651
|
Eltokhi A, Kurpiers B, Pitzer C. Behavioral tests assessing neuropsychiatric phenotypes in adolescent mice reveal strain- and sex-specific effects. Sci Rep 2020; 10:11263. [PMID: 32647155 PMCID: PMC7347854 DOI: 10.1038/s41598-020-67758-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
In humans, infancy and adolescence are associated with major changes in synaptic functions and ongoing maturation of neural networks, which underlie the major behavioral changes during these periods. Among adult cases with neuropsychiatric disorders including autism spectrum disorder, schizophrenia, attention deficit hyperactivity, and bipolar disorders, 50% have developed behavioral symptoms and received a diagnosis before 15 years of age. However, most of the behavioral studies in mice modeling neuropsychiatric phenotypes are performed in adult animals, missing valuable phenotypic information related to the effect of synaptic maturation during development. Here, we explored which behavioral experiments assessing neuropsychiatric phenotypes can be performed during a specific window of development in adolescent male and female C57BL/6N, DBA/2, and FVB/N mice that are typically used as background strains for generating genetically-modified mouse models. The three wild-type strains were evaluated across anxiety, social behaviors, and cognitive functions in order to cover the main behavioral impairments that occur in neuropsychiatric disorders. During adolescence, the three strains displayed significant differences under certain behavioral paradigms. In addition, C57BL/6N and FVB/N, but not DBA/2 mice revealed some sex-related differences. Our results provide new insights into discrete behaviors during development and emphasize the crucial importance of the genetic background, sex, and experimental settings in the age-dependent regulation of different behaviors.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. .,Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
652
|
Kaki A, Nikbakht M, Habibi A, Moghadam H. Effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal cord of diabetic rats. COMPARATIVE EXERCISE PHYSIOLOGY 2020; 16:293-301. [DOI: 10.3920/cep190050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Neuronal inflammation is one of the pathophysiological causes of diabetes neuropathic pain. The purpose of this research was to determine the effect of aerobic exercise on innate immune responses and inflammatory mediators in the spinal dorsal horn in rats with diabetic neuropathic pain. 40 eight-week-old male Wistar rats (weight range 220±10.2 g) were randomly divided into four groups of (1) sedentary diabetic neuropathy (SDN), (2) training diabetic neuropathy (TDN), (3) training control (TC), and (4) sedentary control (SC). Diabetes was induced by injection of streptozocin (50 mg/kg). Following confirmation of behavioural tests for diabetes neuropathy, the training groups performed 6 weeks of moderate-intensity aerobic exercise on the treadmill. The expression of Toll like receptor (TLR)4, TLR2, tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 genes in L4-L6 spinal cord sensory neurons was measured by Real Time PCR. Two-way ANOVA and Bonferroni’s post hoc tests were used for statistical analysis. After performing aerobic exercise protocol, the TDN compared to the SDN showed a significant decrease in the mean score of pain in the formalin test and a significant increase in the latency in Tail-Flick test was observed. The expression of TLR4, TLR2, TNF-α and IL-1β genes was significantly higher in the SDN than in the SC group (P<0.05). The expression of the above genes in the TDN was significantly lower than the SDN group (P<0.05). Also, the expression level of IL-10 gene was significantly higher in the TDN than the SDN group (P<0.05). Aerobic exercise improved sensitivity of nociceptors to pain-inducing agents in diabetic neuropathy due to inhibition of inflammatory receptors and increased levels of anti-inflammatory agents in the nervous system. Thus, aerobic exercise should be used as a non-pharmacological intervention for diabetic patients to reduce neuropathic pain.
Collapse
Affiliation(s)
- A. Kaki
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - M. Nikbakht
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - A.H. Habibi
- Department of Sport Physiology, Faculty of Sports Science, Shahid Chamran University of Ahvaz, 6135783151 Ahvaz, Iran
| | - H.F. Moghadam
- Department of Medical Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
653
|
Na HS, Lee SY, Min HK, Park WJ, Lee JH, Cho KH, Hong SH, Kim DH, Jhun J, Choi JW, Kim SM, Kwok SK, Cho ML, Park SH. The establishment of a rheumatoid arthritis primate model in Macaca fascicularis. J Transl Med 2020; 18:264. [PMID: 32605610 PMCID: PMC7329448 DOI: 10.1186/s12967-020-02402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a long-term autoimmune disorder that mostly affects the joints and leads to the destruction of cartilage. An RA model in non-human primates is especially useful because of their close phylogenetic relationship to humans in terms of cross-reactivity to compounds developed using modern drug technologies. Methods We used a collagen-induced arthritis (CIA) model in Macaca fascicularis. CIA was induced by the immunization of chicken type II collagen. Swelling was measured as the longitudinal and transverse axes of 16 proximal interphalangeal joints. Results A new system for visual evaluation was created, with a perfect score of 16. Individual behavioral analysis was also conducted. Serum was collected once a week after the first immunization. Blood chemistry and inflammatory cytokine parameters were higher in the CIA group than in the wild type group. Conclusion In conclusion, we established CIA in M. fascicularis, and the results can be used for drug evaluation models.
Collapse
Affiliation(s)
- Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Wan-Je Park
- Haeeun Biomedical Research Institute, Genia Inc, Sungnam, Korea
| | - Jung-Hwan Lee
- Haeeun Biomedical Research Institute, Genia Inc, Sungnam, Korea
| | - Ka-Hee Cho
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shin-Hee Hong
- Haeeun Biomedical Research Institute, Genia Inc, Sungnam, Korea
| | - Dae-Hoon Kim
- Haeeun Biomedical Research Institute, Genia Inc, Sungnam, Korea
| | - Jooyeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Won Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Min Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea. .,Laboratory of Immune Network, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, 137-040, Seoul, Korea.
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
654
|
An Anti-Inflammatory Composition of Boswellia serrata Resin Extracts Alleviates Pain and Protects Cartilage in Monoiodoacetate-Induced Osteoarthritis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7381625. [PMID: 32565872 PMCID: PMC7261341 DOI: 10.1155/2020/7381625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
The boswellic acids, the active compounds in Boswellia serrata gum resin extract, are potent anti-inflammatory agents and are specific nonredox inhibitors of 5-Lipoxygenase (5-LOX). Here, we present the anti-osteoarthritis (OA) efficacy of LI13019F1 (also known as Serratrin®), a unique composition containing the acidic and nonacidic fractions of B. serrata gum resin. This composition strongly inhibited 5-LOX activity with the half-maximal inhibitory concentration (IC50) of 43.35 ± 4.90 μg/mL. Also, LI13019F1 strongly inhibited the leukotriene B4 (IC50, 7.80 ± 2.40 μg/mL) and prostaglandin E2 (IC50, 6.19 ± 0.52 μg/mL) productions in human blood-derived cells. Besides, LI13019F1 reduced TNF-α production with the IC50 of 12.38 ± 0.423 μg/mL. On average, 1, 2.5, and 5 μg/mL doses of LI13019F1 protected 34.62, 47.66, and 62.29% SW1353 human chondrosarcoma cells from IL-1β induced SOX-9 depletion, respectively. Further, a 28-day preclinical proof-of-concept study evaluated the pain relief efficacy of LI13019F1 in monoiodoacetate- (MIA-) induced Sprague-Dawley rats. At the end of the study, 150 and 300 mg/kg doses of LI13019F1 supplemented rats showed significant improvements (55.17 ± 5.81 g (p < 0.05), and 66.22 ± 6.30 g (p < 0.05), respectively, vs. MIA: 31.22 ± 7.15 g) in body-weight-bearing capacities. Concurrently, LI13019F1-150 and LI13019F1-300 rats substantially (p < 0.05) increased the threshold of pain sensitivity to pressure (26.98 ± 2.36 and 28.06 ± 2.72-gram force, respectively; vs. 18.63 ± 5.82 in MIA) and increased (p < 0.05) the latent time to withdraw the paw after a thermal stimulus (23.61 ± 2.73 and 28.18 ± 1.90 sec, respectively; vs. 16.56 ± 1.22 sec. in MIA). Besides, the histological observations on Safranin-O green stained articular cartilage revealed that LI13019F1 also prevented the MIA-induced structural damage of the cartilage and reduced the loss of the extracellular matrix (ECM) components in the experimental rats. In conclusion, the present observations suggest that LI13019F1, a new composition of B. serrata gum resin extracts, reduces pain and protects articular cartilage from the damaging action of MIA in a rodent model.
Collapse
|
655
|
Yam MF, Loh YC, Oo CW, Basir R. Overview of Neurological Mechanism of Pain Profile Used for Animal "Pain-Like" Behavioral Study with Proposed Analgesic Pathways. Int J Mol Sci 2020; 21:ijms21124355. [PMID: 32575378 PMCID: PMC7352401 DOI: 10.3390/ijms21124355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Pain is the most common sensation installed in us naturally which plays a vital role in defending us against severe harm. This neurological mechanism pathway has been one of the most complex and comprehensive topics but there has never been an elaborate justification of the types of analgesics that used to reduce the pain sensation through which specific pathways. Of course, there have been some answers to curbing of pain which is a lifesaver in numerous situations-chronic and acute pain conditions alike. This has been explored by scientists using pain-like behavioral study methodologies in non-anesthetized animals since decades ago to characterize the analgesic profile such as centrally or peripherally acting drugs and allowing for the development of analgesics. However, widely the methodology is being practiced such as the tail flick/Hargreaves test and Von Frey/Randall-Selitto tests which are stimulus-evoked nociception studies, and there has rarely been a complete review of all these methodologies, their benefits and its downside coupled with the mechanism of the action that is involved. Thus, this review solely focused on the complete protocol that is being adapted in each behavioral study methods induced by different phlogogenic agents, the different assessment methods used for phasic, tonic and inflammatory pain studies and the proposed mechanism of action underlying each behavioral study methodology for analgesic drug profiling. It is our belief that this review could significantly provide a concise idea and improve our scientists' understanding towards pain management in future research.
