651
|
Broekgaarden M, Anbil S, Bulin AL, Obaid G, Mai Z, Baglo Y, Rizvi I, Hasan T. Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials 2019; 222:119421. [PMID: 31494503 PMCID: PMC6934357 DOI: 10.1016/j.biomaterials.2019.119421] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
Abstract
The complex interplay between cancer cells and their microenvironment remains a major challenge in the design and optimization of treatment strategies for pancreatic ductal adenocarcinoma (PDAC). Recent investigations have demonstrated that mechanistically distinct combination therapies hold promise for treatment of PDAC, but effective clinical translation requires more accurate models that account for the abundant tumor-stroma and its influence on cancer growth, metabolism and treatment insensitivity. In this study, a modular 3D culture model that comprised PDAC cells and patient-derived cancer-associated fibroblasts (CAFs) was developed to assess the effects of PDAC-CAF interactions on treatment efficacies. Using newly-developed high-throughput imaging and image analysis tools, it was found that CAFs imparted a notable and statistically significant resistance to oxaliplatin chemotherapy and benzoporphyrin derivative-mediated photodynamic therapy, which associated with increased levels of basal oxidative metabolism. Increased treatment resistance and redox states were similarly observed in an orthotopic xenograft model of PDAC in which cancer cells and CAFs were co-implanted in mice. Combination therapies of oxaliplatin and PDT with the mitochondrial complex I inhibitor metformin overcame CAF-induced treatment resistance. The findings underscore that heterotypic microtumor culture models recapitulate metabolic alterations stemming from tumor-stroma interactions. The presented infrastructure can be adapted with disease-specific cell types and is compatible with patient-derived tissues to enable personalized screening and optimization of new metabolism-targeted treatment regimens for pancreatic cancer.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sriram Anbil
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; The University of Texas School of Medicine, San Antonio, TX, USA
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Girgis Obaid
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Baglo
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Imran Rizvi
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Boston, MA, USA.
| |
Collapse
|
652
|
Saito Y. Establishment of an organoid bank of biliary tract and pancreatic cancers and its application for personalized therapy and future treatment. J Gastroenterol Hepatol 2019; 34:1906-1910. [PMID: 31264257 DOI: 10.1111/jgh.14773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
Abstract
Biliary tract cancers and pancreatic cancers are aggressive malignancies that are difficult to diagnose early and have a poor prognosis. Patients with inoperable biliary tract and pancreatic cancers generally receive chemotherapy regimens including gemcitabine. However, the effects of these drugs are limited, and the 5-year survival rates of patients are very low. The newly developed three-dimensional culture system known as "organoid culture" allows long-term expansion of stem cells into cyst-like structures (organoids) with properties resembling those of the original tissues. We and other groups have successfully established long-term in vitro cultures of organoids derived from biliary tract and pancreatic cancers. Organoids derived from biliary tract and pancreatic cancers closely recapitulate the properties of the original tumors including genetic alterations, gene expression profiles, and histopathological structures. These patient-derived cancer organoids can be applied for drug sensitivity testing, drug screening, epigenetic therapy, and differentiation-inducing therapy to identify therapeutic agents optimal for each patient. We intend to further establish organoids derived from various cancer cases and construct an organoid bank of biliary tract and pancreatic cancers. These powerful in vitro preclinical models of refractory cancers may bridge the gap between basic research and clinical trials and allow personalized therapy for patients.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
653
|
Xenografts Derived From Patients' Ascites Recapitulate the Gemcitabine Resistance Observed in Pancreatic Cancer Patients. Pancreas 2019; 48:1294-1302. [PMID: 31688592 DOI: 10.1097/mpa.0000000000001438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Most patient-derived pancreatic ductal adenocarcinoma (PDAC) xenografts have been established from surgical specimens of patients who have not received chemotherapy. However, xenografts have rarely been established from chemotherapy-resistant, advanced PDACs, because such cases are usually inoperable. The purpose of this study is to establish patient-derived xenografts using PDAC cells refractory to chemotherapy. METHODS Clinical PDAC cells obtained from ascites of patients who had received continuous chemotherapy were implanted into the flanks of immunocompromised mice. Growth and histological features of the xenografts with and without gemcitabine treatment were then analyzed. RESULTS Ascites-derived PDAC cells were successfully expanded through serial xenograft passage without changes in histological appearance. While treatment with gemcitabine substantially inhibited the growth of all PDAC xenografts tested, the tumor volume gradually increased, and the tumors showed marked regrowth even under continued gemcitabine treatment. These findings are consistent with the actual clinical course of the corresponding patients for each xenograft. CONCLUSIONS Ascites-derived xenograft models represent a valuable experimental system for testing the efficacy of currently available therapeutic compounds on chemotherapy-resistant PDAC cells and for elucidation of the mechanisms underlying chemotherapy resistance.
Collapse
|
654
|
Li J, Xu H, Zhang L, Song L, Feng D, Peng X, Wu M, Zou Y, Wang B, Zhan L, Hua G, Zhan X. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol 2019; 145:2637-2647. [PMID: 31598791 DOI: 10.1007/s00432-019-03004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Malignant ascites (MA) is a common manifestation in advanced gastric cancer with peritoneal carcinomatosis and usually indicates a poor prognosis. However, lack of in vitro models that can faithfully recapitulate the characteristics of tumour cells in ascites hinders related researches. Tumour organoids have emerged as a robust in vitro model for tumour research and drug screening. Hence, we aimed to generate a 3-D in vitro organoid cultures from malignant ascites of gastric cancer for disease modelling and drug screening. METHODS Eleven MADOs were generated from the MA tumour cells of gastric cancer patients. We made comparisons between MADOs and original MA tumour cells in histopathology by immunohistochemistry and genomics by whole-exome sequencing. In order to evaluate MADOs as functional in vitro disease models, we tested whether MADOs could be used for drug sensitivity screens. RESULTS Eleven MADO cultures from human gastric cancer were established. MADOs demonstrated divergent growth characteristics and morphologies. MADO cultures preserve the histological architecture, genomic landscape of the corresponding MA tumour cells. MADOs exhibited heterogeneous responses to standard-of-care chemotherapeutics. CONCLUSIONS We generated MADOs modelling characteristics and mutated genes of MA tumour cells. A broad range of intrinsic MADO response to conventional chemotherapeutics suggests MADOs are amenable to drug screening.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Huawei Xu
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhang
- Research and Early Development, Shanghai 121Biomed Inc, Shanghai, 200235, China
| | - Lele Song
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yang Zou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guoqiang Hua
- Institute of Radiation Medicine and Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 230032, China.
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
655
|
Bolck HA, Pauli C, Göbel E, Mühlbauer K, Dettwiler S, Moch H, Schraml P. Cancer Sample Biobanking at the Next Level: Combining Tissue With Living Cell Repositories to Promote Precision Medicine. Front Cell Dev Biol 2019; 7:246. [PMID: 31696117 PMCID: PMC6817465 DOI: 10.3389/fcell.2019.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Biorespositories of formalin-fixed and paraffin-embedded (FFPE) or fresh frozen human tissues from malignant diseases generated as integral part of the diagnostic workup in many pathology departments have been pivotal resources for translational cancer studies. However, such tissue biobanks have traditionally contained only non-viable specimens and thus cannot enable functional assays for the discovery and validation of therapeutic targets or the assessment of drug responses and resistance to treatment. To overcome these limitations, we have developed a next-generation comprehensive biobanking platform that includes the generation of patient-derived in vitro cell models from colorectal, pancreatic and kidney cancers among others. As such patient-derived cell (PDC) models retain important features of the original human tumors, they have emerged as relevant tools for more dynamic clinical and experimental analyses of cancer. Here, we describe details of the complex processes of acquisition and processing of patient-derived samples, propagation, annotation, characterization and distribution of resulting cell models and emphasize the requirements of quality assurance, organizational considerations and investment into resources. Taken together, we show how clinical tissue collections can be taken to the next level thus promising major new opportunities for understanding and treating cancer in the context of precision medicine.
Collapse
Affiliation(s)
- Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Elisabeth Göbel
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Katharina Mühlbauer
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Susanne Dettwiler
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, Zurich, Switzerland
| |
Collapse
|
656
|
Integration of Bioinformatics Resources Reveals the Therapeutic Benefits of Gemcitabine and Cell Cycle Intervention in SMAD4-Deleted Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2019; 10:genes10100766. [PMID: 31569425 PMCID: PMC6827004 DOI: 10.3390/genes10100766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer. The five-year survival rate of PDAC is very low (less than 8%), which is associated with the late diagnosis, high metastatic potential, and resistance to therapeutic agents. The identification of better prognostic or therapeutic biomarker may have clinical benefits for PDAC treatment. SMAD4, a central mediator of transforming growth factor beta (TGFβ) signaling pathway, is considered a tumor suppressor gene. SMAD4 inactivation is frequently found in PDAC. However, its role in prognosis and therapeutics of PDAC is still unclear. In this study, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of SMAD4 gene deletion in PDAC. We found that SMAD4 deletion was associated with poorer disease-free, but not overall, survival in PDAC patients. Cancer hallmark enrichment and pathway analysis suggested that the upregulation of cell cycle-related genes in SMAD4-deleted PDAC. Chemotherapy response profiling of PDAC cell lines and patient-derived organoids revealed that SMAD4-deleted PDAC was sensitive to gemcitabine, the first-line treatment for PDAC, and specific cell cycle-targeting drugs. Taken together, our study provides an insight into the prognostic and therapeutic roles of SMAD4 gene deletion in PDAC, and SMAD4 gene copy numbers may be used as a therapeutic biomarker for PDAC treatment.
