan the sample topography (atomic force microscope) and fluorescence (photon count or intensity) information are simultaneously recorded. The tool was tested and validated on various cellular (monolayer cells in which actin filaments and intermediate filaments were fluorescently labeled) and biomolecular (actin filaments and titin molecules) systems. We demonstrate that with the technique, correlated sample topography and fluorescence images can be recorded, soft biomolecular systems can be mechanically manipulated in a targeted fashion, and the fluorescence of mechanically stretched titin can be followed with high temporal resolution.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs H-7624, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
667
|
Coban O, Lamb DC, Zaychikov E, Heumann H, Nienhaus GU. Conformational heterogeneity in RNA polymerase observed by single-pair FRET microscopy. Biophys J 2006; 90:4605-17. [PMID: 16581837 PMCID: PMC1471840 DOI: 10.1529/biophysj.105.078840] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/08/2006] [Indexed: 11/18/2022] Open
Abstract
Kinetic, structural, and single-molecule transcription measurements suggest that RNA polymerase can adopt many different conformations during elongation. We have measured the geometry of the DNA and RNA in ternary elongation complexes using single-pair fluorescence resonance energy transfer. Six different synthetic transcription elongation complexes were constructed from DNA containing an artificial transcription bubble, an RNA primer, and core RNA polymerase from Escherichia coli. Two different RNA primers were used, an 8-mer and a 5'-extended 11-mer. Fluorescent dye labels were attached at one of three positions on the DNA and at the RNA primer 5'-end. Structurally, the upstream DNA runs perpendicular to the proposed RNA exit channel. Upon nucleoside-triphosphate addition, DNA/RNA hybrid separation occurs readily in the 11-mer complexes but not in the 8-mer complexes. Clear evidence was obtained that RNA polymerase exists in multiple conformations among which it fluctuates.
Collapse
Affiliation(s)
- Oana Coban
- Department of Biophysics, University of Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
668
|
Abstract
Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with the quantum dot/Cy5 pair are identical to those obtained with the conventional Cy3/Cy5 pair, that is, conformational changes of individual molecules can be observed by using the quantum dot as the donor.
Collapse
Affiliation(s)
- Sungchul Hohng
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
669
|
Wahlroos R, Toivonen J, Tirri M, Hänninen P. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers. J Fluoresc 2006; 16:379-86. [PMID: 16791502 DOI: 10.1007/s10895-006-0084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/21/2006] [Indexed: 11/29/2022]
Abstract
The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor-acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.
Collapse
Affiliation(s)
- Rina Wahlroos
- Laboratory of Biophysics, Institute of Biomedicine, University of Turku, P.O. Box 123, 20521 Turku, Finland.
| | | | | | | |
Collapse
|
670
|
Bagh S, Paige MF. Ensemble and Single-Molecule Fluorescence Spectroscopy of a Calcium-Ion Indicator Dye. J Phys Chem A 2006; 110:7057-66. [PMID: 16737253 DOI: 10.1021/jp060719e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectroscopic properties of Calcium Green 2 (CG-2), a dual-fluorophore Ca(2+) indicator dye, were characterized by a combination of steady state and time-resolved ensemble spectroscopic measurements, molecular mechanics calculations and single-molecule fluorescence spectroscopy. It was found that in Ca(2+) free solutions, CG-2 exists primarily as a highly quenched intramolecular dimer, but when bound to Ca(2+), the molecule adopts an extended, fluorescent conformation. The difference in emission properties of these two CG-2 conformations is explained in terms of simple exciton theory. Through single-molecule fluorescence measurements, we have shown that the bulk increase in ensemble fluorescence intensity correlates with a simple statistical increase in the number of fluorescent molecules in solution. In addition, we have also observed that the majority of CG-2 molecules photobleach in a single step, despite the molecule possessing two distinct fluorophores. A small fraction of molecules photobleach in multiple steps or show a series of transitions between emissive and nonemissive fluorescent states ("blinking"). We rationalize these photophysical phenomena using a simple model based on dipole-dipole Förster coupling between fluorophores in conjunction with irreversible photodamage to one of the constituent chromophores.
