701
|
Chan GC, Lernmark U, Xia Z, Storm DR. DNA elements of the type 1 adenylyl cyclase gene locus enhance reporter gene expression in neurons and pinealocytes. Eur J Neurosci 2001; 13:2054-66. [PMID: 11422446 DOI: 10.1046/j.0953-816x.2001.01578.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ca2+-stimulated type 1 adenylyl cyclase (AC1) contributes to several forms of synaptic plasticity and is the only known neurospecific adenylyl cyclase. Furthermore, the protein and mRNA levels of AC1 undergo a circadian oscillation in the pineal gland, and AC1 may play a pivotal role in regulating nocturnal melatonin synthesis. To better understand the expression of AC1, we isolated mouse genomic DNA clones of AC1. The transcription and translation start regions of mouse AC1 share extensive homologies with the bovine counterpart. The upstream proximal region has potential binding sites for transcription factors, including the steroid receptor family, the E-box factors, and Sp1. A 280-bp fragment that contains the transcription start site directed reporter gene expression in cultured cortical neurons and pinealocytes functioning as a basal neuro- and pineal-directed promoter. Interestingly, pinealocyte expression of the reporter gene was inhibited by increases in cAMP. This cAMP sensitivity may explain why AC1 mRNA in the pineal is low at night when cAMP is elevated and high during the day when cAMP signals drop. An adjacent 330-bp fragment interacted specifically with nuclear factor(s) that we designate binary E-box factor (BEF). Methylation interference and DNase I footprinting identified the BEF-binding site sequence as 5'-CCAAGGTCACGTGGC-3'. When linked to the basal tissue-directed promoter, this 15-bp sequence further enhanced reporter expression in neurons and pinealocytes. We propose that this 15-bp sequence may contribute to increased expression of AC1 in neurons and pinealocytes relative to other cells.
Collapse
Affiliation(s)
- G C Chan
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
702
|
Ren Y, Liao WS. Transcription factor AP-2 functions as a repressor that contributes to the liver-specific expression of serum amyloid A1 gene. J Biol Chem 2001; 276:17770-8. [PMID: 11278660 DOI: 10.1074/jbc.m010307200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified transcription factor AP-2 as the nuclear factor that interacts with the tissue-specific repressor element in the rat serum amyloid A1 (SAA1) promoter. In this report, we provide evidence for a second AP-2-binding site and show that both AP-2 sites participate in mediating the transcription repression of SAA1 promoter. This proximal AP-2 site overlaps with the NFkappaB-binding site known to be essential for SAA1 promoter activity. Protein binding competition experiments demonstrated that AP-2 and NFkappaB binding to these overlapping sites were mutually exclusive. Furthermore, the addition of AP-2 easily displaced prebound NFkappaB, whereas NFkappaB could not displace AP-2. These results thus suggest that one mechanism by which AP-2 negatively regulates SAA1 promoter activity may be by antagonizing the function of NFkappaB. Consistent with a repression function, transient expression of AP-2 in HepG2 cells inhibited conditioned medium-induced SAA1 promoter activation. This inhibition was dependent on functional AP-2-binding sites, since mutation of AP-2-binding sites abolished inhibitory effects of AP-2 in HepG2 cells as well as resulted in derepression of the SAA1 promoter in HeLa cells. In addition to SAA1, we found that several other liver gene promoters also contain putative AP-2-binding sites. Some of these sequences could specifically inhibit AP-2.DNA complex formation, and for the human complement C3 promoter, overexpression of AP-2 also could repress its cytokine-mediated activation. Finally, stable expression of AP-2 in hepatoma cells significantly reduced the expression of endogenous SAA, albumin, and alpha-fetoprotein genes. Taken together, our results suggest that AP-2 may function as a transcription repressor to inhibit the expression of not only SAA1 gene but also other liver genes in nonhepatic cells.
Collapse
Affiliation(s)
- Y Ren
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
703
|
Garriga-Canut M, Roopra A, Buckley NJ. The basic helix-loop-helix protein, sharp-1, represses transcription by a histone deacetylase-dependent and histone deacetylase-independent mechanism. J Biol Chem 2001; 276:14821-8. [PMID: 11278948 DOI: 10.1074/jbc.m011619200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many aspects of neurogenesis and neuronal differentiation are controlled by basic helix-loop-helix (bHLH) proteins. One such factor is SHARP-1, initially identified on the basis of its sequence similarity to hairy. Unlike hairy, and atypically for bHLHs, SHARP-1 is expressed late in development, suggestive of a role in terminal aspects of differentiation. Nevertheless, the role of SHARP-1 and the identity of its target genes remain unknown. During the course of a one-hybrid screen for transcription factors that bind to regulatory domains of the M1 muscarinic acetylcholine receptor gene, we isolated the bHLH transcription factor SHARP-1. In this study, we investigated the functional role of SHARP-1 in regulating transcription. Fusion proteins of SHARP-1 tethered to the gal4 DNA binding domain repress both basal and activated transcription when recruited to either a TATA-containing or a TATAless promoter. Furthermore, we identified two independent repression domains that operate via distinct mechanisms. Repression by a domain in the C terminus is sensitive to the histone deacetylase inhibitor trichostatin A, whereas repression by the bHLH domain is insensitive to TSA. Furthermore, overexpression of SHARP-1 represses transcription from the M(1) promoter. This study represents the first report to assign a function to, and to identify a target gene for, the bHLH transcription factor SHARP-1.
Collapse
Affiliation(s)
- M Garriga-Canut
- Schools of Biochemistry and Molecular Biology and Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
704
|
Yoo J, Jeong MJ, Lee SS, Lee KI, Kwon BM, Kim DS, Park YM, Han MY. The Neuron Restrictive Silencer Factor Can Act as an Activator for Dynamin I Gene Promoter Activity in Neuronal Cells. Biochem Biophys Res Commun 2001; 283:928-32. [PMID: 11350074 DOI: 10.1006/bbrc.2001.4857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuron restrictive silencer element (NRSE) has been identified in several neuronal genes and confers neuron specificity by silencing transcription in nonneuronal cells. We have previously reported that Sp1 and an NF-kappaB-like element (NE-1) are required for the promoter activity of mouse dynamin I gene. In the present study, we found that the upstream regulatory region of the dynamin I promoter has an NRSE-like sequence and showed that neuron restrictive silencer factor (NRSF) binds to this element in neuronal cells as well as in nonneuronal cells. We also showed that NRSF activates the promoter activity of dynamin I gene in neuronal cells. From the results in this study, we suggest that NRSE might be involved in the neuron restriction of dynamin I expression, and NRSF could act as an activator for promoter activity of dynamin I gene in neuronal cells.
Collapse
Affiliation(s)
- J Yoo
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusung, Taejon, 305-600, Korea
| | | | | | | | | | | | | | | |
Collapse
|
705
|
Shimojo M, Lee JH, Hersh LB. Role of zinc finger domains of the transcription factor neuron-restrictive silencer factor/repressor element-1 silencing transcription factor in DNA binding and nuclear localization. J Biol Chem 2001; 276:13121-6. [PMID: 11145971 DOI: 10.1074/jbc.m011193200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The transcription factor neuron-restrictive silencer factor/repressor element-1 (RE-1) silencing transcription factor (NRSF/REST) contains nine zinc finger domains and binds to the DNA element, neuron-restrictive silencer element/repressor element-1. REST4, a C-terminally truncated form of NRSF/REST, contains the five N-terminal zinc fingers and binds weakly to DNA yet is transported into the nucleus. To study the contribution of zinc fingers 6-8 to DNA binding, each was mutated. A mutation in zinc finger 6 or 8 had little effect; however, mutation of zinc finger 7 diminished DNA binding. Mutations in any two of these zinc fingers eliminated DNA binding. The contribution of zinc fingers 2-5 to nuclear targeting was studied. Deletion of zinc finger 5 prevented nuclear targeting. Mutations in zinc finger 2, 4, or 5 did not abolish nuclear targeting. However, a zinc finger 3 mutation together with a zinc finger 2 mutation localized to the nuclear envelope. A zinc finger 3 mutation alone or in combination with a zinc finger 4 or 5 mutation produced a punctate nuclear distribution. These results suggest the presence of signals for nuclear targeting, for nuclear entry, and for release from the translocation machinery within zinc fingers 2-5 of REST4.
