651
|
Freyberg Z, Logan RW. The Intertwined Roles of Circadian Rhythms and Neuronal Metabolism Fueling Drug Reward and Addiction. CURRENT OPINION IN PHYSIOLOGY 2018; 5:80-89. [PMID: 30631826 DOI: 10.1016/j.cophys.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug addiction is a highly prevalent and devastating disorder with few effective treatments, resulting in enormous burdens on family and society. The cellular and behavioral effects of drugs of abuse are related to their abilities to elevate synaptic dopamine levels. Midbrain dopaminergic neurons projecting from the ventral tegmental area to the nucleus accumbens play crucial roles in substance-induced neural and behavioral plasticity. Significantly, increasing work suggests that interplay between the brain circadian system and the cellular bioenergetic machinery in these dopamine neurons plays a critical role in mediating the actions of drugs of abuse. Here, we describe recent progress in elucidating the interconnections between circadian and metabolic systems at the molecular and cellular levels and their relationships to modulation of drug reward and addiction.
Collapse
Affiliation(s)
- Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, pittsburgh, PA, USA 15219.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA 15213
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, pittsburgh, PA, USA 15219.,Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME, 04609
| |
Collapse
|
652
|
Basse AL, Dalbram E, Larsson L, Gerhart-Hines Z, Zierath JR, Treebak JT. Skeletal Muscle Insulin Sensitivity Show Circadian Rhythmicity Which Is Independent of Exercise Training Status. Front Physiol 2018; 9:1198. [PMID: 30210362 PMCID: PMC6121032 DOI: 10.3389/fphys.2018.01198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms can be perturbed by shift work, travel across time zones, many occupational tasks, or genetic mutations. Perturbed circadian rhythms are associated with the increasing problem of obesity, metabolic dysfunction, and insulin resistance. We hypothesized that insulin sensitivity in skeletal muscle follows a circadian pattern and that this pattern is important for overall metabolic function. This hypothesis was verified using mice as a model system. We observed circadian rhythmicity in whole body insulin tolerance, as well as in signaling pathways regulating insulin- and exercise-induced glucose uptake in skeletal muscle, including AKT, 5'-adenosine monophosphate-activated protein kinase (AMPK) and TBC1 domain family member 4 (TBC1D4) phosphorylation. Basal and insulin-stimulated glucose uptake in skeletal muscle and adipose tissues in vivo also differed between day- and nighttime. However, the rhythmicity of glucose uptake differed from the rhythm of whole-body insulin tolerance. These results indicate that neither skeletal muscle nor adipose tissue play a major role for the circadian rhythmicity in whole-body insulin tolerance. To study the circadian pattern of insulin sensitivity directly in skeletal muscle, we determined glucose uptake under basal and submaximal insulin-stimulated conditions ex vivo every sixth hour. Both insulin sensitivity and signaling of isolated skeletal muscle peaked during the dark period. We next examined the effect of exercise training on the circadian rhythmicity of insulin sensitivity. As expected, voluntary exercise training enhanced glucose uptake in skeletal muscle. Nevertheless, exercise training did not affect the circadian rhythmicity of skeletal muscle insulin sensitivity. Taken together, our results provide evidence that skeletal muscle insulin sensitivity exhibits circadian rhythmicity.
Collapse
Affiliation(s)
- Astrid L Basse
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Dalbram
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Larsson
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
653
|
Rivera-Estrada D, Aguilar-Roblero R, Alva-Sánchez C, Villanueva I. The homeostatic feeding response to fasting is under chronostatic control. Chronobiol Int 2018; 35:1680-1688. [DOI: 10.1080/07420528.2018.1507036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- David Rivera-Estrada
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México, Mexico
| | - Claudia Alva-Sánchez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Iván Villanueva
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
654
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
655
|
Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD + point of view. Neurosci Res 2018; 139:9-20. [PMID: 30006197 DOI: 10.1016/j.neures.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
Cellular metabolism maintains the life of cells, allowing energy production required for building cellular constituents and maintaining homeostasis under constantly changing external environments. Neuronal cells maintain their structure and function for the entire life of organisms and the loss of neurons, with limited neurogenesis in adults, directly causes loss of complexity in the neuronal networks. The nervous system organizes the neurons by placing cell bodies containing nuclei of similar types of neurons in discrete regions. Accordingly, axons must travel great distances to connect different types of neurons and peripheral organs. The enormous surface area of neurons makes them high-energy demanding to keep their membrane potential. Distal axon survival is dependent on axonal transport that is another energy demanding process. All of these factors make metabolic stress a potential risk factor for neuronal death and neuronal degeneration often associated with metabolic diseases. This review discusses recent findings on metabolic dysregulations under neuronal degeneration and pathways protecting neurons in these conditions.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University in St. Louis, Couch Biomedical Research Building, 4515 McKinley Ave., Saint Louis, MO, 63110, United States
| |
Collapse
|
656
|
Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc Natl Acad Sci U S A 2018; 115:7825-7830. [PMID: 29991600 PMCID: PMC6065025 DOI: 10.1073/pnas.1801183115] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shift workers, whose schedules are misaligned relative to their suprachiasmatic nuclei (SCN) circadian pacemaker, are at elevated risk of metabolic disorders. In a study of simulated day- versus night-shift work followed by a constant routine, we separated plasma-circulating metabolites according to whether their 24-h rhythms aligned with the central SCN pacemaker or instead reflected externally imposed behavioral schedules. We found that rhythms in many metabolites implicated in food metabolism dissociated from the SCN pacemaker rhythm, with the vast majority aligning with the preceding sleep/wake and feeding/fasting cycles. Our metabolomics study yields insight into the link between prolonged exposure to shift work and the spectrum of associated metabolic disorders by providing a window into peripheral oscillators and the biobehavioral factors that orchestrate them. Misalignment between internal circadian rhythmicity and externally imposed behavioral schedules, such as occurs in shift workers, has been implicated in elevated risk of metabolic disorders. To determine underlying mechanisms, it is essential to assess whether and how peripheral clocks are disturbed during shift work and to what extent this is linked to the central suprachiasmatic nuclei (SCN) pacemaker and/or misaligned behavioral time cues. Investigating rhythms in circulating metabolites as biomarkers of peripheral clock disturbances may offer new insights. We evaluated the impact of misaligned sleep/wake and feeding/fasting cycles on circulating metabolites using a targeted metabolomics approach. Sequential plasma samples obtained during a 24-h constant routine that followed a 3-d simulated night-shift schedule, compared with a simulated day-shift schedule, were analyzed for 132 circulating metabolites. Nearly half of these metabolites showed a 24-h rhythmicity under constant routine following either or both simulated shift schedules. However, while traditional markers of the circadian clock in the SCN—melatonin, cortisol, and PER3 expression—maintained a stable phase alignment after both schedules, only a few metabolites did the same. Many showed reversed rhythms, lost their rhythms, or showed rhythmicity only under constant routine following the night-shift schedule. Here, 95% of the metabolites with a 24-h rhythmicity showed rhythms that were driven by behavioral time cues externally imposed during the preceding simulated shift schedule rather than being driven by the central SCN circadian clock. Characterization of these metabolite rhythms will provide insight into the underlying mechanisms linking shift work and metabolic disorders.