Collapse
Affiliation(s)
- Sangram Bagh
- Department of Chemistry, University Of Saskatchewan, SK, Canada
| | | |
Collapse
|
671
|
Michalet X, Weiss S, Jäger M. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 2006; 106:1785-813. [PMID: 16683755 PMCID: PMC2569857 DOI: 10.1021/cr0404343] [Citation(s) in RCA: 388] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xavier Michalet
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Marcus Jäger
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|
672
|
Hausmann M, Perner B, Rapp A, Wollweber L, Scherthan H, Greulich KO. Near-field scanning optical microscopy in cell biology and cytogenetics. Methods Mol Biol 2006; 319:275-94. [PMID: 16719361 DOI: 10.1007/978-1-59259-993-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Light microscopy has proven to be one of the most versatile analytical tools in cell biology and cytogenetics. The growing spectrum of scientific knowledge demands a continuous improvement of the optical resolution of the instruments. In far-field light microscopy, the attainable resolution is dictated by the limit of diffraction, which, in practice, is about 250 nm for high-numerical-aperture objective lenses. Near-field scanning optical microscopy (NSOM) was the first technique that has overcome this limit up to about one order of magnitude. Typically, the resolution range below 100 nm is accessed for biological applications. Using appropriately designed scanning probes allows for obtaining an extremely small near-field light excitation volume (some tens of nanometers in diameter). Because of the reduction of background illumination, high contrast imaging becomes feasible for light transmission and fluorescence microscopy. The height of the scanning probe is controlled by atomic force interactions between the specimen surface and the probe tip. The control signal can be used for the production of a topographic (nonoptical) image that can be acquired simultaneously. In this chapter, the principle of NSOM is described with respect to biological applications. A brief overview of some requirements in biology and applications described in the literature are given. Practical advice is focused on instruments with aperture-type illumination probes. Preparation protocols focussing on NSOM of cell surfaces and chromosomes are presented.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchoff Institute of Physics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
673
|
Myong S, Rasnik I, Joo C, Lohman TM, Ha T. Repetitive shuttling of a motor protein on DNA. Nature 2005; 437:1321-5. [PMID: 16251956 DOI: 10.1038/nature04049] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 07/21/2005] [Indexed: 11/08/2022]
Abstract
Many helicases modulate recombination, an essential process that needs to be tightly controlled. Mutations in some human disease helicases cause increased recombination, genome instability and cancer. To elucidate the potential mode of action of these enzymes, here we developed a single-molecule fluorescence assay that can visualize DNA binding and translocation of Escherichia coli Rep, a superfamily 1 DNA helicase homologous to Saccharomyces cerevisiae Srs2. Individual Rep monomers were observed to move on single-stranded (ss)DNA in the 3' to 5' direction using ATP hydrolysis. Strikingly, on hitting a blockade, such as duplex DNA or streptavidin, the protein abruptly snapped back close to its initial position, followed by further cycles of translocation and snapback. This repetitive shuttling is likely to be caused by a blockade-induced protein conformational change that enhances DNA affinity for the protein's secondary DNA binding site, thereby resulting in a transient DNA loop. Repetitive shuttling was also observed on ssDNA bounded by a stalled replication fork and an Okazaki fragment analogue, and the presence of Rep delayed formation of a filament of recombination protein RecA on ssDNA. Thus, the binding of a single Rep monomer to a stalled replication fork can lead to repetitive shuttling along the single-stranded region, possibly keeping the DNA clear of toxic recombination intermediates.
Collapse
Affiliation(s)
- Sua Myong
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
674
|
Special-Purpose Modifications and Immobilized Functional Nucleic Acids for Biomolecular Interactions. Top Curr Chem (Cham) 2005. [DOI: 10.1007/b136673] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
675
|
Abstract
In this article, we demonstrate the new method of pulsed interleaved excitation (PIE), which can be used to extend the capabilities of multiple-color fluorescence imaging, fluorescence cross-correlation spectroscopy (FCCS), and single-pair fluorescence resonance energy transfer (spFRET) measurements. In PIE, multiple excitation sources are interleaved such that the fluorescence emission generated from one pulse is complete before the next excitation pulse arrives. Hence, the excitation source for each detected photon is known. Typical repetition rates used for PIE are between approximately 1 and 50 MHz. PIE has many applications in various fluorescence methods. Using PIE, dual-color measurements can be performed with a single detector. In fluorescence imaging with multicolor detection, spectral cross talk can be removed, improving the contrast of the image. Using PIE with FCCS, we can eliminate spectral cross talk, making the method sensitive to weaker interactions. FCCS measurements with complexes that undergo FRET can be analyzed quantitatively. Under specific conditions, the FRET efficiency can be determined directly from the amplitude of the measured correlation functions without any calibration factors. We also show the application of PIE to spFRET measurements, where complexes that have low FRET efficiency can be distinguished from those that do not have an active acceptor.