Collapse
Affiliation(s)
- M Shimojo
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky 40563-0298, USA
| | | | | |
Collapse
|
706
|
Carter AR, Segal RA. Rett syndrome model suggests MECP2 gives neurons the quiet they need to think. Nat Neurosci 2001; 4:342-3. [PMID: 11276217 DOI: 10.1038/85970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
707
|
Tintrup H, Fischer M, Betz H, Kuhse J. Exonic Sp1 sites are required for neural-specific expression of the glycine receptor beta subunit gene. Biochem J 2001; 355:179-87. [PMID: 11256962 PMCID: PMC1221725 DOI: 10.1042/0264-6021:3550179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene encoding the beta subunit of the inhibitory glycine receptor (GlyR) is widely expressed throughout the mammalian central nervous system. To unravel the elements regulating its transcription, we isolated its 5' non-coding and upstream flanking regions from mouse. Sequence analysis revealed significant differences between the 5' region of the beta subunit gene and the corresponding regions of the homologous GlyR alpha subunit genes; it also identified a novel exon (exon 0) that encodes most of the 5'-untranslated portion of the GlyR beta mRNA. Primer extension experiments disclosed multiple transcriptional start sites. Transfection experiments with luciferase reporter gene constructs showed that sequences encompassing 1.58 kb of upstream flanking region and 180 bp of exon 0 displayed high promoter activity in two neuroblastoma cell lines but not in non-neural cells. Analysis of various deletion constructs showed that the 5' flanking region preceding the transcriptional start sites silences expression in non-neural cells but is not essential for general promoter activity. In contrast, the deletion of sequences within exon 0 drastically decreased or abolished transcription; the removal of sequences harbouring Sp1 consensus sequences within exon 0 decreased expression specifically in a neuroblastoma cell line. Band-shift assays confirmed the binding of Sp1 to sites within the deleted sequence. Our results indicate that neural-specific expression of the GlyR beta subunit gene might depend on a direct interaction of Sp1 transcription factors with cis elements located downstream from transcription initiation sites.
Collapse
Affiliation(s)
- H Tintrup
- Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt, Germany
| | | | | | | |
Collapse
|
708
|
Kuwahara K, Saito Y, Ogawa E, Takahashi N, Nakagawa Y, Naruse Y, Harada M, Hamanaka I, Izumi T, Miyamoto Y, Kishimoto I, Kawakami R, Nakanishi M, Mori N, Nakao K. The neuron-restrictive silencer element-neuron-restrictive silencer factor system regulates basal and endothelin 1-inducible atrial natriuretic peptide gene expression in ventricular myocytes. Mol Cell Biol 2001; 21:2085-97. [PMID: 11238943 PMCID: PMC86819 DOI: 10.1128/mcb.21.6.2085-2097.2001] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of the atrial natriuretic peptide (ANP) gene is a common feature of ventricular hypertrophy. A number of cis-acting enhancer elements for several transcriptional activators have been shown to play central roles in the regulation of ANP gene expression, but much less is known about contributions made by transcriptional repressors. The neuron-restrictive silencer element (NRSE), also known as repressor element 1, mediates repression of neuronal gene expression in nonneuronal cells. We found that NRSE, which is located in the 3' untranslated region of the ANP gene, mediated repression of ANP promoter activity in ventricular myocytes and was also involved in the endothelin 1-induced increase in ANP gene transcription. The repression was conferred by a repressor protein, neuron-restrictive silencer factor (NRSF). NRSF associated with the transcriptional corepressor mSin3 and formed a complex with histone deacetylase (HDAC) in ventricular myocytes. Trichostatin A (TSA), a specific HDAC inhibitor, relieved NRSE-mediated repression of ANP promoter activity, and chromatin immunoprecipitation assays revealed the involvement of histone deacetylation in NRSE-mediated repression of ANP gene expression. Furthermore, in myocytes infected with recombinant adenovirus expressing a dominant-negative form of NRSF, the basal level of endogenous ANP gene expression was increased and a TSA-induced increase in ANP gene expression was apparently attenuated, compared with those in myocytes infected with control adenovirus. Our findings show that an NRSE-NRSF system plays a key role in the regulation of ANP gene expression by HDAC in ventricular myocytes and provide a new insight into the role of the NRSE-NRSF system outside the nervous system.
Collapse
Affiliation(s)
- K Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
709
|
Ikeda T, Kitayama S, Morita K, Dohi T. Nerve growth factor down-regulates the expression of norepinephrine transporter in rat pheochromocytoma (PC12) cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 86:90-100. [PMID: 11165376 DOI: 10.1016/s0169-328x(00)00272-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Functional expression of norepinephrine transporter (NET) and its regulation were examined in rat pheochromocytoma cell line, PC12. Nerve growth factor (NGF) decreased [3H]-norepinephrine (NE) uptake in association with a decrease in NET mRNA levels. On the other hand, levels of tyrosine hydroxylase mRNA increased in PC12 cells treated with NGF for 4-24 h, while Oct-2 mRNA levels decreased at 4 h with NGF then recovered for 8-24 h in the presence of NGF. Both bFGF and EGF reduced [3H]NE uptake, although they failed to affect NET mRNA levels. To examine the NET transcriptional regulation, we identified the 5'-noncoding region of rat NET mRNA by the rapid amplification of cDNA end (RACE) method and cloned the 5'-flanking region of NET gene. The newly identified exon encodes the untranslated region of rat NET mRNA upstream of the known 5'-region including ATG start codon. Constructs having green fluorescent protein (GFP) as reporter were made with the cloned NET gene, and promoter activity was examined in CHO and SK-N-SH cells transiently transfected and in PC12 cells stably transfected with NET-GFP constructs. The results indicate that the 2.1 kb NET flanking region displays promoter activity and is responsible for the NGF-induced down-regulation of NET expression.
Collapse
Affiliation(s)
- T Ikeda
- Department of Pharmacology, Hiroshima University Faculty of Dentistry, Kasumi 1-2-3, Minamiku, 734-8553, Hiroshima, Japan
| | | | | | | |
Collapse
|
710
|
Tanaka M, Ito S, Matsushita N, Mori N, Kiuchi K. Promoter analysis and characteristics of the 5'-untranslated region of the mouse glial cell line-derived neurotrophic factor gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:91-102. [PMID: 11146111 DOI: 10.1016/s0169-328x(00)00250-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have cloned the mouse GDNF cDNA and genomic DNA to study the molecular mechanism of gene expression. Primer extension and RT-PCR analyses indicated that the mouse gene contains 1086 bp of 5'-untranslated region (5'-UTR) [Gene 203 (1997) 149]. In this report, we identified the core promoter region of mouse GDNF and examined the role of the 5'-UTR in gene expression. Promoter deletion analyses indicated that the proximal region (-81 to +28), which includes a TATA-box, is necessary for high-level expression of GDNF. Using reporter constructs encoding luciferase or fusion gene of GDNF to enhanced green fluorescent protein that were transiently transfected to mouse astroglial cell-line TGA-3 cells and rat glioma C6 cells, we investigated effects of the 5'-UTR on promoter activity. Luciferase reporter assay indicated that a region downstream of the transcription initiation site may include a positive regulatory element, while two more distal regions appear to contain negative regulatory elements, which was correlated to the mRNA level based on RNase protection assay. Both negative regulatory elements attenuated promoter activity in a position-dependent manner. Nuclear proteins from C6 glioma cells were shown to interact with several regions (+65/+105, +233/+265, and +554/+582) including each of the regulatory elements, suggesting that regulation of GDNF expression by the 5'-UTR occurred mainly at the transcriptional level.
Collapse
Affiliation(s)
- M Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya 463-0003, Japan
| | | | | | | | | |
Collapse
|
711
|
Abstract
Abnormal influx of Ca(2+) through AMPA-type glutamate receptors (AMPARs) is thought to contribute to the neuronal death associated with a number of brain disorders. AMPARs exist as both Ca(2+)-impermeable and Ca(2+)-permeable channels. AMPARs are encoded by four genes designated GluR1 (GluR-A) through GluR4 (GluR-D). The presence of the GluR2 subunit renders heteromeric AMPA receptor assemblies Ca(2+)-impermeable. Molecular diversity of AMPARs under physiological and pathological conditions is generated by differential spatio-temporal patterns of GluR expression, by alternative RNA splicing and editing and by targeting and trafficking of receptor subunits at dendritic spines. The GluR2 gene is under transcriptional control by the RE1 element specific transcription factor, a gene silencing factor which renders it neuron-specific. GluR2 transcripts are edited by ADAR2 (double-stranded RNA-specific editase 1). AMPAR targeting and trafficking to spines are regulated by synaptic activity and are critical to synaptic plasticity. Recent studies involving animal models of transient forebrain ischemia and epilepsy show that GluR2 mRNA and GluR2 subunit expression are downregulated in vulnerable neurons prior to cell death. Ca(2+) imaging and electrical recording from individual pyramidal neurons in hippocampal slices reveal changes in AMPAR functional properties after ischemia. In slices from post-ischemia animals, CA1 neurons with robust action potentials exhibit greatly enhanced AMPA-elicited rises in intracellular Ca(2+). Excitatory postsynaptic currents in post-ischemic CA1 exhibit an enhanced Ca(2+)-dependent component that appears to be mediated by Ca(2+)-permeable AMPARs. These studies provide evidence for Ca(2+) influx through AMPARs in neurons destined to die. To examine whether acute GluR2 downregulation, even in the absence of a neurological insult, can induce neuronal death, we performed knockdown experiments in rats and gerbils with antisense oligonucleotides targeted to GluR2 mRNA. GluR2 antisense oligonucleotide induced neuronal cell death of pyramidal neurons and enhanced pathogenicity of brief ischemic episodes. These observations provide evidence for Ca(2+) influx through AMPARs in neurons destined to die and implicate Ca(2+)-permeable AMPARs in the pathogenesis of ischemia-induced neuronal death.