Collapse
|
657
|
Schutgens F, Clevers H. Human Organoids: Tools for Understanding Biology and Treating Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:211-234. [PMID: 31550983 DOI: 10.1146/annurev-pathmechdis-012419-032611] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organoids are in vitro-cultured three-dimensional structures that recapitulate key aspects of in vivo organs. They can be established from pluripotent stem cells and from adult stem cells, the latter being the subject of this review. Organoids derived from adult stem cells exploit the tissue regeneration process that is driven by these cells, and they can be established directly from the healthy or diseased epithelium of many organs. Organoids are amenable to any experimental approach that has been developed for cell lines. Applications in experimental biology involve the modeling of tissue physiology and disease, including malignant, hereditary, and infectious diseases. Biobanks of patient-derived tumor organoids are used in drug development research, and they hold promise for developing personalized and regenerative medicine. In this review, we discuss the applications of adult stem cell-derived organoids in the laboratory and the clinic.
Collapse
Affiliation(s)
- Frans Schutgens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands; .,Department of Pathology, Amsterdam University Medical Centers, Location VU Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands; .,Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
658
|
Choi SI, Jeon AR, Kim MK, Lee YS, Im JE, Koh JW, Han SS, Kong SY, Yoon KA, Koh YH, Lee JH, Lee WJ, Park SJ, Hong EK, Woo SM, Kim YH. Development of Patient-Derived Preclinical Platform for Metastatic Pancreatic Cancer: PDOX and a Subsequent Organoid Model System Using Percutaneous Biopsy Samples. Front Oncol 2019; 9:875. [PMID: 31572675 PMCID: PMC6753223 DOI: 10.3389/fonc.2019.00875] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignant tumor and more than 50% patients are diagnosed at metastatic stage. The preclinical model systems that reflect the genetic heterogeneity of metastatic tumors are urgently needed to guide optimal treatment. This study describes the development of patient-derived preclinical platform using very small sized-percutaneous liver gun biopsy (PLB) of metastatic pancreatic cancer, based on patient-derived xenograft (PDX)-mediated tissue amplification and subsequent organoid generation. To increase the success rate and shorten the tumor growth period, patient-derived orthotopic xenograft (PDOX) model was developed to directly implant threadlike PLB samples into the pancreas. The engraftment success rate of PDOX samples from 35 patients with metastatic PDAC was 47%, with these samples showing the potential to metastasize to distant organs, as in patients. The PDOX models retained the genetic alterations and histopathological features of the primary tumors. Tumor organoids were subsequently generated from first passage cancer cells isolated from F1 tumor tissue of PDOX that preserve the epithelial cancer characteristics and KRAS mutations of primary tumors. The response to gemcitabine of PDOX-derived organoids correlated with clinical outcomes in corresponding patients as well as PDOX models in vivo, suggesting that this PDOX-organoid system reflects clinical conditions. Collectively, these findings indicate that the proposed PDOX-organoid platform using PLB samples assessed both in vitro and in vivo could predict drug response under conditions closer to those found in actual patients, as well as enhancing understanding of the complexity of metastatic PDAC.
Collapse
Affiliation(s)
- Sun Il Choi
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea.,Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - A-Ra Jeon
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea
| | - Min Kyeong Kim
- Division of Translational Science, Research Institute of National Cancer Center, Goyang, South Korea
| | - Yu-Sun Lee
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea
| | - Ji Eun Im
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea
| | - Jung-Wook Koh
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea.,Department of Biology, College of Education, Seoul National University, Seoul, South Korea
| | - Sung-Sik Han
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute of National Cancer Center, Goyang, South Korea.,Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Goyang, South Korea.,Department of Cancer Biomedical Science, The National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Young-Hwan Koh
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea.,Center for Diagnosic Oncology, National Cancer Center, Goyang, South Korea
| | - Ju Hee Lee
- Center for Diagnosic Oncology, National Cancer Center, Goyang, South Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea
| | - Sang-Jae Park
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea
| | - En Kyung Hong
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, South Korea.,Department of Cancer Biomedical Science, The National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea.,Division of Tumor Immunology, National Cancer Center, Goyang, South Korea
| | - Yun-Hee Kim
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang, South Korea.,Department of Cancer Biomedical Science, The National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
| |
Collapse
|
659
|
Fong CYK, Burke E, Cunningham D, Starling N. Up-to-Date Tailored Systemic Treatment in Pancreatic Ductal Adenocarcinoma. Gastroenterol Res Pract 2019; 2019:7135437. [PMID: 31582971 PMCID: PMC6748185 DOI: 10.1155/2019/7135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
Despite intensive research efforts, pancreatic ductal adenocarcinoma is still regarded as an aggressive and life-limiting malignancy. Combination chemotherapy regimens that underpin the current treatment approach in the advanced setting have led to incremental survival gains in recent years but have failed to confer patients with a median overall survival that exceeds 12 months from diagnosis. Research has since focussed on understanding the role and interplay between various components of the desmoplastic stroma and tumour microenvironment, in addition to developing targeted therapies based on molecular features to improve the prognosis associated with this malignancy. This review will summarise the available systemic treatment options and discuss potential methods to refine the resolution of patient selection to enhance responses to currently available therapies. Furthermore, it will explore newer approaches anticipated to come to the fore of future clinical practice, such as agents targeting the DNA damage response and tumour microenvironment as well as immunotherapy-based combinations.
Collapse
Affiliation(s)
| | - Emma Burke
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - David Cunningham
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Naureen Starling
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| |
Collapse
|
660
|
Granat LM, Kambhampati O, Klosek S, Niedzwecki B, Parsa K, Zhang D. The promises and challenges of patient-derived tumor organoids in drug development and precision oncology. Animal Model Exp Med 2019; 2:150-161. [PMID: 31773090 PMCID: PMC6762043 DOI: 10.1002/ame2.12077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
In the era of precision medicine, cancer researchers and oncologists are eagerly searching for more realistic, cost effective, and timely tumor models to aid drug development and precision oncology. Tumor models that can faithfully recapitulate the histological and molecular characteristics of various human tumors will be extremely valuable in increasing the successful rate of oncology drug development and discovering the most efficacious treatment regimen for cancer patients. Two-dimensional (2D) cultured cancer cell lines, genetically engineered mouse tumor (GEMT) models, and patient-derived tumor xenograft (PDTX) models have been widely used to investigate the biology of various types of cancers and test the efficacy of oncology drug candidates. However, due to either the failure to faithfully recapitulate the complexity of patient tumors in the case of 2D cultured cancer cells, or high cost and untimely for drug screening and testing in the case of GEMT and PDTX, new tumor models are urgently needed. The recently developed patient-derived tumor organoids (PDTO) offer great potentials in uncovering novel biology of cancer development, accelerating the discovery of oncology drugs, and individualizing the treatment of cancers. In this review, we will summarize the recent progress in utilizing PDTO for oncology drug discovery. In addition, we will discuss the potentials and limitations of the current PDTO tumor models.
Collapse
Affiliation(s)
- Lauren M. Granat
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| | - Ooha Kambhampati
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| | - Stephanie Klosek
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| | - Brian Niedzwecki
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| | - Kian Parsa
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic MedicineNew York Institute of TechnologyOld WestburyNew York
| |
Collapse
|
661
|
Affiliation(s)
- Ashley Krepline
- Department of Surgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226-3596, USA
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226-3596, USA.
| |
Collapse
|
662
|
Martens S, Lefesvre P, Nicolle R, Biankin AV, Puleo F, Van Laethem JL, Rooman I. Different shades of pancreatic ductal adenocarcinoma, different paths towards precision therapeutic applications. Ann Oncol 2019; 30:1428-1436. [PMID: 31161208 DOI: 10.1093/annonc/mdz181] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Different histological and molecular subtypes of pancreatic ductal adenocarcinoma (PDAC), with different molecular composition and survival statistics, have recently been recognised. MATERIALS AND METHODS This review describes the currently available studies regarding molecular and histological subtypes in PDAC. Studies from major cohorts such as International Cancer Genome Consortium as well as smaller cohorts are reviewed. We discuss where the described subtypes overlap, where the discrepancies are and which paths forward could be taken regarding diagnosis, ontogeny and therapy. RESULTS Four molecular subtypes with strong overlap among the different studies can be found, next to a list of mixed findings. Two of the four subtypes (epithelial classical and mesenchymal basal-like) were represented in every study and were often discriminated in other solid tumours as well. These two subtypes differ substantially in prognosis. One biomarker has been discovered, only discriminating these two subtypes, and insights into subtype-specific therapeutic vulnerabilities are scarce. CONCLUSION Subtypes can be reproducibly detected in cohorts of PDAC patients and two of them directly relate with prognosis. A consensus on the subtypes is warranted. Further discovery and validation studies are needed to identify strong biomarkers, to comprehend subtype ontogeny and to define strategies for precision medicine.