Collapse
Affiliation(s)
- Barbara K Müller
- Physical Chemistry, Department of Chemistry and Biochemistry, and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandstrasse 11 Haus E, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
676
|
Antia M, Islas LD, Boness DA, Baneyx G, Vogel V. Single molecule fluorescence studies of surface-adsorbed fibronectin. Biomaterials 2005; 27:679-90. [PMID: 16095684 DOI: 10.1016/j.biomaterials.2005.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/24/2005] [Indexed: 01/08/2023]
Abstract
The conformation of the extracellular matrix protein fibronectin plays a critical role in regulating cell function, including cell adhesion and migration. While average conformations of large ensembles of adhesion proteins have been previously measured, cells may sensitively respond to conformational outliers. We therefore applied both single molecule imaging and spectroscopy techniques to map a range of conformational states of individual fibronectin molecules adsorbed to glass, as well as to measure their conformational fluctuations in time. Single-step photobleaching experiments confirmed single molecule sensitivity. Single molecule spectra showed fluctuations in the peak wavelength, both over a spatial ensemble of molecules and in a single molecule over time, most likely indicating the different conformational states fibronectin can assume upon surface adsorption. Single-pair fluorescence resonance energy transfer (FRET) revealed that a fraction of fibronectin molecules existed in conformations that allowed for energy transfer between the labeled cysteine residues of the two dimeric arms folded upon each other, and that fluctuations occurred in the FRET efficiency. Fluorescence polarization experiments identified two possible sources of FRET fluctuations: changes in fluorophore orientation and conformational fluctuations of fibronectin over a time scale of seconds.
Collapse
Affiliation(s)
- Meher Antia
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
677
|
Shang J, Geva E. A Computational Study of the Correlations between Structure and Dynamics in Free and Surface-Immobilized Single Polymer Chains. J Phys Chem B 2005; 109:16340-9. [PMID: 16853077 DOI: 10.1021/jp052275c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The correlations between structure and dynamics in free and surface-immobilized polymers were investigated via Langevin dynamics simulations of a free-jointed homopolymer. A detailed analysis was performed for a polymer in free solution and a polymer attached to a surface. The cases of repulsive and attractive surfaces, as well as poor and good solvents, were considered. The analysis focuses on properties that are particularly relevant to single molecule measurements, namely: (1) the distribution of end-to-end distance, (2) the correlations between the conformational structure and the time scale of its motion, (3) the correlations, at equilibrium, between the end-to-end distance and its displacement, and (4) the correlation between the initial coil conformation and the collapse pathway into the globular state. The differences and similarities between this model and a previously considered model of a protein, with two-state folding kinetics and a well-defined native state, are also discussed.
Collapse
Affiliation(s)
- Jianyuan Shang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
678
|
Luong AK, Gradinaru CC, Chandler DW, Hayden CC. Simultaneous Time- and Wavelength-Resolved Fluorescence Microscopy of Single Molecules. J Phys Chem B 2005; 109:15691-8. [PMID: 16852991 DOI: 10.1021/jp050465h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single fluorophores and single-pair fluorescence resonance energy transfer were studied with a new confocal fluorescence microscope that allows, for the first time, the wavelength and emission time of each detected photon to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive photon detector. For each detected photon the detection system records its wavelength, its emission time relative to the excitation pulse, and its absolute emission time. A histogram over many photons can generate a full fluorescence spectrum and correlated decay plot for a single molecule for any time interval. At the single molecule level, this approach makes possible entirely new types of temporal and spectral correlation spectroscopies. This paper presents our initial results on simultaneous time- and wavelength-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 molecules embedded in thin films of poly(methyl methacrylate) (PMMA), and of single-pair fluorescence resonance energy transfer between two Alexa fluorophores spaced apart by a short polyproline peptide.
Collapse
Affiliation(s)
- A Khai Luong
- Sandia National Laboratories, 7011 East Avenue, MS 9055, Livermore, California 94550, USA.
| | | | | | | |
Collapse
|
679
|
Hinze G, Haase M, Nolde F, Müllen K, Basché T. Time-Resolved Measurements of Intramolecular Energy Transfer in Single Donor/Acceptor Dyads. J Phys Chem A 2005; 109:6725-9. [PMID: 16834025 DOI: 10.1021/jp0521003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated electronic excitation energy transfer in a specifically designed bichromophoric donor/acceptor dyad in which the donor (perylenediimide) and acceptor (terrylenediimide) are linked by a rigid heptaphenyl-spacer. Because of the choice of the bridge, which defines the distance and orientation of the two chromophores, donor as well as acceptor emission is observed. The significantly smaller photostability of the donor allows for time-resolved measurements of the acceptor emission at the single-molecule level with and without energy transfer from the donor. By analyzing the differences of the rise/decay profiles for both pathways, we could determine time constants of energy transfer with high accuracy for single dyads. The results show that the experimental approach presented here works even for situations in which the energy transfer times are smaller than the temporal resolution of the detection system.
