651
|
Ragupathy R, Ravichandran S, Mahdi MSR, Huang D, Reimer E, Domaratzki M, Cloutier S. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 2016; 6:39373. [PMID: 28004741 PMCID: PMC5177929 DOI: 10.1038/srep39373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/15/2016] [Indexed: 01/30/2023] Open
Abstract
Understanding of plant adaptation to abiotic stresses has implications in plant breeding, especially in the context of climate change. MicroRNAs (miRNAs) and short interfering RNAs play a crucial role in gene regulation. Here, wheat plants were exposed to one of the following stresses: continuous light, heat or ultraviolet radiations over five consecutive days and leaf tissues from three biological replicates were harvested at 0, 1, 2, 3, 7 and 10 days after treatment (DAT). A total of 72 small RNA libraries were sequenced on the Illumina platform generating ~524 million reads corresponding to ~129 million distinct tags from which 232 conserved miRNAs were identified. The expression levels of 1, 2 and 79 miRNAs were affected by ultraviolet radiation, continuous light and heat, respectively. Approximately 55% of the differentially expressed miRNAs were downregulated at 0 and 1 DAT including miR398, miR528 and miR156 that control mRNAs involved in activation of signal transduction pathways and flowering. Other putative targets included histone variants and methyltransferases. These results suggest a temporal miRNA-guided post-transcriptional regulation that enables wheat to respond to abiotic stresses, particularly heat. Designing novel wheat breeding strategies such as regulatory gene-based marker assisted selection depends on accurate identification of stress induced miRNAs.
Collapse
Affiliation(s)
- Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | | | - Douglas Huang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| |
Collapse
|
652
|
Identification and Target Prediction of MicroRNAs in Ulmus pumila L. Seedling Roots under Salt Stress by High-Throughput Sequencing. FORESTS 2016. [DOI: 10.3390/f7120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
653
|
Karakülah G, Yücebilgili Kurtoğlu K, Unver T. PeTMbase: A Database of Plant Endogenous Target Mimics (eTMs). PLoS One 2016; 11:e0167698. [PMID: 27936097 PMCID: PMC5148581 DOI: 10.1371/journal.pone.0167698] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNA) are small endogenous RNA molecules, which regulate target gene expression at post-transcriptional level. Besides, miRNA activity can be controlled by a newly discovered regulatory mechanism called endogenous target mimicry (eTM). In target mimicry, eTMs bind to the corresponding miRNAs to block the binding of specific transcript leading to increase mRNA expression. Thus, miRNA-eTM-target-mRNA regulation modules involving a wide range of biological processes; an increasing need for a comprehensive eTM database arose. Except miRSponge with limited number of Arabidopsis eTM data no available database and/or repository was developed and released for plant eTMs yet. Here, we present an online plant eTM database, called PeTMbase (http://petmbase.org), with a highly efficient search tool. To establish the repository a number of identified eTMs was obtained utilizing from high-throughput RNA-sequencing data of 11 plant species. Each transcriptome libraries is first mapped to corresponding plant genome, then long non-coding RNA (lncRNA) transcripts are characterized. Furthermore, additional lncRNAs retrieved from GREENC and PNRD were incorporated into the lncRNA catalog. Then, utilizing the lncRNA and miRNA sources a total of 2,728 eTMs were successfully predicted. Our regularly updated database, PeTMbase, provides high quality information regarding miRNA:eTM modules and will aid functional genomics studies particularly, on miRNA regulatory networks.
Collapse
Affiliation(s)
- Gökhan Karakülah
- İzmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylül University, İnciraltı, İzmir, Turkey
- * E-mail: (GK); (TU)
| | | | - Turgay Unver
- İzmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylül University, İnciraltı, İzmir, Turkey
- * E-mail: (GK); (TU)
| |
Collapse
|
654
|
Zheng Y, Hivrale V, Zhang X, Valliyodan B, Lelandais-Brière C, Farmer AD, May GD, Crespi M, Nguyen HT, Sunkar R. Small RNA profiles in soybean primary root tips under water deficit. BMC SYSTEMS BIOLOGY 2016; 10:126. [PMID: 28105955 PMCID: PMC5249032 DOI: 10.1186/s12918-016-0374-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Soybean (Glycine max) production is significantly hampered by frequent droughts in many regions of the world including the United States. Identifying microRNA (miRNA)-controlled posttranscriptional gene regulation under drought will enhance our understanding of molecular basis of drought tolerance in this important cash crop. Indeed, miRNA profiles in soybean exposed to drought were studied but not from the primary root tips, which is not only a main zone of water uptake but also critical for water stress sensing and signaling. METHODS Here we report miRNA profiles specifically from well-watered and water-stressed primary root tips (0 to 8 mm from the root apex) of soybean. Small RNA sequencing confirmed the expression of vastly diverse miRNA (303 individual miRNAs) population, and, importantly several conserved miRNAs were abundantly expressed in primary root tips. RESULTS Notably, 12 highly conserved miRNA families were differentially regulated in response to water-deficit; six were upregulated while six others were downregulated at least by one fold (log2) change. Differentially regulated soybean miRNAs are targeting genes include auxin response factors, Cu/Zn Superoxide dismutases, laccases and plantacyanin and several others. CONCLUSIONS These results highlighted the importance of miRNAs in primary root tips both under control and water-deficit conditions; under control conditions, miRNAs could be important for cell division, cell elongation and maintenance of the root apical meristem activity including quiescent centre whereas under water stress differentially regulated miRNAs could decrease auxin signaling and oxidative stress as well as other metabolic processes that save energy and water.
Collapse
Affiliation(s)
- Yun Zheng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaotuo Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Christine Lelandais-Brière
- Institut of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of "Paris-Sud", Batiment 630, 91405, Orsay, France
- Institut of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of "Paris-Diderot", Sorbonne Paris-Cité, 91405 Orsay,, Paris, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, NM, 87505, USA
| | - Gregory D May
- National Center for Genome Resources, Santa Fe, New Mexico, NM, 87505, USA
- Present address: Pioneer Hi-Bred International, Inc, Johnston, IA, 50131, USA
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of "Paris-Sud", Batiment 630, 91405, Orsay, France
- Institut of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University of "Paris-Diderot", Sorbonne Paris-Cité, 91405 Orsay,, Paris, France
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
655
|
Gao X, Zhang F, Hu J, Cai W, Shan G, Dai D, Huang K, Wang G. MicroRNAs modulate adaption to multiple abiotic stresses in Chlamydomonas reinhardtii. Sci Rep 2016; 6:38228. [PMID: 27910907 PMCID: PMC5133633 DOI: 10.1038/srep38228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs play an important role in abiotic stress responses in higher plants and animals, but their role in stress adaptation in algae remains unknown. In this study, the expression of identified and putative miRNAs in Chlamydomonas reinhardtii was assessed using quantitative polymerase chain reaction; some of the miRNAs (Cre-miR906-3p) were up-regulated, whereas others (Cre-miR910) were down-regulated when the species was subjected to multiple abiotic stresses. With degradome sequencing data, we also identified ATP4 (the d-subunit of ATP synthase) and NCR2 (NADPH: cytochrome P450 reductase) as one of the several targets of Cre-miR906-3p and Cre-miR910, respectively. Q-PCR data indicated that ATP4, which was expressed inversely in relation to Cre-miR906-3p under stress conditions. Overexpressing of Cre-miR906-3p enhanced resistance to multiple stresses; conversely, overexpressing of ATP4 produced the opposite effect. These data of Q-PCR, degradome sequencing and adaptation of overexpressing lines indicated that Cre-miR906-3p and its target ATP4 were a part of the same pathway for stress adaptation. We found that Cre-miR910 and its target NCR2 were also a part of this pathway. Overexpressing of Cre-miR910 decreased, whereas that of NCR2 increased the adaption to multiple stresses. Our findings suggest that the two classes of miRNAs synergistically mediate stress adaptation in algae.