Collapse
|
657
|
Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018; 84:11-27. [PMID: 29195759 PMCID: PMC5995632 DOI: 10.1016/j.metabol.2017.11.017] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/01/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022]
Abstract
The circadian system orchestrates metabolism in daily 24-hour cycles. Such rhythms organize metabolism by temporally separating opposing metabolic processes and by anticipating recurring feeding-fasting cycles to increase metabolic efficiency. Although animal studies demonstrate that the circadian system plays a pervasive role in regulating metabolism, it is unclear how, and to what degree, circadian research in rodents translates into humans. Here, we review evidence that the circadian system regulates glucose, lipid, and energy metabolism in humans. Using a range of experimental protocols, studies in humans report circadian rhythms in glucose, insulin, glucose tolerance, lipid levels, energy expenditure, and appetite. Several of these rhythms peak in the biological morning or around noon, implicating earlier in the daytime is optimal for food intake. Importantly, disruptions in these rhythms impair metabolism and influence the pathogenesis of metabolic diseases. We therefore also review evidence that circadian misalignment induced by mistimed light exposure, sleep, or food intake adversely affects metabolic health in humans. These interconnections among the circadian system, metabolism, and behavior underscore the importance of chronobiology for preventing and treating type 2 diabetes, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Eleonora Poggiogalle
- Department of Experimental Medicine, Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University, Rome, Italy
| | - Humaira Jamshed
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney M Peterson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
658
|
Abstract
Circadian rhythms are a ubiquitous feature of virtually all living organisms, regulating a wide diversity of physiological systems. It has long been established that the circadian clockwork plays a key role in innate immune responses, and recent studies reveal that several aspects of adaptive immunity are also under circadian control. We discuss the latest insights into the genetic and biochemical mechanisms linking immunity to the core circadian clock of the cell and hypothesize as to why the immune system is so tightly controlled by circadian oscillations. Finally, we consider implications for human health, including vaccination strategies and the emerging field of chrono-immunotherapy.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Julie Gibbs
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Louise Ince
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany
| | - Andrew Loudon
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
659
|
Xu F, Zhao X, Liu H, Shao X, Chu S, Gong X, Ma Z, Gu X. Misaligned Feeding May Aggravate Pain by Disruption of Sleep–Awake Rhythm. Anesth Analg 2018; 127:255-262. [DOI: 10.1213/ane.0000000000002727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
660
|
Ramos-Lopez O, Samblas M, Milagro FI, Riezu-Boj JI, Crujeiras AB, Martinez JA, Project M. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int 2018; 35:969-981. [PMID: 29580070 DOI: 10.1080/07420528.2018.1446021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/30/2022]
Abstract
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Mirian Samblas
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermin I Milagro
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
| | - Jose I Riezu-Boj
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- c Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
| | - A B Crujeiras
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
- d Laboratory of Molecular and Cellular Endocrinology , Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC) , Santiago de Compostela , Spain
| | - J Alfredo Martinez
- a Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research , University of Navarra , Pamplona , Spain
- b CIBERobn , Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health INstitute , Madrid , Spain
- c Navarra Institute for Health Research (IdiSNA) , Pamplona , Spain
- e IMDEA Food , Research Institute on Food & Health Sciences , Madrid , Spain
| | - Mena Project
- f Other Members of the MENA Project in Alphabetical Order Are: Abete I, Cuervo M, Goni L, Marti A, Martinez-Gonzalez MA, Moreno-Aliaga MJ, Navas-Carretero S, San-Cristobal R, Santos JL and Zulet MA
| |
Collapse
|
661
|
Wei K, Wang Q, Gan J, Zhang S, Ye M, Gragnoli C, Wu R. Mapping genes for drug chronotherapy. Drug Discov Today 2018; 23:1883-1888. [PMID: 29964181 DOI: 10.1016/j.drudis.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/20/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies have been increasingly used to map and characterize genes that contribute to interindividual variation in drug response. Some studies have integrated the pharmacokinetic (PK) and pharmacodynamic (PD) processes of drug reactions into association mapping, gleaning new insight into how genes determine the dynamic relationship of drug effect and drug dose. Here, we present an evolutionary framework by which two distinct concepts, chronopharmacodynamics and heterochrony (describing variation in the timing and rate of developmental events), are married to comprehend the pharmacogenetic architecture of drug response. The resulting new concept, heterochronopharmacodynamics (HCPD), can better interpret how genes influence drug efficacy and drug toxicity according to the circadian rhythm of the body and changes in drug concentration.
Collapse
Affiliation(s)
- Kun Wei
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qian Wang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jingwen Gan
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shilong Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Claudia Gragnoli
- Division of Endocrinology, Diabetes, and Metabolic Disease, Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Molecular Biology Laboratory, Bios Biotech Multi Diagnostic Health Center, Rome 00197, Italy
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
662
|
Komarzynski S, Huang Q, Innominato PF, Maurice M, Arbaud A, Beau J, Bouchahda M, Ulusakarya A, Beaumatin N, Breda G, Finkenstädt B, Lévi F. Relevance of a Mobile Internet Platform for Capturing Inter- and Intrasubject Variabilities in Circadian Coordination During Daily Routine: Pilot Study. J Med Internet Res 2018; 20:e204. [PMID: 29704408 PMCID: PMC6018238 DOI: 10.2196/jmir.9779] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background Experimental and epidemiologic studies have shown that circadian clocks’ disruption can play an important role in the development of cancer and metabolic diseases. The cellular clocks outside the brain are effectively coordinated by the body temperature rhythm. We hypothesized that concurrent measurements of body temperature and rest-activity rhythms would assess circadian clocks coordination in individual patients, thus enabling the integration of biological rhythms into precision medicine. Objective The objective was to evaluate the circadian clocks’ coordination in healthy subjects and patients through simultaneous measurements of rest-activity and body temperature rhythms. Methods Noninvasive real-time measurements of rest-activity and chest temperature rhythms were recorded during the subject’s daily life, using a dedicated new mobile electronic health platform (PiCADo). It involved a chest sensor that jointly measured accelerations, 3D orientation, and skin surface temperature every 1-5 min and relayed them out to a mobile gateway via Bluetooth Low Energy. The gateway tele-transmitted all stored data to a server via General Packet Radio Service every 24 hours. The technical capabilities of PiCADo were validated in 55 healthy subjects and 12 cancer patients, whose rhythms were e-monitored during their daily routine for 3-30 days. Spectral analyses enabled to compute rhythm parameters values, with their 90% confidence limits, and their dynamics in each subject. Results All the individuals displayed a dominant circadian rhythm in activity with maxima occurring from 12:09 to 20:25. This was not the case for the dominant temperature period, which clustered around 24 hours for 51 out of 67 subjects (76%), and around 12 hours for 13 others (19%). Statistically significant sex- and age-related differences in circadian coordination were identified in the noncancerous subjects, based upon the range of variations in temperature rhythm amplitudes, maxima (acrophases), and phase relations with rest-activity. The circadian acrophase of chest temperature was located at night for the majority of people, but it occurred at daytime for 26% (14/55) of the noncancerous people and 33% (4/12) of the cancer patients, thus supporting important intersubject differences in circadian coordination. Sex, age, and cancer significantly impacted the circadian coordination of both rhythms, based on their phase relationships. Conclusions Complementing rest-activity with chest temperature circadian e-monitoring revealed striking intersubject differences regarding human circadian clocks’ coordination and timing during daily routine. To further delineate the clinical importance of such finding, the PiCADo platform is currently applied for both the assessment of health effects resulting from atypical work schedules and the identification of the key determinants of circadian disruption in cancer patients.