Collapse
Affiliation(s)
- G Hinze
- Institute for Physical Chemistry, Johannes Gutenberg-University, Jakob-Welderweg 11, D-55099 Mainz, Germany.
| | | | | | | | | |
Collapse
|
680
|
Forde TS, Hanley QS. Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem Photobiol Sci 2005; 4:609-16. [PMID: 16052267 DOI: 10.1039/b416478d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the acquisition and analysis of spectrally resolved photobleaching data from a model system designed to exhibit FRET. Spectrally resolved photobleaching can be used to determine the presence of FRET in these systems and to investigate multi-step mechanisms of energy transfer. The model system was a previously described set of fluorescent beads consisting of a system of six fluorophores. In standard photobleaching experiments to determine FRET, bleaching of an acceptor molecule resulting in recovery of donor intensity or changes in photobleaching kinetics are used as indicators of FRET. Here, we use the Bateman equations to model growth and decay in a photobleaching experiment. Linked donor-acceptor growth and decay is used as an indicator of FRET. The apparatus required is relatively simple when compared to lifetime imaging systems. Several data analysis strategies, rigorous model building, global fitting procedures, and error analysis are presented. Using these procedures a five-step sequential mechanism of energy transfer was selected for these beads.
Collapse
Affiliation(s)
- Toni S Forde
- Department of Biological and Chemical Sciences, University of the West Indies, Cave Hill Campus, St. Michael, Barbados
| | | |
Collapse
|
681
|
Dittrich PS, Manz A. Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal Bioanal Chem 2005; 382:1771-82. [PMID: 16075229 DOI: 10.1007/s00216-005-3335-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/12/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Both single-molecule detection (SMD) methods and miniaturization technologies have developed very rapidly over the last ten years. By merging these two techniques, it may be possible to achieve the optimal requirements for the analysis and manipulation of samples on a single molecule scale. While miniaturized structures and channels provide the interface required to handle small particles and molecules, SMD permits the discovery, localization, counting and identification of compounds. Widespread applications, across various bioscience/analytical science fields, such as DNA-analysis, cytometry and drug screening, are envisaged. In this review, the unique benefits of single fluorescent molecule detection in microfluidic channels are presented. Recent and possible future applications are discussed.
Collapse
Affiliation(s)
- Petra S Dittrich
- Department of Miniaturization, Institute for Analytical Sciences (ISAS), Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany.
| | | |
Collapse
|
682
|
Abstract
The development of single-molecule detection and manipulation has allowed us to monitor the behavior of individual biological molecules and molecular complexes in real time. This approach significantly expands our capability to characterize complex dynamics of biological processes, allowing transient intermediate states and parallel kinetic pathways to be directly observed. Exploring this capability to elucidate complex dynamics, recent single-molecule experiments on RNA folding and catalysis have improved our understanding of the folding energy landscape of RNA and allowed us to better dissect complex RNA catalytic reactions, including translation by the ribosome.
Collapse
Affiliation(s)
- Xiaowei Zhuang
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
683
|
Abstract
Single-molecule imaging and manipulation techniques have evolved in the past decade from mere jaw-dropping attractions to essential laboratory tools. By applying single-molecule methods important insights otherwise unavailable have been obtained on various biomolecular systems. Constantly improving single-molecule imaging techniques keep expanding the scale of the explorable spatial detail, thereby providing possible solutions to getting around the debilitating diffraction limit present in physiological-condition structural investigations. In some areas, such as motor protein studies, single-molecule methods have become part of the routine and essential research toolkit. Entire research fields, such as single-molecule force spectroscopy, have been born. In the present review single-molecule visualization and manipulation methods are reviewed with a focus on proteins. Relevant signals and prominent applications are discussed along with experimental examples and recent important results. Finally, the perspectives of the single-molecule field are explored.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics, Faculty of Medicine, University of Pécs, Szigeti út 12. Pécs H-7624, Hungary.
| |
Collapse
|
684
|
Bates M, Blosser TR, Zhuang X. Short-range spectroscopic ruler based on a single-molecule optical switch. PHYSICAL REVIEW LETTERS 2005; 94:108101. [PMID: 15783528 PMCID: PMC2652517 DOI: 10.1103/physrevlett.94.108101] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/23/2004] [Indexed: 05/20/2023]
Abstract
We demonstrate a novel all-optical switch consisting of two molecules: a primary fluorophore (Cy5) that can be switched between a fluorescent and a dark state by light of different wavelengths, and a secondary chromophore (Cy3) that facilitates switching. The interaction between the two molecules exhibits a distance dependence much steeper than that of conventional Fo rster resonance energy transfer. This enables the switch to act as a ruler with the capability to probe distances difficult to access by other spectroscopic methods, thus presenting a new tool for the study of biomolecules at the single-molecule level.