Collapse
Affiliation(s)
- S Martens
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels
| | - P Lefesvre
- Department of Pathology, UZ Brussel, Brussels, Belgium
| | - R Nicolle
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - A V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - F Puleo
- Medical Oncology Department, Institut Jules Bordet; Laboratory of Experimental Gastroenterology
| | - J L Van Laethem
- Laboratory of Experimental Gastroenterology; Department of Gastroenterology and Digestive Oncology, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
| | - I Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Brussels.
| |
Collapse
|
663
|
Crawford HC. Putting the Cell of Origin for Pancreatic Cancer Into its Proper Context. Cell Mol Gastroenterol Hepatol 2019; 8:645-646. [PMID: 31473247 PMCID: PMC6889687 DOI: 10.1016/j.jcmgh.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Howard C. Crawford
- Correspondence Address correspondence to: Howard Crawford, PhD, University of Michigan, 4304 Rogel Cancer Center, 1500 East Medical Center Drive, SPC 5936, Ann Arbor, Michigan 48109-5936.
| |
Collapse
|
664
|
Burrack AL, Spartz EJ, Raynor JF, Wang I, Olson M, Stromnes IM. Combination PD-1 and PD-L1 Blockade Promotes Durable Neoantigen-Specific T Cell-Mediated Immunity in Pancreatic Ductal Adenocarcinoma. Cell Rep 2019; 28:2140-2155.e6. [PMID: 31433988 PMCID: PMC7975822 DOI: 10.1016/j.celrep.2019.07.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer resistant to immunotherapy. We create a PDA mouse model and show that neoantigen expression is required for intratumoral T cell accumulation and response to immune checkpoint blockade. By generating a peptide:MHC tetramer, we identify that PDA induces rapid intratumoral, and progressive systemic, tumor-specific T cell exhaustion. Monotherapy PD-1 or PD-L1 blockade enhances systemic T cell expansion and induces objective responses that require systemic T cells. However, tumor escape variants defective in IFNγ-inducible Tap1 and MHC class I cell surface expression ultimately emerge. Combination PD-1 + PD-L1 blockade synergizes therapeutically by increasing intratumoral KLRG1+Lag3-TNFα+ tumor-specific T cells and generating memory T cells capable of expanding to spontaneous tumor recurrence, thereby prolonging animal survival. Our studies support that PD-1 and PD-L1 are relevant immune checkpoints in PDA and identify a combination for clinical testing in those patients with neoantigen-specific T cells.
Collapse
Affiliation(s)
- Adam L Burrack
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ellen J Spartz
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jackson F Raynor
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Iris Wang
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Margaret Olson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ingunn M Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Cancer Center of the University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
665
|
Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal Residual Disease Assessment Within the Bone Marrow of Multiple Myeloma: A Review of Caveats, Clinical Significance and Future Perspectives. Front Oncol 2019; 9:699. [PMID: 31482061 PMCID: PMC6710454 DOI: 10.3389/fonc.2019.00699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increasing clinical interest in the measure and achievement of minimal residual disease (MRD) negativity in the bone marrow of Multiple Myeloma (MM) patients, as defined equally either by Multicolor Flow Cytometry (MFC) or by Next Generation Sequencing (NGS) technologies. At present, modern technologies allow to detect up to one on 104 or on 105 or even on 106 cells, depending on their throughput. MFC approaches, which have been progressively improved up to the so-called Next Generation Flow (NGF), and NGS, which proved clear advantages over ASO-PCR, can detect very low levels of residual disease in the BM. These methods are actually almost superimposable, in terms of MRD detection power, supporting the lack of unanimous preference for either technique on basis of local availability. However, some technical issues are still open: the optimal assay to use to detect either phenotype (e.g., next generation multidimensional flow cytometry, imaging) or genotype aberrations (e.g., ASO-RQ PCR, digital droplet PCR, NGS) and their standardization, the sample source (BM or peripheral blood, PB) and its pre-processing (red-cell lysis vs. Ficoll, fresh vs. frozen samples, requirement of CD138+ cells enrichment). Overall, MRD negativity is considered as the most powerful predictor of favorable long-term outcomes in MM and is likely to represent the major driver of treatment strategies in the near future. In this manuscript, we reviewed the main pitfalls and caveats of MRD detection within bone marrow in MM patients after front-line therapy, highlighting the improving of the currently employed technology and describing alternative methods for MRD testing in MM, such as liquid biopsy.
Collapse
Affiliation(s)
- Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Division of Hematology, Azienda Ospedaliero-Universitaria Policlinico Vittorio Emanuele di Catania, Catania, Italy
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie avanzate “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology, Azienda Ospedaliero-Universitaria Policlinico Vittorio Emanuele di Catania, Catania, Italy
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie avanzate “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Concetta Conticello
- Division of Hematology, Azienda Ospedaliero-Universitaria Policlinico Vittorio Emanuele di Catania, Catania, Italy
| | - Marina Martello
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università degli Studi di Bologna, Bologna, Italy
| | - Carolina Terragna
- Istituto di Ematologia “L.A.Seràgnoli,” Azienda Ospedaliera Sant'Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
666
|
Abstract
Two articles in this issue of Cancer Discovery show that deep profiling of advanced pancreatic cancer is feasible and identify many clinically actionable features with surprising frequency. Cancer Discov; 8(9); 1062-3. ©2018 AACR.See related article by Aguirre et al., p. 1096See related article by Tiriac et al., p. 1112.
Collapse
Affiliation(s)
- Eric A Collisson
- Hematology Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
667
|
Lazzari L, Corti G, Picco G, Isella C, Montone M, Arcella P, Durinikova E, Zanella ER, Novara L, Barbosa F, Cassingena A, Cancelliere C, Medico E, Sartore-Bianchi A, Siena S, Garnett MJ, Bertotti A, Trusolino L, Di Nicolantonio F, Linnebacher M, Bardelli A, Arena S. Patient-Derived Xenografts and Matched Cell Lines Identify Pharmacogenomic Vulnerabilities in Colorectal Cancer. Clin Cancer Res 2019; 25:6243-6259. [PMID: 31375513 DOI: 10.1158/1078-0432.ccr-18-3440] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Patient-derived xenograft (PDX) models accurately recapitulate the tumor of origin in terms of histopathology, genomic landscape, and therapeutic response, but some limitations due to costs associated with their maintenance and restricted amenability for large-scale screenings still exist. To overcome these issues, we established a platform of 2D cell lines (xeno-cell lines, XL), derived from PDXs of colorectal cancer with matched patient germline gDNA available. EXPERIMENTAL DESIGN Whole-exome and transcriptome sequencing analyses were performed. Biomarkers of response and resistance to anti-HER therapy were annotated. Dependency on the WRN helicase gene was assessed in MSS, MSI-H, and MSI-like XLs using a reverse genetics functional approach. RESULTS XLs recapitulated the entire spectrum of colorectal cancer transcriptional subtypes. Exome and RNA-seq analyses delineated several molecular biomarkers of response and resistance to EGFR and HER2 blockade. Genotype-driven responses observed in vitro in XLs were confirmed in vivo in the matched PDXs. MSI-H models were dependent upon WRN gene expression, while loss of WRN did not affect MSS XLs growth. Interestingly, one MSS XL with transcriptional MSI-like traits was sensitive to WRN depletion. CONCLUSIONS The XL platform represents a preclinical tool for functional gene validation and proof-of-concept studies to identify novel druggable vulnerabilities in colorectal cancer.
Collapse
Affiliation(s)
- Luca Lazzari
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | - Claudio Isella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Monica Montone
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Pamela Arcella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | | | | | - Luca Novara
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Fabiane Barbosa
- Department of Interventional Radiology, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | | | - Andrea Bertotti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
668
|
Abbassi R, Algül H. Palliative chemotherapy in pancreatic cancer-treatment sequences. Transl Gastroenterol Hepatol 2019; 4:56. [PMID: 31559337 PMCID: PMC6737397 DOI: 10.21037/tgh.2019.06.09] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer belongs to the most deadly malignancies and is expected to become the second deadliest cancer by 2040. Still, in most of the cases the tumor is detected in a nonresectable or metastatic state and, untreated, the disease will progress rapidly. Even with chemotherapeutic treatment the prognosis is poor and the 5-year overall survival rate is less than 10%. Therefore, there is a need for proper therapeutic options for the palliative treatment of the disease. Despite great efforts to find new drugs for the treatment of pancreatic cancer, for a long time the therapy was limited to the use of gemcitabine with very limited benefit. Recently new chemotherapeutic regimens have been identified that helped to improve the overall survival significantly. In addition, even second-line therapies have been established. This review will provide an overview on the current standard of care, discusses possible treatment sequences and offer a perspective on future developments.