Collapse
Affiliation(s)
- Sandra Komarzynski
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Qi Huang
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,Cancer Chronotherapy Team, Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Pasquale F Innominato
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, North Wales Cancer Treatment Centre, Bodelwyddan, United Kingdom
| | - Monique Maurice
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Alexandre Arbaud
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Jacques Beau
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
| | - Mohamed Bouchahda
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Ayhan Ulusakarya
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | | | | | - Bärbel Finkenstädt
- European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Cancer Chronotherapy Team, Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Francis Lévi
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, United Kingdom.,European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale, Villejuif, France.,Department of Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| |
Collapse
|
663
|
Kadowaki T, Haneda M, Ito H, Sasaki K, Hiraide S, Matsukawa M, Ueno M. Relationship of Eating Patterns and Metabolic Parameters, and Teneligliptin Treatment: Interim Results from Post-marketing Surveillance in Japanese Type 2 Diabetes Patients. Adv Ther 2018; 35:817-831. [PMID: 29777520 PMCID: PMC6015125 DOI: 10.1007/s12325-018-0704-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Healthy eating is a critical aspect of the prevention and management of type 2 diabetes (T2DM). Disrupted eating patterns can result in poor glucose control and increase the likelihood of diabetic complications. Teneligliptin inhibits dipeptidyl peptidase-4 activity for 24 h and suppresses postprandial hyperglycemia after all three daily meals. This interim analysis of data from the large-scale post-marketing surveillance of teneligliptin (RUBY) in Japan examined eating patterns and their relationship with metabolic parameters and diabetic complications. We also examined whether eating patterns affected safety and efficacy of teneligliptin. METHODS We analyzed baseline data from survey forms collected in RUBY between May 2013 and June 2017, including patient characteristics, metabolic parameters, and eating patterns (eating three meals per day or not; timing of evening meal) before teneligliptin treatment was initiated. Safety and efficacy of 12 months' teneligliptin (20-40 mg/day) treatment was assessed. RESULTS Data from 10,532 patients were available for analysis. Most patients who did not eat three meals per day (n =757) or who ate their evening meal after 10 PM (n =206) were 64 years old or younger. At baseline, glycated hemoglobin (HbA1c), fasting blood glucose, triglycerides, total and low-density lipoprotein cholesterol, body mass index, alanine aminotransferase, and aspartate aminotransferase levels were higher in those patients who did not eat three meals per day (p < 0.05) or who ate their evening meal late (p < 0.05). Diabetic complications were more common in patients who did not eat three meals per day. Treatment with teneligliptin reduced HbA1c over 6 or 12 months across all eating patterns, with a low incidence of adverse drug reactions. CONCLUSIONS Eating patterns may be associated with altered metabolic parameters and diabetic complications among Japanese patients with T2DM. Teneligliptin may be well tolerated and improve hyperglycemia in patients with T2DM irrespective of eating patterns. FUNDING Mitsubishi Tanabe Pharma Corporation and Daiichi Sankyo Co. Ltd. TRIAL REGISTRATION NUMBER Japic CTI-153047.
Collapse
Affiliation(s)
- Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masakazu Haneda
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
- Medical Corporation Kyousoukai, Osaka, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuyo Sasaki
- Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan.
| | - Sonoe Hiraide
- Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Miyuki Matsukawa
- Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| | - Makoto Ueno
- Ikuyaku Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Osaka, Japan
| |
Collapse
|
664
|
Lu Y, Reyes J, Walter S, Gonzalez T, Medrano G, Boswell M, Boswell W, Savage M, Walter R. Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:2-11. [PMID: 29203320 PMCID: PMC5936649 DOI: 10.1016/j.cbpc.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Evolutionarily conserved diurnal circadian mechanisms maintain oscillating patterns of gene expression based on the day-night cycle. Xiphophorus fish have been used to evaluate transcriptional responses after exposure to various light sources and it was determined that each source incites distinct genetic responses in skin tissue. However, basal expression levels of genes that show oscillating expression patterns in day-night cycle, may affect the outcomes of such experiments, since basal gene expression levels at each point in the circadian path may influence the profile of identified light responsive genes. Lack of knowledge regarding diurnal fluctuations in basal gene expression patterns may confound the understanding of genetic responses to external stimuli (e.g., light) since the dynamic nature of gene expression implies animals subjected to stimuli at different times may be at very different stages within the continuum of genetic homeostasis. We assessed basal gene expression changes over a 24-hour period in 200 select Xiphophorus gene targets known to transcriptionally respond to various types of light exposure. We identified 22 genes in skin, 36 genes in brain and 28 genes in liver that exhibit basal oscillation of expression patterns. These genes, including known circadian regulators, produced the expected expression patterns over a 24-hour cycle when compared to circadian regulatory genes identified in other species, especially human and other vertebrate animal models. Our results suggest the regulatory network governing diurnal oscillating gene expression is similar between Xiphophorus and other vertebrates for the three Xiphophorus organs tested. In addition, we were able to categorize light responsive gene sets in Xiphophorus that do, and do not, exhibit circadian based oscillating expression patterns.
Collapse
Affiliation(s)
- Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Jose Reyes
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Sean Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Trevor Gonzalez
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Geraldo Medrano
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Markita Savage
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Ronald Walter
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
665
|
Lee J, Ma K, Moulik M, Yechoor V. Untimely oxidative stress in β-cells leads to diabetes - Role of circadian clock in β-cell function. Free Radic Biol Med 2018; 119:69-74. [PMID: 29458148 PMCID: PMC5910243 DOI: 10.1016/j.freeradbiomed.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Diabetes results from a loss of β-cell function. With the number of people with diabetes reaching epidemic proportions globally, understanding mechanisms that are contributing to this increasing prevalence is critical. One such factor has been circadian disruption, with shift-work, light pollution, jet-lag, increased screen time, all acting as potential contributory factors. Though circadian disruption has been epidemiologically associated with diabetes and other metabolic disorders for many decades, it is only recently that there has been a better understanding of the underlying molecular mechanisms. Experimental circadian disruption, via manipulation of environmental or genetic factors using gene-deletion mouse models, has demonstrated the importance of circadian rhythms in whole body metabolism. Genetic disruption of core clock genes, specifically in the β-cells in mice, have, now demonstrated the importance of the intrinsic β-cell clock in regulating function. Recent work has also shown the interaction of the circadian clock and enhancers in β-cells, indicating a highly integrated regulation of transcription and cellular function by the circadian clock. Disruption of either the whole body or only the β-cell clock leads to significant impairment of mitochondrial function, uncoupling, impaired vesicular transport, oxidative stress in β-cells and finally impaired glucose-stimulated insulin secretion and diabetes. In this review, we explore the role of the circadian clock in mitigating oxidative stress and preserving β-cell function.
Collapse
Affiliation(s)
- J Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States
| | - K Ma
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - M Moulik
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, United States
| | - V Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States.
| |
Collapse
|
666
|
Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes. Int J Mol Sci 2018; 19:ijms19051325. [PMID: 29710834 PMCID: PMC5983658 DOI: 10.3390/ijms19051325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes’ expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.