Collapse
Affiliation(s)
- Mark Bates
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Timothy R. Blosser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Program in Biophysics, Harvard University, Cambridge, MA 02138
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Physics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
685
|
Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA. Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence. Proc Natl Acad Sci U S A 2005; 102:2754-9. [PMID: 15699337 PMCID: PMC549440 DOI: 10.1073/pnas.0408164102] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Indexed: 11/18/2022] Open
Abstract
To determine whether Forster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Forster theory, with polyproline treated as a rigid rod. At donor-acceptor distances much less than the Forster radius R(0), the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R(0), they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Forster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor-acceptor distances.
Collapse
Affiliation(s)
- Benjamin Schuler
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Building 5, Room 104, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
686
|
Abstract
Fluorescence resonance energy transfer (FRET) measured at the single-molecule level can reveal conformational changes of biomolecules and intermolecular interactions in physiologically relevant conditions. Thus far single-molecule FRET has been measured only between two fluorophores. However, for many complex systems, the ability to observe changes in more than one distance is desired and FRET measured between three spectrally distinct fluorophores can provide a more complete picture. We have extended the single-molecule FRET technique to three colors, using the DNA four-way (Holliday) junction as a model system that undergoes two-state conformational fluctuations. By labeling three arms of the junction with Cy3 (donor), Cy5 (acceptor 1), and Cy5.5 (acceptor 2), distance changes between the donor and acceptor 1, and between the donor and acceptor 2, can be measured simultaneously. Thus we are able to show that the acceptor 1 arm moves away from the donor arm at the same time as the acceptor 2 arm approaches the donor arm, and vice versa, marking the first example of observing correlated movements of two different segments of a single molecule. Our data further suggest that Holliday junction does not spend measurable time with any of the helices unstacked, and that the parallel conformations are not populated to a detectable degree.
Collapse
Affiliation(s)
- Sungchul Hohng
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
687
|
Sabanayagam CR, Eid JS, Meller A. Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: Corrections due to nonideal transfer. J Chem Phys 2005; 122:061103. [PMID: 15740360 DOI: 10.1063/1.1854120] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single molecule fluorescence resonance energy transfer has been extensively used to measure distance changes and kinetics in various biomolecular systems. However, due to complications involving multiple de-excitation pathways of the dyes, the absolute inter-dye distance information has seldom been recovered. To circumvent this we directly probe the relative variations in the quantum yield of individual fluorophores. B-DNA was used as a scaffold to position the donor (Cy3 or TMR) at precise distances from the acceptor (Cy5) within the Forster radius. We found that the variation in the Cy3 quantum yield is approximately 5 times larger than that of TMR. By taking into account the molecule-to-molecule variability in the acceptor/donor quantum yield ratio, the apparent fluorescence resonance energy transfer efficiencies were scaled to yield the theoretical values. We obtained very good agreement with a physical model that predicts distances along B-DNA.
Collapse
|
688
|
Pljevaljcić G, Millar DP, Deniz AA. Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophys J 2005; 87:457-67. [PMID: 15240479 PMCID: PMC1304366 DOI: 10.1529/biophysj.103.036087] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule fluorescence resonance energy transfer studies of freely diffusing hairpin ribozymes with different combinations of helical junction and loop elements reveal striking differences in their folding behavior. We examined a series of six different ribozymes consisting of two-, three- and four-way junction variants, as well as corresponding constructs with one of the two loops removed. Our results highlight the varying contributions of preformed secondary structure elements to tertiary folding of the hairpin ribozyme. Of the three helical junction variants studied, the four-way junction strongly favored folding to a docked conformation of the two loops, required for catalytic activity. Moreover, the four-way junction was uniquely able to fold to a similar compact structure even in the absence of specific loop-loop docking interactions. A key feature of the data is the observation of broadening/tailing in the fluorescence resonance energy transfer histogram peak for a single-loop mutant of the four-way junction at higher Mg(2+) concentrations, not observed for any of the other single-loop variants. This feature is consistent with interconversion between compact and extended structures, which we estimate takes place on the 100-micros timescale using a simple model for the peak shape. This unique ability of the four-way junction ribozyme to populate an undocked conformation with native-like structure (a quasi-docked state) likely contributes to its greater tertiary structure stability, with the quasi-docked state acting as an intermediate and facilitating the subsequent formation of the specific hydrogen bonding network during docking of the two loops. The inability of two- and three-way junction ribozymes to fully populate a docked conformation reveals the importance of correct helical junction geometry as well as loop elements for effective ribozyme folding.