Collapse
Affiliation(s)
- Xiang Gao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengge Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlu Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkai Cai
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Shan
- School of Life Science, Chinese University of Science and Technology, Hefei 230022, China
| | - Dongsheng Dai
- Wuxi Biortus Biosciences Co., Ltd., Jiangyin, Jiangsu 214437, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
656
|
Wang Z, Wang Y, Kohalmi SE, Amyot L, Hannoufa A. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:661-674. [PMID: 27605094 DOI: 10.1007/s11103-016-0536-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/26/2016] [Indexed: 05/09/2023]
Abstract
A network of genes is coordinately expressed to ensure proper development of floral organs and fruits, which are essential for generating new offspring in flowering plants. In Arabidopsis thaliana, microRNA156 (miR156) plays a role in regulating the development of flowers and siliques by targeting members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Despite the important roles of the miR156/SPL network, our understanding of its downstream genes that are involved in floral organ and silique growth is still incomplete. Here, we report that the miR156/SPL2 regulatory pathway regulates pollen production, fertility rate, and the elongation of floral organs, including petals, sepals, and siliques in Arabidopsis. Transgenic plants exhibiting both overexpression of miR156 and dominant-negative alleles of SPL2 had reduced ASYMMETRIC LEAVES 2 (AS2) transcript levels in their siliques. Furthermore, their fertility phenotype was similar to that of the AS2 loss-of-function mutant. We also demonstrate that the SPL2 protein binds to the 5'UTR of the AS2 gene in vivo, indicating that AS2 is directly regulated by SPL2. Our results suggest that the miR156/SPL2 pathway affects floral organs, silique development and plant fertility, as well as directly regulates AS2 expression.
Collapse
Affiliation(s)
- Zhishuo Wang
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
| | - Ying Wang
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
657
|
Ta KN, Sabot F, Adam H, Vigouroux Y, De Mita S, Ghesquière A, Do NV, Gantet P, Jouannic S. miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. RICE (NEW YORK, N.Y.) 2016; 9:10. [PMID: 26969003 PMCID: PMC4788661 DOI: 10.1186/s12284-016-0082-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/06/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice exhibits a wide range of panicle structures. To explain these variations, much emphasis has been placed on changes in transcriptional regulation, but no large-scale study has yet reported on changes in small RNA regulation in the various rice species. To evaluate this aspect, we performed deep sequencing and expression profiling of small RNAs from two closely related species with contrasting panicle development: the cultivated African rice Oryza glaberrima and its wild relative Oryza barthii. RESULTS Our RNA-seq analysis revealed a dramatic difference between the two species in the 21 nucleotide small RNA population, corresponding mainly to miR2118-triggered phased siRNAs. A detailed expression profiling during the panicle development of O. glaberrima and O. barthii using qRT-PCRs and in situ hybridization, confirmed a delayed expression of the phased siRNAs as well as their lncRNA precursors and regulators (miR2118 and MEL1 gene) in O. glaberrima compared to O. barthii. We provide evidence that the 21-nt phasiRNA pathway in rice is associated with male-gametogenesis but is initiated in spikelet meristems. CONCLUSION Differential expression of the miR2118-triggered 21-nt phasiRNA pathway between the two African rice species reflects differential rates of determinate fate acquisition of panicle meristems between the two species.
Collapse
Affiliation(s)
- K. N. Ta
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| | - F. Sabot
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - H. Adam
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - Y. Vigouroux
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - S. De Mita
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />Present address: INRA, Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, F-54280 Champenoux, France
| | - A. Ghesquière
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - N. V. Do
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| | - P. Gantet
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
- />Université de Montpellier, UMR DIADE, Place Eugène Bataillon, F-34095 Montpellier, Cedex 5 France
| | - S. Jouannic
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| |
Collapse
|
658
|
|
659
|
Frigault JJ, Morin MD, Morin PJ. Differential expression and emerging functions of non-coding RNAs in cold adaptation. J Comp Physiol B 2016; 187:19-28. [PMID: 27866230 DOI: 10.1007/s00360-016-1049-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.
Collapse
Affiliation(s)
- Jacques J Frigault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Mathieu D Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
660
|
Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M, Velayati A. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol 2016; 791:395-404. [PMID: 27634639 PMCID: PMC7094636 DOI: 10.1016/j.ejphar.2016.09.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs which can act as master regulators of gene expression, modulate almost all biological process and are essential for maintaining cellular homeostasis. Dysregulation of miRNA expression has been associated with aberrant gene expression and may lead to pathological conditions. Evidence suggests that miRNA expression profiles are altered between health and disease and as such may be considered as biomarkers of disease. Evidence is increasing that miRNAs are particularly important in lung homeostasis and development and have been demonstrated to be the involved in many pulmonary diseases such as asthma, COPD, sarcoidosis, lung cancer and other smoking related diseases. Better understanding of the function of miRNA and the mechanisms underlying their action in the lung, would help to improve current diagnosis and therapeutics strategies in pulmonary diseases. Recently, some miRNA-based drugs have been introduced as possible therapeutic agents. In this review we aim to summarize the recent findings regarding the role of miRNAs in the airways and lung and emphasise their potential therapeutic roles in pulmonary diseases.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Medical Biotechnology, Molecular Medicine Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Esmaeil Mortaz
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK; Clinical Tuberculosis and Epidemiology Research Center, National Research and Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
661
|
Wang L, Du H, Wuyun TN. Genome-Wide Identification of MicroRNAs and Their Targets in the Leaves and Fruits of Eucommia ulmoides Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1632. [PMID: 27877179 PMCID: PMC5099690 DOI: 10.3389/fpls.2016.01632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, play important roles in plant growth, development, and stress response processes. Eucommia ulmoides Oliver (hardy rubber tree) is one of the few woody plants capable of producing trans-1, 4-polyisoprene (TPI), also known as Eu-rubber, which has been utilized as an industrial raw material and is extensively cultivated in China. However, the mechanism of TPI biosynthesis has not been identified in E. ulmoides. To characterize small RNAs and their targets with potential biological roles involved in the TPI biosynthesis in E. ulmoides, in the present study, eight small RNA libraries were constructed and sequenced from young and mature leaves and fruits of E. ulmoides. Further analysis identified 34 conserved miRNAs belonging to 20 families (two unclassified families), and 115 novel miRNAs seemed to be specific to E. ulmoides. Among these miRNAs, fourteen conserved miRNAs and 49 novel miRNAs were significantly differentially expressed and identified as Eu-rubber accumulation related miRNAs. Based on the E. ulmoides genomic data, 202 and 306 potential target genes were predicted for 33 conserved and 92 novel miRNAs, respectively; the predicted targets are mostly transcription factors and functional genes, which were enriched in metabolic pathways and biosynthesis of secondary metabolites. Noticeably, based on the expression patterns of miRNAs and their target genes in combination with the Eu-rubber accumulation, the negative correlation of expression of six miRNAs (Eu-miR14, Eu-miR91, miR162a, miR166a, miR172c, and miR396a) and their predicted targets serving as potential regulators in Eu-rubber accumulation. This study is the first to detect conserved and novel miRNAs and their potential targets in E. ulmoides and identify several candidate genes potentially controlling rubber accumulation, and thus provide molecular evidence for understanding the roles of miRNAs in regulating the TPI biosynthesis in E. ulmoides.
Collapse
Affiliation(s)
- Lin Wang
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Hongyan Du
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Ta-na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| |
Collapse
|
662
|
Identification and characterization of microRNAs in maize endosperm response to exogenous sucrose using small RNA sequencing. Genomics 2016; 108:216-223. [PMID: 27810268 DOI: 10.1016/j.ygeno.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 01/04/2023]
Abstract
Sucrose acts as a signaling molecule for genes critical to starch biosynthesis in maize endosperm. Previously, we showed that sucrose could regulate starch biosynthesis in maize via transcription factors. To better understand the complex regulation of starch biosynthesis, the 10days after pollination endosperm from Zea mays L. B73 inbred line was collected and treated with sucrose for small RNA sequencing. The sequencing results revealed that 24 known miRNAs and 190 novel miRNAs were significantly differentially expressed in response to sucrose. In addition, most of target mRNAs were characterized as transcription factors, mainly including, MYB, ARF, NAC, AP2/ERF, WRKY, and GRAS, which play important roles in starch biosynthesis and seed development in maize endosperm. The expression profiles of miR398a/b and miR159b/j/k followed opposite expression trends to their target genes when analyzed by qPCR. In conclusion, these results show that sucrose regulates the expression of starch synthetic genes through miRNAs.