Collapse
Affiliation(s)
- Rami Abbassi
- II. Medizinische Klinik and Comprehensive Cancer Center Munich, Technische Universität München, Munich, Germany
| | - Hana Algül
- II. Medizinische Klinik and Comprehensive Cancer Center Munich, Technische Universität München, Munich, Germany
| |
Collapse
|
669
|
Maru Y, Tanaka N, Ebisawa K, Odaka A, Sugiyama T, Itami M, Hippo Y. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma. Cancer Sci 2019; 110:2992-3005. [PMID: 31265190 PMCID: PMC6726688 DOI: 10.1111/cas.14119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cervical clear cell carcinoma (cCCC) constitutes an extremely rare subtype of cervical cancer. Consequently, its pathogenesis remains largely unknown, with no cell lines established from primary tumors. Here, we report the first establishment of cCCC organoids, from biopsy samples of a 23‐year‐old patient diagnosed with cCCC. By applying a protocol that we recently optimized for gynecological tumors, we were able to propagate a patient‐derived cell line (PDC) for more than 6 months as organoids. This PDC tolerated cryopreservation and proliferated either as spheroids or adherent cells, and developed xenografts in immunodeficient mice, ensuring robust utility as a cell line. Intriguingly, the resected tumor focally contained serous carcinoma (SC) in a tiny protruding lesion. Both organoids and derivative xenografts resembled the CCC component of the original tumor in histology, immunostaining profile, and genome‐wide copy number changes, including focal gain of MET. Genomic analysis revealed that both organoids and the CCC component harbored only a few mutations, of which 2 mutations were shared in common. In contrast, the SC component showed a mutator‐phenotype and prominent genome instability along with biallelic inactivation of TP53, but none of them were found in organoids or the CCC component. The PDC proved sensitive to major chemotherapeutic agents and MET inhibitors. These observations clearly indicated that the PDC, designated as YMC7, can be used as a novel cCCC cell line and provide novel insights into the pathogenesis of mixed cervical adenocarcinoma. As a valuable resource for rare cancer, it will likely contribute to investigations in many fields.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Keiko Ebisawa
- Department of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Akiko Odaka
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | | | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
670
|
Talwelkar SS, Nagaraj AS, Devlin JR, Hemmes A, Potdar S, Kiss EA, Saharinen P, Salmenkivi K, Mäyränpää MI, Wennerberg K, Verschuren EW. Receptor Tyrosine Kinase Signaling Networks Define Sensitivity to ERBB Inhibition and Stratify Kras-Mutant Lung Cancers. Mol Cancer Ther 2019; 18:1863-1874. [DOI: 10.1158/1535-7163.mct-18-0573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
|
671
|
Karamitopoulou E, Gloor B. Clinical Scenarios Emerging from Combined Immunophenotypic, Molecular and Morphologic Analysis of Pancreatic Cancer: The Good, the Bad and the Ugly Scenario. Cancers (Basel) 2019; 11:E968. [PMID: 31295960 PMCID: PMC6678850 DOI: 10.3390/cancers11070968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with increasing incidence and dismal prognosis. The composition of the immune cell infiltrates in the tumor microenvironment (TME) and the dynamic interplay between cancer- and immune cells can influence and/or be influenced by tumor-intrinsic characteristics like molecular profiles and tumor cell morphology. The combined analyses of pancreatic cancer by using morphologic, genetic, and immunologic features help us understand the significant heterogeneity of the TME and recognize the different mechanisms of immune evasion. Moreover, this information may lead to the identification of novel biomarkers for more precise patient stratification and therapy guidance.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Pancreatic Cancer Research Group, Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland.
| | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Freiburgstrasse 18, CH-3010 Bern, Switzerland.
| |
Collapse
|
672
|
Bleijs M, van de Wetering M, Clevers H, Drost J. Xenograft and organoid model systems in cancer research. EMBO J 2019; 38:e101654. [PMID: 31282586 PMCID: PMC6670015 DOI: 10.15252/embj.2019101654] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Patient‐derived tumour xenografts and tumour organoids have become important preclinical model systems for cancer research. Both models maintain key features from their parental tumours, such as genetic and phenotypic heterogeneity, which allows them to be used for a wide spectrum of applications. In contrast to patient‐derived xenografts, organoids can be established and expanded with high efficiency from primary patient material. On the other hand, xenografts retain tumour–stroma interactions, which are known to contribute to tumorigenesis. In this review, we discuss recent advances in patient‐derived tumour xenograft and tumour organoid model systems and compare their promises and challenges as preclinical models in cancer research.
Collapse
Affiliation(s)
- Margit Bleijs
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marc van de Wetering
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands
| | - Jarno Drost
- Oncode Institute, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
673
|
Abstract
Pancreatic cancer is likely to become the second most frequent cause of cancer-associated mortality within the next decade. Surgical resection with adjuvant systemic chemotherapy currently provides the only chance of long-term survival. However, only 10-20% of patients with pancreatic cancer are diagnosed with localized, surgically resectable disease. The majority of patients present with metastatic disease and are not candidates for surgery, while surgery remains underused even in those with resectable disease owing to historical concerns regarding safety and efficacy. However, advances made over the past decade in the safety and efficacy of surgery have resulted in perioperative mortality of around 3% and 5-year survival approaching 30% after resection and adjuvant chemotherapy. Furthermore, owing to advances in both surgical techniques and systemic chemotherapy, the indications for resection have been extended to include locally advanced tumours. Many aspects of pancreatic cancer surgery, such as the management of postoperative morbidities, sequencing of resection and systemic therapy, and use of neoadjuvant therapy followed by resection for tumours previously considered unresectable, are rapidly evolving. In this Review, we summarize the current status of and new developments in pancreatic cancer surgery, while highlighting the most important research questions for attempts to further optimize outcomes.
Collapse
|
674
|
Sugarman R, Patel R, Sharma S, Plenker D, Tuveson D, Saif MW. Pharmacokinetics and pharmacodynamics of new drugs for pancreatic cancer. Expert Opin Drug Metab Toxicol 2019; 15:541-552. [PMID: 31241371 DOI: 10.1080/17425255.2019.1637417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Pancreatic cancer (PC) remains a disease with a dismal prognosis. Despite accounting for only 3% of cancer diagnosis, 7% of all cancer deaths in the United States are from PC. This is explained by many being diagnosed with late-stage disease and the cancer's resistance to chemotherapy. Since 1996 there have only been two upfront regimens found to be superior to gemcitabine, FOLFIRINOX (5-fluorouracil/leucovorin and oxaliplatin) and gemcitabine plus nab-paclitaxel. Areas covered: Clinical pharmacology of newer agents that are either approved or being investigated in the management of PC. Knowledge of their pharmacokinetics, pharmacodynamics, and pharmacogenetics can be used to predict outcomes for specific patient populations. Drugs discussed include nanoliposomal irinotecan, pegvorhyaluronidase alfa, poly (ADP-ribose) polymerase enzyme inhibitors, larotrectinib, and napabucasin. Expert opinion: PC is a heterogeneous disease and outcomes are likely to improve as better predictive models of an individual's response to different therapies are developed. This may be best accomplished through phase 0 studies and the use of tumor organoid models grown from initial biopsies or resected tissue. The genetic and physical makeup of the tumor as well as the functional characterization in patient-derived organoids (PDOs), can help guide which agents may be most efficacious or toxic.
Collapse
Affiliation(s)
- Ryan Sugarman
- a Northwell Health Cancer Institute , Donald and Barbara Zucker School of Medicine at Hofstra/Northwell , Lake Success , NY , USA
| | - Rajvi Patel
- a Northwell Health Cancer Institute , Donald and Barbara Zucker School of Medicine at Hofstra/Northwell , Lake Success , NY , USA
| | - Sandhya Sharma
- a Northwell Health Cancer Institute , Donald and Barbara Zucker School of Medicine at Hofstra/Northwell , Lake Success , NY , USA
| | - Dennis Plenker
- b Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - David Tuveson
- b Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Muhammad Wasif Saif
- a Northwell Health Cancer Institute , Donald and Barbara Zucker School of Medicine at Hofstra/Northwell , Lake Success , NY , USA
| |
Collapse
|
675
|
Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, Taveggia C, Falconi M. Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers (Basel) 2019; 11:E893. [PMID: 31248001 PMCID: PMC6678884 DOI: 10.3390/cancers11070893] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Marta Pellegatta
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Stefano Crippa
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Marco Schiavo Lena
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giulio Belfiori
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy.