Collapse
|
667
|
Monnier C, Auclair M, Le Cam G, Garcia M, Antoine B. The nuclear retinoid-related orphan receptor RORα controls circadian thermogenic programming in white fat depots. Physiol Rep 2018; 6:e13678. [PMID: 29673115 PMCID: PMC5907938 DOI: 10.14814/phy2.13678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
The RORα-deficient staggerer (sg/sg) mouse is lean and resistant to diet-induced obesity. Its thermogenic activity was shown to be increased not only in brown adipose tissue (BAT), but also in subcutaneous white adipose tissue (WAT) where UCP1 content was enhanced, however, without Prdm16 coexpression. Our observation of partial multilocular lipid morphology of WAT in sg/sg mice both in the inguinal and perigonadal sites led us to focus on the phenotype of both fat depots. Because RORα is a nuclear factor acting in the clock machinery, we looked at the circadian expression profile of genes involved in thermogenesis and browning in WAT and BAT depots of sg/sg and WT mice, through real-time quantitative PCR and western blotting. This 24-h period approach revealed both a rhythmic expression of thermogenic genes in WAT and an increased browning of all the WAT depots tested in sg/sg mice that indeed involved the canonical browning process (through induction of Pgc-1α and Prdm16). This was associated with an enhanced isoproterenol-induced oxygen consumption rate of WAT explants from sg/sg mice, which was reproducible in WT explants by treatment with a RORα inverse agonist SR 3335, that induced a parallel increase in the UCP1 protein. Inhibitors of browning differentiation, such as TLE3 and RIP140, could be new targets of RORα that would be rather implicated in the whitening of adipocytes. Our study showed the pivotal role of RORα as an inhibitor of the thermogenic program in WAT, the role that could be counteracted in vivo with the RORα antagonists currently in development.
Collapse
Affiliation(s)
- Chloé Monnier
- INSERMCNRSCentre de Recherches St‐Antoine (CRSA)Sorbonne UniversitéParisFrance
| | - Martine Auclair
- INSERMCNRSCentre de Recherches St‐Antoine (CRSA)Sorbonne UniversitéParisFrance
| | - Gala Le Cam
- INSERMCNRSCentre de Recherches St‐Antoine (CRSA)Sorbonne UniversitéParisFrance
| | | | - Bénédicte Antoine
- INSERMCNRSCentre de Recherches St‐Antoine (CRSA)Sorbonne UniversitéParisFrance
| |
Collapse
|
668
|
Nakao T, Kohsaka A, Otsuka T, Thein ZL, Le HT, Waki H, Gouraud SS, Ihara H, Nakanishi M, Sato F, Muragaki Y, Maeda M. Impact of heart-specific disruption of the circadian clock on systemic glucose metabolism in mice. Chronobiol Int 2018; 35:499-510. [PMID: 29271671 DOI: 10.1080/07420528.2017.1415922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.
Collapse
Affiliation(s)
- Tomomi Nakao
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Akira Kohsaka
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Tsuyoshi Otsuka
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Zaw Lin Thein
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Hue Thi Le
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| | - Hidefumi Waki
- d Graduate School of Health and Sports Science , Juntendo University , Chiba , Japan
| | - Sabine S Gouraud
- e Department of Biology, Faculty of Science , Ochanomizu University , Tokyo , Japan
| | - Hayato Ihara
- c Radioisotope Laboratory Center , Wakayama Medical University , Wakayama , Japan
| | - Masako Nakanishi
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Fuyuki Sato
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Yasuteru Muragaki
- b Department of Pathology , Wakayama Medical University , Wakayama , Japan
| | - Masanobu Maeda
- a Department of Physiology , Wakayama Medical University , Wakayama , Japan
| |
Collapse
|
669
|
Kwon J, Park MG, Lee SE, Lee CJ. Development of a Low-cost, Comprehensive Recording System for Circadian Rhythm Behavior. Exp Neurobiol 2018. [PMID: 29535571 PMCID: PMC5840463 DOI: 10.5607/en.2018.27.1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Circadian rhythm is defined as a 24-hour biological oscillation, which persists even without any external cues but also can be re-entrained by various environmental cues. One of the widely accepted circadian rhythm behavioral experiment is measuring the wheel-running activity (WRA) of rodents. However, the price for commercially available WRA recording system is not easily affordable for researchers due to high-cost implementation of sensors for wheel rotation. Here, we developed a cost-effective and comprehensive system for circadian rhythm recording by measuring the house-keeping activities (HKA). We have monitored animal's HKA as electrical signal by simply connecting animal housing cage with a standard analog/digital converter: input to the metal lid and ground to the metal grid floor. We show that acquired electrical signals are combined activities of eating, drinking and natural locomotor behaviors which are well-known indicators of circadian rhythm. Post-processing of measured electrical signals enabled us to draw actogram, which verifies HKA to be reliable circadian rhythm indicator. To provide easy access of HKA recording system for researchers, we have developed user-friendly MATLAB-based software, Circa Analysis. This software provides functions for easy extraction of scalable “touch activity” from raw data files by automating seven steps of post-processing and drawing actograms with highly intuitive user-interface and various options. With our cost-effective HKA circadian rhythm recording system, we have estimated the cost of our system to be less than $150 per channel. We anticipate our system will benefit many researchers who would like to study circadian rhythm.
Collapse
Affiliation(s)
- Jea Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Min Gu Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.,Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
670
|
Qi G, Guo R, Tian H, Li L, Liu H, Mi Y, Liu X. Nobiletin protects against insulin resistance and disorders of lipid metabolism by reprogramming of circadian clock in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:549-562. [PMID: 29501626 DOI: 10.1016/j.bbalip.2018.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
SCOPE Circadian clock plays a principal role in orchestrating our daily physiology and metabolism, and their perturbation can evoke metabolic diseases such as fatty liver and insulin resistance. Nobiletin (NOB) has been demonstrated to possess antitumor and neuroprotective activities. The objective of the current study is to determine potential effects of NOB on modulating the core clock gene Bmal1 regarding ameliorating glucolipid metabolic disorders. RESULTS Our results revealed that NOB partially reverse the relatively shallow daily oscillations of circadian clock genes and reset phase-shifting circadian rhythms in primary hepatocytes under metabolic disorders conditions. Importantly, NOB was found to be effective at amplifying glucose uptake via stimulating IRS-1/AKT signaling pathway, as well as blunting palmitate-induced lipogenesis in HepG2 cells via modulating AMPK-Sirt1 signaling pathway and key enzymes of de novo lipogenesis in a Bmal1-dependent manner. NOB attenuated palmitate-stimulated excessive secretions of ROS, restored the depletions of mitochondrial membrane potential, which is similar to the recovery in expressions of mitochondrial respiration complex I-IV. CONCLUSION This study is the first to provide compelling evidences that NOB prevent cellular glucolipid metabolic imbalance and mitochondrial function in a Bmal1-dependent manner. Overall, NOB may serve as a nutritional preventive strategy in recovering metabolic disorders relevant to circadian clock.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoyu Tian
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixia Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
671
|
Walton ZE, Altman BJ, Brooks RC, Dang CV. Circadian Clock's Cancer Connections. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zandra E. Walton
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian J. Altman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebekah C. Brooks
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
672
|
Balakrishnan A. Micromanaging the gut: unravelling the regulatory pathways that mediate the intestinal adaptive response. Ann R Coll Surg Engl 2018; 100:165-171. [PMID: 29364022 PMCID: PMC5930084 DOI: 10.1308/rcsann.2017.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Short bowel syndrome occurs following the loss of a large portion of functional intestine and is associated with high morbidity and mortality. The intestine exhibits pronounced diurnal rhythms in glucose absorption and mounts a profound proliferative response following massive small bowel resection. Understanding the molecular pathways that underpin this could yield novel treatment options. Two in vivo models were employed using the nocturnally active Sprague Dawley® rat, namely daytime feeding and massive small bowel resection. Glucose absorption exhibited a 24-hour periodicity in the gut and peaked during maximal nutrient delivery, mediated by rhythms in the glucose transporter sodium glucose co-transporter 1 (SGLT1). Feeding during the day shifted the peak in the circadian clock gene PER1 and SGLT1. RNA interference and luciferase assays demonstrated that PER1 transcriptionally regulates SGLT1, linking for the first time clock genes and intestinal glucose absorption. Intestinal proliferation also exhibited diurnal rhythmicity, with peak absorptive surface area occurring during maximal nutrient availability. mir-16 is diurnally expressed in intestinal crypts, exhibiting minimal expression during maximal nutritional availability. mir-16 overexpression increased apoptosis and arrested proliferation in vitro. mir-125a was upregulated in intestinal crypts following 80% small bowel resection, and induced apoptosis and growth arrest upon overexpression in vitro. This work provides novel insights into the role of circadian clock genes, intestinal transporters and microRNAs in regulating intestinal absorption and proliferation and is the first demonstration of a role for microRNAs in these adaptive phenomena. Modulation of these pathways may represent a new therapeutic option for the management of short bowel syndrome.