Collapse
|
663
|
Fei Q, Yang L, Liang W, Zhang D, Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6037-6049. [PMID: 27702997 PMCID: PMC5100018 DOI: 10.1093/jxb/erw361] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dissection of the genetic pathways and mechanisms by which anther development occurs in grasses is crucial for both a basic understanding of plant development and for examining traits of agronomic importance such as male sterility. In rice, MULTIPLE SPOROCYTES1 (MSP1), a leucine-rich-repeat receptor kinase, plays an important role in anther development by limiting the number of sporocytes. OsTDL1a (a TPD1-like gene in rice) encodes a small protein that acts as a cofactor of MSP1 in the same regulatory pathway. In this study, we analyzed small RNA and mRNA changes in different stages of spikelets from wild-type rice, and from msp1 and ostdl1a mutants. Analysis of the small RNA data identified miRNAs demonstrating differential abundances. miR2275 was depleted in the two rice mutants; this miRNA is specifically enriched in anthers and functions to trigger the production of 24-nt phased secondary siRNAs (phasiRNAs) from PHAS loci. We observed that the 24-nt phasiRNAs as well as their precursor PHAS mRNAs were also depleted in the two mutants. An analysis of co-expression identified three Argonaute-encoding genes (OsAGO1d, OsAGO2b, and OsAGO18) that accumulate transcripts coordinately with phasiRNAs, suggesting a functional relationship. By mRNA in situ analysis, we demonstrated a strong correlation between the spatiotemporal pattern of these OsAGO transcripts and phasiRNA accumulations.
Collapse
Affiliation(s)
- Qili Fei
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Li Yang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, South Australia 5064, Australia
| | - Blake C Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
664
|
Koul A, Yogindran S, Sharma D, Kaul S, Rajam MV, Dhar MK. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:412-421. [PMID: 27552179 DOI: 10.1016/j.plaphy.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.
Collapse
Affiliation(s)
- Archana Koul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sneha Yogindran
- Department of Genetics, University of Delhi (South Campus), New Delhi, 110021, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | | | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
665
|
Ghosh Dastidar M, Mosiolek M, Bleckmann A, Dresselhaus T, Nodine MD, Maizel A. Sensitive whole mount in situ localization of small RNAs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:694-702. [PMID: 27411563 DOI: 10.1111/tpj.13270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 05/25/2023]
Abstract
Small RNAs, such as microRNAs (miRNAs), regulate gene expression and play important roles in many plant processes. Although our knowledge of their biogenesis and mode of action has significantly progressed, we still have comparatively little information about their biological functions. In particular, knowledge about their spatio-temporal expression patterns rely on either indirect detection by use of reporter constructs or labor-intensive direct detection by in situ hybridization on sectioned material. None of the current approaches allows a systematic investigation of small RNA expression patterns. Here, we present a sensitive method for in situ detection of miRNAs and siRNAs in intact plant tissues that utilizes both double-labeled probes and a specific cross-linker. We determined the expression patterns of several small RNAs in diverse plant tissues.
Collapse
Affiliation(s)
- Mouli Ghosh Dastidar
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Magdalena Mosiolek
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Andrea Bleckmann
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Dresselhaus
- Institute for Cell Biology and Plant Biochemistry, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
666
|
Lv DQ, Liu SW, Zhao JH, Zhou BJ, Wang SP, Guo HS, Fang YY. Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Sci Rep 2016; 6:35751. [PMID: 27767195 PMCID: PMC5073342 DOI: 10.1038/srep35751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.
Collapse
MESH Headings
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Green Fluorescent Proteins/genetics
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/biosynthesis
- RNA, Viral/biosynthesis
- RNA-Binding Proteins/metabolism
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/virology
- Viroids/genetics
- Viroids/pathogenicity
- Viroids/physiology
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Dian-Qiu Lv
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
| | - Shang-Wu Liu
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Peng Wang
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
667
|
Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot. Sci Rep 2016; 6:35675. [PMID: 27762296 PMCID: PMC5071837 DOI: 10.1038/srep35675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022] Open
Abstract
Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation.
Collapse
|
668
|
Ferdous J, Whitford R, Nguyen M, Brien C, Langridge P, Tricker PJ. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genomics 2016; 17:279-292. [PMID: 27730426 DOI: 10.1007/s10142-016-0526-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Drought is one of the major abiotic stresses reducing crop yield. Since the discovery of plant microRNAs (miRNAs), considerable progress has been made in clarifying their role in plant responses to abiotic stresses, including drought. miR827 was previously reported to confer drought tolerance in transgenic Arabidopsis. We examined barley (Hordeum vulgare L. 'Golden Promise') plants over-expressing miR827 for plant performance under drought. Transgenic plants constitutively expressing CaMV-35S::Ath-miR827 and drought-inducible Zm-Rab17::Hv-miR827 were phenotyped by non-destructive imaging for growth and whole plant water use efficiency (WUEwp). We observed that the growth, WUEwp, time to anthesis and grain weight of transgenic barley plants expressing CaMV-35S::Ath-miR827 were negatively affected in both well-watered and drought-treated growing conditions compared with the wild-type plants. In contrast, transgenic plants over-expressing Zm-Rab17::Hv-miR827 showed improved WUEwp with no growth or reproductive timing change compared with the wild-type plants. The recovery of Zm-Rab17::Hv-miR827 over-expressing plants also improved following severe drought stress. Our results suggest that Hv-miR827 has the potential to improve the performance of barley under drought and that the choice of promoter to control the timing and specificity of miRNA expression is critical.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Ryan Whitford
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Martin Nguyen
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Chris Brien
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Penny J Tricker
- Australian Centre for Plant Functional Genomics, Plant Genomics Centre, Hartley Grove, Urrbrae, Adelaide, South Australia, 5064, Australia.
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
669
|
Wang Y, Wang Y, Song Z, Zhang H. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis. MOLECULAR PLANT 2016; 9:1395-1405. [PMID: 27450422 DOI: 10.1016/j.molp.2016.07.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiqing Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaoqing Song
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiyong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
670
|
Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Int J Mol Sci 2016; 17:ijms17101677. [PMID: 27739413 PMCID: PMC5085710 DOI: 10.3390/ijms17101677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.
Collapse
|
671
|
Yuan C, Meng X, Li X, Illing N, Ingle RA, Wang J, Chen M. PceRBase: a database of plant competing endogenous RNA. Nucleic Acids Res 2016; 45:D1009-D1014. [PMID: 28053167 PMCID: PMC5210625 DOI: 10.1093/nar/gkw916] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Competition for microRNA (miRNA) binding between RNA molecules has emerged as a novel mechanism for the regulation of eukaryotic gene expression. Competing endogenous RNA (ceRNA) can act as decoys for miRNA binding, thereby forming a ceRNA network by regulating the abundance of other RNA transcripts which share the same or similar microRNA response elements. Although this type of RNA cross talk was first described in Arabidopsis, and was subsequently shown to be active in animal models, there is no database collecting potential ceRNA data for plants. We have developed a Plant ceRNA database (PceRBase, http://bis.zju.edu.cn/pcernadb/index.jsp) which contains potential ceRNA target-target, and ceRNA target-mimic pairs from 26 plant species. For example, in Arabidopsis lyrata, 311 candidate ceRNAs are identified which could affect 2646 target–miRNA–target interactions. Predicted pairing structure between miRNAs and their target mRNA transcripts, expression levels of ceRNA pairs and associated GO annotations are also stored in the database. A web interface provides convenient browsing and searching for specific genes of interest. Tools are available for the visualization and enrichment analysis of genes in the ceRNA networks. Moreover, users can use PceRBase to predict novel competing mimic-target and target–target interactions from their own data.