Collapse
Affiliation(s)
- Mun Fei Yam
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
- Correspondence: (Y.C.L.); (R.B.); Tel.: +60-46536018 (Y.C.L.); +60-389472448 (R.B.)
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia;
| | - Rusliza Basir
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Y.C.L.); (R.B.); Tel.: +60-46536018 (Y.C.L.); +60-389472448 (R.B.)
| |
Collapse
|
656
|
Bellofiore N, Cousins F, Temple-Smith P, Evans J. Altered exploratory behaviour and increased food intake in the spiny mouse before menstruation: a unique pre-clinical model for examining premenstrual syndrome. Hum Reprod 2020; 34:308-322. [PMID: 30561655 DOI: 10.1093/humrep/dey360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Does the newly discovered menstruating spiny mouse exhibit behavioural and metabolic changes in correlation with premenstrual phases of the menstrual cycle? SUMMARY ANSWER This is the first report of cycle variability in the exploratory and interactive behaviour, and food consumption in menstruating spiny mice, and demonstrates that physiological changes are also dependent on within-subject variation. WHAT IS KNOWN ALREADY Premenstrual syndrome (PMS) is a prominent cyclic disorder that affects millions of women worldwide. More than 70% of women endure symptoms of impending menstruation, such as bloating, abdominal cramping and nausea to some degree. Consequently, ~8% of women experience recurrent physical and emotional symptoms which are extreme enough to disrupt daily life and seek intervention. Due to a lack of an appropriate animal model, the mechanisms underlying PMS are poorly understood, and subsequently, effective treatments are limited. STUDY DESIGN, SIZE, DURATION This study analyses the changes in behavioural responses to the investigator during vaginal lavage (n = 14), exploratory behaviour (n = 11) and metabolism (n = 20) across the menstrual cycle in the spiny mouse (Acomys cahirinus). PARTICIPANTS/MATERIALS, SETTING, METHODS We performed vaginal lavages on virgin spiny mice (6-8 months of age) and subjected each cohort of females to repeated measures for vaginal lavage, exploratory behaviour and metabolism. Stages of the menstrual cycle were designated as early follicular, late follicular, early luteal, late luteal, early menstrual and late menstrual, with the late luteal and early menstrual phases considered as premenstrual phases and analysed using generalized estimating equations. For vaginal lavage, the behavioural responses to researcher handling were scored on an increasing scale of severity during the lavage process (e.g. restraint, frequency of vocalizations, total handling time). For exploratory behaviour, exploration, memory and sociability were assessed through subjection to Open Field (OF), Novel Object Recognition (NORT), Social Novelty (SN) and Elevated Plus Maze (EPM) tests. For metabolism, physiological changes were measured over a 24-h period in metabolic cages. Results are mean ± SD with statistical significance set to P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE Qualitative behavioural assessment showed that compared to early follicular controls, during premenstrual phases, cycling females had significantly increased probability of: manifesting difficulties during restraint (4×, P < 0.01), vocalizing (8×, P < 0.01) and exhibiting isolation in the cage (40×, P = 0.041). We saw significant increases in handling time during the premenstrual phase in cycling females (76 ± 16 s) compared to controls (55 ± 7 s, P < 0.001). For exploratory behaviour, cycling females in their early menstrual phase travelled significantly less distance in the outer zone of the OF arena (13.3 ± 9.0 m) than females in their early luteal phase (22.3 ± 9.9 m, P = 0.038) and at significantly reduced velocities (40.2 ± 10.5 mm/s and 78.8 ± 31.0 mm/s, respectively, P = 0.006). These females also had fewer entries into the EPM open arms during the same phases (9.6 ± 6.1 and versus 20.0 ± 7.2, respectively, P = 0.030) and travelled less distance (3.2 ± 2.8 m versus 7.0 ± 5.5 m, respectively, P = 0.026). No differences were observed in NORT or SN across the cycle. In the metabolism studies, spiny mice demonstrated a significant increase in food consumption (percentage of body weight) during the early follicular and late luteal phases (3.9 ± 2.4% and 3.8 ± 2.1%, respectively) compared to the late follicular phase (2.3 ± 2.6%, P = 0.015). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This is an observational study to determine fundamental changes in behaviour and metabolism in a novel species, and as such, lacks commercially available laboratory reagents and protocols specific to the spiny mouse. WIDER IMPLICATIONS OF THE FINDINGS The timing of these behavioural and physiological changes suggests that spiny mice exhibit symptoms analogous to PMS in higher order primates, thus providing a pre-clinical model for testing novel interventions to alleviate premenstrual symptoms and overcoming many limitations associated with this research area. STUDY FUNDING/COMPETING INTEREST(S) N.B. is supported by a Research Training Program stipend through Monash University. J.E. is supported by a Fellowship awarded by the Peter Fielding Foundation. The Hudson Institute of Medical Research is supported by the Victorian Government Operational Research Infrastructure Support. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Fiona Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia.,Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | | | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
657
|
Strychnos nux-vomica L. seed preparation promotes functional recovery and attenuates oxidative stress in a mouse model of sciatic nerve crush injury. BMC Complement Med Ther 2020; 20:181. [PMID: 32527244 PMCID: PMC7291632 DOI: 10.1186/s12906-020-02950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Peripheral nerve injury is a debilitating condition that may lead to partial or complete motor, sensory and autonomic function loss and lacks effective therapy until date. Therefore, it is quite imperative to explore impending remedies for rapid and accurate functional retrieval following such conditions. Natural product-based intervention can prove effective to facilitate the process of functions regain. Methods Here, we investigated the effect of processed Strychnos nux-vomica seeds at a dose of 250 mg/kg body weight in a mouse model of induced Sciatic nerve lesion in promoting the recovery of the functions. A compression injury was induced in the Sciatic nerve of the right leg in the mice. Sensory function recovery was evaluated by hot-plate and formalin tests, whereas the motor function retrieval was assessed by measuring muscle grip strength, sciatic functional index, and muscle mass restoration. Oxidative stress and blood cell count were measured by biochemistry and haematological analyses. Results This study indicates that Strychnos nux-vomica seeds enhance the rate of recovery of both sensory and motor functions. It helps restore the muscle mass, attenuates total oxidant status and enhances the total anti-oxidant capacity of the biological system. Moreover, the treated animals manifested an enhanced glucose tolerance aptitude and augmented granulocyte and platelet counts. Improved oxidant control, enhanced glucose sensitivity and amended granulocyte and platelet counts are likely to contribute to the advantageous effects of Strychnos nux-vomica, and warrant further in-depth studies for deciphering possible mechanisms and identification of active constituent(s) responsible for these effects. Conclusion Strychnos nux-vomica seed offers functional recovery promoting effects following a mechanical injury to the Sciatic nerve and the possible reasons behind this effect can be reduced oxidative stress and improved glycaemic control. Further and detailed investigations can unravel this mystery.
Collapse
|
658
|
Goldschmidt E, Fellows-Mayle W, Wolfe R, Niranjan A, Flickinger JC, Lunsford LD, Gerszten PC. Radiosurgery to the spinal dorsal root ganglion induces fibrosis and inhibits satellite glial cell activation while preserving axonal neurotransmission. J Neurosurg Spine 2020; 32:790-798. [PMID: 32005015 DOI: 10.3171/2019.11.spine191176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stereotactic radiosurgery (SRS) has been used to treat trigeminal neuralgia by targeting the cisternal segment of the trigeminal nerve, which in turn triggers changes in the gasserian ganglion. In the lumbar spine, the dorsal root ganglion (DRG) is responsible for transmitting pain sensitivity and is involved in the pathogenesis of peripheral neuropathic pain. Therefore, radiosurgery to the DRG might improve chronic peripheral pain. This study evaluated the clinical and histological effects of high-dose radiosurgery to the DRG in a rodent model. METHODS Eight Sprague-Dawley rats received either 40- or 80-Gy SRS to the fifth and sixth lumbar DRGs using the Leksell Gamma Knife Icon. Animals were euthanized 3 months after treatment, and the lumbar spine was dissected and taken for analysis. Simple histology was used to assess collagen deposition and inflammatory response. GFAP, Neu-N, substance P, and internexin were used as a measure of peripheral glial activation, neurogenesis, pain-specific neurotransmission, and neurotransmission in general, respectively. The integrity of the spinothalamic tract was assessed by means of the von Frey test. RESULTS The animals did not exhibit any signs of motor or sensory deficits during the experimentation period. Edema, fibrosis, and vascular sclerotic changes were present on the treated, but not the control, side. SRS reduced the expression of GFAP without affecting the expression of Neu-N, substance P, or internexin. The von Frey sensory perception elicited equivalent results for the control side and both radiosurgical doses. CONCLUSIONS SRS did not alter sensory or motor function but reduced the activation of satellite glial cells, a pathway for DRG-mediated pain perpetuation. Radiosurgery provoked changes equivalent to the effects of focal radiation on the trigeminal ganglion after SRS for trigeminal neuralgia, suggesting that radiosurgery could be successful in relieving radiculopathic pain.