Collapse
Affiliation(s)
- H Tanaka
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA
| | | | | | | |
Collapse
|
712
|
Zhang GR, Wang X, Yang T, Sun M, Zhang W, Wang Y, Geller AI. A tyrosine hydroxylase-neurofilament chimeric promoter enhances long-term expression in rat forebrain neurons from helper virus-free HSV-1 vectors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:17-31. [PMID: 11113528 DOI: 10.1016/s0169-328x(00)00197-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Helper virus-free herpes simplex virus (HSV-1) plasmid vectors are attractive for neural gene transfer, but a promoter that supports neuronal-specific, long-term expression is required. Although expression from many promoters is unstable, a 6.8-kb, but not a 766-bp, fragment of the tyrosine hydroxylase (TH) promoter supports long-term expression. Thus, 5' upstream sequences in this promoter may enhance expression. In this study, we evaluated expression from vectors that contain 5' upstream sequences from this promoter (-0.5 to -6.8 kb) inserted at the 5' end of either a neurofilament heavy subunit (NF-H) promoter or the cytomegalovirus (CMV) immediate early promoter. The TH-NFH promoter supported expression for 6 months in the striatum, 2 months in the hippocampus, and for 1 month in both perirhinal and postrhinal cortex (the longest time points examined). Expression was targeted to neurons. The enhanced expression may require specific sequences in the TH promoter fragment because replacing this fragment with a similar sized fragment of bacteriophage lambda DNA did not enhance expression. The reverse orientation of the TH promoter fragment also enhanced expression. Insertion of insulators from the chicken beta-globin locus between the TH-NFHlac transcription unit and the vector backbone may support a modest additional enhancement in expression. Other eucaryotic sequences may also enhance expression; a S. cerevisiae (40-kb fragment)-NFH promoter enhanced expression. In contrast, the TH-CMV promoter did not enhance expression. Thus, the TH-NFH promoter may support some physiological studies that require long-term expression in forebrain neurons.
Collapse
Affiliation(s)
- G R Zhang
- Division of Endocrinology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
713
|
Lee JH, Chai YG, Hersh LB. Expression patterns of mouse repressor element-1 silencing transcription factor 4 (REST4) and its possible function in neuroblastoma. J Mol Neurosci 2000; 15:205-14. [PMID: 11303784 DOI: 10.1385/jmn:15:3:205] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 08/28/2000] [Indexed: 11/11/2022]
Abstract
The expression pattern of the repressor element-1 silencing transcription factor (REST) also known as the neuron-restrictive silencer factor (NRSF) and its truncated forms have been analyzed in the neuroblastoma cell lines, NS20Y and NIE115 and in NIH3T3 cells. The neuroblastoma cell lines express transcripts of REST/NRSF and its neuron-specific truncated form REST4; with REST4 being the major transcript. NIH3T3 cells express predominantly REST/NRSF, with no detectable REST4. The cellular localization of REST4, determined using a REST4-GFP fusion protein, was shown to be nuclear. Mutational analysis implicates the zinc finger domains as the nuclear-targeting signal. Analysis of reporter-gene activities in the NS20Y cell line showed that the presence of four RE-1/NRSE sequences did not affect promoter activity. However, coexpression of exogenous REST4 produces a small increase in promoter activity of the reporter plasmid, whereas expression of exogenous REST/NRSF leads to repression. In the NIH3T3 cell line, the RE-1/NRSE sequence leads to repression of reporter-gene activity, whereas introduction of exogenous REST4 leads to de-repression. These data indicate that REST4 does not act as a transcriptional repressor. However, they support a mechanism where REST4 can block the repressor activity of REST/NRSF.
Collapse
Affiliation(s)
- J H Lee
- Department of Biochemistry, University of Kentucky, Chandler Medical Center, Lexington 40536-0298, USA
| | | | | |
Collapse
|
714
|
De Gois S, Houhou L, Oda Y, Corbex M, Pajak F, Thévenot E, Vodjdani G, Mallet J, Berrard S. Is RE1/NRSE a common cis-regulatory sequence for ChAT and VAChT genes? J Biol Chem 2000; 275:36683-90. [PMID: 10973977 DOI: 10.1074/jbc.m006895200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Choline acetyltransferase (ChAT), the biosynthetic enzyme of acetylcholine, and the vesicular acetylcholine transporter (VAChT) are both required for cholinergic neurotransmission. These proteins are encoded by two embedded genes, the VAChT gene lying within the first intron of the ChAT gene. In the nervous system, both ChAT and VAChT are synthesized only in cholinergic neurons, and it is therefore likely that the cell type-specific expression of their genes is coordinately regulated. It has been suggested that a 2336-base pair genomic region upstream from the ChAT and VAChT coding sequences drives ChAT gene expression in cholinergic structures. We investigated whether this region also regulates VAChT gene transcription. Transfection assays showed that this region strongly represses the activity of the native VAChT promoters in non-neuronal cells, but has no major effect in neuronal cells whether or not they express the endogenous ChAT and VAChT genes. The silencer activity of this region is mediated solely by a repressor element 1 or neuron-restrictive silencer element (RE1/NRSE). Moreover, several proteins, including RE1-silencing transcription factor or neuron-restrictive silencer factor, are recruited by this regulatory sequence. These data suggest that this upstream region and RE1/NRSE co-regulate the expression of the ChAT and VAChT genes.
Collapse
Affiliation(s)
- S De Gois
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS, UMRC 9923, Bâtiment CERVI, Hôpital de la Pitié Salpêtrière, 83, boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
715
|
Paquette AJ, Perez SE, Anderson DJ. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo. Proc Natl Acad Sci U S A 2000; 97:12318-23. [PMID: 11050251 PMCID: PMC17339 DOI: 10.1073/pnas.97.22.12318] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF; also known as REST for repressor element-1 silencing transcription factor) is a transcriptional repressor of multiple neuronal genes, but little is known about its function in vivo. NRSF is normally down-regulated upon neuronal differentiation. Constitutive expression of NRSF in the developing spinal cord of chicken embryos caused repression of two endogenous target genes, N-tubulin and Ng-CAM, but did not prevent overt neurogenesis. Nevertheless, commissural neurons that differentiated while constitutively expressing NRSF showed a significantly increased frequency of axon guidance errors. These data suggest that down-regulation of NRSF is necessary for the proper development of at least some classes of neurons in vivo.
Collapse
Affiliation(s)
- A J Paquette
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
716
|
Döring F, Karschin A. Genomic structure and promoter analysis of the rat kir7.1 potassium channel gene (Kcnj13). FEBS Lett 2000; 483:93-8. [PMID: 11042260 DOI: 10.1016/s0014-5793(00)02092-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the brain inwardly rectifying potassium channel Kir7.1 subunits are predominantly expressed in the choroid plexus and meninges. To investigate this tissue-specific expression pattern, we characterized the genomic organization and the 5' proximal promoter of the rat Kir7.1 gene (Kcnj13). Starting from the major transcriptional initiation site, three exons in Kcnj13 give rise to the dominant approximately 1.45 kb transcript in brain. Adjacent to the transcriptional start the minimal promoter which, uncommon for ion channels, contains a TATA- and CAAT-box is controlled by AP-1 factors and accounts for high gene expression levels. Luciferase reporter gene responses driven by the first 2.1 kb of the 5' flanking region were similarly high in epithelial FRTL-5 and neuronal N2A cells, suggesting that neuron-specific repressor elements are located remote from the non-selective minimal promoter.