Collapse
Affiliation(s)
- Chunhui Yuan
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Meng
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue Li
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Jingjing Wang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Science, College of Life Sciences, Zhejiang University, Hangzhou 310058, China .,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
672
|
Yogindran S, Rajam MV. Artificial miRNA-mediated silencing of ecdysone receptor (EcR) affects larval development and oogenesis in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:21-30. [PMID: 27476930 DOI: 10.1016/j.ibmb.2016.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 05/27/2023]
Abstract
The insect pests are real threat to farmers as they affect the crop yield to a great extent. The use of chemical pesticides for insect pest control has always been a matter of concern as they pollute the environment and are also harmful for human health. Bt (Bacillus thuringensis) technology helped the farmers to get rid of the insect pests, but experienced a major drawback due to the evolution of insects gaining resistance towards these toxins. Hence, alternative strategies are high on demand to control insect pests. RNA-based gene silencing is emerging as a potential tool to tackle with this problem. In this study, we have shown the use of artificial microRNA (amiRNA) to specifically target the ecdysone receptor (EcR) gene of Helicoverpa armigera (cotton bollworm), which attacks several important crops like cotton, tomato chickpea, pigeon pea, etc and causes huge yield losses. Insect let-7a precursor miRNA (pre-miRNA) backbone was used to replace the native miRNA with that of amiRNA. The precursor backbone carrying the 21 nucleotide amiRNA sequence targeting HaEcR was cloned in bacterial L4440 vector for in vitro insect feeding experiments. Larvae fed with Escherichia coli expressing amiRNA-HaEcR showed a reduction in the expression of target gene as well as genes involved in the ecdysone signaling pathway downstream to EcR and exhibited mortality and developmental defects. Stem-loop RT-PCR revealed the presence of amiRNA in the insect larvae after feeding bacteria expressing amiRNA-HaEcR, which was otherwise absent in controls. We also found a significant drop in the reproduction potential (oogenesis) of moths which emerged from treated larvae as compared to control. These results demonstrate the successful use of an insect pre-miRNA backbone to express amiRNA for gene silencing studies in insects. The method is cost effective and can be exploited as an efficient and alternative tool for insect pest management.
Collapse
Affiliation(s)
- Sneha Yogindran
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
673
|
Zhou R, Wang Q, Jiang F, Cao X, Sun M, Liu M, Wu Z. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci Rep 2016; 6:33777. [PMID: 27653374 PMCID: PMC5031959 DOI: 10.1038/srep33777] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/02/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are 19-24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Zhongling Street No. 50, Nanjing, 210014, China
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu province, Jiangsu, Nanjing, China
| | - Qian Wang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| | - Xue Cao
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| | - Mintao Sun
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095, China
| |
Collapse
|
674
|
Iqbal MS, Hafeez MN, Wattoo JI, Ali A, Sharif MN, Rashid B, Tabassum B, Nasir IA. Prediction of Host-Derived miRNAs with the Potential to Target PVY in Potato Plants. Front Genet 2016; 7:159. [PMID: 27683585 PMCID: PMC5022016 DOI: 10.3389/fgene.2016.00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Potato virus Y has emerged as a threatening problem in all potato growing areas around the globe. PVY reduces the yield and quality of potato cultivars. During the last 30 years, significant genetic changes in PVY strains have been observed with an increased incidence associated with crop damage. In the current study, computational approaches were applied to predict Potato derived miRNA targets in the PVY genome. The PVY genome is approximately 9 thousand nucleotides, which transcribes the following 6 genes:CI, NIa, NIb-Pro, HC-Pro, CP, and VPg. A total of 343 mature miRNAs were retrieved from the miRBase database and were examined for their target sequences in PVY genes using the minimum free energy (mfe), minimum folding energy, sequence complementarity and mRNA-miRNA hybridization approaches. The identified potato miRNAs against viral mRNA targets have antiviral activities, leading to translational inhibition by mRNA cleavage and/or mRNA blockage. We found 86 miRNAs targeting the PVY genome at 151 different sites. Moreover, only 36 miRNAs potentially targeted the PVY genome at 101 loci. The CI gene of the PVY genome was targeted by 32 miRNAs followed by the complementarity of 26, 19, 18, 16, and 13 miRNAs. Most importantly, we found 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the CI, NIa, NIb-Pro, HC-Pro, CP, and VPg genes of PVY. The predicted miRNAs can be used for the development of PVY-resistant potato crops in the future.
Collapse
Affiliation(s)
- Muhammad S Iqbal
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Muhammad N Hafeez
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Javed I Wattoo
- Faculty of Life Sciences, University of Central Punjab Lahore, Pakistan
| | - Arfan Ali
- Centre of Excellence in Molecular Biology, University of the PunjabLahore, Pakistan; Institute of Molecular Biology and Biotechnology, The University of LahoreLahore, Pakistan
| | - Muhammad N Sharif
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Idrees A Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
675
|
Lian S, Cho WK, Kim SM, Choi H, Kim KH. Time-Course Small RNA Profiling Reveals Rice miRNAs and Their Target Genes in Response to Rice Stripe Virus Infection. PLoS One 2016; 11:e0162319. [PMID: 27626631 PMCID: PMC5023111 DOI: 10.1371/journal.pone.0162319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
It has been known that many microRNAs (miRNAs) are involved in the regulation for the plant development and defense mechanism by regulating the expression of the target gene. Several previous studies has demonstrated functional roles of miRNAs in antiviral defense mechanisms. In this study, we employed high-throughput sequencing technology to identify rice miRNAs upon rice stripe virus (RSV) infection at three different time points. Six libraries from mock and RSV-infected samples were subjected for small RNA sequencing. Bioinformatic analyses revealed 374 known miRNAs and 19 novel miRNAs. Expression of most identified miRNAs was not dramatically changed at 3 days post infection (dpi) and 7 dpi by RSV infection. However, many numbers of miRNAs were up-regulated in mock and RSV-infected samples at 15 dpi by RSV infection. Moreover, expression profiles of identified miRNAs revealed that only few numbers of miRNAs were strongly regulated by RSV infection. In addition, 15 resistance genes were targets of six miRNAs suggesting that those identified miRNAs and 15 NBS-LRR resistance genes might be involved in RSV infection. Taken together, our results provide novel insight into the dynamic expression profiles of rice miRNAs upon RSV infection and clues for the understanding of the regulatory roles of miRNAs via time-course.
Collapse
Affiliation(s)
- Sen Lian
- College of Crop Protection and Agronomy, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Min Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
676
|
Jiao Y, Kong L, Yao Y, Li S, Tao Z, Yan Y, Yang J. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease. Neuropharmacology 2016; 108:332-44. [DOI: 10.1016/j.neuropharm.2016.04.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/07/2016] [Accepted: 04/29/2016] [Indexed: 11/27/2022]
|
677
|
Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, Tang L, Chen F. Liquid Hybridization and Solid Phase Detection: A Highly Sensitive and Accurate Strategy for MicroRNA Detection in Plants and Animals. Int J Mol Sci 2016; 17:E1457. [PMID: 27598139 PMCID: PMC5037736 DOI: 10.3390/ijms17091457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in nearly every aspect of biology, including physiological, biochemical, developmental and pathological processes. Therefore, a highly sensitive and accurate method of detection of miRNAs has great potential in research on theory and application, such as the clinical approach to medicine, animal and plant production, as well as stress response. Here, we report a strategic method to detect miRNAs from multicellular organisms, which mainly includes liquid hybridization and solid phase detection (LHSPD); it has been verified in various species and is much more sensitive than traditional biotin-labeled Northern blots. By using this strategy and chemiluminescent detection with digoxigenin (DIG)-labeled or biotin-labeled oligonucleotide probes, as low as 0.01-0.25 fmol [for DIG-CDP Star (disodium2-chloro-5-(4-methoxyspiro{1,2-dioxetane-3,2'-(5'-chloro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl phosphate) system], 0.005-0.1 fmol (for biotin-CDP Star system), or 0.05-0.5 fmol (for biotin-luminol system) of miRNA can be detected and one-base difference can be distinguished between miRNA sequences. Moreover, LHSPD performed very well in the quantitative analysis of miRNAs, and the whole process can be completed within about 9 h. The strategy of LHSPD provides an effective solution for rapid, accurate, and sensitive detection and quantitative analysis of miRNAs in plants and animals.