Collapse
Affiliation(s)
| | | | - Rachel Wolfe
- 2University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | | | - John C Flickinger
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| | - L Dade Lunsford
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| | - Peter C Gerszten
- Departments of1Neurosurgery and
- 3Radiation Oncology, University of Pittsburgh Medical Center; and
| |
Collapse
|
659
|
Glaeser JD, Tawackoli W, Ju DG, Yang JH, Kanim LEA, Salehi K, Yu V, Saidara E, Vit J, Khnkoyan Z, NaPier Z, Stone LS, Bae HW, Sheyn D. Optimization of a rat lumbar IVD degeneration model for low back pain. JOR Spine 2020; 3:e1092. [PMID: 32613167 PMCID: PMC7323460 DOI: 10.1002/jsp2.1092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Intervertebral disc (IVD) degeneration is often associated with low back pain and radiating leg pain. The purpose of this study is to develop a reproducible and standardized preclinical model of painful lumbar IVD degeneration by evaluation of structural and behavioral changes in response to IVD injury with increasing needle sizes. This model can be used to develop new therapies for IVD degeneration. METHODS Forty-five female Sprague Dawley rats underwent anterior lumbar disc needle puncture at levels L4-5 and L5-6 under fluoroscopic guidance. Animals were randomly assigned to four different experimental groups: needle sizes of 18 Gauge (G), 21G, 23G, and sham control. To monitor the progression of IVD degeneration and pain, the following methods were employed: μMRI, qRT-PCR, histology, and biobehavioral analysis. RESULTS T1- and T2-weighted μMRI analysis showed a correlation between the degree of IVD degeneration and needle diameter, with the most severe degeneration in the 18G group. mRNA expression of markers for IVD degeneration markers were dysregulated in the 18G and 21G groups, while pro-nociceptive markers were increased in the 18G group only. Hematoxylin and Eosin (H&E) and Alcian Blue/Picrosirius Red staining confirmed the most pronounced IVD degeneration in the 18G group. Randall-Selitto and von Frey tests showed increased hindpaw sensitivity in the 18G group. CONCLUSION Our findings demonstrate that anterior disc injury with an 18G needle creates severe IVD degeneration and mechanical hypersensitivity, while the 21G needle results in moderate degeneration with no increased pain sensitivity. Therefore, needle sizes should be selected depending on the desired phenotype for the pre-clinical model.
Collapse
Affiliation(s)
- Juliane D. Glaeser
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Derek G. Ju
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jae H. Yang
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Orthopedic SurgeryKorea University Guro HospitalSeoulSouth Korea
| | - Linda EA Kanim
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Victoria Yu
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Evan Saidara
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jean‐Phillipe Vit
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zhanna Khnkoyan
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zachary NaPier
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Laura S. Stone
- McGill University, Faculty of DentistryAlan Edwards Centre for Research on PainMontrealCanada
| | - Hyun W. Bae
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research LaboratoryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of OrthopedicsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of SurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
660
|
Blomqvist KJ, Dudek KA, Viisanen H, Mätlik K, Ahlström FHG, Laitila J, Kalso EA, Rauhala PV, Lilius TO. Antagonism of peripheral opioid receptors by methylnaltrexone does not prevent morphine tolerance in rats. J Neurosci Res 2020; 100:329-338. [PMID: 32459013 DOI: 10.1002/jnr.24638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022]
Abstract
Opioids are effective analgesics in the management of severe pain. However, tolerance, leading to dose escalation and adverse effects are significant limiting factors in their use. The role of peripheral opioid receptors in analgesia has been discussed especially under inflammatory conditions. The results from pharmacological and conditional knockout studies together do not provide a clear picture of the contribution of peripheral opioid receptors on antinociceptive tolerance and this needs to be evaluated. Therefore, we studied whether the peripherally restricted opioid receptor antagonist, methylnaltrexone (MNTX), could prevent morphine tolerance without attenuating the antinociceptive effect of morphine. Male Sprague-Dawley rats were treated for 7 days with increasing subcutaneous doses of morphine (5-30 mg/kg) and were coadministered saline, MNTX (0.5 or 2 mg/kg), or naltrexone (NTX; 2 mg/kg). Nociception was assessed with tail-flick, hotplate, and von Frey tests. Morphine, MNTX, and NTX concentrations in the plasma, brain, and spinal cord were measured by liquid chromatography-tandem mass spectrometry. In acute coadministration, NTX, but not MNTX, abolished the acute antinociceptive effects of morphine in all nociceptive tests. The antinociceptive tolerance after repeated morphine administration was also prevented by NTX but not by MNTX. MNTX penetrated to the spinal cord and the brain to some extent after repeated administration. The results do not support the use of MNTX for preventing opioid tolerance and also suggest that morphine tolerance is mediated by central rather than peripheral opioid receptors in the rat.
Collapse
Affiliation(s)
- Kim Juhani Blomqvist
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katarzyna Anna Dudek
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kert Mätlik
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fredrik Harry Gustav Ahlström
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jouko Laitila
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Finland
| | - Eija Anneli Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Anaesthesiology, Intensive Care Medicine, and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Veli Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuomas Olavi Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Finland.,Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
661
|
Zhao D, Han DF, Wang SS, Lv B, Wang X, Ma C. Roles of tumor necrosis factor-α and interleukin-6 in regulating bone cancer pain via TRPA1 signal pathway and beneficial effects of inhibition of neuro-inflammation and TRPA1. Mol Pain 2020; 15:1744806919857981. [PMID: 31144562 PMCID: PMC6580714 DOI: 10.1177/1744806919857981] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Pain is one of the most common and distressing symptoms suffered by patients
with progression of bone cancer; however, the mechanisms responsible for
hyperalgesia are not well understood. The purpose of our current study was
to determine contributions of the sensory signaling pathways of inflammatory
tumor necrosis factor-α and interleukin-6 and downstream transient receptor
potential ankyrin 1 (TRPA1) to neuropathic pain induced by bone cancer. We
further determined whether influencing these pathways can improve bone
cancer pain. Methods Breast sarcocarcinoma Walker 256 cells were implanted into the tibia bone
cavity of rats to induce mechanical and thermal hyperalgesia. ELISA and
western blot analysis were used to examine (1) the levels of tumor necrosis
factor-α and interleukin-6 in dorsal root ganglion and (2) protein
expression of tumor necrosis factor-α and interleukin-6 receptors (TNFR1 and
IL-6R) and TRPA1 as well as intracellular signals (p38-MAPK and JNK). Results Tumor necrosis factor-α and interleukin-6 were elevated in the dorsal root
ganglion of bone cancer rats, and expression of TNFR1, IL-6R, and TRPA1 was
upregulated. In addition, inhibition of TNFR1 and IL-6R alleviated
mechanical and thermal hyperalgesia in bone cancer rats, accompanied with
downregulated TRPA1 and p38-MAPK and JNK. Conclusions We revealed specific signaling pathways leading to neuropathic pain during
the development of bone cancer, including tumor necrosis factor-α-TRPA1 and
interleukin-6-TRPA1 signal pathways. Overall, our data suggest that blocking
these signals is beneficial to alleviate bone cancer pain.
Collapse
Affiliation(s)
- Ding Zhao
- 1 Department of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Dong-Feng Han
- 2 Department of Emergency Medicine, First Hospital of Jilin University, Changchun, China
| | - Si-Si Wang
- 3 Department of Translational Medicine, First Hospital of Jilin University, Changchun, China
| | - Bing Lv
- 2 Department of Emergency Medicine, First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- 4 Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- 5 Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
662
|
Nakamura Y, Fukushige R, Watanabe K, Kishida Y, Hisaoka-Nakashima K, Nakata Y, Morioka N. Continuous infusion of substance P into rat striatum relieves mechanical hypersensitivity caused by a partial sciatic nerve ligation via activation of striatal muscarinic receptors. Behav Brain Res 2020; 391:112714. [PMID: 32461131 DOI: 10.1016/j.bbr.2020.112714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that continuous substance P (SP) infusion into the rat striatum attenuated hind paw formalin-induced nociceptive behaviors and mechanical hypersensitivity via a neurokinin-1 (NK1) receptor dependent mechanism. However, whether there is a role of striatal infusion of SP on chronic, neuropathic pain has yet to be demonstrated. The present study investigated the effect of continuous SP infusion into the rat striatum using a reverse microdialysis method is antinociceptive in a rat model of chronic, mononeuropathic pain. Two weeks after partial sciatic nerve injury, the ipsilateral hind paw demonstrated mechanical hypersensitivity. Infusion of SP (0.2, 0.4, or 0.8 μg/mL, 1 μL/min) for 120 min into the contralateral striatum dose-dependently relieved mechanical hypersensitivity. The antinociceptive effect of SP infusion was inhibited by co-infusion with the NK1 receptor antagonist CP96345 (10 μM). Neither ipsilateral continuous infusion nor acute microinjection of SP (10 ng) into the contralateral striatum was antinociceptive. A role of striatal muscarinic cholinergic neurons is suggested since co-infusion of SP with atropine (10 μM), but not the nicotinic receptor mecamylamine (10 μM), blocked antinociception. The current study suggests that activation of striatal muscarinic receptors through NK1 receptors could be a novel approach to managing chronic pain.