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Carla Taveggia
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Massimo Falconi
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
676
|
Abstract
Organoids are microscopic self-organizing, three-dimensional structures that are grown from stem cells in vitro. They recapitulate many structural and functional aspects of their in vivo counterpart organs. This versatile technology has led to the development of many novel human cancer models. It is now possible to create indefinitely expanding organoids starting from tumor tissue of individuals suffering from a range of carcinomas. Alternatively, CRISPR-based gene modification allows the engineering of organoid models of cancer through the introduction of any combination of cancer gene alterations to normal organoids. When combined with immune cells and fibroblasts, tumor organoids become models for the cancer microenvironment enabling immune-oncology applications. Emerging evidence indicates that organoids can be used to accurately predict drug responses in a personalized treatment setting. Here, we review the current state and future prospects of the rapidly evolving tumor organoid field.
Collapse
|
677
|
Preclinical Modelling of PDA: Is Organoid the New Black? Int J Mol Sci 2019; 20:ijms20112766. [PMID: 31195689 PMCID: PMC6600483 DOI: 10.3390/ijms20112766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a malignancy of the exocrine pancreas with the worst prognosis among all solid tumours, and soon to become the second leading cause of cancer-related deaths. A more comprehensive understanding of the molecular mechanisms underlying this disease is crucial to the development of diagnostic tools as well as to the identification of more effective therapies. High-frequency mutations in PDA occur in “undruggable” genes, and molecular subtyping based on bulk transcriptome analysis does not yet nominate valid therapeutic intervention strategies. Genome-wide sequencing studies have also demonstrated a considerable intra- and inter-patient’s genetic heterogeneity, which further complicate this dire scenario. More than in other malignancies, functionalization of the PDA genome and preclinical modelling at the individual patient level appear necessary to substantially improve survival rates for pancreatic cancer patients. Traditional human PDA models, including monolayer cell cultures and patient-derived xenografts, have certainly led to valuable biological insights in the past years. However, those model systems suffer from several limitations that have contributed to the lack of concordance between preclinical and clinical studies for PDA. Pancreatic ductal organoids have recently emerged as a reliable culture system to establish models from both normal and neoplastic pancreatic tissues. Pancreatic organoid cultures can be efficiently generated from small tissue biopsies, which opens up the possibility of longitudinal studies in individual patients. A proof-of-concept study has demonstrated that patient-derived PDA organoids are able to predict responses to conventional chemotherapy. The use of this three-dimensional culture system has already improved our understanding of PDA biology and promises to implement precision oncology by enabling the alignment of preclinical and clinical platforms to guide therapeutic intervention in PDA.
Collapse
|
678
|
Bian B, Juiz NA, Gayet O, Bigonnet M, Brandone N, Roques J, Cros J, Wang N, Dusetti N, Iovanna J. Pancreatic Cancer Organoids for Determining Sensitivity to Bromodomain and Extra-Terminal Inhibitors (BETi). Front Oncol 2019; 9:475. [PMID: 31231611 PMCID: PMC6560163 DOI: 10.3389/fonc.2019.00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease, therefore stratification of patients is essential to predict their responses to therapies and to choose the best treatment. PDAC-derived organoids were produced from PDTX and Endoscopic Ultrasound-Guided Fine-Needle Aspiration (EUS-FNA) biopsies. A signature based on 16 genes targets of the c-MYC oncogene was applied to classify samples into two sub-groups with distinctive phenotypes named MYC-high and MYC-low. The analysis of 9 PDTXs and the corresponding derived organoids revealed that this signature which was previously designed from PDTX is transferable to the organoid model. Primary organoids from 24 PDAC patients were treated with NHWD-870 or JQ1, two inhibitors of c-MYC transcription. Notably, the comparison of their effect between the two sub-groups showed that both compounds are more efficient in MYC-high than in MYC-low samples, being NHWD-870 the more potent treatment. In conclusion, this study shows that the molecular signatures could be applied to organoids obtained directly from PDAC patients to predict the treatment response and could help to take the more appropriate therapeutic decision for each patient in a clinical timeframe.
Collapse
Affiliation(s)
- Benjamin Bian
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Natalia Anahi Juiz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Nicolas Brandone
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Julie Roques
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jérôme Cros
- Pathology Department, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, UMR 1149, Inflammation Research Center, INSERM - Paris Diderot University, Paris, France
| | - Nenghui Wang
- Ningbo Wenda Pharma Technology Ltd., Zhejiang, China
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
679
|
Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, Klempner SJ, Hendifar A, Milind JM, Golan T, Brand RE, Zureikat AH, Roy S, Schrock AB, Miller VA, Ross JS, Ali SM, Bahary N. Real-Time Targeted Genome Profile Analysis of Pancreatic Ductal Adenocarcinomas Identifies Genetic Alterations That Might Be Targeted With Existing Drugs or Used as Biomarkers. Gastroenterology 2019; 156:2242-2253.e4. [PMID: 30836094 DOI: 10.1053/j.gastro.2019.02.037] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS It has been a challenge to select treatment for patients with pancreatic ductal adenocarcinomas (PDACs) based on genome alterations. We performed targeted genomic profile analyses of a large number of PDACs to assess the full spectrum of actionable genomic alterations. METHODS We performed targeted genomic profile analyses of 3594 PDAC samples from an international cohort, including capture-based targeted genomic profiling of as many as 315 cancer-associated genes and intron regions of 28 genes that are rearranged in cancer cells. Tumor mutation burden (TMB) and microsatellite instability (MSI) status were also assessed. TMB was calculated across a 1.14-megabase region; TMB-high was defined as ≥20 mutations/megabase. MSI-high status was assigned based on analysis of 114 intron homopolymer loci. RESULTS KRAS, TP53, CDKN2A, and SMAD4 were the most frequently altered genes in PDAC. We found KRAS mutations in 88% of samples. Among PDACs without mutations in KRAS, we found alterations in genes whose products are in the mitogen-activated protein kinase signaling pathway and are candidate drug targets (actionable targets, n = 132; 4%), as well as gene fusions (n = 51), gene amplifications (n = 35), genes with missense mutations (n = 30), and genes that contain deletions (n = 16). Many of these encode proteins in receptor tyrosine kinase, RAS, or mitogen-activated protein kinase signaling pathways. Aside from TP53, alterations in genes encoding DNA damage repair proteins (BRCA and FANC) were detected in 14% of PDACs. Among PDACs evaluated for MSI (n = 2563) and TMB (n = 1021), MSI-high and/or TMB-high phenotypes were detected in 0.5% of samples. Alterations in FGF23, CCND2, PIK3CA, and FGF6 were more commonly detected in intraductal papillary mucinous neoplasm-associated PDACs. CONCLUSIONS In targeted genomic profile analyses of 3594 PDACs, we found 17% to contain genomic alterations that might make the tumor cells susceptible to currently used anticancer agents. We identified mutations in genes that could contribute to progression of intraductal papillary mucinous neoplasms into malignancies. These alterations might be used as biomarkers for early detection.
Collapse
Affiliation(s)
- Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Ben George
- Department of Medicine, Division of Medical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Jon Chung
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | - James Suh
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samuel J Klempner
- The Angeles Clinic and Research Institute, Los Angeles, California; Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew Hendifar
- Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Javle M Milind
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Talia Golan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Randall E Brand
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Somak Roy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | - Siraj M Ali
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | - Nathan Bahary
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
680
|
Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 2019; 121:5-14. [PMID: 31110329 PMCID: PMC6738327 DOI: 10.1038/s41416-019-0479-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/03/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is a lethal disease, with fewer than 7% of patients surviving beyond 5 years following diagnosis. Immune responses are known to influence tumour progression. The dynamic interaction between cancer cells and immune cells in the tumour microenvironment (TME) can not only result in, or be influenced by, different tumour characteristics, but it can also lead to diverse mechanisms of immune evasion. At present, there is much interest in classifying pancreatic cancer according to its morphologic, genetic and immunologic features in order to understand the significant heterogeneity of this tumour type. Such information can contribute to the identification of highly needed novel prognostic and predictive biomarkers, and can be used for accurate patient stratification and therapy guidance. This review focuses on the characteristics of the local immune contexture of pancreatic ductal adenocarcinoma and the interaction between tumour cells and immune cells within the TME, by simultaneously taking into account the histomorphologic and genetic features of the tumours. The emerging opportunities for approaches that could predict the most-effective therapeutic modalities towards more targeted, personalised treatments to improve patient care are also discussed.
