651
|
Steers NJ, Alving CR, Rao M. Modulation of immunoproteasome subunits by liposomal lipid A. Vaccine 2008; 26:2849-59. [DOI: 10.1016/j.vaccine.2008.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/13/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
|
652
|
Ochiel DO, Fahey JV, Ghosh M, Haddad SN, Wira CR. Innate Immunity in the Female Reproductive Tract: Role of Sex Hormones in Regulating Uterine Epithelial Cell Protection Against Pathogens. CURRENT WOMEN'S HEALTH REVIEWS 2008; 4:102-117. [PMID: 19644567 PMCID: PMC2717724 DOI: 10.2174/157340408784246395] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mucosal immune system in the upper female reproductive tract is uniquely prepared to maintain a balance between the presence of commensal bacteria, sexually transmitted bacterial and viral pathogens, allogeneic spermatozoa, and an immunologically distinct fetus. At the center of this dynamic system are the epithelial cells that line the Fallopian tubes, uterus, cervix and vagina. Epithelial cells provide a first line of defense that confers continuous protection, by providing a physical barrier as well as secretions containing bactericidal and virucidal agents. In addition to maintaining a state of ongoing protection, these cells have evolved to respond to pathogens, in part through Toll-like receptors (TLRs), to enhance innate immune protection and, when necessary, to contribute to the initiation of an adaptive immune response. Against this backdrop, epithelial cell innate and adaptive immune function is modulated to meet the constraints of procreation. The overall goal of this review is to focus on the dynamic role of epithelial cells in the upper reproductive tract, with special emphasis on the uterus, to define the unique properties of these cells as they maintain homeostasis in preparation for successful fertilization and pregnancy while at the same time confer protection against sexually transmitted infections, which threaten to compromise women's reproductive health and survival. By understanding the nature of this protection and the ways in which innate and adaptive immunity are regulated by sex hormones, these studies provide the opportunity to contribute to the foundation of information essential for ensuring reproductive health.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756 USA
| | | | | | | | | |
Collapse
|
653
|
|
654
|
Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, Uematsu S, Takeuchi O, Takeshita F, Coban C, Akira S. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008; 451:725-9. [PMID: 18256672 DOI: 10.1038/nature06537] [Citation(s) in RCA: 503] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 11/29/2007] [Indexed: 11/09/2022]
Abstract
Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IkappaB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor-Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4(+) T cells, whereas in non-haematopoietic cells TBK1 was required for CD8(+) T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.
Collapse
Affiliation(s)
- Ken J Ishii
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST).
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
655
|
Schmitz F, Heit A. Protective cancer immunotherapy: what can the innate immune system contribute? Expert Opin Biol Ther 2008; 8:31-43. [PMID: 18081535 DOI: 10.1517/14712598.8.1.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite significant efforts to induce protection against malignant diseases, the clinical effects of antitumour vaccines are poor. However, recent studies on a quadrivalent human papilloma virus vaccine suggest that protection against secondary tumour development is feasible. While this scenario benefits rather from antiviral protection than from direct antitumour responses, immunisation against cancers of non-viral origin demands strategies that rely on the circumvention of intrinsic regulatory mechanisms. Strong activation of innate immune cells seems to be key and, thus, the choice of adjuvant determines vaccination efficacy. The recently acquired knowledge about molecular and cellular recognition of microbial molecules suggests how one can modulate innate and adaptive immune reactions to potentially induce robust T- and B-cell reactions capable of prohibiting tumour development and progression. Here, the authors review the present knowledge of innate immune reactions, which may help to define rationales on the design of novel antitumour vaccines.
Collapse
Affiliation(s)
- Frank Schmitz
- Technical University Munich, Institute of Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, 81675 Munich, Germany.
| | | |
Collapse
|
656
|
Munford RS. Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect Immun 2008; 76:454-65. [PMID: 18086818 PMCID: PMC2223455 DOI: 10.1128/iai.00939-07] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Robert S Munford
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390-9113, USA.