Collapse
Affiliation(s)
- Fosheng Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Lanju Mei
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Cheng Zhan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Qiang Mao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
- Chengdu Botanical Garden, Chengdu 610083, Sichuan, China.
| | - Min Yao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Shenghua Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Lin Tang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610000, Sichuan, China.
| |
Collapse
|
678
|
Cao JY, Xu YP, Zhao L, Li SS, Cai XZ. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. PLANT MOLECULAR BIOLOGY 2016; 92:39-55. [PMID: 27325118 DOI: 10.1007/s11103-016-0494-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/19/2016] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are multifunctional non-coding short nucleotide molecules. Nevertheless, the role of miRNAs in the interactions between plants and necrotrophic pathogens is largely unknown. Here, we report the identification of the miRNA repertoire of the economically important oil crop oilseed rape (Brassica napus) and those involved in interacting with its most devastating necrotrophic pathogen Sclerotinia sclerotiorum. We identified 280 B. napus miRNA candidates, including 53 novel candidates and 227 canonical members or variants of known miRNA families, by high-throughput deep sequencing of small RNAs from both normal and S. sclerotiorum-inoculated leaves. Target genes of 15 novel candidates and 222 known miRNAs were further identified by sequencing of degradomes from the two types of samples. MiRNA microarray analysis revealed that 68 miRNAs were differentially expressed between S. sclerotiorum-inoculated and uninoculated leaves. A set of these miRNAs target genes involved in plant defense to S. sclerotiorum and/or other pathogens such as nucleotide binding site-leucine-rich repeat (NBS-LRR) R genes and nitric oxygen and reactive oxygen species related genes. Additionally, three miRNAs target AGO1 and AGO2, key components of post-transcriptional gene silencing (PTGS). Expression of several viral PTGS suppressors reduced resistance to S. sclerotiorum. Arabidopsis mutants of AGO1 and AGO2 exhibited reduced resistance while transgenic lines over-expressing AGO1 displayed increased resistance to S. sclerotiorum in an AGO1 expression level-dependent manner. Moreover, transient over-expression of miRNAs targeting AGO1 and AGO2 decreased resistance to S. sclerotiorum in oilseed rape. Our results demonstrate that the interactions between B. napus and S. sclerotiorum are tightly regulated at miRNA level and probably involve PTGS.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Li Zhao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Shuang-Sheng Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
679
|
Zhang X, Wang W, Wang M, Zhang HY, Liu JH. The miR396b of Poncirus trifoliata Functions in Cold Tolerance by Regulating ACC Oxidase Gene Expression and Modulating Ethylene-Polyamine Homeostasis. PLANT & CELL PHYSIOLOGY 2016; 57:1865-78. [PMID: 27402968 DOI: 10.1093/pcp/pcw108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/29/2016] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are non-coding regulatory molecules that play important roles in a variety of biological processes. Although a number of cold-responsive miRNAs have been computationally identified, functions and mechanisms of most miRNAs are not well understood. Herein, the function of trifoliate orange [Poncirus trifoliata (L.) Raf.] miRNA396b (ptr-miR396b) in cold tolerance and its potential regulatory module were investigated. Compared with the wild type (WT), transgenic lemon (Citrus limon) plants overexpressing ptr-MIR396b, the precursor of ptr-miR396b, displayed enhanced cold tolerance. Ptr-miR396b was experimentally confirmed to guide the cleavage of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). The overexpressing lines exhibited a reduction in ACO transcript levels and ethylene content compared with the WT, and the expression pattern of ACO was opposite to that of ptr-miR396b in response to cold stress. In addition, the transgenic lines exhibited higher levels of free polyamines and mRNA abundance of polyamine biosynthetic genes than WT plants under cold treatment, consistent with reduced reactive oxygen species (ROS) accumulation in the former. Taken together, this study demonstrates that ptr-miR396b positively regulates cold tolerance through reducing ACO transcript levels, thereby repressing ethylene synthesis and simultaneously promoting polyamine synthesis, leading to enhanced ROS scavenging. Identification of the ptr-miR396b-ACO regulatory module provides new insights into the molecular mechanism underlying the reduction of ethylene production under cold.
Collapse
Affiliation(s)
- Xiaona Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China These authors contributed equally to this work
| | - Wei Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China These authors contributed equally to this work
| | - Ming Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong-Yan Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
680
|
Hu J, Jin J, Qian Q, Huang K, Ding Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics 2016; 17:684. [PMID: 27565736 PMCID: PMC5002175 DOI: 10.1186/s12864-016-3032-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play important roles in plant growth and development. MiRNAs and their targets have been widely studied in model plants, but limited knowledge is available concerning this small RNA population and their targets in sacred lotus (Nelumbo nucifera Gaertn.). RESULTS In this study, a total of 145 known miRNAs belonging to 47 families and 78 novel miRNAs were identified during seed germination using high-throughput small RNA sequencing. Furthermore, some miRNA families which have not yet been reported in monocot or eudicot species were detected in N. nucifera, indicating that these miRNAs was divergence from monocots and core eudicots during evolution. Using degradome sequencing, 2580 targets were detected for all the miRNAs. GO (Gene Ontology) and KEGG pathway analyses showed that many target genes enriched in "regulation of transcription" and involved in "carbohydrate", "amino acid and energy metabolism". Nine miRNAs and three corresponding targets of them were further validated by quantitative RT-PCR. CONCLUSIONS The results present here suggested that many miRNAs were involved in the regulation of seed germination of sacred lotus, providing a foundation for future studies of sacred lotus seed longevity. Comparative analysis of miRNAs from different plants also provided insight into the evolutionary gains and losses of miRNAs in plants.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Jing Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Qian Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Keke Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
681
|
Liu H, Able AJ, Able JA. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics 2016; 17:237-251. [PMID: 27562677 DOI: 10.1007/s10142-016-0515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) guide regulation at the post-transcriptional level by inducing messenger RNA (mRNA) degradation or translational inhibition of their target protein-coding genes. Durum wheat miRNAs may contribute to the genotypic water-deficit stress response in different durum varieties. Further investigation of the interactive miRNA-target regulatory modules and experimental validation of their response to water stress will contribute to our understanding of the small RNA-mediated molecular networks underlying stress adaptation in durum wheat. In this study, a comprehensive genome-wide in silico analysis using the updated Triticum transcriptome assembly identified 2055 putative targets for 113 conserved durum miRNAs and 131 targets for four novel durum miRNAs that putatively contribute to genotypic stress tolerance. Predicted mRNA targets encode various transcription factors, binding proteins and functional enzymes, which play vital roles in multiple biological pathways such as hormone signalling and metabolic processes. Quantitative PCR profiling further characterised 43 targets and 5 miRNAs with stress-responsive and/or genotype-dependent differential expression in two stress-tolerant and two stress-sensitive durum genotypes subjected to pre-anthesis water-deficit stress. Furthermore, a 5' RLM-RACE approach validated nine mRNA targets cleaved by water-deficit stress-responsive miRNAs, which, to our knowledge, has not been previously reported in durum wheat. The present study provided experimental evidence of durum miRNAs and target genes in response to water-deficit stress in contrasting durum varieties, providing new insights into the regulatory roles of the miRNA-guided RNAi mechanism underlying stress adaptation in durum wheat.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
682
|
Hosseini A, Ghaedi K, Tanhaei S, Ganjalikhani-Hakemi M, Teimuri S, Etemadifar M, Nasr Esfahani MH. Upregulation of CD4+T-Cell Derived MiR-223 in The Relapsing Phase of Multiple Sclerosis Patients. CELL JOURNAL 2016; 18:371-80. [PMID: 27602319 PMCID: PMC5011325 DOI: 10.22074/cellj.2016.4565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Objective MicroRNAs (miRNA) are a class of non-coding RNAs which play key roles in
post-transcriptional gene regulation. Previous studies indicate that miRNAs are dysregulated in patients with multiple sclerosis (MS). Th17 and regulatory T (Treg) cells are two
subsets of CD4+T-cells which have critical functions in the onset and progression of MS.
The current study seeks to distinguish fluctuations in expression of CD4+T-cell derived
miR-223 during the relapsing-remitting (RR) phase of MS (RR-MS), as well as the expressions of Th17 and Treg cell markers.
Materials and Methods This experimental study used real-time quantitative polymerase
chain reaction (qRT-PCR) to evaluate CD4+ T cell derived miR-223 expression patterns
in patients that experienced either of the RR-MS phases (n=40) compared to healthy controls (n=12), along with RNA markers for Th17 and Treg cells. We conducted flow cytometry analyses of forkhead box P3 (FOXP3) and RAR-related orphan receptor γt (RORγt) in
CD4+T-cells. Putative and validated targets of miR-223 were investigated in the miRWalk
and miRTarBase databases, respectively.
Results miR-223 significantly upregulated in CD4+T-cells during the relapsing phase of
RR-MS compared to the remitting phase (P=0.000) and healthy individuals (P=0.036).
Expression of RORγt, a master transcription factor of Th17, upregulated in the relapsing phase, whereas FOXP3 upregulated in the remitting phase. Additionally, potential
targets of miR-223, STAT1, FORKHEAD BOX O (FOXO1) and FOXO3 were predicted
by in silico studies.
Conclusion miR-223 may have a potential role in MS progression. Therefore, suppression of miR-223 can be proposed as an appropriate approach to control progression of the relapsing phase of MS.