Collapse
Affiliation(s)
- Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ryo Fukushige
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kohei Watanabe
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Kishida
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
663
|
van Dijk RM, Koska I, Bleich A, Tolba R, Seiffert I, Möller C, Di Liberto V, Talbot SR, Potschka H. Design of composite measure schemes for comparative severity assessment in animal-based neuroscience research: A case study focussed on rat epilepsy models. PLoS One 2020; 15:e0230141. [PMID: 32413036 PMCID: PMC7228039 DOI: 10.1371/journal.pone.0230141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
Comparative severity assessment of animal models and experimental interventions is of utmost relevance for harm-benefit analysis during ethical evaluation, an animal welfare-based model prioritization as well as the validation of refinement measures. Unfortunately, there is a lack of evidence-based approaches to grade an animal's burden in a sensitive, robust, precise, and objective manner. Particular challenges need to be considered in the context of animal-based neuroscientific research because models of neurological disorders can be characterized by relevant changes in the affective state of an animal. Here, we report about an approach for parameter selection and development of a composite measure scheme designed for precise analysis of the distress of animals in a specific model category. Data sets from the analysis of several behavioral and biochemical parameters in three different epilepsy models were subjected to a principal component analysis to select the most informative parameters. The top-ranking parameters included burrowing, open field locomotion, social interaction, and saccharin preference. These were combined to create a composite measure scheme (CMS). CMS data were subjected to cluster analysis enabling the allocation of severity levels to individual animals. The results provided information for a direct comparison between models indicating a comparable severity of the electrical and chemical post-status epilepticus models, and a lower severity of the kindling model. The new CMS can be directly applied for comparison of other rat models with seizure activity or for assessment of novel refinement approaches in the respective research field. The respective online tool for direct application of the CMS or for creating a new CMS based on other parameters from different models is available at https://github.com/mytalbot/cms. However, the robustness and generalizability needs to be further assessed in future studies. More importantly, our concept of parameter selection can serve as a practice example providing the basis for comparable approaches applicable to the development and validation of CMS for all kinds of disease models or interventions.
Collapse
Affiliation(s)
- Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Rene Tolba
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christina Möller
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Steven Roger Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
664
|
Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain 2020; 160:1766-1780. [PMID: 31335646 DOI: 10.1097/j.pain.0000000000001567] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain is the leading cause of disability in the developed world but remains a poorly treated condition. Specifically, postsurgical pain continues to be a frequent and undermanaged condition. Here, we investigate the analgesic potential of pharmacological NaV1.7 inhibition in a mouse model of acute postsurgical pain, based on incision of the plantar skin and underlying muscle of the hind paw. We demonstrate that local and systemic treatment with the selective NaV1.7 inhibitor μ-theraphotoxin-Pn3a is effectively antiallodynic in this model and completely reverses mechanical hypersensitivity in the absence of motor adverse effects. In addition, the selective NaV1.7 inhibitors ProTx-II and PF-04856264 as well as the clinical candidate CNV1014802 also reduced mechanical allodynia. Interestingly, co-administration of the opioid receptor antagonist naloxone completely reversed analgesic effects of Pn3a, indicating an involvement of endogenous opioids in the analgesic activity of Pn3a. In addition, we found superadditive antinociceptive effects of subtherapeutic Pn3a doses not only with the opioid oxycodone but also with the GABAB receptor agonist baclofen. Transcriptomic analysis of gene expression changes in dorsal root ganglia of mice after surgery did not reveal any changes in mRNA expression of endogenous opioids or opioid receptors; however, several genes involved in pain, including Runx1 (Runt related transcription factor 1), Cacna1a (CaV2.1), and Cacna1b (CaV2.2), were downregulated. In summary, these findings suggest that pain after surgery can be successfully treated with NaV1.7 inhibitors alone or in combination with baclofen or opioids, which may present a novel and safe treatment strategy for this frequent and poorly managed condition.
Collapse
|
665
|
Fan Y, Xiao Y, Sabuhi WA, Leape CP, Gil D, Grindy S, Muratoglu OK, Bedair H, Collins JE, Randolph M, Oral E. Longitudinal Model of Periprosthetic Joint Infection in the Rat. J Orthop Res 2020; 38:1101-1112. [PMID: 31808572 DOI: 10.1002/jor.24556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
The majority of periprosthetic joint infections occur shortly after primary joint replacement (<3 months) and require the removal of all implant components for the treatment period (~4 months). A clinically relevant animal model of periprosthetic infection should, therefore, establish an infection with implant components in place. Here, we describe a joint replacement model in the rat with ultrahigh molecular weight polyethylene (UHMWPE) and titanium components inoculated at the time of surgery by methicillin-sensitive Staphylococcus aureus (S. aureus), which is one of the main causative microorganisms of periprosthetic joint infections. We monitored the animals for 4 weeks by measuring gait, weight-bearing symmetry, von Frey testing, and micro-CT as our primary endpoint analyses. We also assessed the infection ex vivo using colony counts on the implant surfaces and histology of the surrounding tissues. The results confirmed the presence of a local infection for 4 weeks with osteolysis, loosening of the implants, and clinical infection indicators such as redness, swelling, and increased temperature. The utility of specific gait analysis parameters, especially temporal symmetry, hindlimb duty factor imbalance, and phase dispersion was identified in this model for assessing the longitudinal progression of the infection, and these metrics correlated with weight-bearing asymmetry. We propose to use this model to study the efficacy of using different local delivery regimens of antimicrobials on addressing periprosthetic joint infections. Statement of clinical significance: We have established a preclinical joint surgery model, in which postoperative recovery can be monitored over a multi-week course by assessing gait, weight-bearing, and allodynia. This model can be used to study the efficacy of different combinations of implant materials and medication regimens. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1101-1112, 2020.
Collapse
Affiliation(s)
- Yingfang Fan
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Yinbo Xiao
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Wali A Sabuhi
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Charlotte P Leape
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Dmitry Gil
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Scott Grindy
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Orhun K Muratoglu
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Hany Bedair
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jamie E Collins
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts.,Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mark Randolph
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Ebru Oral
- Harris Orthopaedic Laboratory, Massachusetts General Hospital, Boston, Massachusetts.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
666
|
Just N, Segelcke D, Sandbrink M, Pogatzki-Zahn E, Faber C. Development of a Stimulator for the Characterization of Mechanical-Evoked Pain-Related Supra-Spinal Processing Using BOLD-fMRI in Rodents. IEEE Trans Biomed Eng 2020; 67:1349-1356. [DOI: 10.1109/tbme.2019.2936571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
667
|
Smith ESJ, Park TJ, Lewin GR. Independent evolution of pain insensitivity in African mole-rats: origins and mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:313-325. [PMID: 32206859 PMCID: PMC7192887 DOI: 10.1007/s00359-020-01414-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| |
Collapse
|
668
|
Parker T, Huang Y, Gong C, Chen Y, Wang S, Green A, Aziz T, Li L. Pain-Induced Beta Activity in the Subthalamic Nucleus of Parkinson’s Disease. Stereotact Funct Neurosurg 2020; 98:193-199. [DOI: 10.1159/000507032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022]
|
669
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
670
|
Wu TL, Byun NE, Wang F, Mishra A, Janve VA, Chen LM, Gore JC. Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR IN BIOMEDICINE 2020; 33:e4216. [PMID: 31943383 PMCID: PMC7155919 DOI: 10.1002/nbm.4216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 05/09/2023]
Abstract
Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.
Collapse
Affiliation(s)
- Tung-Lin Wu
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
| | - Nellie E. Byun
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Vaibhav A. Janve
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, United States
- Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, United States
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, United States
| |
Collapse
|
671
|
|
672
|
Caporoso J, Moses M, Koper K, Tillman TS, Jiang L, Brandon N, Chen Q, Tang P, Xu Y. A Thermal Place Preference Test for Discovery of Neuropathic Pain Drugs. ACS Chem Neurosci 2020; 11:1006-1012. [PMID: 32191433 DOI: 10.1021/acschemneuro.0c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Developing potent non-opioid pain medications is an integral part of the battle to conquer both chronic pain and the current opioid crisis. Although most screening approaches use in vitro surrogate targets, in vivo screening of analgesic candidates is a necessary preclinical step in drug discovery. Here, we report the design of a new automated behavioral testing apparatus based on the principle of a thermal place preference test (TPPT). This new design can detect, quantify, and differentiate behavioral responses to cold stimuli between sham and chronic constriction injury (CCI) rodents with up to 12 animals tested simultaneously. At an optimized temperature pair of 12.5 °C vs 30.0 °C (±0.5 °C), the TPPT design has captured the antinociceptive effects of morphine and pregabalin on CCI rats in individual 10 min tests. Moreover, it can differentiate analgesic effects by morphine or pregabalin from anxiolytic effects by diazepam. The results, along with the relatively low cost to construct the apparatus and moderately high throughput, make our TPPT design applicable for behavioral studies of chronic pain in rodents and for high-throughput in vivo screening of the next generation of pain medications.
Collapse
Affiliation(s)
- Joel Caporoso
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Moses
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kerryann Koper
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tommy S. Tillman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lingling Jiang
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicole Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiang Chen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
673
|
Gias ZT, Afsana F, Debnath P, Alam MS, Ena TN, Hossain MH, Jain P, Reza HM. A mechanistic approach to HPLC analysis, antinociceptive, anti-inflammatory and postoperative analgesic activities of panch phoron in mice. BMC Complement Med Ther 2020; 20:102. [PMID: 32228549 PMCID: PMC7106723 DOI: 10.1186/s12906-020-02891-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Panch phoron is a mixture of five spices containing an equal proportion of Foeniculum vulgare (fennel), Trigonella foenum-graecum Linn (fenugreek), Nigella sativa (black cumin), Cuminum cyminum (cumin) and Brassica nigra (black mustard). The mixture is commonly used in Bangladeshi cuisine and possesses many pharmacological effects. In this study, we evaluated the antinociceptive and anti-inflammatory activities of aqueous panch phoron extract (PPE) in vivo, its possible mechanism of action and phytochemical analysis by High-Performance Liquid Chromatography (HPLC). We also investigated the effect of PPE on postoperative pain in mice. Methods HPLC was carried out using LC-20A Modular HPLC system to identify the bioactive compounds present in PPE. Five groups of Swiss albino male mice (n = 6 per group) were orally treated with 10 ml/kg of distilled water or 10 mg/kg of sodium diclofenac or three doses of PPE (100 mg/kg, 300 mg/kg, 500 mg/kg). In vivo assessment was carried out by the writhing test, tail-flick test, formalin test, and carrageenan induced paw edema test. The opioid antagonist, naloxone was used in the acetic acid test to evaluate the involvement of opioid receptors. To assess the effect of PPE in postoperative pain, mice that underwent sciatic nerve surgery were measured for the paw withdrawal latency in a hot water bath. Results In HPLC analysis, different types of phenolic compounds and flavonoids, including catechin hydrate, para-coumaric acid, vanillic acid, and syringic acid were detected. Treatment with PPE exhibited dose-dependent antinociceptive and anti-inflammatory activities in pain models (p < 0.05). Furthermore, naloxone did not reverse the effect of PPE in the writhing test. Mice that underwent sciatic nerve surgery showed that the paw withdrawal latency increased gradually over 7 days. Conclusions Our results demonstrate that PPE has significant antinociceptive and anti-inflammatory activities and can provide significant postoperative analgesia.