| |
Collapse
|
657
|
Swartz MA, Hubbell JA, Reddy ST. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin Immunol 2008; 20:147-56. [PMID: 18201895 DOI: 10.1016/j.smim.2007.11.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 01/12/2023]
Abstract
The slow interstitial flow that drains fluid from the blood capillaries into the lymphatic capillaries provides transport of macromolecular nutrients to cells in the interstitium. We discuss herein how this flow also provides continuous access to immune cells residing in the lymph nodes of antigens from self or from pathogens residing in the interstitium. We also address mechanisms by which dendritic cells in the periphery sense interstitial flow to home efficiently into the lymphatics after activation, and how lymphatic endothelium can be activated by this flow, including how it can act as a lymphatic morphoregulator. Further, we present concepts on how interstitial flow can be exploited with biomaterial systems to deliver antigen and adjuvant molecules directly into the lymphatics, to target dendritic cells residing in the lymph nodes rather than in the peripheral tissues, using particles that are small enough to be carried along by flow through the network structure of the interstitium. Finally, we present recent work on lymphatic and lymphoid tissue engineering, including how interstitial flow can be used as a design principle. Thus, an understanding of the physiological processes that govern transport in the interstitium guides new understanding of both immune cell interactions with the lymphatics as well as therapeutic interventions exploiting the lymphatics as a target.
Collapse
Affiliation(s)
- Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|
658
|
Abstract
In this Commentary, McKee et al. highlight the properties of extrinsic vaccine adjuvants that must be considered to achieve the most protective immune response, as occurs naturally with many intrinsic pathogen-derived adjuvants.
Collapse
|
659
|
Abstract
Macrophages are cells that function as a first line of defence against invading microorganisms. One of the hallmarks of macrophages is their ability to become activated in response to exogenous 'danger signals'. Most microbes have molecular patterns (PAMPS) that are recognized by macrophages and trigger this activation response. There are many aspects of the activation response to PAMPS that are recapitulated when macrophages encounter endogenous danger signals. In response to damaged or stressed self, macrophages undergo physiological changes that include the initiation of signal transduction cascades from germline-encoded receptors, resulting in the elaboration of chemokines, cytokines and toxic mediators. This response to endogenous mediators can enhance inflammation, and thereby contribute to autoimmune pathologies. Often the overall inflammatory response is the result of cooperative activation signals from both exogenous and endogenous signals. Macrophage activation plays a critical role, not only in the initiation of the inflammatory response but also in the resolution of this response. The clearance of granulocytes and the elaboration of anti-inflammatory mediators by macrophages contribute to the dissolution of the inflammatory response. Thus, macrophages are a key player in the initiation, propagation and resolution of inflammation. This review summarizes our understanding of the role of macrophages in inflammation. We pay particular attention to the endogenous danger signals that macrophages may encounter and the responses that these signals induce. The molecular mechanisms responsible for these responses and the diseases that result from inappropriately controlled macrophage activation are also examined.
Collapse
Affiliation(s)
- X Zhang
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - DM Mosser
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
660
|
Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2008; 26:99-107. [PMID: 17916800 PMCID: PMC2757778 DOI: 10.1634/stemcells.2007-0563] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration, and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was initially established by reverse transcription-polymerase chain reaction assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including nuclear factor kappaB, AKT, and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines, and related TLR gene products as established from cDNA array, immunoassay, and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines, and chemokines measured identify these receptors as critical players in the clinically established immunomodulation observed for hMSCs. Lastly, hMSC migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSC migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies.
Collapse
Affiliation(s)
- Suzanne L. Tomchuck
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Kevin J. Zwezdaryk
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Seth B. Coffelt
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Ruth S. Waterman
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Elizabeth S. Danka
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Aline B. Scandurro
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
661
|
Abstract
Lipopolysaccharide (LPS) is a natural adjuvant synthesized by gram-negative bacteria that has profound effects on CD4 T-cell responses. LPS stimulates cells through the Toll-like receptor 4 (TLR4), causing the release of inflammatory cytokines and upregulation of costimulatory molecules on antigen-presenting cells (APCs). The combination of signals from antigens, costimulation, and cytokines allows CD4 T cells to overcome suppressive barriers and accumulate in large numbers. T cells that are primed in an LPS-stimulated environment are programmed for long-term survival following clonal expansion. LPS is well-known for generating Th1 responses. However, under appropriate conditions it can also support differentiation into other T-helper lineages, demonstrating its pleiotropic nature. Although molecular analyses have provided insights into how immune responses are controlled by LPS in vivo, its powerful adjuvant activity is also associated with toxicity. Research on partial TLR4 agonists such as monophosphoryl lipid A have demonstrated that toxicity and immunogenicity are not always linked, making them useful candidates for human vaccines. In this sense, many years of LPS research have ultimately contributed to vaccine design, and the next generation may involve studying how the balance between different CD4 T-cell subsets is controlled.