Collapse
Affiliation(s)
- A Balakrishnan
- Cambridge Hepatopancreatobiliary Unit and MRC Cancer Unit, Addenbrooke’s Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
673
|
Basnet S, Merikanto I, Lahti T, Männistö S, Laatikainen T, Vartiainen E, Partonen T. Seasonality, morningness-eveningness, and sleep in common non - communicable medical conditions and chronic diseases in a population. Sleep Sci 2018; 11:85-91. [PMID: 30083295 PMCID: PMC6056070 DOI: 10.5935/1984-0063.20180017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 03/25/2018] [Indexed: 01/08/2023] Open
Abstract
The seasonal pattern for mood and behaviour, the behavioural trait of morningness-eveningness, and sleep are interconnected features, that may serve as etiological factors in the development or exacerbation of medical conditions. Methods: The study was based on a random sample of inhabitants aged 25 to 74 years living in Finland. As part of the national FINRISK 2012 study participants were invited (n=9905) and asked whether the doctor had diagnosed or treated them during the past 12 months for chronic diseases. Results: A total of 6424 participants filled in the first set of questionnaires and 5826 attended the physical health status examination, after which the second set of questionnaires were filled. Regression models were built in which each condition was explained by the seasonal, diurnal and sleep features, after controlling for a range of background factors. Of the chronic diseases, depressive disorder was associated with longer total sleep duration (p<.0001) and poor sleep quality (p<.0001). Of the measurements for health status assessment, none associated with sleep features, but systolic blood pressure yielded significant (p<.0001) associations with both seasonal and diurnal features at large. Conclusion: Sleep quality was the most sensitive probe in yielding associations with chronic diseases in this population-based study. The seasonal variations in mood and social activity, and the ease in getting up and tiredness in the morning were the most sensitive probes in yielding associations with blood pressure and waist circumference. Assessment of sleep quality, seasonal and diurnal features provides thus added value for health surveys of the general population.
Collapse
Affiliation(s)
- Syaron Basnet
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
- University of Helsinki, Department of Public Health, - Helsinki -
Finland
| | - Ilona Merikanto
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
- University of Helsinki, Department of Psychology, - Helsinki -
Finland
| | - Tuuli Lahti
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
- University of Helsinki, Department of Psychology, - Helsinki -
Finland
| | - Satu Männistö
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
| | - Tiina Laatikainen
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
- University of Eastern Finland,, Institute of Public Health and
Clinical Nutrition, - Kuopio - Finland
- Hospital District of North Karelia, - Joensuu - Finland
| | - Erkki Vartiainen
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
| | - Timo Partonen
- National Institute for Health and Welfare (THL), Department of
Public Health Solutions - Helsinki - Finlândia
| |
Collapse
|
674
|
Hopwood TW, Hall S, Begley N, Forman R, Brown S, Vonslow R, Saer B, Little MC, Murphy EA, Hurst RJ, Ray DW, MacDonald AS, Brass A, Bechtold DA, Gibbs JE, Loudon AS, Else KJ. The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock. Sci Rep 2018; 8:3782. [PMID: 29491349 PMCID: PMC5830501 DOI: 10.1038/s41598-018-22021-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (TH2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial infection affects efficiency of worm expulsion, with strong TH2 bias and early expulsion in morning-infected mice. Conversely, mice infected at the start of the night show delayed resistance to infection, and this is associated with feeding-driven metabolic cues, such that feeding restriction to the day-time in normally nocturnal-feeding mice disrupts parasitic expulsion kinetics. We deleted the circadian regulator BMAL1 in antigen-presenting dendritic cells (DCs) in vivo and found a loss of time-of-day dependency of helminth expulsion. RNAseq analyses revealed that IL-12 responses to worm antigen by circadian-synchronised DCs were dependent on BMAL1. Therefore, we find that circadian machinery in DCs contributes to the TH1/TH2 balance, and that environmental, or genetic perturbation of the DC clock results in altered parasite expulsion kinetics.
Collapse
Affiliation(s)
- Thomas W Hopwood
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Sarah Hall
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ruth Forman
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Sheila Brown
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9NT, UK
| | - Ryan Vonslow
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ben Saer
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Matthew C Little
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Emma A Murphy
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Rebecca J Hurst
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - David W Ray
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, M13 9NT, UK
| | - Andy Brass
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Julie E Gibbs
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| | - Andrew S Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| | - Kathryn J Else
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
675
|
Advances in Residential Design Related to the Influence of Geomagnetism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020387. [PMID: 29473902 PMCID: PMC5858456 DOI: 10.3390/ijerph15020387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022]
Abstract
Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.
Collapse
|
676
|
The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 2018; 27:404-418.e7. [PMID: 29358041 PMCID: PMC6996513 DOI: 10.1016/j.cmet.2017.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.
Collapse
|
677
|
Gizowski C, Zaelzer C, Bourque CW. Activation of organum vasculosum neurons and water intake in mice by vasopressin neurons in the suprachiasmatic nucleus. J Neuroendocrinol 2018; 30. [PMID: 29405459 DOI: 10.1111/jne.12577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/27/2018] [Indexed: 01/24/2023]
Abstract
Previous studies have shown that mice housed under 12:12 h light-dark conditions display a pronounced increase in water intake during a 2-hour anticipatory period (AP) near the end of their active period (Zeitgeber Time ZT; ZT21.5-ZT23.5) compared to the preceding basal period (BP, ZT19.5-ZT21.5). This increased water intake during the AP is not associated with physiological stimuli for thirst, such as food intake, hyperosmolality, hyperthermia, or hypovolemia. Denying mice the water intake supplement during the AP causes them to be dehydrated at wake time. These observations suggest that this form of thirst may be driven by the circadian clock and serve to mitigate the dehydrating effect of absence of water intake during sleep. Here we review recent findings showing that this behavior is mediated by vasopressin (VP) containing neurons in the suprachiasmatic nucleus (SCN). SCN VP neurons project to the organum vasculosum lamina terminalis (OVLT) where the activity dependent release of VP causes excitation of thirst-promoting neurons. SCN VP neurons increase their electrical activity during the AP and the resultant release of VP causes an increase in the action potential firing rate of OVLT neurons. Experiments involving optogenetic control of VP release from the axon terminals of SCN neurons indicate that this network mechanism is necessary and sufficient to mediate pre-sleep water intake in mice. These findings provide insight into the output mechanisms that are used by the central clock to generate circadian rhythms, and reveal that the regulation of water intake contributes to osmoregulatory homeostasis during sleep. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| | - Cristian Zaelzer
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| |
Collapse
|
678
|
Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:11-20. [PMID: 29017838 DOI: 10.1016/j.dci.2017.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Diurnal rhythms within the immune system are considered important for immune competence. Until now, they were mostly studied in humans and rodents. However, as the domestic pig is regarded as suitable animal model and due to its importance in agriculture, this study aimed to characterize diurnal rhythmicity in porcine circulating leukocyte numbers. Eighteen pigs were studied over periods of up to 50 h. Cosinor analyses revealed diurnal rhythms in cell numbers of most investigated immune cell populations in blood. Whereas T cell, dendritic cell, and eosinophil counts peaked during nighttime, NK cell and neutrophil counts peaked during daytime. Relative amplitudes of cell numbers in blood differed in T helper cell subtypes with distinctive differentiation states. Mixed model analyses revealed that plasma cortisol concentration was negatively associated with cell numbers of most leukocyte types, except for NK cells and neutrophils. The observed rhythms mainly resemble those found in humans and rodents.