Collapse
|
681
|
Xia X, Li F, He J, Aji R, Gao D. Organoid technology in cancer precision medicine. Cancer Lett 2019; 457:20-27. [PMID: 31078736 DOI: 10.1016/j.canlet.2019.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Organoid technology has been remarkably improved over the last decade. Various organoids have been derived from different types of tissues and recapitulate their organ-specific gene expression signatures, particular tissue spatial structures and functions of their original tissue. The patient-derived organoids (PDOs) have been used to elucidate crucial scientific questions, including the relationships between genetic/epigenetic alterations and drug responses, cell plasticity during disease progressions, and mechanisms of drug resistances. With the great expectations, PDOs will be widely used to facilitate the personalized medical decisions, which have the potential to profoundly improve patient outcomes. In this review, we will discuss the developmental details, current achievements, applications and challenges of organoid technology in precision cancer medicine.
Collapse
Affiliation(s)
- Xinyi Xia
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Juan He
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
682
|
CFTR Expression Analysis for Subtyping of Human Pancreatic Cancer Organoids. Stem Cells Int 2019; 2019:1024614. [PMID: 31191661 PMCID: PMC6525827 DOI: 10.1155/2019/1024614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Background Organoid cultures of human pancreatic ductal adenocarcinoma (PDAC) have become a promising tool for tumor subtyping and individualized chemosensitivity testing. PDACs have recently been grouped into different molecular subtypes with clinical impact based on cytokeratin-81 (KRT81) and hepatocyte nuclear factor 1A (HNF1A). However, a suitable antibody for HNF1A is currently unavailable. The present study is aimed at establishing subtyping in PDAC organoids using an alternative marker. Methods A PDAC organoid biobank was generated from human primary tumor samples containing 22 lines. Immunofluorescence staining was established and done for 10 organoid lines for cystic fibrosis transmembrane conductance regulator (CFTR) and KRT81. Quantitative real-time PCR (qPCR) was performed for CFTR and HNF1A. A chemotherapeutic drug response analysis was done using gemcitabine, 5-FU, oxaliplatin, and irinotecan. Results A biobank of patient-derived PDAC organoids was established. The efficiency was 71% (22/31) with 68% for surgical resections and 83% for fine needle aspirations. Organoids could be categorized into the established quasimesenchymal, exocrine-like, and classical subtypes based on KRT81 and CFTR immunoreactivity. CFTR protein expression was confirmed on the transcript level. CFTR and HNF1A transcript expression levels positively correlated (n = 10; r = 0.927; p = 0.001). PDAC subtypes of the primary tumors and the corresponding organoid lines were identical for most of the cases analyzed (6/7). Treatment with chemotherapeutic drugs revealed tendencies but no significant differences regarding drug responses. Conclusions Human PDAC organoids can be classified into known subtypes based on KRT81 and CFTR immunoreactivity. CFTR and HNF1A mRNA levels correlated well. Furthermore, subtype-specific immunoreactivity matched well between PDAC organoids and the respective primary tumor tissue. Subtyping of human PDACs using CFTR might constitute an alternative to HNF1A and should be further investigated.
Collapse
|
683
|
Wood LD, Yurgelun MB, Goggins MG. Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology 2019; 156:2041-2055. [PMID: 30660730 DOI: 10.1053/j.gastro.2018.12.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
In the previous decade, comprehensive genomic analyses have yielded important insights about the genetic alterations that underlie pancreatic tumorigenesis. Whole-exome and whole-genome sequencing of pancreatic ductal adenocarcinomas have confirmed the critical driver genes altered in the majority of pancreatic cancers, as well as identified numerous less frequently altered driver genes, and have delineated cancer subgroups with unique biological and clinical features. It is now appreciated that pancreatic susceptibility gene alterations are often identified in patients with pancreatic cancer without family histories suggestive of a familial cancer syndrome, prompting recent efforts to expand gene testing to all patients with pancreatic cancer. Studies of pancreatic cancer precursor lesions have begun to elucidate the evolutionary history of pancreatic tumorigenesis and to help us understand the utility of biomarkers for early detection and targets to develop new therapeutic strategies. In this review, we discuss the results of comprehensive genomic characterization of pancreatic ductal adenocarcinoma and its precursor lesions, and we highlight translational applications in early detection and therapy.
Collapse
Affiliation(s)
- Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
684
|
Braconi C, Roessler S, Kruk B, Lammert F, Krawczyk M, Andersen JB. Molecular perturbations in cholangiocarcinoma: Is it time for precision medicine? Liver Int 2019; 39 Suppl 1:32-42. [PMID: 30829432 DOI: 10.1111/liv.14085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
The complexity of cholangiocarcinoma (CCA) cellularity and the molecular perturbation mechanisms that underlie the diversity of growth patterns of this malignancy remain a clinical concern. Tumours of the biliary system display significant intrinsic chemoresistance, caused by significant stromal involvement and genome-wide tumour heterogeneity, hampering disease remission and palliation as well as promoting the metastatic behaviour. It is crucial to advance our present understanding of the risk and molecular pathogenesis of CCA. This will facilitate the delineation of patient subsets based on molecular perturbations and adjust for precision therapies.
Collapse
Affiliation(s)
- Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.,Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Trust, Surrey and London, UK
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg and Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Beata Kruk
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Marcin Krawczyk
- Department of General, Transplant and Liver Surgery, Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
685
|
Klaiber U, Hackert T, Neoptolemos JP. Adjuvant treatment for pancreatic cancer. Transl Gastroenterol Hepatol 2019; 4:27. [PMID: 31143848 PMCID: PMC6509427 DOI: 10.21037/tgh.2019.04.04] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-associated mortality in Western countries. Upfront resection with adjuvant chemotherapy is the treatment of choice in resectable tumors, offering the chance for cure. Until the 1990s, adjuvant therapy was not routinely used after resection for pancreatic cancer. During the last three decades however, enormous progress has been made in evidence-based onco-surgical management of resectable pancreatic cancer. Based on the results from multicenter randomized controlled trials, primarily initiated by the European Study Group of Pancreatic Cancer (ESPAC), adjuvant chemotherapy has become the gold standard after upfront resection, while adjuvant chemoradiotherapy is not recommended. Combination chemotherapy with gemcitabine and capecitabine was shown to significantly prolong median overall survival after resection compared to monotherapy with either gemcitabine or 5-fluorouracil/folinic acid. Recent data from the French-Canadian Uni-Cancer GI PRODIGE 24/CCTG PA.6 trial showed that adjuvant poly-agent chemotherapy with modified FOLFIRINOX achieved median survival times of 54.4 months in selected patients. Despite improved survival times after resection followed by adjuvant chemotherapy, however, recurrence occurs still in more than 75% of patients within the first 2 years after resection. Further efforts are therefore to be made in early detection tools, the evaluation of neoadjuvant strategies, the development of new drug targets, and stratification strategies to better select patients for the available therapies. This review article summarizes the body of evidence on adjuvant treatment for pancreatic cancer, identifies evidence gaps and provides future perspectives.
Collapse
Affiliation(s)
- Ulla Klaiber
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
686
|
Hruban RH, Gaida MM, Thompson E, Hong SM, Noë M, Brosens LA, Jongepier M, Offerhaus GJA, Wood LD. Why is pancreatic cancer so deadly? The pathologist's view. J Pathol 2019; 248:131-141. [PMID: 30838636 DOI: 10.1002/path.5260] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
The remarkable aggressiveness of pancreatic cancer has never been fully explained. Although clearly multifactorial, we postulate that venous invasion, a finding seen in most pancreatic cancers but not in most cancers of other organs, may be a significant, underappreciated contributor to the aggressiveness of this disease. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias M Gaida
- Department of General Pathology, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Elizabeth Thompson
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Michaël Noë
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lodewijk Aa Brosens
- Department of Pathology, The University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martine Jongepier
- Department of Pathology, The University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Johan A Offerhaus
- Department of Pathology, The University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura D Wood
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
687
|
Blasco MT, Navas C, Martín-Serrano G, Graña-Castro O, Lechuga CG, Martín-Díaz L, Djurec M, Li J, Morales-Cacho L, Esteban-Burgos L, Perales-Patón J, Bousquet-Mur E, Castellano E, Jacob HKC, Cabras L, Musteanu M, Drosten M, Ortega S, Mulero F, Sainz B, Dusetti N, Iovanna J, Sánchez-Bueno F, Hidalgo M, Khiabanian H, Rabadán R, Al-Shahrour F, Guerra C, Barbacid M. Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell 2019; 35:573-587.e6. [PMID: 30975481 PMCID: PMC10132447 DOI: 10.1016/j.ccell.2019.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022]
Abstract
Five-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated. Response to this targeted therapy correlates with transcriptional profiles that resemble those observed in human PDACs. Finally, inhibition of EGFR and c-RAF expression effectively blocked tumor progression in nine independent patient-derived xenografts carrying KRAS and TP53 mutations. These results open the door to the development of targeted therapies for PDAC patients.