Collapse
Affiliation(s)
- Zarin Tasnim Gias
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Fatima Afsana
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Polak Debnath
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - M Shadidul Alam
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Tania Naz Ena
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Md Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), -1205, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh.
| |
Collapse
|
674
|
Rodrigues M, Cardoso RB, Kuriki HU, Marcolino AM, de Oliveira Guirro EC, Barbosa RI. Photobiomodulation Decreases Hyperalgesia in Complex Regional Pain Syndrome: An Experimental Mouse Model Subjected to Nicotine. Lasers Surg Med 2020; 52:890-896. [PMID: 32201964 DOI: 10.1002/lsm.23240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Complex regional pain syndrome (CRPS) is defined as an extreme and chronic pain condition, and photobiomodulation has relevance as a complementary treatment for CRPS. The objective of this study was to verify the effects of photobiomodulation (PBMT) therapy protocols at two wavelengths 660 and 830 nm, associated or not to nicotine in complex regional pain syndrome type I (CRPS-I). STUDY DESIGN/MATERIALS AND METHODS Sixty-four Swiss mice were divided into the following groups: (i) Naive, (ii) Sham, (iii) Control, (iv) 660 nm, (v) 830 nm, (vii) Nicotine, (vii) Nicotine/660 nm, and (viii) Nicotine/830 nm. CRPS-I was induced in an experimental ischemia/reperfusion model by affixing an elastic ring, proximal to the ankle joint of the right hind mouse paw, for 3 hours. Nicotine, in the respective groups was administered for 28 days prior to the induction of CRPS-I. PBMT was applied immediately after the procedure and for 20 consecutive days. The animals were evaluated for mechanical hyperalgesia, thermal hyperalgesia, paw edema at baseline and for 7, 14, and 21 days. Statistical analyses comprised a mixed-effects model, using the Tukey post hoc test (P < 0.05). RESULTS The PBMT wavelengths in 660 and 830 nm groups had beneficial effects (P < 0.05) in reducing mechanical and thermal hyperalgesia, but the effects at 660 nm were significantly better than 830 nm. At reducing edema, both wavelengths had significant effects statistically, absolutely no difference between them. CONCLUSIONS The use of PBMT (660 and 830 nm) was effective in reducing mechanical hyperalgesia and thermal hyperalgesia; however, PBMT at 660 nm generated significant results. In reducing edema, both wavelengths had similar effects, which were significant statistically. The deleterious effects of nicotine were evident statistically and were softened when treated with PBMT (P < 0.05). Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Rodrigues
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Ramon B Cardoso
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Heloyse U Kuriki
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Alexandre M Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School of the University of São Paulo(USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael I Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| |
Collapse
|
675
|
Genovese C, D’Angeli F, Attanasio F, Caserta G, Scarpaci KS, Nicolosi D. Phytochemical composition and biological activities of Orobanche crenata Forssk.: a review. Nat Prod Res 2020; 35:4579-4595. [DOI: 10.1080/14786419.2020.1739042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
- Nacture S.r.l, Spin-off University of Catania, Catania, Italy
| | - Floriana D’Angeli
- Department of Biomedical and Biotechnological Sciences, Biochemistry section, University of Catania, Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Research Council (CNR), Catania, Italy
| | - Gaetano Caserta
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
| | - Kevin Sebastiano Scarpaci
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Microbiology section, University of Catania, Catania, Italy
- Nacture S.r.l, Spin-off University of Catania, Catania, Italy
| |
Collapse
|
676
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
677
|
A new method for vibration-based neurophenotyping of zebrafish. J Neurosci Methods 2020; 333:108563. [DOI: 10.1016/j.jneumeth.2019.108563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
678
|
Song SY, Hong J, Go S, Lim S, Sohn HS, Kang M, Jung G, Yoon J, Kang ML, Im G, Kim B. Interleukin-4 Gene Transfection and Spheroid Formation Potentiate Therapeutic Efficacy of Mesenchymal Stem Cells for Osteoarthritis. Adv Healthc Mater 2020; 9:e1901612. [PMID: 31977158 DOI: 10.1002/adhm.201901612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a painful intractable disease that significantly affects patients' quality of life. However, current therapies, such as pain killers and joint replacement surgery, do not lead to cartilage protection. Mesenchymal stem cells (MSCs) have been proposed as an alternative strategy for OA therapy because MSCs can secrete chondroprotective and anti-inflammatory factors. However, interleukin-4 (IL-4), a potent anti-inflammatory cytokine, is barely produced by MSCs, and MSC therapy suffers from rapid MSC death following intra-articular implantation. MSCs in spheroids survive better than naïve MSCs in vitro and in vivo. IL-4-transfected MSCs in spheroids (IL-4 MSC spheroid) show increased chondroprotective and anti-inflammatory effects in an OA chondrocyte model in vitro. Following intra-articular implantation in OA rats, IL-4 MSC spheroids show better cartilage protection and pain relief than naïve MSCs. Thus, IL-4 MSC spheroid may potentiate the therapeutic efficacy of MSCs for OA.
Collapse
Affiliation(s)
- Seuk Young Song
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Seukhyeong Go
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Gun‐Jae Jung
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jeong‐Kee Yoon
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Mi Lan Kang
- Department of Orthopaedic SurgeryDongguk University Ilsan Hospital 27 Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Republic of Korea
| | - Gun‐il Im
- Department of Orthopaedic SurgeryDongguk University Ilsan Hospital 27 Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Republic of Korea
| | - Byung‐Soo Kim
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of Chemical Processes, Institute of Engineering ResearchSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
679
|
Tanei S, Miwa M, Yoshida M, Miura R, Nagakura Y. The method simulating spontaneous pain in patients with nociplastic pain using rats with fibromyalgia-like condition. MethodsX 2020; 7:100826. [PMID: 32195142 PMCID: PMC7078388 DOI: 10.1016/j.mex.2020.100826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/12/2020] [Indexed: 11/15/2022] Open
Abstract
The method shown in this article simulates spontaneous pain in patients with nociplastic pain using rats; the measurement with this method could be related to better translation of analgesic efficacies of therapeutic compounds between rats and humans. Nociplastic pain occurs in various disorders including fibromyalgia. Because the pain in patients occurs without an external stimulus, we assessed spontaneous pain in rats. The grimace scale, a methodology for rating facial expression, has been used for measuring spontaneous pain in animals. However, the responses in animals have been rather short-lived, and the scale has never been applied to animals exhibiting nociplastic pain. Here, we apply the rat grimace scale (RGS) to the reserpine-induced fibromyalgia-like rat, which induces nociplastic pain. The ratings of the orbital tightening, nose/cheek flattening, and changes in characteristics of ears and whiskers by three raters, who were blinded to the treatment allocated to rats, demonstrated substantial, long-lasting change in facial expression of rats. In this article, reference images for raters, and sample images used for rater training are provided. All raters independently indicated that the RGS score is significantly elevated with this methodology in reserpine-induced fibromyalgia-like rats.•The grimace scale, a method for rating facial expression, is applied to the reserpine-induced fibromyalgia-like rat, which manifests nociplastic pain.•Facial expression change in the reserpine-induced fibromyalgia-like rat is substantial and long-lasting.•Elevation of the RGS score in the reserpine-induced fibromyalgia-like rat may simulate spontaneous pain in patients with nociplastic pain.
Collapse
Affiliation(s)
- Shigeharu Tanei
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan.,Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Machiko Miwa
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Miku Yoshida
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Reina Miura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan
| | - Yukinori Nagakura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kohbata, Aomori 030-0943 Japan.,School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.,School of Pharmacy in Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
| |
Collapse
|
680
|
Morphine-3-glucuronide causes antinociceptive cross-tolerance to morphine and increases spinal substance P expression. Eur J Pharmacol 2020; 875:173021. [PMID: 32112778 DOI: 10.1016/j.ejphar.2020.173021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.