Collapse
Affiliation(s)
- Aref Hosseini
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Tanhaei
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Shohreh Teimuri
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
683
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Xie S. Identification of conserved and novel microRNAs in Porphyridium purpureum via deep sequencing and bioinformatics. BMC Genomics 2016; 17:612. [PMID: 27516065 PMCID: PMC4981961 DOI: 10.1186/s12864-016-2985-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Background Porphyridium purpureum has been utilized in important industrial and pharmaceutical fields. The identification of microRNAs (miRNAs) in this unique species is of great importance: such identification can help fill gaps in the small RNA (sRNA) studies of this organism and help to elucidate essential biological processes and their regulation mechanisms in this special micro alga. Results In this study, 254 high-confidence miRNAs (203 conserved miRNAs and 51 novel miRNAs) were identified by sRNA deep sequencing (sRNA-seq) combined with bioinformatics. A total of 235 putative miRNA families were predicted, including 192 conserved families and 43 species-specific families. The conservation and diversity of predicted miRNA families were analysed in different plant species. Both the 100 % northern blot validation rate (VR) of four randomly selected miRNAs and the results of stem-loop quantitative real time RT-PCR (qRT-PCR) assays of 25 randomly selected miRNAs demonstrated that the majority of the miRNAs identified in this study are credible. A total of 14,958 and 2184 genes were predicted to be targeted by the 186 conserved and 41 novel miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that some target genes likely provide valuable references for further understanding of vital functions in P. purpureum. In addition, a cytoscape network will provide some clues for research into the complex biological processes that occur in this unique alga. Conclusions We first identified a large set of conserved and novel miRNAs in P. purpureum. The characteristic and validation analysis on miRNAs demonstrated authenticity of identification data. Functional annotation of target genes and metabolic pathways they involved in illuminated the direction for further utilization and development this micro alga based on its unique properties. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2985-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
684
|
Kim D, Thairu MW, Hansen AK. Novel Insights into Insect-Microbe Interactions-Role of Epigenomics and Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1164. [PMID: 27540386 PMCID: PMC4972996 DOI: 10.3389/fpls.2016.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory "dark matter" such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes.
Collapse
|
685
|
Zhang H, Jin W, Zhu X, Liu L, He Z, Yang S, Liang Z, Yan X, He Y, Liu Y. Identification and Characterization of Salvia miltiorrhizain miRNAs in Response to Replanting Disease. PLoS One 2016; 11:e0159905. [PMID: 27483013 PMCID: PMC4970794 DOI: 10.1371/journal.pone.0159905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
Replanting disease is a major factor limiting the artificial cultivation of the traditional Chinese medicinal herb Salvia miltiorrhiza. At present, little information is available regarding the role of miRNAs in response to replanting disease. In this study, two small RNA libraries obtained from first-year (FPR) and second-year plant (SPR) roots were subjected to a high-throughput sequencing method. Bioinformatics analysis revealed that 110 known and 7 novel miRNAs were annotated in the roots of S. miltiorrhiza. Moreover, 39 known and 2 novel miRNAs were identified and validated for differential expression in FPR compared with SPR. Thirty-one of these miRNAs were further analyzed by qRT-PCR, which revealed that 5 miRNAs negatively regulated the expression levels of 7 target genes involved in root development or stress responses. This study not only provides novel insights into the miRNA content of S. miltiorrhiza in response to replanting disease but also demonstrates that 5 miRNAs may be involved in these responses. Interactions among the differentially expressed miRNAs with their targets may form an important component of the molecular basis of replanting disease in S. miltiorrhiza.
Collapse
Affiliation(s)
- Haihua Zhang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weibo Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaole Zhu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Lin Liu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Zhigui He
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Shushen Yang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Zongsuo Liang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xijun Yan
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, 300410, China
| | - Yanfeng He
- Tasly R&D Institute, Tasly Holding Group Co. Ltd, Tianjin, 300410, China
| | - Yan Liu
- Tianjin Tasly Modern TCM Resources Co., Ltd., Tianjin, 300402, China
| |
Collapse
|
686
|
Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, Li S, Bai MY, Hu Y, Xiang F. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:391-402. [PMID: 27189514 DOI: 10.1111/tpj.13211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 05/06/2023]
Abstract
In tissue culture systems plant cells can be induced to regenerate to whole plants. A particularly striking example of cellular reprogramming is seen in this regeneration process, which typically begins with the induction of an intermediate cell mass referred to as callus. The identity of the key genetic cues associated with callus formation is still largely unknown. Here a microRNA-directed phytohormonal interaction is described which represses callus initiation and formation in Arabidopsis thaliana. miR160 and ARF10 (At2g28350), a gene encoding an auxin response factor, were shown to exhibit a contrasting pattern of transcription during callus initiation from pericycle-like cells. The callus initiation is faster and more prolific in a miR160-resistant form of ARF10 (mARF10), but slower and less prolific in the transgenic line over-expressing miR160c (At5g46845), arf10 and arf10 arf16 mutants than that in the wild type. ARF10 repressed the expression of Arabidopsis Response Regulator15 (ARR15, At1g74890) via its direct binding to the gene's promoter. The loss of function of ARR15 enhanced callus initiation and partly rescued the phenotype induced by the transgene Pro35S:miR160c. Overexpression of ARR15 partly rescues the callus initiation defect of mARF10 plants. Our findings define miR160 as a key repressor of callus formation and reveal that the initiation of callus is repressed by miR160-directed interaction between auxin and cytokinin.
Collapse
Affiliation(s)
- Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Juan Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Long Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Qiang Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Qing Lu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Yanchong Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
687
|
Zhou Y, Xu Z, Duan C, Chen Y, Meng Q, Wu J, Hao Z, Wang Z, Li M, Yong H, Zhang D, Zhang S, Weng J, Li X. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4593-609. [PMID: 27493226 PMCID: PMC4973738 DOI: 10.1093/jxb/erw244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Maize rough dwarf disease (MRDD) is a viral infection that results in heavy yield losses in maize worldwide, particularly in the summer maize-growing regions of China. MRDD is caused by the Rice black-streaked dwarf virus (RBSDV). In the present study, analyses of microRNAs (miRNAs), the degradome, and transcriptome sequences were used to elucidate the RBSDV-responsive pathway(s) in maize. Genomic analysis indicated that the expression of three non-conserved and 28 conserved miRNAs, representing 17 known miRNA families and 14 novel miRNAs, were significantly altered in response to RBSDV when maize was inoculated at the V3 (third leaf) stage. A total of 99 target transcripts from 48 genes of 10 known miRNAs were found to be responsive to RBSDV infection. The annotations of these target genes include a SQUAMOSA promoter binding (SPB) protein, a P450 reductase, an oxidoreductase, and a ubiquitin-related gene, among others. Characterization of the entire transcriptome suggested that a total of 28 and 1085 differentially expressed genes (DEGs) were detected at 1.5 and 3.0 d, respectively, after artificial inoculation with RBSDV. The expression patterns of cell wall- and chloroplast-related genes, and disease resistance- and stress-related genes changed significantly in response to RBSDV infection. The negatively regulated genes GRMZM2G069316 and GRMZM2G031169, which are the target genes for miR169i-p5 and miR8155, were identified as a nucleolin and a NAD(P)-binding Rossmann-fold superfamily protein in maize, respectively. The gene ontology term GO:0003824, including GRMZM2G031169 and other 51 DEGs, was designated as responsive to RBSDV.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang Province 150030, China
| | - Zhennan Xu
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang Province 150030, China
| | - Canxing Duan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Yanping Chen
- Jiangsu Academy of Agricultural Sciences, Zhongling Street, Xuanwu District, Nanjing, Jiangsu Province 210014, China
| | - Qingchang Meng
- Jiangsu Academy of Agricultural Sciences, Zhongling Street, Xuanwu District, Nanjing, Jiangsu Province 210014, China
| | - Jirong Wu
- Jiangsu Academy of Agricultural Sciences, Zhongling Street, Xuanwu District, Nanjing, Jiangsu Province 210014, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang Province 150030, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Shihuang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
688
|
Identification of Known and Novel microRNAs and Their Targets in Peach (Prunus persica) Fruit by High-Throughput Sequencing. PLoS One 2016; 11:e0159253. [PMID: 27466805 PMCID: PMC4965121 DOI: 10.1371/journal.pone.0159253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/29/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that have functions in post-transcriptional gene regulation in plants. Although the most important economic component of peach trees (Prunus persica) is the fruit, not much is known about miRNAs in this organ. In this study, miRNAs and their targets were identified and characterized from libraries of small RNAs of peach fruit through Solexa based-sequencing and bioinformatics approaches. A total of 557 known peach miRNAs belonging to 34 miRNA families were identified, and some of these miRNAs were found to be highly conserved in at least four other plant species. Using the most current criteria for miRNA annotation, 275 putative novel miRNAs were predicted, and the sequencing frequencies of these novel miRNAs were less than those of the conserved miRNAs. In total, 3959 and 1614 target genes for 349 known and 193 novel miRNAs, respectively, were predicted with the criteria that a single target gene can be targeted by different miRNAs and that a single miRNA can also have a large number of target genes. Three targets were even found to be targeted by 13 novel miRNAs that contained the same complete miRNA sequence at different locations and had different scaffolds. The proteins predicted to be targeted by the miRNAs identified in this study encompass a wide range of transcription factors and are involved in many biological processes and pathways, including development, metabolism, stress responses and signal transduction. A total of 115 and 101 target genes were identified to be cleaved by 60 known miRNAs and 27 novel miRNAs through degradome sequencing, respectively. These miRNAs induce cleavage of their targets precisely at the position between nucleotides 10 and 11 of the miRNA sequences from the 5’ to the 3’ end. Thirty conserved miRNAs and 19 novel miRNAs exhibited differential expression profiles in the peach, and the expression patterns of some miRNAs appeared to be tissue- or developmental stage-specific. The findings of this study provide an important basis for the analysis of miRNAs, their targets and the functions of these targets in peach fruit.