Collapse
Affiliation(s)
- Larissa C Engert
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Ulrike Weiler
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Birgit Pfaffinger
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Sonja S Schmucker
- Behavioral Physiology of Livestock, Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.
| |
Collapse
|
679
|
Affiliation(s)
- H Christian Weber
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
680
|
Paganelli R, Petrarca C, Di Gioacchino M. Biological clocks: their relevance to immune-allergic diseases. Clin Mol Allergy 2018; 16:1. [PMID: 29344005 PMCID: PMC5763605 DOI: 10.1186/s12948-018-0080-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023] Open
Abstract
The 2017 Nobel Prize for Physiology or Medicine, awarded for the discoveries made in the past 15 years on the genetic and molecular mechanisms regulating many physiological functions, has renewed the attention to the importance of circadian rhythms. These originate from a central pacemaker in the suprachiasmatic nucleus in the brain, photoentrained via direct connection with melanopsin containing, intrinsically light-sensitive retinal ganglion cells, and it projects to periphery, thus creating an inner circadian rhythm. This regulates several activities, including sleep, feeding times, energy metabolism, endocrine and immune functions. Disturbances of these rhythms, mainly of wake/sleep, hormonal secretion and feeding, cause decrease in quality of life, as well as being involved in development of obesity, metabolic syndrome and neuropsychiatric disorders. Most immunological functions, from leukocyte numbers, activity and cytokine secretion undergo circadian variations, which might affect susceptibility to infections. The intensity of symptoms and disease severity show a 24 h pattern in many immunological and allergic diseases, including rheumatoid arthritis, bronchial asthma, atopic eczema and chronic urticaria. This is accompanied by altered sleep duration and quality, a major determinant of quality of life. Shift work and travel through time zones as well as artificial light pose new health threats by disrupting the circadian rhythms. Finally, the field of chronopharmacology uses these concepts for delivering drugs in synchrony with biological rhythms.
Collapse
Affiliation(s)
- Roberto Paganelli
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Claudia Petrarca
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Mario Di Gioacchino
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| |
Collapse
|
681
|
Chipchura DA, Freyberg Z, Edwards C, Leckband SG, McCarthy MJ. Does the Time of Drug Administration Alter the Metabolic Risk of Aripiprazole? Front Psychiatry 2018; 9:494. [PMID: 30364286 PMCID: PMC6193090 DOI: 10.3389/fpsyt.2018.00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 01/04/2023] Open
Abstract
Antipsychotic drugs cause metabolic abnormalities through a mechanism that involves antagonism of D2 dopamine receptors (D2R). Under healthy conditions, insulin release follows a circadian rhythm and is low at night, and in pancreatic beta-cells, D2Rs negatively regulate insulin release. Since they are sedating, many antipsychotics are dosed at night. However, the resulting reduction in overnight D2R activity may disrupt 24 h rhythms in insulin release, potentially exacerbating metabolic dysfunction. We examined retrospective clinical data from patients treated over approximately 1 year with the antipsychotic drug aripiprazole (ARPZ), a D2R partial agonist. To identify effects of timing on metabolic risk, we found cases treated with ARPZ either in the morning (n = 90) or at bedtime (n = 53), and compared hemoglobin A1c, and six secondary metabolic parameters across the two groups. After controlling for demographic and clinical factors, patients treated with ARPZ at night had a significant decrease in HDL cholesterol, while in patients who took ARPZ in the morning had no change. There was a non-significant trend toward higher serum triglycerides in the patients treated with ARPZ at night vs. morning. There were no group differences in hemoglobin A1c, BMI, total cholesterol, LDL cholesterol, or blood pressure. Patients taking APPZ at night developed a worse lipid profile, with lower HDL cholesterol and a trend toward higher triglycerides. These changes may pose additional metabolic risk factors compared to those who take ARPZ in the morning. Interventions based on drug timing may reduce some of the adverse metabolic consequences of antipsychotic drugs.
Collapse
Affiliation(s)
- Danielle A Chipchura
- VA San Diego Healthcare System, Mental Health Service, San Diego, CA, United States
| | - Zachary Freyberg
- Department of Psychiatry and Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corey Edwards
- VA San Diego Healthcare System, Mental Health Service, San Diego, CA, United States
| | - Susan G Leckband
- VA San Diego Healthcare System, Mental Health Service, San Diego, CA, United States
| | - Michael J McCarthy
- VA San Diego Healthcare System, Mental Health Service, San Diego, CA, United States.,Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
682
|
Michalsen A. Natur, Naturheilkunde, Naturwissenschaft: Vom Monte Verità zur Molekularmedizin. Complement Med Res 2018; 25:148-150. [DOI: 10.1159/000490440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
683
|
Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018; 2018:7515767. [PMID: 30154843 PMCID: PMC6092995 DOI: 10.1155/2018/7515767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increased consumption of energy-dense foods such as fructose-rich syrups represents one of the significant, growing concerns related to the alarming trend of overweight, obesity, and metabolic disorders worldwide. Metabolic pathways affected by fructose involve genes related to lipogenesis/lipolysis, beta-oxidation, mitochondrial biogenesis, gluconeogenesis, oxidative phosphorylation pathways, or altering of circadian production of insulin and leptin. Moreover, fructose can be a risk factor during pregnancy elevating the risk of preterm delivery, hypertension, and metabolic impairment of the mother and fetus. Melatonin is a chronobiotic and homeostatic hormone that can modulate the harmful effects of fructose via clock gene expression and metabolic pathways, modulating the expression of PPARγ, SREBF-1 (SREBP-1), hormone-sensitive lipase, C/EBP-α genes, NRF-1, PGC1α, and uncoupling protein-1. Moreover, this hormone has the capacity in the rat of reverting the harmful effects of fructose, increasing the body weight and weight ratio of the liver, and increasing the body weight and restoring the glycemia from mothers exposed to fructose. The aim of this review is to show the potential crosstalk between fructose and melatonin and their potential role during pregnancy.