Collapse
Affiliation(s)
- Goran Pljevaljcić
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, California
| | | | | |
Collapse
|
689
|
Watkins LP, Yang H. Information bounds and optimal analysis of dynamic single molecule measurements. Biophys J 2005; 86:4015-29. [PMID: 15189897 PMCID: PMC1304302 DOI: 10.1529/biophysj.103.037739] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Time-resolved single molecule fluorescence measurements may be used to probe the conformational dynamics of biological macromolecules. The best time resolution in such techniques will only be achieved by measuring the arrival times of individual photons at the detector. A general approach to the estimation of molecular parameters based on individual photon arrival times is presented. The amount of information present in a data set is quantified by the Fisher information, thereby providing a guide to deriving the basic equations relating measurement uncertainties and time resolution. Based on these information-theoretical considerations, a data analysis algorithm is presented that details the optimal analysis of single-molecule data. This method natively accounts and corrects for background photons and cross talk, and can scale to an arbitrary number of channels. By construction, and with corroboration from computer simulations, we show that this algorithm reaches the theoretical limit, extracting the maximal information out of the data. The bias inherent in the algorithm is considered and its implications for experimental design are discussed. The ideas underlying this approach are general and are expected to be applicable to any information-limited measurement.
Collapse
Affiliation(s)
- Lucas P Watkins
- Department of Chemistry, Graduate Group in Biophysics, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
690
|
Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 2005; 88:2939-53. [PMID: 15653725 PMCID: PMC1282518 DOI: 10.1529/biophysj.104.054114] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature.
Collapse
Affiliation(s)
- Nam Ki Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
691
|
Affiliation(s)
- Jean-Pierre Clamme
- The Scripps Research Institute, Department of Molecular Biology (MB 19), 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
692
|
Wang D, Geva E. Protein Structure and Dynamics from Single-Molecule Fluorescence Resonance Energy Transfer. J Phys Chem B 2005; 109:1626-34. [PMID: 16851134 DOI: 10.1021/jp0478864] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pros and cons of single-molecule vs ensemble-averaged fluorescence resonance energy transfer (FRET) experiments, performed on proteins, are explored with the help of Langevin dynamics simulations. An off-lattice model of the polypeptide chain is employed, which gives rise to a well-defined native state and two-state folding kinetics. A detailed analysis of the distribution of the donor-acceptor distance is presented at different points along the denaturation curve, along with its dependence on the averaging time window. We show that unique information on the correlation between structure and dynamics, which can only be obtained from single-molecule experiments, is contained in the correlation between the donor-acceptor distance and its displacement. The latter is shown to provide useful information on the free energy landscape of the protein, which is complementary to that obtained from the distribution of donor-acceptor distances.
Collapse
Affiliation(s)
- Dong Wang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
693
|
Raicu V, Jansma D, Miller R, Friesen J. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J 2005; 385:265-77. [PMID: 15352875 PMCID: PMC1134695 DOI: 10.1042/bj20040226] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 08/04/2004] [Accepted: 09/07/2004] [Indexed: 12/20/2022]
Abstract
We describe a fluorescence resonance energy transfer (FRET)-based method for finding in living cells the fraction of a protein population (alpha(T)) forming complexes, and the average number (n) of those protein molecules in each complex. The method relies both on sensitized acceptor emission and on donor de-quenching (by photobleaching of the acceptor molecules), coupled with full spectral analysis of the differential fluorescence signature, in order to quantify the donor/acceptor energy transfer. The approach and sensitivity limits are well suited for in vivo microscopic investigations. This is demonstrated using a scanning laser confocal microscope to study complex formation of the sterile 2 alpha-factor receptor protein (Ste2p), labelled with green, cyan, and yellow fluorescent proteins (GFP, CFP, and YFP respectively), in budding yeast Saccharomyces cerevisiae. A theoretical model is presented that relates the efficiency of energy transfer in protein populations (the apparent FRET efficiency, E(app)) to the energy transferred in a single donor/acceptor pair (E, the true FRET efficiency). We determined E by using a new method that relies on E(app) measurements for two donor/acceptor pairs, Ste2p-CFP/Ste2p-YFP and Ste2p-GFP/Ste2p-YFP. From E(app) and E we determined alpha(T) approximately 1 and n approximately 2 for Ste2 proteins. Since the Ste2p complexes are formed in the absence of the ligand in our experiments, we conclude that the alpha-factor pheromone is not necessary for dimerization.