Collapse
Affiliation(s)
- María Teresa Blasco
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Carolina Navas
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Carmen G Lechuga
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Martín-Díaz
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Magdolna Djurec
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Jing Li
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Lucia Morales-Cacho
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Esteban-Burgos
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Javier Perales-Patón
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Emilie Bousquet-Mur
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Eva Castellano
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Harrys K C Jacob
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Lavinia Cabras
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Monica Musteanu
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Matthias Drosten
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Sagrario Ortega
- Transgenic Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Francisca Mulero
- Molecular Imaging Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Bruno Sainz
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; Department of Biochemistry, School of Medicine, Autonomous University of Madrid, 28018 Madrid, Spain
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Aix-Marseille Université et Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163, Avenue de Luminy, 13288 Marseille, France
| | - Francisco Sánchez-Bueno
- Department of Surgery, Clinical University Hospital 'Virgen Arrixaca' - Murcian Institute of Biomedical Investigation (IMIB), 30120 Murcia, Spain
| | - Manuel Hidalgo
- Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hossein Khiabanian
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Raul Rabadán
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| | - Mariano Barbacid
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
688
|
Juiz NA, Iovanna J, Dusetti N. Pancreatic Cancer Heterogeneity Can Be Explained Beyond the Genome. Front Oncol 2019; 9:246. [PMID: 31024848 PMCID: PMC6460948 DOI: 10.3389/fonc.2019.00246] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a major health problem because it induces almost systematic mortality. Carcinogenesis begins with genetic aberrations which trigger epigenetic modifications. While genetic mutations initiate tumorigenesis, they are unable to explain the vast heterogeneity observed among PDAC patients. Instead, epigenetic changes drive transcriptomic alterations that can regulate the malignant phenotype. The contribution of factors from the environment and tumor microenvironment defines different epigenetic landscapes that outline two clinical subtypes: basal, with the worst prognosis, and classical. The epigenetic nature of PDAC, as a reversible phenomenon, encouraged several studies to test epidrugs. However, these drugs lack specificity and although there are epigenetic patterns shared by all PDAC tumors, there are others that are specific to each subtype. Molecular characterization of the epigenetic mechanisms underlying PDAC heterogeneity could be an invaluable tool to predict personalized therapies, stratify patients and search for novel therapies with more specific phenotype-based targets. Novel therapeutic strategies using current anticancer compounds or existing drugs used in other pathologies, alone or in combination, could be used to kill tumor cells or convert aggressive tumors into a more benign phenotype.
Collapse
Affiliation(s)
- Natalia Anahi Juiz
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Aix-Marseille Université, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Aix-Marseille Université, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Aix-Marseille Université, Marseille, France
| |
Collapse
|
689
|
Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, Tomar G, Papke B, Hobbs GA, Yan L, Hayes TK, Diehl JN, Goode GD, Chaika NV, Wang Y, Zhang GF, Witkiewicz AK, Knudsen ES, Petricoin EF, Singh PK, Macdonald JM, Tran NL, Lyssiotis CA, Ying H, Kimmelman AC, Cox AD, Der CJ. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019; 25:628-640. [PMID: 30833752 PMCID: PMC6484853 DOI: 10.1038/s41591-019-0368-8] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by KRAS- and autophagy-dependent tumorigenic growth, but the role of KRAS in supporting autophagy has not been established. We show that, to our surprise, suppression of KRAS increased autophagic flux, as did pharmacological inhibition of its effector ERK MAPK. Furthermore, we demonstrate that either KRAS suppression or ERK inhibition decreased both glycolytic and mitochondrial functions. We speculated that ERK inhibition might thus enhance PDAC dependence on autophagy, in part by impairing other KRAS- or ERK-driven metabolic processes. Accordingly, we found that the autophagy inhibitor chloroquine and genetic or pharmacologic inhibition of specific autophagy regulators synergistically enhanced the ability of ERK inhibitors to mediate antitumor activity in KRAS-driven PDAC. We conclude that combinations of pharmacologic inhibitors that concurrently block both ERK MAPK and autophagic processes that are upregulated in response to ERK inhibition may be effective treatments for PDAC.
Collapse
Affiliation(s)
- Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Zeitouni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Andrey P Tikunov
- Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venugopal Gunda
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel D George
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garima Tomar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gennifer D Goode
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nina V Chaika
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yingxue Wang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Erik S Knudsen
- Department of Molecular and Cell Biology, Roswell Park Cancer Center, Buffalo, NY, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA, USA
| | - Pankaj K Singh
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey M Macdonald
- Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology; Department of Internal Medicine, Division of Gastroenterology and University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, NYU Langone Medical Center, New York City, NY, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
690
|
Abstract
Chemotherapy is an important part of multimodality pancreatic cancer treatment. After curative resection, adjuvant chemotherapy can significantly improve disease free survival and overall survival. The current standard of care is six months adjuvant chemotherapy with modified folinic acid, 5-fluorouracil, irinotecan and oxaliplatin (mFOLFIRINOX) in patients fit enough for this protocol, otherwise six months of gemcitabine and capecitabine based on the European Study Group for Pancreatic Cancer (ESPAC)-4 study. In patients with metastatic disease, combination chemotherapy according to the FOLFIRINOX protocol or with gemcitabine plus nab-paclitaxel is an important improvement to gemcitabine monotherapy that was the standard for many years. Patients not fit for combination chemotherapy however may still benefit from gemcitabine. Patients with good performance status may benefit from second-line chemotherapy. Chemoradiation has long been used in locally advanced pancreatic cancer but is now tempered following the LAP07 study. This trial showed no difference in overall survival in those patients with stable disease after four months of gemcitabine (with or without erlotinib) randomized to either continuation of gemcitabine therapy or chemoradiation (54Gy with capecitabine). As an alternative to radiation, other forms local therapies including radiofrequency ablation, irreversible electroporation, high-intensity focused ultrasound, microwave ablation and local anti-KRAS therapy (using siG12D-LODER) are currently under investigation. Given the systemic nature of pancreas cancer from an early stage, the success of any local approach other than complete surgical resection (with adjuvant systemic therapy) is likely to be very limited. In patients with locally advanced, irresectable cancer, chemotherapy may offer the chance for secondary resection with a survival similar to patients with primary resectable disease. Downstaging regimens need to be evaluated in prospective randomized trials in order to make firm recommendations. Selection of patient groups for specific therapy including cytotoxics is becoming a reality using assays based on drug cellular transport and metabolism, and molecular signatures. Going forward, high throughput screening of different chemotherapy agents using molecular signatures based on patients' derived organoids holds considerable promise.
Collapse
|
691
|
Fukamachi H, Kim SK, Koh J, Lee HS, Sasaki Y, Yamashita K, Nishikawaji T, Shimada S, Akiyama Y, Byeon SJ, Bae DH, Okuno K, Nakagawa M, Tanioka T, Inokuchi M, Kawachi H, Tsuchiya K, Kojima K, Tokino T, Eishi Y, Kim YS, Kim WH, Yuasa Y, Tanaka S. A subset of diffuse-type gastric cancer is susceptible to mTOR inhibitors and checkpoint inhibitors. J Exp Clin Cancer Res 2019; 38:127. [PMID: 30866995 PMCID: PMC6416873 DOI: 10.1186/s13046-019-1121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mechanistic target of rapamycin (mTOR) pathway is essential for the growth of gastric cancer (GC), but mTOR inhibitor everolimus was not effective for the treatment of GCs. The Cancer Genome Atlas (TCGA) researchers reported that most diffuse-type GCs were genomically stable (GS). Pathological analysis suggested that some diffuse-type GCs developed from intestinal-type GCs. METHODS We established patient-derived xenograft (PDX) lines from diffuse-type GCs, and searched for drugs that suppressed their growth. Diffuse-type GCs were classified into subtypes by their gene expression profiles. RESULTS mTOR inhibitor temsirolimus strongly suppressed the growth of PDX-derived diffuse-type GC-initiating cells, which was regulated via Wnt-mTOR axis. These cells were microsatellite unstable (MSI) or chromosomally unstable (CIN), inconsistent with TCGA report. Diffuse-type GCs in TCGA cohort could be classified into two clusters, and GS subtype was major in cluster I while CIN and MSI subtypes were predominant in cluster II where PDX-derived diffuse-type GC cells were included. We estimated that about 9 and 55% of the diffuse-type GCs in cluster II were responders to mTOR inhibitors and checkpoint inhibitors, respectively, by identifying PIK3CA mutations and MSI condition in TCGA cohort. These ratios were far greater than those of diffuse-type GCs in cluster I or intestinal-type GCs. Further analysis suggested that diffuse-type GCs in cluster II developed from intestinal-type GCs while those in cluster I from normal gastric epithelial cells. CONCLUSION mTOR inhibitors and checkpoint inhibitors might be useful for the treatment of a subset of diffuse-type GCs which may develop from intestinal-type GCs.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Yasushi Sasaki
- Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Yamashita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Present Address: Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Miyagi, 981-1293 Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sun-ju Byeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Hyuck Bae
- Genome Editing Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Keisuke Okuno
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Nakagawa
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Tanioka
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikito Inokuchi
- Department of Gastrointestinal Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kawachi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Present Address: Department of Pathology, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, 135-8550 Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Center of Minimally Invasive Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Tokino
- Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yong Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
692
|
Søreide K, Primavesi F, Labori KJ, Watson MM, Stättner S. Molecular biology in pancreatic ductal adenocarcinoma: implications for future diagnostics and therapy. Eur Surg 2019. [DOI: 10.1007/s10353-019-0575-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
693
|
Tiriac H, Plenker D, Baker LA, Tuveson DA. Organoid models for translational pancreatic cancer research. Curr Opin Genet Dev 2019; 54:7-11. [PMID: 30844513 DOI: 10.1016/j.gde.2019.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022]
Abstract
Despite recent advances in the treatment of cancer, pancreatic ductal adenocarcinoma (PDAC) still retains the worst survival rate of common malignancies. Late diagnosis and lack of curative therapeutic options are the most pressing clinical problems for this disease. Therefore, there is a need for patient models and biomarkers that can be applied in the clinic to identify the most effective therapy for a patient. Pancreatic ductal organoids are ex-vivo models of PDAC that can be established from very small biopsies, enabling the study of localized, advanced, and metastatic patients. Organoids models have been applied to pancreatic cancer research and offer a promising platform for precision medicine approaches.