Collapse
|
681
|
Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients 2020; 12:nu12020509. [PMID: 32085385 PMCID: PMC7071407 DOI: 10.3390/nu12020509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of joints, causing pain and swelling, and can be caused or worsened by trauma and obesity. The objectives of this study were to determine whether pain behaviour and progression of OA were increased in rats with trauma-induced OA fed dietary saturated fatty acids (SFA). Male Wistar rats were fed either a corn starch diet (C) or high-carbohydrate high-fat diet (H) with either 20% beef tallow or SFA (lauric (HLA), myristic (HMA), palmitic (HPA) or stearic (HSA) acids) for 16 weeks prior to and 8 weeks after excision of the medial meniscus of right knee joint to initiate OA when pain behaviour, glial activity, progression of knee OA, inflammatory mediators and signs of metabolic syndrome were assessed. Rats fed beef tallow, palmitic or stearic acids showed increased pain symptoms characterised by decreased hind paw/limb withdrawal thresholds and grip strengths and increased spinal astrogliosis and microgliosis compared to rats fed lauric or myristic acids. However, the severity of OA joint damage was unchanged by these dietary manipulations. We conclude that pain symptoms of trauma-induced OA in rats worsen with increased dietary beef tallow or palmitic or stearic acids, but improve with lauric or myristic acids, despite unchanged OA cartilage damage.
Collapse
|
682
|
Romero-Ramírez L, Wu S, de Munter J, Wolters EC, Kramer BW, Mey J. Treatment of rats with spinal cord injury using human bone marrow-derived stromal cells prepared by negative selection. J Biomed Sci 2020; 27:35. [PMID: 32066435 PMCID: PMC7026953 DOI: 10.1186/s12929-020-00629-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) is a highly debilitating pathology without curative treatment. One of the most promising disease modifying strategies consists in the implantation of stem cells to reduce inflammation and promote neural regeneration. In the present study we tested a new human bone marrow-derived stromal cell preparation (bmSC) as a therapy of SCI. Methods Spinal cord contusion injury was induced in adult male rats at thoracic level T9/T10 using the Infinite Horizon impactor. One hour after lesion the animals were treated with a sub-occipital injection of human bmSC into the cisterna magna. No immune suppression was used. One dose of bmSC consisted, on average, of 2.3 million non-manipulated cells in 100 μL suspension, which was processed out of fresh human bone marrow from the iliac crest of healthy volunteers. Treatment efficacy was compared with intraperitoneal injections of methylprednisolone (MP) and saline. The recovery of motor functions was assessed during a surveillance period of nine weeks. Adverse events as well as general health, weight and urodynamic functions were monitored daily. After this time, the animals were perfused, and the spinal cord tissue was investigated histologically. Results Rats treated with bmSC did not reject the human implants and showed no sign of sickness behavior or neuropathic pain. Compared to MP treatment, animals displayed better recovery of their SCI-induced motor deficits. There were no significant differences in the recovery of bladder control between groups. Histological analysis at ten weeks after SCI revealed no differences in tissue sparing and astrogliosis, however, bmSC treatment was accompanied with reduced axonal degeneration in the dorsal ascending fiber tracts, lower Iba1-immunoreactivity (IR) close to the lesion site and reduced apoptosis in the ventral grey matter. Neuroinflammation, as evidenced by CD68-IR, was significantly reduced in the MP-treated group. Conclusions Human bmSC that were prepared by negative selection without expansion in culture have neuroprotective properties after SCI. Given the effect size on motor function, implantation in the acute phase was not sufficient to induce spinal cord repair. Due to their immune modulatory properties, allogeneic implants of bmSC can be used in combinatorial therapies of SCI.
Collapse
Affiliation(s)
| | - Siyu Wu
- Hospital Nacional de Parapléjicos, c/Finca la Peraleda, 45071, Toledo, Spain.,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands
| | | | | | - Boris W Kramer
- School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands
| | - Jörg Mey
- Hospital Nacional de Parapléjicos, c/Finca la Peraleda, 45071, Toledo, Spain. .,School of Mental Health and Neuroscience and EURON Graduate School of Neuroscience, Maastricht University, Universiteitssingel 40, 6229ER, Maastricht, Netherlands.
| |
Collapse
|
683
|
白 珊, 莫 思, 徐 啸, 刘 云, 谢 秋, 曹 烨. [Characteristics of orofacial operant test for orofacial pain sensitivity caused by occlusal interference in rats]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:51-57. [PMID: 32071463 PMCID: PMC7439061 DOI: 10.19723/j.issn.1671-167x.2020.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To compare the orofacial pain sensitivity with operant test and mechanical hyperalgesia with von Frey filaments of two orofacial pain models (EOI: experimental occlusal interference; pIONX: partial infraorbital nerve transection). To investigate the operant and evoked characteristics of EOI-rats. METHODS The orofacial operant behaviors were tested by Ugo Basile Orofacial Stimulation Test System. The mechanical thresholds of vibrissal pads were tested by von Frey filaments. Male Sprague-Dawley rats were randomly divided into eight groups: von Frey group: sham-EOI, EOI, sham-pIONX, pIONX (sham: sham-operated group); operant test group: sham-EOI, EOI, sham-pIONX, pIONX (sham: sham-operated group). The mechanical thresholds and orofacial operant behaviors were tested on pre-operation and post-operation days l, 3, 7, 10, 14 and 21. RESULTS In pIONX of von Frey group, the mechanical withdrawal threshold decreased from days 1 to 21 (P<0.05), peaking from days 7 to 10, and lasted until the end of the experiment. There was no significant difference between the bilateral sides. In pIONX of operant test group, the total contact time decreased from days 10 to 21 (P<0.05), peaking from days 10 to 14, and lasted until the end of the experiment. In EOI of von Frey group, the mechanical withdrawal threshold decreased from days 3 to 21 (P<0.05), peaking on day 7, and lasted until the end of the experiment. There was no significant difference between the bilateral sides. In EOI of operant test group, the total contact time decreased from days 1 to 21 (P<0.05), peaking from days 7 to 10, and lasting until the end of experiment. CONCLUSION Orofacial operant test is a stable method to evaluate orofacial pain behaviors, which could discriminate the feature of neuropathic and EOI orofacial pain. In these two animal models, both of the operant behaviors and the mechanical hyperalgesia exhibited different time courses. Orofacial operant test provides a novel method for evaluating the orofacial pain sensitivity and studying the orofacial pain mechanism thoroughly.
Collapse
Affiliation(s)
- 珊珊 白
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 思怡 莫
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 啸翔 徐
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 云 刘
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 秋菲 谢
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 烨 曹
- 北京大学口腔医学院·口腔医院, 修复科, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & Department of Prosthodontics, Beijing 100081, China
- 北京大学口腔医学院·口腔医院,口颌功能诊疗研究中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Center for Oral and Jaw Functional Diagnosis, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
684
|
Ghnenis AB, Burns DT, Osimanjiang W, He G, Bushman JS. A Long-Term Pilot Study on Sex and Spinal Cord Injury Shows Sexual Dimorphism in Functional Recovery and Cardio-Metabolic Responses. Sci Rep 2020; 10:2762. [PMID: 32066802 PMCID: PMC7026076 DOI: 10.1038/s41598-020-59628-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
More than a quarter of a million individuals in the US live with spinal cord injury (SCI). SCI disrupts neural circuitry to vital organs in the body. Despite severe incidences of long-term peripheral complications from SCI, the cardio-metabolic consequences and divergences in sex-related responses are not well described. We examined the effects of SCI on functional recovery, cardiac structure and function, body composition, and glucose metabolism on adult female and male Sprague Dawley (SD) rats. SCI was induced at T10 via contusion. Measured outcomes include behavioral assessment, body weight, dual-energy X-ray absorptiometry (DEXA) for body composition, echocardiography for cardiac structure and function, intraperitoneal glucose tolerance test (IPGTT) for glucose metabolism, insulin tolerance test (ITT), and histology of cardiac structure at the endpoint. There was a decrease in body fat percentage in both sexes, with SCI females disproportionately affected in percent body fat change. Left ventricular internal diameter during systole (LVIDs) was decreased in SCI females more than in SCI males. No significant differences in glucose metabolism were observed up to 20 weeks post-injury (PI). These data show significant cardio-metabolic differences as a consequence of SCI and, furthermore, that sex is an underlying factor in these differences.
Collapse
Affiliation(s)
- Adel B Ghnenis
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Daniel T Burns
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Wupu Osimanjiang
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Guanglong He
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA
| | - Jared S Bushman
- University of Wyoming School of Pharmacy, 1000 East University Avenue, Department 3375, Laramie, WY, 82071, USA.
| |
Collapse
|
685
|
Hiraga SI, Itokazu T, Hoshiko M, Takaya H, Nishibe M, Yamashita T. Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight 2020; 5:131801. [PMID: 32051342 DOI: 10.1172/jci.insight.131801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/30/2019] [Indexed: 01/14/2023] Open
Abstract
Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos-positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine
| | - Maki Hoshiko
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan
| | - Hironobu Takaya
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mariko Nishibe
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Office of Strategic Innovative Dentistry, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
686
|
Kremer M, Becker LJ, Barrot M, Yalcin I. How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 2020; 53:236-270. [DOI: 10.1111/ejn.14686] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Léa J. Becker
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Michel Barrot
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique Institut des Neurosciences Cellulaires et Intégratives Université de Strasbourg Strasbourg France
| |
Collapse
|
687
|
Guo X, Zhang Q, Singh A, Wang J, Chen ZS. Granger causality analysis of rat cortical functional connectivity in pain. J Neural Eng 2020; 17:016050. [PMID: 31945754 DOI: 10.1088/1741-2552/ab6cba] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are two of the most important cortical brain regions encoding the sensory-discriminative and affective-emotional aspects of pain, respectively. However, the functional connectivity of these two areas during pain processing remains unclear. Developing methods to dissect the functional connectivity and directed information flow between cortical pain circuits can reveal insight into neural mechanisms of pain perception. APPROACH We recorded multichannel local field potentials (LFPs) from the S1 and ACC in freely behaving rats under various conditions of pain stimulus (thermal versus mechanical) and pain state (naive versus chronic pain). We applied Granger causality (GC) analysis to the LFP recordings and inferred frequency-dependent GC statistics between the S1 and ACC. MAIN RESULTS We found an increased information flow during noxious pain stimulus presentation in both S1[Formula: see text]ACC and ACC[Formula: see text]S1 directions, especially at theta and gamma frequency bands. Similar results were found for thermal and mechanical pain stimuli. The chronic pain state shares common observations, except for further elevated GC measures especially in the gamma band. Furthermore, time-varying GC analysis revealed a negative correlation between the direction-specific and frequency-dependent GC and animal's paw withdrawal latency. In addition, we used computer simulations to investigate the impact of model mismatch, noise, missing variables, and common input on the conditional GC estimate. We also compared the GC results with the transfer entropy (TE) estimates. SIGNIFICANCE Our results reveal functional connectivity and directed information flow between the S1 and ACC during various pain conditions. The dynamic GC analysis support the hypothesis of cortico-cortical information loop in pain perception, consistent with the computational predictive coding paradigm.