Collapse
Affiliation(s)
- F Döring
- Molecular Neurobiology of Signal Transduction, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany.
| | | |
Collapse
|
717
|
Abstract
Tau, a microtubule-associated protein, is encoded by a single gene, whose expression is primarily neuronal. In this work, we defined an 80-bp region of the tau promoter that confers tau protein with neuronal expression. This fragment works in conjunction with an endogenous initiation region to activate neuronal precursor-specific transcription of the tau promoter and works independently of this initiation region to confer nerve growth factor inducibility. Furthermore, this 80-bp fragment binds both Sp1 and AP-2 proteins. DNase I foot-print analysis revealed a third protein binding region at the center of this 80-bp fragment in neuronal cells. Mutation within any of these three protein binding sites decreases transcriptional activation of the tau gene. Comprehension of the interactions that occur between cis- and trans-regulatory elements of the tau promoter is important to understand the regulation of tau expression during normal development and changes that may occur in many cases of dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
- A Heicklen-Klein
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
718
|
Schade SD, Brown GB. Identifying the promoter region of the human brain sodium channel subtype II gene (SCN2A). BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:187-90. [PMID: 11000491 DOI: 10.1016/s0169-328x(00)00145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sodium channel genes are highly regulated. To begin analyzing the human brain sodium channel subtype II gene, SCN2A, at the transcriptional level, we mapped multiple transcriptional start sites within a 397 bp stretch of the 5'-UTR and -flanking region. When inserted into a basic luciferase reporter vector, this 397 bp region can promote luciferase expression in transiently transfected neuroblastoma cells, but not in non-neuronal cells. Thus, this study provides the initial description of a functional promoter in a human voltage-gated sodium channel gene.
Collapse
Affiliation(s)
- S D Schade
- Department of Psychiatry and Behavioral Neurobiology, Sparks Center, room 1075, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | |
Collapse
|
719
|
Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, Kurokawa R, Kumar V, Liu F, Seto E, Hedrick SM, Mandel G, Glass CK, Rose DW, Rosenfeld MG. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 2000; 102:753-63. [PMID: 11030619 DOI: 10.1016/s0092-8674(00)00064-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional repression plays crucial roles in diverse aspects of metazoan development, implying critical regulatory roles for corepressors such as N-CoR and SMRT. Altered patterns of transcription in tissues and cells derived from N-CoR gene-deleted mice and the resulting block at specific points in CNS, erythrocyte, and thymocyte development indicated that N-CoR was a required component of short-term active repression by nuclear receptors and MAD and of a subset of long-term repression events mediated by REST/NRSF. Unexpectedly, N-CoR and a specific deacetylase were also required for transcriptional activation of one class of retinoic acid response element. Together, these findings suggest that specific combinations of corepressors and histone deacetylases mediate the gene-specific actions of DNA-bound repressors in development of multiple organ systems.
Collapse
Affiliation(s)
- K Jepsen
- Howard Hughes Medical Institute, Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
720
|
Kobayashi S, Kamo S, Ohmae A, Agui K, Li Y, Anzai K. Identification of a negative regulatory DNA element for neuronal BC1 RNA expression by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:142-50. [PMID: 10978516 DOI: 10.1016/s0167-4781(00)00175-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BC1 RNA is a neuronal cell-specific RNA polymerase III (Pol III) transcript. The BC1 RNA gene has plural types of Pol III promoters, in addition to which an E-box sequence (E2 site) acts as a transcriptional activator, which is recognized by a brain-specific protein(s). Using an in vitro transcription system, we found that the upstream region of the BC1 RNA gene contained a sequence that interfered with the activity of the E-box element in a distance-independent manner. A tandem repeat within this sequence, which was weakly homologous with the neuron-restrictive silencer element (NRSE) found in the Pol II system, was recognized by a brain nuclear protein. Consistently, the transcriptional activity increased by deleting the tandem repeat sequence. We called this BC1 RNA-repressing element BCRE. The DNA-binding specificities of BCRE-binding protein differed from that of NRSE-binding protein (NRSF). A similar protein with an ability to bind to BCRE was also found in liver and kidney. Furthermore, the glutamate analog kainic acid increased the DNA-binding of both E2 site-binding protein and BCRE-binding protein, and then the levels of BC1 RNA also increased transiently. Our results suggested that both positive and negative regulatory elements contribute to neuronal BC1 RNA expression.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Biochemistry, College of Pharmacy, Nihon University, Narashinodai, Funabashi, 274-8555, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
721
|
De Jaco A, Ajmone-Cat MA, Baldelli P, Carbone E, Augusti-Tocco G, Biagioni S. Modulation of acetylcholinesterase and voltage-gated Na(+) channels in choline acetyltransferase- transfected neuroblastoma clones. J Neurochem 2000; 75:1123-31. [PMID: 10936194 DOI: 10.1046/j.1471-4159.2000.0751123.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotransmitters appear early in the developing embryo and may play a role in the regulation of neuronal differentiation. To study potential effects of acetylcholine production in neuronal differentiation, we used the FB5 subclone of N18TG2 murine neuroblastoma cells stably transfected with cDNA for choline acetyltransferase. We tested whether the forced acetylcholine production can modify the expression or the cellular localization of different neuronal markers. We studied the activity, localization, and secretion of acetylcholinesterase in view of its possible role in the modulation of the morphogenetic action of acetylcholine and of its proposed role of a regulator of neurite outgrowth. FB5 cells are characterized by a high level of acetylcholinesterase, predominantly released into the culture medium. Acetylcholinesterase secretion into the medium was lower in choline acetyltransferase-transfected clones than in nontransfected and antisense-transfected controls. Moreover, sequential extraction of acetylcholinesterase revealed that detergent-extracted, i.e., membrane-associated, activity was higher in the transfected clones expressing choline acetyltransferase activity than in both control groups. These observations suggest that a shift occurs in the utilization of acetylcholinesterase in choline acetyltransferase-transfected clones from a secretion pathway to a pathway leading to membrane localization. In addition, the choline acetyltransferase-positive clones showed higher densities of voltage-gated Na(+) channels and enhanced high-affinity choline uptake, suggesting the accomplishment of a more advanced differentiated neuronal phenotype. Finally, binding experiments demonstrated the presence of muscarinic acetylcholine receptors in all examined clones. This observation is consistent with the proposed existence of an autocrine loop, which may be important for the enhancement in the expression of neurospecific traits.
Collapse
Affiliation(s)
- A De Jaco
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Roma, Italy
| | | | | | | | | | | |
Collapse
|
722
|
Immaneni A, Lawinger P, Zhao Z, Lu W, Rastelli L, Morris JH, Majumder S. REST-VP16 activates multiple neuronal differentiation genes in human NT2 cells. Nucleic Acids Res 2000; 28:3403-10. [PMID: 10954611 PMCID: PMC110685 DOI: 10.1093/nar/28.17.3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RE1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress transcription of a battery of neuronal differentiation genes in non-neuronal cells by binding to a specific consensus DNA sequence present in their regulatory regions. However, REST/NRSF(-/-) mice suggest that the absence of REST/NRSF-dependent repression alone is not sufficient for the expression of these neuronal differentiation genes and that the presence of other promoter/enhancer-specific activators is required. Here we describe the construction of a recombinant transcription factor, REST-VP16, by replacing repressor domains of REST/NRSF with the activation domain of a viral activator VP16. In transient transfection experiments, REST-VP16 was found to operate through RE1 binding site/neuron-restrictive enhancer element (RE1/NRSE), activate plasmid-encoded neuronal promoters in various mammalian cell types and activate cellular REST/NRSF target genes, even in the absence of factors that are otherwise required to activate such genes. Efficient expression of REST-VP16 through adenoviral vectors in NT2 cells, which resemble human committed neuronal progenitor cells, was found to cause activation of multiple neuronal genes that are characteristic markers for neuronal differentiation. Thus, REST-VP16 could be used as a unique tool to study neuronal differentiation pathways and neuronal diseases that arise due to the deregulation of this process.
Collapse
Affiliation(s)
- A Immaneni
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 316, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
723
|
Ma L, Merenmies J, Parada LF. Molecular characterization of the TrkA/NGF receptor minimal enhancer reveals regulation by multiple cis elements to drive embryonic neuron expression. Development 2000; 127:3777-88. [PMID: 10934022 DOI: 10.1242/dev.127.17.3777] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neural development relies on stringent regulation of key genes that mediate specialized function. TrkA is primarily expressed in neural crest-derived sensory and sympathetic neurons where it transmits critical survival information. We have identified a 457 base pair sequence upstream of the murine first TrkA coding exon that is conserved in human and in chick, and is sufficient for expression in the correct cells with appropriate timing. Mutation analysis of consensus transcription factor binding domains within the minimal enhancer reveals a complex positive regulation that includes sites required for global expression and sites that are specifically required for DRG, trigeminal or sympathetic expression. These results provide a foundation for identification of the transcriptional machinery that specifies neurotrophin receptor expression.