Collapse
|
689
|
Wu FY, Tang CY, Guo YM, Yang MK, Yang RW, Lu GH, Yang YH. Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines by High-Throughput Sequencing and Degradome Analysis. PLoS One 2016; 11:e0159810. [PMID: 27463682 PMCID: PMC4962988 DOI: 10.1371/journal.pone.0159810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/10/2016] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in plant growth, development, and response to environment. For identifying and comparing miRNAs and their targets in seed development between two maize inbred lines (i.e. PH6WC and PH4CV), two sRNAs and two degradome libraries were constructed. Through high-throughput sequencing and miRNA identification, 55 conserved and 24 novel unique miRNA sequences were identified in two sRNA libraries; moreover, through degradome sequencing and analysis, 137 target transcripts corresponding to 38 unique miRNA sequences were identified in two degradome libraries. Subsequently, 16 significantly differentially expressed miRNA sequences were verified by qRT-PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with regulation in flowering and development in embryo. Therefore, the results suggested that some miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development might differentially express in seed development between the PH6WC and PH4CV maize inbred lines in this present study.
Collapse
Affiliation(s)
- Feng-Yao Wu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Min Guo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
690
|
Xia J, Wang X, Perroud PF, He Y, Quatrano R, Zhang W. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens. Sci Rep 2016; 6:30118. [PMID: 27443635 PMCID: PMC4957126 DOI: 10.1038/srep30118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants.
Collapse
Affiliation(s)
- Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Xiaoqin Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China.,Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ralph Quatrano
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
691
|
Huang J, Li Z, Zhao D. Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice. Sci Rep 2016; 6:29938. [PMID: 27444058 PMCID: PMC4956771 DOI: 10.1038/srep29938] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) control gene expression as key negative regulators at the post-transcriptional level. MiR160 plays a pivotal role in Arabidopsis growth and development through repressing expression of its target AUXIN RESPONSE FACTOR (ARF) genes; however, the function of miR160 in monocots remains elusive. In this study, we found that the mature rice miR160 (OsmiR160) was mainly derived from OsMIR160a and OsMIR160b genes. Among four potential OsmiR160 target OsARF genes, the OsARF18 transcript was cleaved at the OsmiR160 target site. Rice transgenic plants (named mOsARF18) expressing an OsmiR160-resistant version of OsARF18 exhibited pleiotropic defects in growth and development, including dwarf stature, rolled leaves, and small seeds. mOsARF18 leaves were abnormal in bulliform cell differentiation and epidermal cell division. Starch accumulation in mOsARF18 seeds was also reduced. Moreover, auxin induced expression of OsMIR160a, OsMIR160b, and OsARF18, whereas expression of OsMIR160a and OsMIR160b as well as genes involved in auxin signaling was altered in mOsARF18 plants. Our results show that negative regulation of OsARF18 expression by OsmiR160 is critical for rice growth and development via affecting auxin signaling, which will advance future studies on the molecular mechanism by which miR160 fine-tunes auxin signaling in plants.
Collapse
Affiliation(s)
- Jian Huang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Zhiyong Li
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
692
|
Sharma S, Shrivastava N. Renaissance in phytomedicines: promising implications of NGS technologies. PLANTA 2016; 244:19-38. [PMID: 27002972 DOI: 10.1007/s00425-016-2492-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Medicinal plant research is growing significantly in faith to discover new and more biologically compatible phytomedicines. Deposition of huge genome/trancriptome sequence data assisted by NGS technologies has revealed the new possibilities for producing upgraded bioactive molecules in medicinal plants. Growing interest of investors and consumers in the herbal drugs raises the need for extensive research to open the facts and details of every inch of life canvas of medicinal plants to produce improved quality of phytomedicines. As in agriculture crops, knowledge emergence from medicinal plant's genome/transcriptome, can be used to assure their amended quality and these improved varieties are then transported to the fields for cultivation. Genome studies generate huge sequence data which can be exploited further for obtaining information regarding genes/gene clusters involved in biosynthesis as well as regulation. This can be achieved rapidly at a very large scale with NGS platforms. Identification of new RNA molecules has become possible, which can lead to the discovery of novel compounds. Sequence information can be combined with advanced phytochemical and bioinformatics tools to discover functional herbal drugs. Qualitative and quantitative analysis of small RNA species put a light on the regulatory aspect of biosynthetic pathways for phytomedicines. Inter or intra genomic as well as transcriptomic interactive processes for biosynthetic pathways can be elucidated in depth. Quality management of herbal material will also become rapid and high throughput. Enrichment of sequence information will be used to engineer the plants to get more efficient phytopharmaceuticals. The present review comprises of role of NGS technologies to boost genomic studies of pharmaceutically important plants and further, applications of sequence information aiming to produce enriched phytomedicines. Emerging knowledge from the medicinal plants genome/transcriptome can give birth to deep understanding of the processes responsible for biosynthesis of medicinally important compounds.
Collapse
Affiliation(s)
- Sonal Sharma
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India
- Nirma University, Ahmedabad, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India.
| |
Collapse
|
693
|
Ding Q, Zeng J, He XQ. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:1-9. [PMID: 27111502 DOI: 10.1016/j.jplph.2016.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 05/10/2023]
Abstract
Dormancy is an effective strategy for perennial plants in temperate zones to survive the winter stress. MicroRNAs (miRNAs) have been well known as important regulators for various biological processes. In this study, we checked the expression of miR169 members in the cambium zone during dormancy and active growth in poplar and found that they had distinct expression patterns. We identified and characterized a dormancy-specific target gene of miR169, PagHAP2-6. 5' RACE assays confirmed the direct cleavage of PagHAP2-6 mRNA by miR169. The yeast functional complementation analysis showed that PagHAP2-6 was a homolog of Heme Activator Protein2 (HAP2)/Nuclear factor Y-A (NF-YA) transcription factor in poplar. qRT-PCR analysis indicated that PagHAP2-6 was highly expressed in the dormant stage, which was converse to the expression pattern of pag-miR169a, n, and r. In addition, the transcription of PagHAP2-6 was induced by exogenous abscisic acid (ABA), and both over-expression of PagHAP2-6 in Arabidopsis and transient co-expression assays in Nicotiana benthamiana indicated that PagHAP2-6 could increase the resistance to exogenous ABA. Taken together, the results suggested that miR169 and its target PagHAP2-6 regulated by ABA were involved in poplar cambium dormancy, which provided new insights into the regulatory mechanisms of tree dormancy-active growth transition.