Collapse
Affiliation(s)
- Xinling Guo
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America
| | | | | | | | | |
Collapse
|
688
|
Journigan VB, Feng Z, Rahman S, Wang Y, Amin ARMR, Heffner CE, Bachtel N, Wang S, Gonzalez-Rodriguez S, Fernández-Carvajal A, Fernández-Ballester G, Hilton JK, Van Horn WD, Ferrer-Montiel A, Xie XQ, Rahman T. Structure-Based Design of Novel Biphenyl Amide Antagonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 8 Channels with Potential Implications in the Treatment of Sensory Neuropathies. ACS Chem Neurosci 2020; 11:268-290. [PMID: 31850745 DOI: 10.1021/acschemneuro.9b00404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Structure-activity relationship studies of a reported menthol-based transient receptor potential cation channel subfamily M member 8 channel (TRPM8) antagonist, guided by computational simulations and structure-based design, uncovers a novel series of TRPM8 antagonists with >10-fold selectivity versus related TRP subtypes. Spiro[4.5]decan-8-yl analogue 14 inhibits icilin-evoked Ca2+ entry in HEK-293 cells stably expressing human TRPM8 (hTRPM8) with an IC50 of 2.4 ± 1.0 nM, while in whole-cell patch-clamp recordings this analogue inhibits menthol-evoked currents with a hTRPM8 IC50 of 64 ± 2 nM. Molecular dynamics (MD) simulations of compound 14 in our homology model of hTRPM8 suggest that this antagonist forms extensive hydrophobic contacts within the orthosteric site. In the wet dog shakes (WDS) assay, compound 14 dose-dependently blocks icilin-triggered shaking behaviors in mice. Upon local administration, compound 14 dose dependently inhibits cold allodynia evoked by the chemotherapy oxaliplatin in a murine model of peripheral neuropathy at microgram doses. Our findings suggest that 14 and other biphenyl amide analogues within our series can find utility as potent antagonist chemical probes derived from (-)-menthol as well as small molecule therapeutic scaffolds for chemotherapy-induced peripheral neuropathy (CIPN) and other sensory neuropathies.
Collapse
Affiliation(s)
- V. Blair Journigan
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1TN, United Kingdom
| | - Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - A. R. M. Ruhul Amin
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia 25755, United States
| | - Colleen E. Heffner
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
| | - Nicholas Bachtel
- Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, West Virginia 25755, United States
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sara Gonzalez-Rodriguez
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Jacob K. Hilton
- The School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
| | - Wade D. Van Horn
- The School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- the Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- The Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona 85287, United States
| | - Antonio Ferrer-Montiel
- IDiBE: Instituto de Investigación, Desarrollo e innovación en Biotecnología sanitaria de Elche, Universitas Miguel Hernández, 03202 Elche, Spain
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
689
|
Edwards S, Vendruscolo LF, Gilpin NW, Wojnar M, Witkiewitz K. Alcohol and Pain: A Translational Review of Preclinical and Clinical Findings to Inform Future Treatment Strategies. Alcohol Clin Exp Res 2020; 44:368-383. [PMID: 31840821 PMCID: PMC11004915 DOI: 10.1111/acer.14260] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review was to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.
Collapse
Affiliation(s)
- Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Leandro F. Vendruscolo
- National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224
| | - Nicholas W. Gilpin
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque NM 87131
| |
Collapse
|
690
|
Chartier LC, Hebart ML, Howarth GS, Whittaker AL, Mashtoub S. Affective state determination in a mouse model of colitis-associated colorectal cancer. PLoS One 2020; 15:e0228413. [PMID: 31986185 PMCID: PMC6984705 DOI: 10.1371/journal.pone.0228413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Behavioural indicators of affective state, including burrowing, clinical scores and the Mouse Grimace Score have not yet been validated in mouse models of chronic gastrointestinal disease. Additionally, a comparison of these methods has not been characterised. This study aimed to determine which behavioural assessment was the optimal indicator of disease, evidenced by correlation with clinically-assessed measures, in an azoxymethane (AOM)/dextran sulphate sodium (DSS) mouse model of colitis-associated colorectal cancer. C57BL/6 mice were allocated to four groups (n = 10/group); 1) saline control, 2) saline+buprenorphine, 3) AOM+DSS+water, 4) AOM+DSS+buprenorphine. Mice were gavaged thrice weekly with water or buprenorphine (0.5mg/kg; 80μL) for 9 weeks. Disease activity index (DAI) was measured daily; burrowing and grimace analyses occurred on days -1, 5, 19, 26, 40, 47 and 61. Colonoscopies were performed on days 20, 41 and 62. All animals were euthanized on day 63. Burrowing activity and retrospective grimace analyses were unaffected (P>0.05), whilst DAI was significantly increased (P<0.05) in mice with colitis-associated colorectal cancer compared to normal controls. In addition, DAI was positively correlated with colonoscopically-assessed severity and tumour number (P<0.05). We conclude that traditional measures of DAI or clinical scoring provide the most reliable assessment of wellbeing in mice with colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Lauren C. Chartier
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Michelle L. Hebart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Gordon S. Howarth
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- School of Medicine, The University of Western Australia, Murdoch, Western Australia, Australia
| |
Collapse
|
691
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
692
|
Fialho MFP, Brum EDS, Pegoraro NS, Couto ACG, Trevisan G, Cruz L, Oliveira SM. Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in an ultraviolet B radiation-induced burn model in mice. J Dermatol Sci 2020; 97:135-142. [PMID: 31982303 DOI: 10.1016/j.jdermsci.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation exposure promotes sunburn and thereby acute and chronic inflammatory processes, contributing to pain development and maintenance. New therapeutic alternatives are necessary because typical treatments can cause adverse effects. An attractive alternative would be to target the transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable, non-selective cation channel, which is involved in a variety of inflammatory pain models. OBJECTIVE Evaluate the peripheral participation of TRPA1 using a topical treatment (HC030031 gel formulation; a selective TRPA1 antagonist) in nociception and inflammation caused by a UVB radiation-induced burn model in male mice (25-30 g). METHODS The mice were anaesthetised, and just the right hind paw was exposed to UVB radiation (0.75 J/cm2). Topical treatments were applied immediately after irradiation and once a day for 8 days. RESULTS HC030031 gel presented suitable pH and spreadability factor, ensuring its quality and the therapeutic effect. HC030031 0.05 % reversed UVB-induced mechanical and cold allodynia, with maximum inhibition (Imax) of 69 ± 13 % and 100 % (on day 4), respectively. HC030031 0.05 % also reduced the paw edema and MPO activity, with Imax of 77 ± 6 % (on day 5) and 69 ± 28 %, respectively. Likewise, UVB radiation increased the H2O2 levels (a TRPA1 agonist) and the Ca2+ influx in mice spinal cord synaptosomes. UVB radiation-induced Ca2+ influx was reduced by HC030031. CONCLUSION These findings confirm the activation of the TRPA1 channel by UVB radiation, suggesting that topical TRPA1 antagonists can be a new strategy for the adjuvant treatment of sunburn-associated pain and inflammation.
Collapse
Affiliation(s)
- Maria Fernanda Pessano Fialho
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne da Silva Brum
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natháli Schopf Pegoraro
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Claudia Gontijo Couto
- Institute of Genetics and Biochemistry, Graduate Program in Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Neurotoxicity and Psychopharmacology Laboratory, Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
693
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
694
|
Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA. Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 2020; 15:2016-2026. [PMID: 32394949 PMCID: PMC7716040 DOI: 10.4103/1673-5374.282218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transplantation of olfactory ensheathing cells, the glia of the primary olfactory nervous system, has been trialed for spinal cord injury repair with promising but variable outcomes in animals and humans. Olfactory ensheathing cells can be harvested either from the lamina propria beneath the neuroepithelium in the nasal cavity, or from the olfactory bulb in the brain. As these areas contain several other cell types, isolating and purifying olfactory ensheathing cells is a critical part of the process. It is largely unknown how contaminating cells such as fibroblasts, other glial cell types and supporting cells affect olfactory ensheathing cell function post-transplantation; these cells may also cause unwanted side-effects. It is also, however, possible that the presence of some of the contaminant cells can improve outcomes. Here, we reviewed the last decade of olfactory ensheathing cell transplantation studies in rodents, with a focus on olfactory ensheathing cell purity. We analyzed how purification methods and resultant cell purity differed between olfactory mucosa- and olfactory bulb-derived cell preparations. We analyzed how the studies reported on olfactory ensheathing cell purity and which criteria were used to define cells as olfactory ensheathing cells. Finally, we analyzed the correlation between cell purity and transplantation outcomes. We found that olfactory bulb-derived olfactory ensheathing cell preparations are typically purer than mucosa-derived preparations. We concluded that there is an association between high olfactory ensheathing cell purity and favourable outcomes, but the lack of olfactory ensheathing cell-specific markers severely hampers the field.