Collapse
Affiliation(s)
- L Ma
- Center for Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | |
Collapse
|
724
|
Lee JH, Shimojo M, Chai YG, Hersh LB. Studies on the interaction of REST4 with the cholinergic repressor element-1/neuron restrictive silencer element. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:88-98. [PMID: 11039732 DOI: 10.1016/s0169-328x(00)00129-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
REST4 is a neuron specific truncated form of the transcription factor REST/NRSE derived by alternative splicing. REST4 was previously shown to block the repressor activity of REST/NRSF by forming a hetero-oligomer, Shimojo et al. [Mol. Cell. Biol. 19 (1999) 6788-6795]. A series of deletion mutants have now been used to characterize REST4 in terms of its structure and DNA binding. REST4 was found to be O-glycosylated between between residues 87 and 152. Binding of REST4 to the cholinergic RE-1/NRSE was approximately 1/10 to 1/20 as strong as full length REST/NRSF. DNA binding was enhanced by deletion of the first 86 residues and was found to require all four of the C-terminal zinc fingers as well as a twelve amino acid sequence preceding the first of these zinc fingers. REST4 can form homo-oligomers, however only the monomer was found to bind to DNA. REST4 binds to the 3' sequence of the cholinergic NRSE suggesting an anti-parallel orientation of the protein to the DNA.
Collapse
Affiliation(s)
- J H Lee
- Department of Biochemistry, University of Kentucky, Chandler Medical Center, Lexington 40536-0298, USA
| | | | | | | |
Collapse
|
725
|
Chen S, Zack DJ. Cloning and characterization of retinal transcription factors, using target site-based methodology. Methods Enzymol 2000; 316:590-610. [PMID: 10800704 DOI: 10.1016/s0076-6879(00)16752-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- S Chen
- Department of Ophthalmology and Visual Science, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
726
|
Lawinger P, Venugopal R, Guo ZS, Immaneni A, Sengupta D, Lu W, Rastelli L, Marin Dias Carneiro A, Levin V, Fuller GN, Echelard Y, Majumder S. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med 2000; 6:826-31. [PMID: 10888935 DOI: 10.1038/77565] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medulloblastoma is the most malignant pediatric brain tumor. It is believed to originate from the undifferentiated external granule layer cells in the cerebellum, but the mechanism of tumorigenesis remains unknown. Here we studied three types of human medulloblastoma cells that express markers corresponding to different levels of neuronal differentiation. They expressed the neuronal repressor element 1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF; refs. 7-10) at very high levels compared with either neuronal progenitor NTera2 (NT2) cells or fully differentiated human neuron teratocarcinoma (hNT cells). To counter the effect of REST/NRSF, we used a recombinant transcription factor, REST-VP16, constructed by replacing repressor domains of REST/NRSF with the activation domain of viral protein (VP16). Transient expression of REST-VP16 in medulloblastoma cells was able to compete with the endogenous REST/NRSF for DNA binding and stimulate neuronal promoters. High-efficiency expression of REST-VP16 mediated by adenovirus vectors (Ad.REST-VP16) in medulloblastoma cells was able to counter REST/NRSF-mediated repression of neuronal promoters, stimulate expression of endogenous neuronal genes and trigger apoptosis through the activation of caspase cascades. Furthermore, intratumoral injection of Ad.REST-VP16 in established medulloblastoma tumors in nude mice inhibited their growth. Therefore, REST/NRSF may serve as a new target for therapeutic interventions for medulloblastoma through agents such as REST-VP16.
Collapse
Affiliation(s)
- P Lawinger
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 316, Houston, Texas 77005, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
727
|
Schütz B, Chen L, Schäfer MK, Weihe E, Eiden LE. Somatomotor neuron-specific expression of the human cholinergic gene locus in transgenic mice. Neuroscience 2000; 96:707-22. [PMID: 10727789 DOI: 10.1016/s0306-4522(99)00587-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the expression pattern of the vesicular acetylcholine transporter in the mouse nervous system, using rodent-specific riboprobes and antibodies, prior to comparing it with the distribution of vesicular acetylcholine transporter expressed from a human transgene in the mouse, using riboprobes and antibodies specific for human. Endogenous vesicular acetylcholine transporter expression was high in spinal and brainstem somatomotor neurons, vagal visceromotor neurons, and postganglionic parasympathetic neurons, moderate in basal forebrain and brainstem projection neurons and striatal interneurons, and low in intestinal intrinsic neurons. Vesicular acetylcholine transporter expression in intrinsic cortical neurons was restricted to the entorhinal cortex. The sequence of the mouse cholinergic gene locus to 5.1kb upstream of the start of transcription of the vesicular acetylcholine transporter gene was determined and compared with the corresponding region of the human gene. Cis-regulatory domains implicated previously in human or rat cholinergic gene regulation are highly conserved in mouse, indicating their probable relevance to the regulation of the mammalian cholinergic gene locus in vivo. Mouse lines were established containing a human transgene that included the vesicular acetylcholine transporter gene and sequences spanning 5kb upstream and 1.8kb downstream of the vesicular acetylcholine transporter open reading frame. In this transgene, the intact human vesicular acetylcholine transporter was able to act as its own reporter. This allowed elements within the vesicular acetylcholine transporter open reading frame itself, shown previously to affect transcription in vitro, to be assessed in vivo with antibodies and riboprobes that reliably distinguished between human and mouse vesicular acetylcholine transporters and their messenger RNAs. Expression of the human vesicular acetylcholine transporter was restricted to mouse cholinergic somatomotor neurons in the spinal cord and brainstem, but absent from other central and peripheral cholinergic neurons. The mouse appears to be an appropriate model for the study of the genetic regulation of the cholinergic gene locus, and the physiology and neurochemistry of the mammalian cholinergic nervous system, although differences exist in the distribution of cortical cholinergic neurons between the mouse and other mammals. The somatomotor neuron-specific expression pattern of the transgenic human vesicular acetylcholine transporter suggests a mosaic model for cholinergic gene locus regulation in separate subdivisions of the mammalian cholinergic nervous system.
Collapse
Affiliation(s)
- B Schütz
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
728
|
Fashena SJ, Serebriiskii I, Golemis EA. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 2000; 250:1-14. [PMID: 10854774 DOI: 10.1016/s0378-1119(00)00182-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The original two-hybrid system, an experimental approach designed to detect protein interactions, exploited the modular nature of many transcription factors. It has provided the intellectual and technical seed for the evolution of an array of innovative approaches, the application of which broadens the scope of experimentally feasible questions to include the interaction of proteins with diverse binding partners. The available array of modified and alternative approaches facilitates the analysis of complex cellular machinery and signaling networks that rely on multiple protein interactions. Such advances have facilitated the functional analysis of proteins on the genome level, a feat considered untenable a decade ago.
Collapse
Affiliation(s)
- S J Fashena
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
729
|
Brené S, Messer C, Okado H, Hartley M, Heinemann SF, Nestler EJ. Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element. Eur J Neurosci 2000; 12:1525-33. [PMID: 10792430 DOI: 10.1046/j.1460-9568.2000.00040.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5'-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter.
Collapse
Affiliation(s)
- S Brené
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
730
|
McLean PJ, Shpektor D, Bandyopadhyay S, Russek SJ, Farb DH. A minimal promoter for the GABA(A) receptor alpha6-subunit gene controls tissue specificity. J Neurochem 2000; 74:1858-69. [PMID: 10800928 DOI: 10.1046/j.1471-4159.2000.0741858.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of nerve cells to regulate the expression of specific neurotransmitter receptors is of central importance to nervous system function, but little is known about the DNA elements that mediate neuron specific gene expression. The type A gamma-aminobutyric acid (GABA(A)) receptor alpha6-subunit gene, which is expressed exclusively in cerebellar granule cells, presents a unique opportunity to study the cis elements involved in restricting gene expression to a distinct neuronal population. In an effort to identify the regulatory elements that govern cerebellar granule cell-specific gene expression, the proximal 5' flanking regions for the human, rat, and mouse alpha6 genes were cloned and sequenced, and a major transcriptional initiation site was identified in the rodent genes. Functional analysis of rat alpha6 gene-reporter constructs in primary neuronal cultures reveals that a 155-bp TATA-less promoter region (-130 to +25 bp) constitutes a minimal promoter that can drive cerebellar granule cell-specific expression. Internal deletion and decoy competition studies demonstrate that the minimal promoter contains a 60-bp region (-130 to -70 bp) that is critical for enhanced promoter activity in cerebellar granule cells. Activity of the compromised promoter containing the deletion cannot be rescued by placing the 60-bp region downstream of the reporter gene, demonstrating that it is not a classical enhancer but rather a positionally dependent regulator. An additional cerebellar-specific activating sequence is located between -324 and -130 bp, and a downstream negative regulatory region (+158 to +294) has been shown to be active in fibroblasts but inactive in cerebellar granule cells. Taken together, the results suggest a possible mechanism for the control of cerebellar granule cell-specific expression of the GABA(A) receptor alpha6 subunit gene.