Collapse
Affiliation(s)
- Qi Ding
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Zeng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
694
|
Yuan N, Yuan S, Li Z, Li D, Hu Q, Luo H. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis. Sci Rep 2016; 6:28791. [PMID: 27350219 PMCID: PMC4923854 DOI: 10.1038/srep28791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 11/09/2022] Open
Abstract
Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil -SO4(2-)- is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| | - Shuangrong Yuan
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| | - Dayong Li
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 105 Collings street, 110 Biosystems Research Complex, Clemson, South Carolina, 29634-0318, USA
| |
Collapse
|
695
|
Li D, Mou W, Luo Z, Li L, Limwachiranon J, Mao L, Ying T. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Sci Rep 2016; 6:28385. [PMID: 27325048 PMCID: PMC4914977 DOI: 10.1038/srep28385] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023] Open
Abstract
Abscisic acid (ABA) is a critical plant hormone for fruit ripening and adaptive stress responses in strawberry. Previous high-throughput sequencing results indicated that ABA-insensitive (ABI)5, an important transcription factor in the ABA signaling pathway, was a target for a novel microRNA (miRNA), Fan-miR73. In the present study, exogenous ABA treatment was found to accelerate fruit ripening through differentially regulating the transcripts of ABA metabolism and signal transduction related genes, including NCED1, PYR1, ABI1, and SnRK2.2. Expression of Fan-miR73 was down-regulated in response to exogenous ABA treatment in a dosage-dependent manner, which resulted in an accumulation of ABI5 transcripts in the ripening-accelerated fruits. In addition, both UV-B radiation and salinity stress reduced the transcript levels of Fan-miR73, whereas promoted ABI5 expression. Furthermore, high negative correlations between the transcriptional abundance of Fan-miR73 and ABI5 were observed during ripening and in response to stress stimuli. These results enriched the possible regulatory role of miRNA involved in the post-transcriptional modification of ABI5 during strawberry ripening, as well as responses to environmental stresses.
Collapse
Affiliation(s)
- Dongdong Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Wangshu Mou
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Jarukitt Limwachiranon
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Linchun Mao
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| | - Tiejin Ying
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
696
|
Zhu Z, Miao Y, Guo Q, Zhu Y, Yang X, Sun Y. Identification of miRNAs Involved in Stolon Formation in Tulipa edulis by High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:852. [PMID: 27446103 PMCID: PMC4914584 DOI: 10.3389/fpls.2016.00852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/31/2016] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding small RNAs that play an important role in transcriptional and post-transcriptional gene regulation. However, the sequence information and functions of miRNAs are still unexplored in Tulipa edulis. In this study, high-throughput sequencing was used to identify small RNAs in stolon formation stages (stage 1, 2, and 3) in T. edulis. A total of 12,890,912, 12,182,122, and 12,061,434 clean reads were obtained from stage 1, 2, and 3, respectively. Among the reads, 88 conserved miRNAs and 70 novel miRNAs were identified. Target prediction of 122 miRNAs resulted in 531 potential target genes. Nr, Swiss-Prot, GO, COG, and KEGG annotations revealed that these target genes participate in many biologic and metabolic processes. Moreover, qRT-PCR was performed to analyze the expression levels of the miRNAs and target genes in stolon formation. The results revealed that miRNAs play a key role in T. edulis stolon formation.
Collapse
Affiliation(s)
- Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yuanyuan Miao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yunhao Zhu
- College of Pharmacy, Henan University of Chinese MedicineZhengzhou, China
| | - Xiaohua Yang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| | - Yuan Sun
- Institute of Chinese Medicinal Materials, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
697
|
Pearce S, Kippes N, Chen A, Debernardi JM, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC PLANT BIOLOGY 2016; 16:141. [PMID: 27329140 PMCID: PMC4915087 DOI: 10.1186/s12870-016-0831-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND In cereal crops such as wheat, an optimal timing of developmental transitions is required to maximize grain yield. Many of these developmental changes are precisely regulated by changes in the duration, intensity or quality of light. Phytochromes are dimeric photoreceptors that absorb light maximally in the red and far-red wavelengths and induce large-scale transcriptional changes in response to variation in light quality. In wheat, PHYC is required for early flowering under long days. However, it is currently unknown whether this function requires the presence of PHYB. In this study, we characterized the role of PHYB in wheat development and used RNA-seq to analyze and compare the transcriptomes of phyB-null and phyC-null TILLING mutants. RESULTS Under long-day photoperiods, phyB-null plants exhibit a severe delay in flowering comparable to the delay observed in phyC-null plants. These results demonstrate that both genes are required for the induction of wheat flowering under long days. Using replicated RNA-seq studies we identified 82 genes that are significantly up or down regulated in both the phyB-null and phyC-null mutant relative to their respective wild-type controls. Among these genes are several well-characterized positive regulators of flowering, including PPD1, FT1 and VRN1. Eight-fold more genes were differentially regulated only in the phyB-null mutant (2202) than only in the phyC-null mutant (261). The PHYB-regulated genes were enriched in components of the auxin, gibberellin and brassinosteroid biosynthesis and signaling pathways, and in transcription factors with putative roles in regulating vegetative development and shade-avoidance responses. Several genes involved in abiotic stress tolerance pathways were also found to be regulated by PHYB. CONCLUSIONS PHYB and PHYC are both required for the photoperiodic induction of wheat flowering, whereas PHYB alone regulates a large number of genes involved in hormone biosynthesis and signaling, shade-avoidance response, and abiotic stress tolerance. Our analysis provides a comprehensive overview of the PHYB- and PHYC-mediated transcriptional changes during light signaling, and an initial step towards the dissection of this regulatory gene network in wheat. This further dissection will be required to explore the individual phytochrome-mediated developmental responses and to evaluate their potential to improve wheat adaptation to changing environments.
Collapse
Affiliation(s)
- Stephen Pearce
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
- />Present Address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Nestor Kippes
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Andrew Chen
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | | | - Jorge Dubcovsky
- />Department of Plant Sciences, University of California, Davis, CA 95616 USA
- />Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
698
|
Xu Z, Ji A, Song J, Chen S. Genome-wide analysis of auxin response factor gene family members in medicinal model plant Salvia miltiorrhiza. Biol Open 2016; 5:848-57. [PMID: 27230647 PMCID: PMC4920185 DOI: 10.1242/bio.017178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Auxin response factors (ARFs) can function as transcriptional activators or repressors to regulate the expression of auxin response genes by specifically binding to auxin response elements (AuxREs) during plant development. Based on a genome-wide strategy using the medicinal model plant Salvia miltiorrhiza, 25 S. miltiorrhiza ARF (SmARF) gene family members in four classes (class Ia, IIa, IIb and III) were comprehensively analyzed to identify characteristics including gene structures, conserved domains, phylogenetic relationships and expression patterns. In a hybrid analysis of the phylogenetic tree, microRNA targets, and expression patterns of SmARFs in different organs, root tissues, and methyl jasmonate or indole-3-acetic acid treatment conditions, we screened for candidate SmARFs involved in various developmental processes of S. miltiorrhiza. Based on this analysis, we predicted that SmARF25, SmARF7, SmARF16 and SmARF20 are involved in flower, leaf, stem and root development, respectively. With the further insight into the targets of miR160 and miR167, specific SmARF genes in S. miltiorrhiza might encode products that participate in biological processes as described for ARF genes in Arabidopsis. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of SmARFs in S. miltiorrhiza. Summary: Genome-wide analysis identified 25 ARF gene members (seven transcriptional activators and 18 repressors) in S. miltiorrhiza. The gene structures, functional domains, miRNA targets and expression patterns were analyzed in detail.
Collapse
Affiliation(s)
- Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Shilin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China
| |
Collapse
|
699
|
Novel drought-responsive regulatory coding and non-coding transcripts from Oryza Sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
700
|
Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma XR. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics 2016; 17:423. [PMID: 27260799 PMCID: PMC4891822 DOI: 10.1186/s12864-016-2591-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Plant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated. RESULTS Here, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression. CONCLUSIONS Exogenous ABA application influences the composition and expression level of tomato miRNAs. ABA mainly down-regulates miRNAs that their target genes involve in abiotic stress adaption and disease resistance. ABA might increase expression of stress-related genes via miRNA-mediated posttranscriptional regulation, and our results indicate that ABA treatment has the potential to improve both abiotic stress tolerance and pathogen resistance. This study presents a comprehensive profile of ABA-regulated miRNAs in the tomato, and provides a robust database for further investigation of ABA regulatory mechanisms.
Collapse
Affiliation(s)
- Hai-Yang Cheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Yan-Fen Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China
| | - Xin-Rong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, No 9, Section 4, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|