Collapse
Key Words
- green fluorescent protein (gfp) variants
- photobleaching
- saccharomyces cerevisiae
- sterile 2 alpha factor receptor protein (ste2p)
- stoichiometry
- a, acceptor (of energy)
- αa, the fraction of interacting acceptor molecules
- [a]d, the concentration of a in complexes with d
- [a]t, the total concentration of a
- βd, the donor-bleaching coefficient or the fraction of donors remaining after irradiation (βd=0 for complete bleaching)
- bfp, blue fluorescent protein
- cfp, cyan fluorescent protein
- d, donor
- αd, the fraction of donors that form oligomers with acceptors
- [d]a, the concentration of d in complexes with a
- [d]t, the total concentration of d
- dic, differential interference contrast
- e, true fret efficiency
- eapp, apparent fret efficiency
- fret, fluorescence resonance energy transfer
- gfp, green fluorescent protein
- gpcr, g protein-coupled receptor
- kdpd is the donor fluorescence after photobleaching
- r, inter-chromophore distance
- ste2p, sterile 2 α-factor receptor protein
- yfp, yellow fluorescent protein
Collapse
Affiliation(s)
- Valerică Raicu
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- ‡Department of Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - David B. Jansma
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - R. J. Dwayne Miller
- †Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- ‡Department of Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - James D. Friesen
- *Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
694
|
HOHNG SUNGCHUL, HA TAEKJIP. Single-Molecule FRET. Mol Imaging 2005. [DOI: 10.1016/b978-019517720-6.50018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
695
|
Daelemans D, Costes SV, Lockett S, Pavlakis GN. Kinetic and molecular analysis of nuclear export factor CRM1 association with its cargo in vivo. Mol Cell Biol 2005; 25:728-39. [PMID: 15632073 PMCID: PMC543413 DOI: 10.1128/mcb.25.2.728-739.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022] Open
Abstract
The nucleocytoplasmic transport receptor CRM1 mediates the export of macromolecules from the nucleus to the cytoplasm by forming a ternary complex with a cargo molecule and RanGTP. The in vivo mechanism of CRM1 export complex formation and its mobility throughout the nucleus have not been fully elucidated. More information is required to fully understand complex formation and the dynamics of CRM1-cargo-RanGTP complexes in space and time. We demonstrate true molecular interaction of CRM1 with its Rev cargo in living cells by using fluorescence resonance energy transfer (FRET). Interestingly, we found that the inhibitory effect of leptomycin B on this CRM1-cargo interaction is Ran dependent. Using fluorescence recovery after photobleaching (FRAP), we show that CRM1 moves at rates similar to that of free green fluorescent protein in the nucleoplasm. A slower mobility was detected on the nuclear membrane, consistent with known CRM1 interactions with nuclear pores. Based on these data, we propose an in vivo model in which CRM1 roams through the nucleus in search of high-affinity binding sites. CRM1 is able to bind Rev cargo in the nucleolus, and upon RanGTP binding a functional export complex is produced that is exported to the cytoplasm.
Collapse
Affiliation(s)
- Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
696
|
Photobleaching FRET Microscopy. Mol Imaging 2005. [DOI: 10.1016/b978-019517720-6.50017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
697
|
Murphy MC, Rasnik I, Cheng W, Lohman TM, Ha T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys J 2004; 86:2530-7. [PMID: 15041689 PMCID: PMC1304100 DOI: 10.1016/s0006-3495(04)74308-8] [Citation(s) in RCA: 484] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Single-stranded DNA (ssDNA) is an essential intermediate in various DNA metabolic processes and interacts with a large number of proteins. Due to its flexibility, the conformations of ssDNA in solution can only be described using statistical approaches, such as flexibly jointed or worm-like chain models. However, there is limited data available to assess such models quantitatively, especially for describing the flexibility of short ssDNA and RNA. To address this issue, we performed FRET studies of a series of oligodeoxythymidylates, (dT)N, over a wide range of salt concentrations and chain lengths (10 < or = N < or = 70 nucleotides), which provide systematic constraints for testing theoretical models. Unlike in mechanical studies where available ssDNA conformations are averaged out during the time it takes to perform measurements, fluorescence lifetimes may act here as an internal clock that influences fluorescence signals depending on how fast the ssDNA conformations fluctuate. A reasonably good agreement could be obtained between our data and the worm-like chain model provided that limited relaxations of the ssDNA conformations occur within the fluorescence lifetime of the donor. The persistence length thus estimated ranges from 1.5 nm in 2 M NaCl to 3 nm in 25 mM NaCl.