Collapse
Affiliation(s)
- P J McLean
- Department of Pharmacology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
731
|
Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 2000; 275:9461-7. [PMID: 10734093 DOI: 10.1074/jbc.275.13.9461] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repressor REST/NRSF restricts expression of a large set of genes to neurons by suppressing their expression in non-neural tissues. We find that REST repression involves two distinct repressor proteins. One of these, CoREST, interacts with the COOH-terminal repressor domain of REST (Andres, M. E., Burger, C., Peral-Rubio, M. J., Battaglioli, E., Anderson, M. E., Grimes, J., Dallmanm J., Ballas, N. , and Mandel, G. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9873-9878). Here we show that the co-repressor mSin3A also interacts with REST. The REST-mSin3A association involves the NH(2)-terminal repressor domain of REST and the paired amphipathic helix 2 domain of mSin3A. REST forms complexes with endogenous mSin3A in mammalian cells, and both mSin3A and CoREST interact with REST in intact mammalian cells. REST repression is blocked in yeast lacking Sin3 and rescued in its presence. In mammalian cells, repression by REST is reduced when binding to mSin3A is inhibited. In mouse embryos, the distribution of mSin3A and REST transcripts is largely coincident. The pattern of CoREST gene expression is more restricted, suggesting that mSin3A is required constitutively for REST repression, whereas CoREST is recruited for more specialized repressor functions.
Collapse
Affiliation(s)
- J A Grimes
- Howard Hughes Medical Institute and Department of Neurobiology and Behavior, State University of New York, Stony Brook, New York, 11794-5230, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
732
|
Ou XM, Jafar-Nejad H, Storring JM, Meng JH, Lemonde S, Albert PR. Novel dual repressor elements for neuronal cell-specific transcription of the rat 5-HT1A receptor gene. J Biol Chem 2000; 275:8161-8. [PMID: 10713139 DOI: 10.1074/jbc.275.11.8161] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The level of expression of the 5-HT1A receptor in the raphe and limbic systems is implicated in the etiology and treatment of major depression and anxiety disorders. The rat 5-HT1A receptor gene is regulated by a proximal TATA-driven promoter and by upstream repressors that inhibit gene expression. Deletion of a 71-base pair (bp) segment between -1590/-1519 bp of the 5-HT1A receptor gene induced over 10-fold enhancement of transcriptional activity in both 5-HT1A receptor-expressing (RN46A raphe and SN48 septal) cells and receptor-negative (L6 myoblast and C6 glioma) cells. A 31-bp segment of the repressor was protected from DNase I digestion by RN46A or L6 nuclear extracts. Within the 31-bp segment, a single protein complex was present in receptor-expressing cells that bound a novel 14-bp DNA element; in receptor-negative cells, an additional complex bound an adjacent 12-bp sequence. In receptor-positive but not receptor-negative cells, mutation of the 14-bp element to eliminate protein binding abrogated repression to nearly the same extent as deletion of the -1590/-1519 bp segment. Additional mutation of both 14-bp and 12-bp elements abolished protein binding and repressor activity in receptor-negative cells. Thus a single protein-DNA complex at the 14-bp element represses the 5-HT1A receptor gene in 5-HT1A receptor-positive neuronal cells, whereas adjacent DNA elements provide a dual repression mechanism in 5-HT1A receptor-negative cells.
Collapse
Affiliation(s)
- X M Ou
- Neuroscience Research Institute, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
733
|
Xu F, Paquette AJ, Anderson DJ, Charalambous A, Askew DS. Identification of a cell type-specific silencer in the first exon of theHis-1 gene. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<615::aid-jcb10>3.0.co;2-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
734
|
Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, Buckley NJ. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol 2000; 20:2147-57. [PMID: 10688661 PMCID: PMC110831 DOI: 10.1128/mcb.20.6.2147-2157.2000] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large number of neuron-specific genes characterized to date are under the control of negative transcriptional regulation. Many promoter regions of neuron-specific genes possess the repressor element repressor element 1/neuron-restrictive silencing element (RE1/NRSE). Its cognate binding protein, REST/NRSF, is an essential transcription factor; its null mutations result in embryonic lethality, and its dominant negative mutants produce aberrant expression of neuron-specific genes. REST/NRSF acts as a regulator of neuron-specific gene expression in both nonneuronal tissue and developing neurons. Here, we shown that heterologous expression of REST/NRSF in Saccharomyces cerevisiae is able to repress transcription from yeast promoters engineered to contain RE1/NRSEs. Moreover, we have taken advantage of this observation to show that this repression requires both yeast Sin3p and Rpd3p and that REST/NRSF physically interacts with the product of the yeast SIN3 gene in vivo. Furthermore, we show that REST/NRSF binds mammalian SIN3A and HDAC-2 and requires histone deacetylase activity to repress neuronal gene transcription in both nonneuronal and neuronal cell lines. We show that REST/NRSF binding to RE1/NRSE is accompanied by a decrease in the acetylation of histones around RE1/NRSE and that this decrease requires the N-terminal Sin3p binding domain of REST/NRSF. Taken together, these data suggest that REST/NRSF represses neuronal gene transcription by recruiting the SIN3/HDAC complex.
Collapse
Affiliation(s)
- A Roopra
- Wellcome Laboratory for Molecular Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
735
|
Meijer OC, Williamson A, Dallman MF, Pearce D. Transcriptional repression of the 5-HT1A receptor promoter by corticosterone via mineralocorticoid receptors depends on the cellular context. J Neuroendocrinol 2000; 12:245-54. [PMID: 10718920 DOI: 10.1046/j.1365-2826.2000.00445.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diverse effects of the corticosteroid hormones are mediated in large measure by the mineralocorticoid and glucocorticoid receptors, two closely related members of the nuclear receptor superfamily. In the brain, corticosteroids regulate neuronal excitability and responses to neurotransmitters in a cell type-specific manner. The 5-HT1A receptor, for example, is highly expressed in the hippocampus and raphe but transcription is repressed by corticosterone (the principal glucocorticoid in rodents) only in hippocampus. We have used transient transfection of cultured cells to study the transcriptional regulation of the 5-HT1A receptor promoter by activators and repression by glucocorticoids. We find that transcription factors Sp1 and NF-kB subunit p65, both of which are coexpressed in hippocampus with the 5-HT1A receptor in vivo, synergistically activate a reporter driven by receptor 5'-flanking region. Primer extension data suggest that the multiple transcription initiation sites used in reporter gene transcription correlate with those used in transcription of the endogenous gene which has a TATA-less promoter. Repression of transcription by corticosteroids was found to be mediated by both mineralocorticoid and glucocorticoid receptors, but not identically. While glucocorticoid receptors potently inhibited both p65- and p65/Sp1-stimulated transcription, repression via mineralocorticoid receptors (MR) depended on the transcriptional activators that were present: p65-stimulated reporter activity was not repressed via MR, whereas a similar level of transcription resulting from synergistic activation by p65/Sp1-stimulation was repressed via MR. The context-dependence of these MR-mediated effects provides a model for the cell-type and state-dependent actions of corticosterone in the brain.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Corticosterone/pharmacology
- Gene Deletion
- Hippocampus/cytology
- Hippocampus/metabolism
- NF-kappa B/pharmacology
- Promoter Regions, Genetic
- Rats
- Receptors, Glucocorticoid/physiology
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/physiology
- Receptors, Serotonin/genetics
- Receptors, Serotonin, 5-HT1
- Sequence Analysis, DNA
- Sp1 Transcription Factor/pharmacology
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- O C Meijer
- Department of Physiology, Division of Nephrology, University of California, San Francisco, CA, USA
| | | | | | | |
Collapse
|
736
|
Koenigsberger C, Chicca JJ, Amoureux MC, Edelman GM, Jones FS. Differential regulation by multiple promoters of the gene encoding the neuron-restrictive silencer factor. Proc Natl Acad Sci U S A 2000; 97:2291-6. [PMID: 10688910 PMCID: PMC15794 DOI: 10.1073/pnas.050578797] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NRSF/REST is a protein that silences transcription of a number of genes that contain a DNA element called the neuron-restrictive silencer element (NRSE). During embryogenesis, REST is expressed ubiquitously in nonneural cells, but is down-regulated during differentiation of neural progenitors into neurons. REST is also up-regulated in adult neurons by activity, suggesting a possible role for the protein in synaptic plasticity. To understand mechanisms that control expression of REST, we identified and characterized the promoter region of the mouse REST gene (mREST). A 4.5-kb DNA segment containing three exons (A, B, and C) that correspond to alternatively spliced 5' untranslated regions (5'UTRs) was isolated and its DNA sequence was determined. Reverse transcription-PCR analyses of fibroblasts, astrocytes, and neural progenitors identified variants in which these exons were spliced to exon D, suggesting that exons A, B, and C may each have a promoter. Consistent with this hypothesis, primer extension and in vitro transcription experiments revealed clusters of RNA transcription initiation sites upstream of exons A, B, and C. Tests of REST/luciferase reporter constructs in Neuro2A and NIH 3T3 cells revealed promoters upstream of exons A and B that were active in both cell lines, and a promoter upstream of exon C that was weakly active only in NIH 3T3 cells. Six enhancer and two repressor regions were found to overlap each of the three promoters, and some of these were found to be cell type-specific. Combinatorial arrangements of these promoters with enhancer and repressor regions may allow modulation of REST expression in particular contexts.