Collapse
Affiliation(s)
- Hervé Tiriac
- Cold Spring Harbor Laboratory, NCI-designated Cancer Center, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, United States; University of California San Diego, Department of Surgery, NCI-designated Comprehensive Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093-0987, United States.
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, NCI-designated Cancer Center, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, United States
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, NCI-designated Cancer Center, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, United States
| | - David A Tuveson
- Cold Spring Harbor Laboratory, NCI-designated Cancer Center, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, United States.
| |
Collapse
|
694
|
Abstract
Organoid cultures have emerged as powerful model systems accelerating discoveries in cellular and cancer biology. These three-dimensional cultures are amenable to diverse techniques, including high-throughput genome and transcriptome sequencing, as well as genetic and biochemical perturbation, making these models well suited to answer a variety of questions. Recently, organoids have been generated from diverse human cancers, including breast, colon, pancreas, prostate, bladder, and liver cancers, and studies involving these models are expanding our knowledge of the etiology and characteristics of these malignancies. Co-cultures of cancer organoids with non-neoplastic stromal cells enable investigation of the tumor microenvironment. In addition, recent studies have established that organoids have a place in personalized medicine approaches. Here, we describe the application of organoid technology to cancer discovery and treatment.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and Utrecht University Medical Center, 3584 CT Utrecht, The Netherlands
- Cancer Genomics Netherlands, Utrecht University Medical Center, 3584 GC Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT Utrecht, The Netherlands
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
695
|
Chatterjee N, Bivona TG. Polytherapy and Targeted Cancer Drug Resistance. Trends Cancer 2019; 5:170-182. [PMID: 30898264 PMCID: PMC6446041 DOI: 10.1016/j.trecan.2019.02.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
A current challenge in cancer treatment is drug resistance. Even the most effective therapies often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. However, how resistance arises in cancer remains incompletely understood. While drug resistance in cancer is thought to be driven by irreversible genetic mutations, emerging evidence also implicates reversible proteomic and epigenetic mechanisms in the development of drug resistance. Tumor microenvironment-mediated mechanisms and tumor heterogeneity can significantly contribute to cancer treatment resistance. Here, we discuss the diverse and dynamic strategies that cancers use to evade drug response, the promise of upfront combination and intermittent therapies and therapy switching in forestalling resistance, and epigenetic reprogramming to combat resistance.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA.
| |
Collapse
|
696
|
Pancreatic Progenitors and Organoids as a Prerequisite to Model Pancreatic Diseases and Cancer. Stem Cells Int 2019; 2019:9301382. [PMID: 30930950 PMCID: PMC6410438 DOI: 10.1155/2019/9301382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are characterized by their unique capacity to stepwise differentiate towards any particular cell type in an adult organism. Pluripotent stem cells provide a beneficial platform to model hereditary diseases and even cancer development. While the incidence of pancreatic diseases such as diabetes and pancreatitis is increasing, the understanding of the underlying pathogenesis of particular diseases remains limited. Only a few recent publications have contributed to the characterization of human pancreatic development in the fetal stage. Hence, most knowledge of pancreatic specification is based on murine embryology. Optimizing and understanding current in vitro protocols for pancreatic differentiation of ESCs and iPSCs constitutes a prerequisite to generate functional pancreatic cells for better disease modeling and drug discovery. Moreover, human pancreatic organoids derived from pluripotent stem cells, organ-restricted stem cells, and tumor samples provide a powerful technology to model carcinogenesis and hereditary diseases independent of genetically engineered mouse models. Herein, we summarize recent advances in directed differentiation of pancreatic organoids comprising endocrine cell types. Beyond that, we illustrate up-and-coming applications for organoid-based platforms.
Collapse
|
697
|
Abstract
Cancer research relies on model systems, which reflect the biology of actual human tumours to only a certain extent. One important feature of human cancer is its intra-tumour genomic heterogeneity and instability. However, the extent of such genomic instability in cancer models has received limited attention in research. Here, we review the state of knowledge of genomic instability of cancer models and discuss its biological origins and implications for basic research and for cancer precision medicine. We discuss strategies to cope with such genomic evolution and evaluate both the perils and the emerging opportunities associated with it.
Collapse
Affiliation(s)
- Uri Ben-David
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
698
|
Patzak MS, Kari V, Patil S, Hamdan FH, Goetze RG, Brunner M, Gaedcke J, Kitz J, Jodrell DI, Richards FM, Pilarsky C, Gruetzmann R, Rümmele P, Knösel T, Hessmann E, Ellenrieder V, Johnsen SA, Neesse A. Cytosolic 5'-nucleotidase 1A is overexpressed in pancreatic cancer and mediates gemcitabine resistance by reducing intracellular gemcitabine metabolites. EBioMedicine 2019; 40:394-405. [PMID: 30709769 PMCID: PMC6413477 DOI: 10.1016/j.ebiom.2019.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cytosolic 5'-nucleotidase 1A (NT5C1A) dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. Here, we investigate NT5C1A expression in pancreatic ductal adenocarcinoma (PDAC) and its impact on gemcitabine metabolism and therapeutic efficacy. METHODS NT5C1A expression was determined by semiquantitative immunohistochemistry using tissue microarrays. Gemcitabine metabolites and response were assessed in several human and murine PDAC cell lines using crystal violet assays, Western blot, viability assays, and liquid chromatography tandem mass-spectrometry (LC-MS/MS). FINDINGS NT5C1A was strongly expressed in tumor cells of a large subgroup of resected PDAC patients in two independent patient cohorts (44-56% score 2 and 8-26% score 3, n = 414). In contrast, NT5C1A was expressed at very low levels in the tumor stroma, and neither stromal nor tumoral expression was a prognostic marker for postoperative survival. In vitro, NT5C1A overexpression increased gemcitabine resistance by reducing apoptosis levels and significantly decreased intracellular amounts of cytotoxic dFdCTP in +NT5C1A tumor cells. Co-culture experiments with conditioned media from +NT5C1A PSCs improved gemcitabine efficacy in tumor cells. In vivo, therapeutic efficacy of gemcitabine was significantly decreased and serum levels of the inactive gemcitabine metabolite dFdU significantly increased in mice bearing NT5C1A overexpressing tumors. INTERPRETATION NT5C1A is robustly expressed in tumor cells of resected PDAC patients. Moreover, NT5C1A mediates gemcitabine resistance by decreasing the amount of intracellular dFdCTP, leading to reduced tumor cell apoptosis and larger pancreatic tumors in mice. Further studies should clarify the role of NT5C1A as novel predictor for gemcitabine treatment response in patients with PDAC.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacokinetics
- Deoxycytidine/pharmacology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Melanie S Patzak
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Vijayalakshmi Kari
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Shilpa Patil
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Feda H Hamdan
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Robert G Goetze
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Marius Brunner
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Jochen Gaedcke
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Julia Kitz
- University Medical Center Goettingen, Institute of Pathology, Goettingen, Germany
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Christian Pilarsky
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Robert Gruetzmann
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Petra Rümmele
- University Medical Center Erlangen, Institute of Pathology, Erlangen, Germany
| | - Thomas Knösel
- Ludwig Maximilian University Munich, Institute of Pathology, Munich, Germany
| | - Elisabeth Hessmann
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Volker Ellenrieder
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Steven A Johnsen
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Albrecht Neesse
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany.
| |
Collapse
|
699
|
Tseng YY, Boehm JS. From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures. Curr Opin Genet Dev 2019; 54:33-40. [DOI: 10.1016/j.gde.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/23/2019] [Indexed: 01/05/2023]
|
700
|
Kim MP, Katz MHG. Perioperative Therapy for Borderline Resectable Pancreatic Cancer: What and When? Ann Surg Oncol 2019; 26:1596-1597. [DOI: 10.1245/s10434-019-07177-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 01/08/2023]
|