Collapse
Affiliation(s)
- Ronak Reshamwala
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lucy Belt
- Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane; Menzies Health Institute Queensland, Griffith University, Southport; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
695
|
MacDonald DI, Wood JN, Emery EC. Molecular mechanisms of cold pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 7:100044. [PMID: 32090187 PMCID: PMC7025288 DOI: 10.1016/j.ynpai.2020.100044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The sensation of cooling is essential for survival. Extreme cold is a noxious stimulus that drives protective behaviour and that we thus perceive as pain. However, chronic pain patients suffering from cold allodynia paradoxically experience innocuous cooling as excruciating pain. Peripheral sensory neurons that detect decreasing temperature express numerous cold-sensitive and voltage-gated ion channels that govern their response to cooling in health and disease. In this review, we discuss how these ion channels control the sense of cooling and cold pain under physiological conditions, before focusing on the molecular mechanisms by which ion channels can trigger pathological cold pain. With the ever-rising number of patients burdened by chronic pain, we end by highlighting the pressing need to define the cells and molecules involved in cold allodynia and so identify new, rational drug targets for the analgesic treatment of cold pain.
Collapse
|
696
|
Greaves E, Rosser M, Saunders PTK. Endometriosis-Associated Pain - Do Preclinical Rodent Models Provide a Good Platform for Translation? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:25-55. [PMID: 33278006 DOI: 10.1007/978-3-030-51856-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pelvic pain is a common symptom of endometriosis. Our understanding of its etiology remains incomplete and medical management is limited by poor translation from preclinical models to clinical trials. In this review, we briefly consider the evidence, or lack thereof, that different subtypes of lesion, extra-uterine bleeding, and neuropathic pathways add to the complex and heterogeneous pain experience of women with the condition. We summarize the studies in rodent models of endometriosis that have used behavioral endpoints (evoked and non-evoked) to explore mechanisms of endometriosis-associated pain. Lesion innervation, activation of nerves by pronociceptive molecules released by immune cells, and a role for estrogen in modulating hyperalgesia are key endometriosis-associated pain mechanisms replicated in preclinical rodent models. The presence of ectopic (full thickness uterus or endometrial) tissue may be associated with changes in the spinal cord and brain, which appear to model changes reported in patients. While preclinical models using rats and mice have yielded insights that appear relevant to mechanisms responsible for the development of endometriosis-associated pain, they are limited in scope. Specifically, most studies are based on models that only resulted in the formation of superficial lesions and use induced (evoked) behavioral 'pain' tests. We suggest that translation for patient benefit will be improved by new approaches including models of ovarian and deep infiltrating disease and measurement of spontaneous pain behaviors. Future studies must also capitalize on new advances in the wider field of pain medicine to identify more effective treatments for endometriosis-associated pain.
Collapse
Affiliation(s)
- Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Matthew Rosser
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Philippa T K Saunders
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
697
|
Harvey M, Sleigh J, Voss L, Bickerdike M, Dimitrov I, Denny W. KEA-1010, a ketamine ester analogue, retains analgesic and sedative potency but is devoid of Psychomimetic effects. BMC Pharmacol Toxicol 2019; 20:85. [PMID: 31856925 PMCID: PMC6923863 DOI: 10.1186/s40360-019-0374-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ketamine, a widely used anaesthetic and analgesic agent, is known to improve the analgesic efficacy of opioids and to attenuate central sensitisation and opioid-induced hyperalgesia. Clinical use is, however, curtailed by unwanted psychomimetic effects thought to be mediated by N-methyl-D-aspartate (NMDA) receptor antagonism. KEA-1010, a ketamine ester-analogue designed for rapid offset of hypnosis through hydrolysis mediated break-down, has been shown to result in short duration sedation yet prolonged attenuation of nociceptive responses in animal models. Here we report on behavioural effects following KEA-1010 administration to rodents. Methods KEA-1010 was compared with racemic ketamine in its ability to produce loss of righting reflex following intravenous injection in rats. Analgesic activity was assessed in thermal tail flick latency (TFL) and paw incision models when injected acutely and when co-administered with fentanyl. Tail flick analgesic assessment was further undertaken in morphine tolerant rats. Behavioural aberration was assessed following intravenous injection in rats undergoing TFL assessment and in auditory pre-pulse inhibition models. Results KEA-1010 demonstrated an ED50 similar to ketamine for loss of righting reflex following bolus intravenous injection (KEA-1010 11.4 mg/kg [95% CI 10.6 to 12.3]; ketamine (racemic) 9.6 mg/kg [95% CI 8.5–10.9]). Duration of hypnosis was four-fold shorter in KEA-1010 treated animals. KEA-1010 prolonged thermal tail flick responses comparably with ketamine when administered de novo, and augmented morphine-induced prolongation of tail flick when administered acutely. The analgesic effect of KEA-1010 on thermal tail flick was preserved in opioid tolerant rats. KEA-1010 resulted in increased paw-withdrawal thresholds in a rat paw incision model, similar in magnitude yet more persistent than that seen with fentanyl injection, and additive when co-administered with fentanyl. In contrast to ketamine, behavioural aberration following KEA-1010 injection was largely absent and no pre-pulse inhibition to acoustic startle was observed following KEA-1010 administration in rats. Conclusions KEA-1010 provides antinociceptive efficacy in acute thermal and mechanical pain models that augments standard opioid analgesia and is preserved in opioid tolerant rodents. The NMDA channel affinity and psychomimetic signature of the parent compound ketamine is largely absent for KEA-1010.
Collapse
Affiliation(s)
- Martyn Harvey
- Emergency Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand.
| | - Jamie Sleigh
- Anesthesia Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand
| | - Logan Voss
- Anesthesia Department, Waikato Hospital, Pembroke St, Hamilton, 3240, New Zealand
| | - Mike Bickerdike
- Kea Therapeutics Ltd, Lumley Centre, 88 Shortland Street, Auckland, New Zealand
| | - Ivaylo Dimitrov
- Auckland Cancer Society Research Centre, University of Auckland, Park Rd, Auckland, New Zealand
| | - William Denny
- Auckland Cancer Society Research Centre, University of Auckland, Park Rd, Auckland, New Zealand
| |
Collapse
|
698
|
Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W, Wojtas A, Golembiowska K, Zádor F, Benyhe S, Buda S, Makuch W, Przewlocka B, Bojarski AJ, Przewlocki R. Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine. Br J Pharmacol 2019; 176:4434-4445. [PMID: 31347704 DOI: 10.1111/bph.14805] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of β-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased μ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21. EXPERIMENT APPROACH We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal, and self-administration. Also, effects of PZM21 on morphine-induced antinociception, tolerance, and reward were assessed. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis. KEY RESULTS PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour; however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration induced a moderate release of dopamine and a robust release of 5-HT in the striatum. CONCLUSIONS AND IMPLICATIONS PZM21 exhibited antinociceptive efficacy, without rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implies that PZM21 may be useful in treatment of opioid use disorders.
Collapse
Affiliation(s)
- Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Urszula Skupio
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Krystyna Golembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szymon Buda
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
699
|
Wallin CM, Bowen SE, Roberge CL, Richardson LM, Brummelte S. Gestational buprenorphine exposure: Effects on pregnancy, development, neonatal opioid withdrawal syndrome, and behavior in a translational rodent model. Drug Alcohol Depend 2019; 205:107625. [PMID: 31706250 DOI: 10.1016/j.drugalcdep.2019.107625] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The opioid crisis has led to an increased number of pregnant opioid-dependent women receiving opioid-maintenance therapy (e.g. buprenorphine, BUP), but little is known about the consequences of gestational BUP exposure on pregnancy outcomes, maternal care, or offspring development. METHODS Our translational rodent model began BUP exposure to adult female rats (N = 30) at least 7 days before conception and continued throughout the postpartum period. Both therapeutic low-dose (BUP-LD, 0.3 mg/kg, s.c.) and overexposure high-dose (BUP-HD, 1.0 mg/kg) doses of BUP were compared to saline control. Female rats were bred in house with drug-naïve adult male rats. The day after parturition, litters were culled to 5 males/5 females and assigned randomly to various behavioral tests and assessed either neonates or adolescents. Litter characteristics, maternal caregiving, Neonatal Opioid Withdrawal Syndrome (NOWS), offspring development and adolescent behaviors were evaluated. RESULTS BUP-LD decreased maternal care, delayed offspring development, decreased offspring body weight, length, temperature, and pain sensitivity (p's < .05). BUP-HD drastically reduced maternal care and offspring survival, altered litter characteristics, and increased NOWS (p's < .05). CONCLUSION These results demonstrate that the therapeutic BUP-LD in rats was relatively safe with subtle effects on maternal care and rodent offspring. However, overexposure BUP-HD in rats produced NOWS and compromised maternal caregiving as well as rodent offspring survival. More research is critical to validate the translational implication of these findings for human opioid-dependent mothers maintained on BUP-maintenance therapy.
Collapse
Affiliation(s)
- Chela M Wallin
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | - Chelsea L Roberge
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| | | | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
700
|
Nagakura Y, Miwa M, Yoshida M, Miura R, Tanei S, Tsuji M, Takeda H. Spontaneous pain-associated facial expression and efficacy of clinically used drugs in the reserpine-induced rat model of fibromyalgia. Eur J Pharmacol 2019; 864:172716. [DOI: 10.1016/j.ejphar.2019.172716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|