Collapse
Affiliation(s)
- C Koenigsberger
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
737
|
Klämbt C, Schimmelpfeng K, Hummel T. Glia development in the embryonic CNS of Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:23-32. [PMID: 10635017 DOI: 10.1007/978-1-4615-4685-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The major axon tracts in the embryonic CNS of Drosophila are organized in a simple, ladder like pattern. Each neuromere contains two commissures which connect the contra-lateral hemi-neuromeres and two longitudinal connectives which connect the different neuromeres along the anterior-posterior axis. The formation of these axon tracts occurs in close association with different glial cells. Loss of specific glial cells within the CNS leads to predictable defects in the organization of the CNS axon pattern. To unravel the genes underlying CNS glia development, we have conducted a saturating F2 EMS mutagenesis, screening for mutations, which disrupt axon pattern in the embryonic nervous system. We found a large number of mutations that lead to phenotypes indicative for glia defects. The analysis of the genes identified, show that glial cell differentiation requires the function of two independent regulatory pathways.
Collapse
Affiliation(s)
- C Klämbt
- Institut für Neurobiologie Universität Münster, Germany.
| | | | | |
Collapse
|
738
|
Ren Y, Reddy SA, Liao WS. Purification and identification of a tissue-specific repressor involved in serum amyloid A1 gene expression. J Biol Chem 1999; 274:37154-60. [PMID: 10601277 DOI: 10.1074/jbc.274.52.37154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that the 5'-flanking regions from the rat serum amyloid A1 (SAA1) promoter are necessary and sufficient to confer specific cytokine-induced expression in cultured hepatoma cells. Deletion analysis identified a tissue-specific repressor (TSR) regulatory element, located between bp -289 and -256, that functioned as a silencer, contributing to the transcription repression on SAA1 promoter in nonliver cells. When this 34-base pair TSR-binding element was used as a probe in electrophoretic mobility shift assays, an intense DNA-protein complex was detected in nuclear extracts from HeLa and several other nonliver tissues. This TSR binding activity, however, was undetectable in extracts from liver or liver-derived cells. The distribution of TSR binding activity is therefore consistent with its regulatory role in repressing SAA1 expression in a tissue-specific manner. In this study, we purified TSR protein from HeLa nuclear extracts and showed that it has a molecular mass of approximately 50 kDa. Surprisingly, protein sequencing and antibody supershift experiments identified TSR as transcription factor AP-2. Subsequent functional analysis showed that forced expression of AP-2 in HepG2 cells could indeed inhibit conditioned medium-induced SAA1 promoter activation. Moreover, expression of a dominant-negative mutant of AP-2 in HeLa cells or mutation of the AP-2-binding site led to derepression of the SAA1 promoter, presumably by neutralizing the inhibitory effects of the endogenous wild-type AP-2. Our results therefore demonstrate a novel function for AP-2 in the transcriptional repression of SAA1 promoter. Together with its tissue distribution, AP-2 may contribute to SAA1's highly liver-specific expression pattern by restricting its expression in nonliver cells.
Collapse
Affiliation(s)
- Y Ren
- Department of Biochemistry, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
739
|
Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ. Characterization of the 5'-flanking region of the human dopamine transporter gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:167-74. [PMID: 10640687 DOI: 10.1016/s0169-328x(99)00275-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopamine transporter (DAT) plays a major role in modulating dopamine (DA) neurotransmission by controlling the levels of this neurotransmitter in the extracellular space. We have isolated 8.3 kb of the 5'-flanking regulatory region of the human DAT (hDAT) gene and identified numerous potential elements involved in transcriptional control of the DAT. A series of hDAT-luciferase reporter constructs encompassing increasing amounts of 5'-flanking sequence was utilized in transient transfection assays assessing basal activity and response to selected stimuli. Our results suggest that the proximal hDAT 5'-flanking region displays a strong, nonselective promoter activity that is silenced through regulatory elements present in the distal portion of the 5'-flanking sequence. Although potential cyclic AMP responsive elements (CRE) were identified on the sequence, hDAT constructs were unresponsive to cyclic AMP induction. The transcription factor nurr1 increases the transcriptional activity of several larger hDAT constructs, consistent with the presence of several putative NGFI-B response elements (NBRE). The cloning and functional analysis of an extensive portion of the 5'-flanking regulatory region of the hDAT gene provides further insights into the factors involved in the regulation of this gene.
Collapse
Affiliation(s)
- P Sacchetti
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 2309 Scott Hall, 540 E. Canfield Ave, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
740
|
Okamoto S, Sherman K, Lipton SA. Absence of binding activity of neuron-restrictive silencer factor is necessary, but not sufficient for transcription of NMDA receptor subunit type 1 in neuronal cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:44-54. [PMID: 10640675 DOI: 10.1016/s0169-328x(99)00250-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuron-restrictive silencer factor (NRSF, also termed REST) has been proposed to restrict expression of a set of genes to neurons by blocking their transcription in nonneuronal cells. The N-methyl-D-aspartate (NMDA) receptor subunit type I (NR1) gene contains a consensus sequence for the NRSF/REST binding site (NRSE/RE1). In this study, we evaluated the contribution of NRSF/REST to neuronal specificity of the NR1 gene. NR1 mRNA expression correlates with the absence of NRSF/REST binding activity, rather than expression of NRSF/REST protein, in several cell lines, suggesting that the absence of NRSF/REST-binding activity is necessary for the expression of the NR1 gene. HeLa cells, which do not express the NR1 gene, have NRSF/REST binding activity to the NR1 NRSE/RE1, resulting in inhibition of NR1 promoter activity. However, we also found that two nonneuronal cell lines (C6 glioma and P19 embryonal carcinoma) that lack NRSF/REST-binding activity, manifest only small amounts of NR1 mRNA compared to neuronal cell lines (PC12 pheochromocytoma and neuronally differentiated P19 cells). The enhancement of NR1 mRNA levels during neuronal differentiation of P19 cells is accompanied by an increase in NR1 promoter activity in an NRSF/REST-binding independent manner. Our results suggest therefore that the absence of NRSF/REST-binding activity is necessary but not sufficient for robust NR1 transcription in neuronal cells.
Collapse
Affiliation(s)
- S Okamoto
- Cerebrovascular and NeuroScience Research Institute, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, LMRC 1st floor, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
741
|
Takeuchi S, Imafuku I, Waragai M, Roth C, Kanazawa I, Buettner R, Mouradian MM, Okazawa H. AP-2beta represses D(1A) dopamine receptor gene transcription in neuro2a cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:208-16. [PMID: 10640692 DOI: 10.1016/s0169-328x(99)00298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression of the D(1A) dopamine receptor in brain is restricted to specific neuronal populations. To investigate the mechanism of this selective expression, we localized a silencer upstream of the human D(1A) gene and identified its binding transcription factor in the D(1A)-negative neural cell line Neuro2a. Using deletion CAT analysis, we narrowed this silencer to the region between nucleotides -561 and -532 relative to the CAP site. This 30-bp region, designated D1AS1, contains a sequence homologous to the AP-2 binding site and binds to a factor that also interacts with the AP-2 consensus sequence. In gel supershift assays, this factor is recognized by anti-AP-2beta antibody. Co-transfection of Neuro2a cells with an AP-2beta expression vector repressed the basal CAT activity of D(1A) promoter-reporter plasmids in a D1AS1-dependent manner. RT-PCR analysis indicated that, among AP-2 family members, Neuro2a cells express only AP-2beta. Furthermore, co-transfection of these cells with decoy oligonucleotides corresponding to the D1AS1 sequence de-repressed the D(1A) gene promoter. Unlike in Neuro2a cells, AP-2beta could not repress the D(1A) promoter in the D(1A)-positive neural cell line, NS20Y. In addition, the expression of AP-2beta in different brain regions does not inversely correlate with that of D(1A) dopamine receptor. These observations taken together indicate that AP-2beta is a repressive transcription factor that acts on the D1AS1 silencer of the D(1A) dopamine receptor gene via some cell-specific mechanism(s) in Neuro2a.