Collapse
Affiliation(s)
- M C Murphy
- Physics Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
698
|
Daelemans D, Costes SV, Cho EH, Erwin-Cohen RA, Lockett S, Pavlakis GN. In Vivo HIV-1 Rev Multimerization in the Nucleolus and Cytoplasm Identified by Fluorescence Resonance Energy Transfer. J Biol Chem 2004; 279:50167-75. [PMID: 15294891 DOI: 10.1074/jbc.m407713200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of intron-containing human immunodeficiency virus type 1 RNA is mediated by the viral Rev protein. Rev is a nucleocytoplasmic transport protein that directly binds to its cis-acting Rev-responsive element RNA. Rev function depends on its ability to multimerize. The in vivo dynamics and the subcellular dependence of this process are still largely unexplored. To visualize and quantitatively analyze the mechanism of Rev multimeric assembly in live cells, we used high resolution in vivo fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching. By using two different dynamic FRET approaches (acceptor photobleaching and donor bleaching time measurements), we observed a strong Rev-Rev interaction in the nucleoli of living cells. Most interestingly, we could also detect Rev multimerization in the cytoplasm; however, FRET efficiency in the cytoplasm was significantly lower than in the nucleolus. By using fluorescence recovery after photobleaching, we investigated the mobility of Rev within the nucleolus. Mathematical modeling of the fluorescence recovery after photobleaching recoveries enabled us to extract relative association and dissociation constants and the diffusion coefficient of Rev in the nucleolus. Our results show that Rev multimerizes in the nucleolus of living cells, suggesting an important role of the nucleolus in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Dirk Daelemans
- Human Retrovirus Section, Basic Research Laboratory and Image Analysis Laboratory, Science Application International Corporation, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
699
|
Gueroui Z, Libchaber A. Single-molecule measurements of gold-quenched quantum dots. PHYSICAL REVIEW LETTERS 2004; 93:166108. [PMID: 15525013 DOI: 10.1103/physrevlett.93.166108] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 05/24/2023]
Abstract
We report the study of the quenching of quantum dots (CdSe) by gold nanoparticles at the single-molecule level. Double-stranded DNA is used as a rigid spacer to tune the distance between the two nanoparticles. The width of the fluorescent intensity distribution, monitored at different interparticle distances, reflects both the nanoparticle heterogeneity and the fluorescence intermittency of the quantum dot. The fluorescence distribution emitted by single CdSe nanocrystals can easily be distinguished from the fluorescence of partially quenched CdSe. Our results show that the distance-dependence quenching is compatible with a Förster-type process.
Collapse
Affiliation(s)
- Zoher Gueroui
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
700
|
Joo C, McKinney SA, Lilley DMJ, Ha T. Exploring rare conformational species and ionic effects in DNA Holliday junctions using single-molecule spectroscopy. J Mol Biol 2004; 341:739-51. [PMID: 15288783 DOI: 10.1016/j.jmb.2004.06.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 05/24/2004] [Accepted: 06/07/2004] [Indexed: 11/28/2022]
Abstract
The four-way DNA (Holliday) junction is an essential intermediate in DNA recombination, and its dynamic characteristics are likely to be important in its cellular processing. In our previous study we observed transitions between two antiparallel stacked conformations using a single-molecule fluorescence approach. The magnesium concentration-dependent rates of transitions between stacking conformers suggested that an unstacked open structure, which is stable in the absence of metal ions, is an intermediate. Here, we sought to detect possible rare species such as open and parallel conformations and further characterized ionic effects. The hypothesized open intermediate cannot be resolved directly due to the limited time resolution and sensitivity, but our study suggests that the open form is achieved very frequently, hundreds of times per second under physiologically relevant conditions. Therefore despite being a minority species, its frequent formation raises the probability that it could become stabilized by protein binding. By contrast, we cannot detect even a transient existence of the junctions in a parallel form, and the probability of such forms with a lifetime greater than 5 ms is less than 0.01%. Stacking conformer transitions are observable in the presence of sodium or hexammine cobalt (III) ions as well as magnesium ions, but the transition rates are higher for lower valence ions at the same concentrations. This further supports the notion that electrostatic stabilization of the stacked structures dictates the interconversion rates between different structural forms.
Collapse
Affiliation(s)
- Chirlmin Joo
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|