Collapse
Affiliation(s)
- Jeremy P McAleer
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
662
|
Lipid A and liposomes containing lipid A as antigens and adjuvants. Vaccine 2007; 26:3036-45. [PMID: 18226433 DOI: 10.1016/j.vaccine.2007.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/30/2007] [Accepted: 12/01/2007] [Indexed: 11/23/2022]
Abstract
Lipid A derived from Gram-negative bacterial lipopolysaccharide is a potent adjuvant and antigen. Incorporation of lipid A into liposomes renders the liposomes themselves immunogenic, resulting in generation of specific antibodies that recognize either the individual liposomal lipids, or the unique pattern presented by the combination of lipids. Using liposomes containing lipid A, numerous polyclonal antisera and monoclonal antibodies have been produced against phospholipids, cholesterol, glycosphingolipids, and lipid A. Many of these antibodies have binding characteristics that are apparently similar to natural antibodies that are normally present in all human sera, and also antibodies that arise in response to various infections. Such antibodies probably represent a bridge between innate and adaptive immunity. The possible utility of liposomes containing lipid A as a constituent of certain types of novel vaccines was suggested by the observation that murine monoclonal antibodies to liposomal phosphatidylinositol-4-phosphate neutralized primary isolates of two different clades of HIV-1 in a human peripheral blood mononuclear cell neutralization assay.
Collapse
|
663
|
Zhang S, Jouanguy E, Sancho‐Shimizu V, Von Bernuth H, Yang K, Abel L, Picard C, Puel A, Casanova J. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Immunol Rev 2007; 220:225-36. [PMID: 17979850 PMCID: PMC7165931 DOI: 10.1111/j.1600-065x.2007.00564.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Five of the 10 human Toll-like receptors (TLRs) (TLR3, TLR4, TLR7, TLR8, and TLR9), and four of the 12 mouse TLRs (TLR3, TLR4, TLR7, TLR9) can trigger interferon (IFN)-alpha, IFN-beta, and IFN-lambda, which are critical for antiviral immunity. Moreover, TLR3, TLR7, TLR8, and TLR9 differ from TLR4 in two particularly important ways for antiviral immunity: they can be activated by nucleic acid agonists mimicking compounds produced during the viral cycle, and they are typically present within the cell, along the endocytic pathway, where they sense viral products in the intraluminal space. Investigations in mice have demonstrated that the TLR7/9-IFN and TLR3-IFN pathways are different and critical for protective immunity to various experimental viral infections. Investigations in humans with interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency (unresponsive to TLR7, TLR8, and TLR9), UNC-93B deficiency (unresponsive to TLR3, TLR7, TLR8, and TLR9), and TLR3 deficiency have recently shed light on the role of these two pathways in antiviral immunity in natural conditions. UNC-93B- and TLR3-deficient patients appear to be specifically prone to herpes simplex virus 1 (HSV-1) encephalitis, although clinical penetrance is incomplete, whereas IRAK-4-deficient patients appear to be normally resistant to most viruses, including HSV-1. These experiments of nature suggest that the TLR7-, TLR8-, and TLR9-dependent induction of IFN-alpha, IFN-beta, and IFN-lambda is largely redundant in human antiviral immunity, whereas the TLR3-dependent induction of IFN-alpha, IFN-beta, and IFN-lambda is critical for primary immunity to HSV-1 in the central nervous system in children but redundant for immunity to most other viral infections.