Collapse
Affiliation(s)
| | - Claudia Caro-Díaz
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gerardo Cabello-Guzmán
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
684
|
Tinsley GM, Horne BD. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions. Future Cardiol 2018; 14:47-54. [DOI: 10.2217/fca-2017-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intermittent fasting has produced a variety of beneficial health effects in animal models, although high-quality research in humans has been limited. This special report examines current evidences for intermittent fasting in humans, discusses issues that require further examination, and recommends new research that can improve the knowledge base in this emerging research area. While potentially useful for health improvement, intermittent fasting requires further study prior to widespread implementation for health purposes. Randomized, longer-term studies are needed to determine whether using intermittent fasting as a lifestyle rather than a diet is feasible and beneficial for the health of some members of the human population.
Collapse
Affiliation(s)
- Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin D Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT 84107, USA
| |
Collapse
|
685
|
Yamagata K, Yoshizawa T. Transcriptional Regulation of Metabolism by SIRT1 and SIRT7. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:143-166. [DOI: 10.1016/bs.ircmb.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
686
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
687
|
Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol 2017; 314:R231-R241. [PMID: 29141950 DOI: 10.1152/ajpregu.00248.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
688
|
Mayeuf-Louchart A, Zecchin M, Staels B, Duez H. Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie 2017; 143:42-50. [DOI: 10.1016/j.biochi.2017.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
|
689
|
Wu T, Yang L, Jiang J, Ni Y, Zhu J, Zheng X, Wang Q, Lu X, Fu Z. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci 2017; 192:173-182. [PMID: 29196049 DOI: 10.1016/j.lfs.2017.11.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
AIM Glucocorticoids (GCs), steroid hormones synthetized by the adrenal gland, are regulated by circadian cycles, and dysregulation of GC signaling can lead to the development of metabolic syndrome. The effects and potential mechanism of GCs in physiology were investigated in the present study. MAIN METHODS Male Wistar rats were orally administered dexamethasone sodium phosphate (DEX, 0.01 and 0.05mg/kg body weight per day) for 7weeks. KEY FINDING DEX treatment attenuated body weight gain and reduced food intake, whereas it induced the accumulation of fat. Administration of DEX induced dysregulation of the expression of lipogenic genes in both fat and liver. Moreover, the mRNA levels of genes related to mitochondrial biogenesis and function were significantly downregulated in the liver and fat of DEX-treated rats. Furthermore, DEX treatment caused a significant reduction in the richness and diversity of the microbiota in the colon, as assessed using high-throughput sequencing of the 16s rRNA gene V3-V4 region, an increase in inflammatory cell infiltration, and a decrease in mucus secretion in the colon. Additionally, DEX administration induced phase shift or loss of circadian rhythmicity of clock-related genes in peripheral tissues. These results were associated with higher serum corticosterone levels and upregulation of GC receptor (GR) expression in peripheral tissues. SIGNIFICANCE Our findings indicate that long-term administration of GC caused lipid accumulation, changes in the structure of the intestinal flora, and reduced colonic mucus secretion in vivo. The mechanism of these physiological changes may involve a circadian rhythm disorder and dysregulation of GR expression.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luna Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jianguo Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Jiawei Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xiaojun Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Qi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Xin Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
690
|
Lee K, Shiva Kumar P, McQuade S, Lee JY, Park S, An Z, Piccoli B. Experimental and Mathematical Analyses Relating Circadian Period and Phase of Entrainment in Neurospora crassa. J Biol Rhythms 2017; 32:550-559. [PMID: 29183256 DOI: 10.1177/0748730417738611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian rhythms are observed in most organisms on earth and are known to play a major role in successful adaptation to the 24-h cycling environment. Circadian phenotypes are characterized by a free-running period that is observed in constant conditions and an entrained phase that is observed in cyclic conditions. Thus, the relationship between the free-running period and phase of entrainment is of interest. A popular simple rule has been that the entrained phase is the expression of the period in a cycling environment (i.e., that a short period causes an advanced phase and a long period causes a delayed phase). However, there are experimental data that are not explained by this simple relationship, and no systematic study has been done to explore all possible period-phase relationships. Here, we show the existence of stable period-phase relationships that are exceptions to this rule. First, we analyzed period-phase relationships using populations with different degrees of genome complexity. Second, we generated isogenic F1 populations by crossing 14 classical period mutants to the same female and analyzed 2 populations with a short period/delayed phase and a long period/advanced phase. Third, we generated a mathematical model to account for such variable relationships between period and phase. Our analyses support the view that the circadian period of an organism is not the only predictor of the entrained phase.
Collapse
Affiliation(s)
- Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey.,Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Prithvi Shiva Kumar
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Sean McQuade
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Joshua Y Lee
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Sohyun Park
- Department of Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Zheming An
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| | - Benedetto Piccoli
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, New Jersey
| |
Collapse
|
691
|
Allen RP, Picchietti DL, Auerbach M, Cho YW, Connor JR, Earley CJ, Garcia-Borreguero D, Kotagal S, Manconi M, Ondo W, Ulfberg J, Winkelman JW. Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med 2017; 41:27-44. [PMID: 29425576 DOI: 10.1016/j.sleep.2017.11.1126] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain iron deficiency has been implicated in the pathophysiology of RLS, and current RLS treatment guidelines recommend iron treatment when peripheral iron levels are low. In order to assess the evidence on the oral and intravenous (IV) iron treatment of RLS and periodic limb movement disorder (PLMD) in adults and children, the International Restless Legs Syndrome Study Group (IRLSSG) formed a task force to review these studies and provide evidence-based and consensus guidelines for the iron treatment of RLS in adults, and RLS and PLMD in children. METHODS A literature search was performed to identify papers appearing in MEDLINE from its inception to July 2016. The following inclusion criteria were used: human research on the treatment of RLS or periodic limb movements (PLM) with iron, sample size of at least five, and published in English. Two task force members independently evaluated each paper and classified the quality of evidence provided. RESULTS A total of 299 papers were identified, of these 31 papers met the inclusion criteria. Four studies in adults were given a Class I rating (one for IV iron sucrose, and three for IV ferric carboxymaltose); only Class IV studies have evaluated iron treatment in children. Ferric carboxymaltose (1000 mg) is effective for treating moderate to severe RLS in those with serum ferritin <300 μg/l and could be used as first-line treatment for RLS in adults. Oral iron (65 mg elemental iron) is possibly effective for treating RLS in those with serum ferritin ≤75 μg/l. There is insufficient evidence to make conclusions on the efficacy of oral iron or IV iron in children. CONCLUSIONS Consensus recommendations based on clinical practice are presented, including when to use oral iron or IV iron, and recommendations on repeated iron treatments. New iron treatment algorithms, based on evidence and consensus opinion have been developed.