Collapse
Affiliation(s)
- Shen‐Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
- French‐Chinese Laboratory of Genomics and Life Science, Rui‐Jin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
- French‐Chinese Laboratory of Genomics and Life Science, Rui‐Jin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Vanessa Sancho‐Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
| | - Horst Von Bernuth
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
| | - Kun Yang
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
- French‐Chinese Laboratory of Genomics and Life Science, Rui‐Jin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
- Centre d'Etude des Déficits Immunitaires, Hôpital Necker, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
| | - Jean‐Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France, EU
- University Paris René Descartes, Necker Medical School, Paris, France, EU
- French‐Chinese Laboratory of Genomics and Life Science, Rui‐Jin Hospital, Shanghai Jiaotong University, Shanghai, China
- Unité d'Immunologie et d'Hématologie Pédiatriques, Hôpital Necker, Paris, France, EU
| |
Collapse
|
664
|
|
665
|
Abstract
Adjuvants are substances that boost the immunogenicity of vaccines. However, most successful vaccines have been derived empirically and are capable of inducing robust T- and B-cell immunity without any adjuvant additives. Emerging evidence suggests that such live vaccines induce innate immune activation via a range of stimuli, including ligands specific for Toll-like receptors, which, in effect, serve as their own adjuvants. In contrast to these live vaccines, subunit vaccines need to be supplemented with adjuvants to boost their immunogenicity. However, there is a paucity of licensed adjuvants for clinical use and, thus, there is a critical need to develop safe and effective adjuvants. In this context, recent advances in innate immunity are beginning to offer new insights into how empiric vaccines and adjuvants mediate their efficacy. In this article, we review the latest progress and emerging concepts in adjuvant development, which includes novel findings in innate immune biology and their impact on vaccinology.
Collapse
Affiliation(s)
- Marcin Kwissa
- Emory Vaccine Center, Emory University, 954 Gatewood Rd, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
666
|
Ishizaka ST, Hawkins LD. E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev Vaccines 2007; 6:773-84. [PMID: 17931157 DOI: 10.1586/14760584.6.5.773] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Safe and cost-effective adjuvants are a critical component to enhance the efficacy of subunit vaccines. Studies have demonstrated that modified natural lipid As derived from enterobacterial lipopolysaccharides, which are agonists of Toll-like receptor 4, are beneficial to vaccine performance. The synthetic phospholipid dimer, E6020, mimics the physicochemical and biological properties of many of the natural lipid As derived from gram-negative bacteria. Similar to its natural counterparts, E6020, which was discovered and developed by Eisai, agonizes Toll-like receptor 4, albeit in an attenuated fashion, eliciting an immunostimulatory response that is conducive to use as a vaccine adjuvant. The derivation of E6020, along with physicochemical properties and in vitro and in vivo studies of immunostimulation and adjuvant activity, are reviewed as a background to its imminent assessment in the clinic.
Collapse
Affiliation(s)
- Sally T Ishizaka
- Eisai Research Institute, 4 Corporate Drive, Andover, MA 01742, USA.
| | | |
Collapse
|
667
|
Hem SL, Hogenesch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 2007; 6:685-98. [PMID: 17931150 DOI: 10.1586/14760584.6.5.685] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aluminum-containing adjuvants are an important component of many vaccines because they safely potentiate the immune response. The structure and properties of aluminum hydroxide adjuvant, aluminum phosphate adjuvant and alum-precipitated adjuvants are presented in this review. The major antigen adsorption mechanisms, electrostatic attraction and ligand exchange, are related to the adjuvant structure. The manner by which aluminum-containing adjuvants potentiate the immune response is related to the structure, properties of the adjuvant and adsorption mechanism. Immunopotentiation occurs through the following sequential steps: inflammation and recruitment of antigen-presenting cells, retention of antigen at the injection site, uptake of antigen, dendritic cell maturation, T-cell activation and T-cell differentiation.
Collapse
Affiliation(s)
- Stanley L Hem
- Purdue University, Industrial and Physical Pharmacy Department, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
668
|
Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 2007; 13:460-9. [PMID: 18029230 DOI: 10.1016/j.molmed.2007.09.002] [Citation(s) in RCA: 1879] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 12/11/2022]
Abstract
Innate immunity is the first line of defense against invading pathogens. A family of Toll-like receptors (TLRs) acts as primary sensors that detect a wide variety of microbial components and elicit innate immune responses. All TLR signaling pathways culminate in activation of the transcription factor nuclear factor-kappaB (NF-kappaB), which controls the expression of an array of inflammatory cytokine genes. NF-kappaB activation requires the phosphorylation and degradation of inhibitory kappaB (IkappaB) proteins, which is triggered by two kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta. In addition, several TLRs activate alternative pathways involving the IKK-related kinases TBK1 [TRAF family member-associated NF-kappaB activator (TANK) binding kinase-1] and IKKi, which elicit antiviral innate immune responses. Here, we review recent progress in our understanding of the role of NF-kappaB in TLR signaling pathways and discuss potential implications for molecular medicine.
Collapse
Affiliation(s)
- Taro Kawai
- Department of Host Defense and Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
669
|
|
670
|
Affiliation(s)
- Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|