Collapse
Affiliation(s)
- Richard P Allen
- Department of Neurology, Johns Hopkins University, Hopkins Bayview Medical Center, Baltimore, MD, USA.
| | - Daniel L Picchietti
- University of Illinois College of Medicine at Urbana-Champaign and Carle Foundation Hospital, Urbana, IL, USA
| | - Michael Auerbach
- Department of Medicine, Georgetown University, Washington DC, USA
| | - Yong Won Cho
- Department of Neurology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey PA, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Hopkins Bayview Medical Center, Baltimore, MD, USA
| | | | - Suresh Kotagal
- Department of Neurology and the Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mauro Manconi
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland
| | - William Ondo
- Methodist Neurological Institute, Weill Cornell Medical School Houston, TX, USA
| | - Jan Ulfberg
- Sleep Disorders Department, Capio Health Center, Örebro, Sweden
| | - John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
692
|
Gaston KJ, Davies TW, Nedelec SL, Holt LA. Impacts of Artificial Light at Night on Biological Timings. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022745] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Thomas W. Davies
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Sophie L. Nedelec
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| | - Lauren A. Holt
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom;, , ,
| |
Collapse
|
693
|
BENATTI FABIANAB, LARSEN SIDSELA, KOFOED KATJA, NIELSEN SIGNET, HARDER-LAURIDSEN NINAM, LYNGBÆK MARKP, ERIKSEN DORTE, KARSTOFT KRISTIAN, KROGH-MADSEN RIKKE, PEDERSEN BENTEK, RIED-LARSEN MATHIAS. Intermittent Standing but not a Moderate Exercise Bout Reduces Postprandial Glycemia. Med Sci Sports Exerc 2017. [DOI: 10.1249/mss.0000000000001354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
694
|
Yi-lin L, Ke Z, Dan W, Xi-hong Z, Zheng R, Xin W, Yu-long Y. Dynamic feeding low and high methionine diets affect the diurnal rhythm of amino acid transporters and clock related genes in jejunum of laying hens. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1395531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liu Yi-lin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhang Ke
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Wan Dan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Zhou Xi-hong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Ruan Zheng
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wu Xin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yin Yu-long
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
695
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
696
|
Kobayashi M, Morinibu A, Koyasu S, Goto Y, Hiraoka M, Harada H. A circadian clock gene, PER2, activates HIF-1 as an effector molecule for recruitment of HIF-1α to promoter regions of its downstream genes. FEBS J 2017; 284:3804-3816. [PMID: 28963769 DOI: 10.1111/febs.14280] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor functioning in cellular adaptive responses to hypoxia. Recent studies have suggested that HIF-1 activity is upregulated by one of the important circadian clock genes, period circadian clock 2 (PER2); however, its underlying mechanism remains unclear. Here, we show that PER2 functions as an effector protein for the recruitment of HIF-1α to its cognate enhancer sequence, the hypoxia-response element (HRE). We found that the forced expression of PER2 enhanced HIF-1 activity without influencing expression levels of the regulatory subunit of HIF-1, HIF-1α, at either mRNA or protein levels. A series of coimmunoprecipitation-based experiments revealed that PER2 interacted with HIF-1α and facilitated the recruitment of HIF-1α to HRE derived from vascular endothelial growth factor (VEGF) promoter. The PER2-mediated activation of HIF-1 was observed only when the asparagine residue at position 803 of HIF-1α (HIF-1α N803) was kept unhydroxylated by hypoxic stimulation, by introducing an N803A point mutation, or by an inhibitor of N803-dioxygenase, deferoxamine. However, the extent of PER-2-HIF-1α interaction was equivalent regardless of the N803 hydroxylation status. Taken together, these results suggest that, with the help of an unknown sensor molecule for the N803 hydroxylation status, PER2 functions as an effector molecule for the recruitment of HIF-1 to promoter regions of its downstream genes. Our findings reveal a novel regulatory step in the activation of HIF-1, which can be targeted to develop therapeutic strategies against HIF-1-related diseases, such as cancers.
Collapse
Affiliation(s)
- Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Japan.,Japan Red Cross Society Wakayama Medical Center, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Department of Genome Dynamics, Radiation Biology Center, Kyoto University, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
697
|
Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017; 8:23978-23995. [PMID: 28177907 PMCID: PMC5410358 DOI: 10.18632/oncotarget.15074] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| |
Collapse
|
698
|
Morales A, Ibarra N, Chávez M, Gómez T, Suárez A, Valle JA, Camacho RL, Cervantes M. Effect of feed intake level and dietary protein content on the body temperature of pigs housed under thermo neutral conditions. J Anim Physiol Anim Nutr (Berl) 2017; 102:e718-e725. [DOI: 10.1111/jpn.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Affiliation(s)
- A. Morales
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - N. Ibarra
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - M. Chávez
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - T. Gómez
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - A. Suárez
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - J. A. Valle
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - R. L. Camacho
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| | - M. Cervantes
- Instituto de Ciencias Agrícolas; Universidad Autónoma de Baja California; Mexicali México
| |
Collapse
|
699
|
Jin S, Tan B, Teng X, Meng R, Jiao X, Tian D, Xiao L, Xue H, Guo Q, Duan X, Wu Y. Diurnal Fluctuations in Plasma Hydrogen Sulfide of the Mice. Front Pharmacol 2017; 8:682. [PMID: 29056911 PMCID: PMC5635436 DOI: 10.3389/fphar.2017.00682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Circadian rhythms are essential in a myriad of physiological processes to maintain homeostasis, especially the redox homeostasis. However, little is known about whether plasma H2S exhibits the physiological diurnal variation. The present study was performed to investigate the diurnal fluctuations of plasma H2S and explore the potential mechanisms. We found that the plasma H2S of the C57BL/6J mice was significantly higher at 19 o’clock than those at 7 o’clock which was not affected by the blood-collecting sequence and the concentrations of plasma cysteine (a precursor of H2S). No significant differences in mRNA or protein expression of the CSE, CBS, or MPST were observed between 7: 00 and 19: 00. There were also no significant differences in the CSE and CBS activities, while the activities of MPST in tissues were significantly higher at 19 o’clock. After treatment with AOAA (a CBS inhibitor) or PPG (a CSE inhibitor) for 14 days, plasma H2S concentrations at 19 o’clock were still significantly higher than those at 7 o’clock, although they were both significantly decreased as compared with controls. Identical findings were also observed in CSE KO mice. We also found the plasma H2O2 concentrations were significantly higher at 19 o’clock than those at 7 o’clock. However, H2O2 concentrations were significantly decreased at 19 o’clock than those at 7 o’clock when mice were exposed to continuous light for 24 h. Meanwhile, the diurnal fluctuations of plasma H2S levels and MPST activities in tissues were disappeared. After treatment with DTT for 14 days, there was no significant difference in plasma H2O2 concentrations between 7 o’clock and 19 o’clock. Meanwhile, the diurnal fluctuations of plasma H2S levels and MPST activities in tissues were disappeared. Identical findings were also observed in SOD2+/- mice. When heart tissues were incubated with increasing concentrations of H2O2in vitro, H2O2 could dose-dependently increase the activity of MPST within a certain concentration range. In conclusion, our studies revealed that plasma H2S concentration and tissue MPST activity exhibited diurnal fluctuations. Modulated by plasma H2O2 concentration, changes of MPST activity probably led to the diurnal fluctuations of plasma H2S.
Collapse
Affiliation(s)
- Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ruoni Meng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xin Jiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaocui Duan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Vascular Medicine of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
700
|
Zhuang X, Rambhatla SB, Lai AG, McKeating JA. Interplay between circadian clock and viral infection. J Mol Med (Berl) 2017; 95:1283-1289. [PMID: 28963570 PMCID: PMC5684296 DOI: 10.1007/s00109-017-1592-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
The circadian clock underpins most physiological conditions and provides a temporal dimension to our understanding of body and tissue homeostasis. Disruptions of circadian rhythms have been associated with many diseases, including metabolic disorders and cancer. Recent literature highlights a role for the circadian clock to regulate innate and adaptive immune functions that may prime the host response to infectious organisms. Viruses are obligate parasites that rely on host cell synthesis machinery for their own replication, survival and dissemination. Here, we review key findings on how circadian rhythms impact viral infection and how viruses modulate molecular clocks to facilitate their own replication. This emerging area of viral-clock biology research provides a fertile ground for discovering novel anti-viral targets and optimizing immune-based therapies.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|