Collapse
Affiliation(s)
- S Takeuchi
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | |
Collapse
|
742
|
Poiraud E, Gruszczynski C, Porteu A, Cambier H, Escurat M, Koulakoff A, Kahn A, Berwald-Netter Y, Gautron S. The Na-G ion channel is transcribed from a single promoter controlled by distinct neuron- and Schwann cell-specific DNA elements. J Neurochem 1999; 73:2575-85. [PMID: 10582621 DOI: 10.1046/j.1471-4159.1999.0732575.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na-G is a putative sodium (or cationic) channel expressed in neurons and glia of the PNS, in restricted neuronal subpopulations of the brain, and in several tissues outside the nervous system, like lung and adrenal medulla. To analyze the mechanisms underlying tissue-specific expression of this channel, we isolated the 5' region of the corresponding gene and show that Na-G mRNA transcription proceeds from a single promoter with multiple initiation sites. By transgenic mice studies, we demonstrate that 600 bp containing the Na-G proximal promoter region and the first exon are sufficient to drive the expression of a beta-galactosidase reporter gene in neurons of both CNS and PNS, whereas expression in Schwann cells depends on more remote DNA elements lying in the region between -6,500 and -1,050 bp upstream of the main transcription initiation sites. Crucial elements for lung-specific expression seem to be located in the region between -1,050 and -375 bp upstream of the promoter. Using in vivo footprint experiments, we demonstrate that several sites of the Na-G proximal promoter region are bound specifically by nuclear proteins in dorsal root ganglion neurons, as compared with nonexpressing hepatoma cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Central Nervous System/metabolism
- DNA Footprinting
- DNA, Complementary/genetics
- Exons/genetics
- Ganglia, Spinal/metabolism
- Genes, Reporter
- Liver/metabolism
- Lung/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscles/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurons/metabolism
- Neurons, Afferent/metabolism
- Nuclear Proteins/metabolism
- Organ Specificity
- Peripheral Nervous System/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred F344
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Schwann Cells/metabolism
- Sodium Channels/biosynthesis
- Sodium Channels/genetics
- Transcription, Genetic
- Voltage-Gated Sodium Channels
- beta-Galactosidase/biosynthesis
Collapse
Affiliation(s)
- E Poiraud
- Biochimie Cellulaire, CNRS UPR 9065, Collège de France, Paris
| | | | | | | | | | | | | | | | | |
Collapse
|
743
|
Naruse Y, Aoki T, Kojima T, Mori N. Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci U S A 1999; 96:13691-6. [PMID: 10570134 PMCID: PMC24126 DOI: 10.1073/pnas.96.24.13691] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1999] [Indexed: 11/18/2022] Open
Abstract
Accumulative evidence suggests that more than 20 neuron-specific genes are regulated by a transcriptional cis-regulatory element known as the neural restrictive silencer (NRS). A trans-acting repressor that binds the NRS, NRSF [also designated RE1-silencing transcription factor (REST)] has been cloned, but the mechanism by which it represses transcription is unknown. Here we show evidence that NRSF represses transcription of its target genes by recruiting mSin3 and histone deacetylase. Transfection experiments using a series of NRSF deletion constructs revealed the presence of two repression domains, RD-1 and RD-2, within the N- and C-terminal regions, respectively. A yeast two-hybrid screen using the RD-1 region as a bait identified a short form of mSin3B. In vitro pull-down assays and in vivo immunoprecipitation-Western analyses revealed a specific interaction between NRSF-RD1 and mSin3 PAH1-PAH2 domains. Furthermore, NRSF and mSin3 formed a complex with histone deacetylase 1, suggesting that NRSF-mediated repression involves histone deacetylation. When the deacetylation of histones was inhibited by tricostatin A in non-neuronal cells, mRNAs encoding several neuronal-specific genes such as SCG10, NMDAR1, and choline acetyltransferase became detectable. These results indicate that NRSF recruits mSin3 and histone deacetylase 1 to silence neural-specific genes and suggest further that repression of histone deacetylation is crucial for transcriptional activation of neural-specific genes during neuronal terminal differentiation.
Collapse
Affiliation(s)
- Y Naruse
- Department of Molecular Genetic Research, National Institute for Longevity Sciences, Oobu, Aichi 474-8522, Japan
| | | | | | | |
Collapse
|
744
|
Li L, Liao WS. An upstream repressor element that contributes to hepatocyte-specific expression of the rat serum amyloid A1 gene. Biochem Biophys Res Commun 1999; 264:395-403. [PMID: 10529375 DOI: 10.1006/bbrc.1999.1527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum amyloid A (SAA) is a major acute-phase protein whose expression can be dramatically induced in response to tissue damage, infection, and inflammation. Its expression is highly tissue-specific, restricted almost exclusively to liver hepatocytes. We have shown that a 320-bp fragment of the rat SAA1 promoter could confer liver-cell-specific expression on a reporter gene when transfected into cultured cells. Here we report the identification of a 29-bp regulatory element that possesses inhibitory activities on SAA1 promoter in HeLa cells but has no such effects in liver cells. Moreover, this regulatory element has properties of a transcriptional repressor; in that, it can function with a heterologous promoter and is independent of orientation and distance from the transcription initiation site. Protein binding studies showed that this regulatory element can form specific protein-DNA complexes with nuclear proteins from several nonliver cell lines (HeLa, 10T(1/2), and C2) and placenta. However, the same DNA-protein complex was not detected in extracts from liver or liver-derived cell lines (HepG2 and Hep3B). Taken together, our results demonstrate the presence of a DNA-binding protein, termed tissue-specific repressor, found only in nonhepatocytes which may function to repress SAA1 gene expression by interacting with a repressor element. Thus, liver-specific expression of the SAA1 gene is apparently regulated by both positive and negative regulatory elements and their interacting transcription factors to ensure that it is expressed only in suitable cell types.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | | |
Collapse
|
745
|
Chew LJ, Huang F, Boutin JM, Gallo V. Identification of nuclear orphan receptors as regulators of expression of a neurotransmitter receptor gene. J Biol Chem 1999; 274:29366-75. [PMID: 10506197 DOI: 10.1074/jbc.274.41.29366] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear orphan receptors are known to be important mediators of neurogenesis, but the target genes of these transcription factors in the vertebrate nervous system remain largely undefined. We have previously shown that a 500-base pair fragment in the first intron of the GRIK5 gene, which encodes the kainate-preferring glutamate receptor subunit KA2, down-regulates gene expression. In our present studies, mutation of an 11-base pair element within this fragment resulted in a loss of nuclear protein binding and reverses negative regulation by the intron. Using yeast one-hybrid screening, we have identified intron-binding proteins from rat brain as COUP-TFI, EAR2, and NURR1. Gel shift studies with postnatal day 2 rat brain extract indicate the presence of COUP-TFs, EAR2, and NURR1 in the DNA-protein complex. Competition assays with GRIK5-binding site mutations show that the recombinant clones exhibit differential binding characteristics and suggest that the DNA-protein complex from postnatal day 2 rat brain may consist primarily of EAR2. The DNA binding activity was also observed to be enriched in rat neural tissue and developmentally regulated. Co-transfection assays showed that recombinant nuclear orphan receptors function as transcriptional repressors in both CV1 cells and rat CG4 oligodendrocyte cells. Direct interaction of the orphan receptors with and relief of repression by TFIIB indicate likely role(s) in active and/or transrepression. Our findings are thus consistent with the notion that multiple nuclear orphan receptors can regulate the transcription of a widely expressed neurotransmitter receptor gene by binding a common element in an intron and directly modulating the activity of the transcription machinery.
Collapse
Affiliation(s)
- L J Chew
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
746
|
Shimojo M, Paquette AJ, Anderson DJ, Hersh LB. Protein kinase A regulates cholinergic gene expression in PC12 cells: REST4 silences the silencing activity of neuron-restrictive silencer factor/REST. Mol Cell Biol 1999; 19:6788-95. [PMID: 10490617 PMCID: PMC84675 DOI: 10.1128/mcb.19.10.6788] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of protein kinase A in regulating transcription of the cholinergic gene locus, which contains both the vesicular acetylcholine transporter gene and the choline acetyltransferase gene, was investigated in PC12 cells and a protein kinase A-deficient PC12 mutant, A126.1B2, in which transcription of the gene is reduced. The site of action of protein kinase A was localized to a neuron-restrictive silencer element/repressor element 1 (NRSE/RE-1) sequence within the cholinergic gene. Neuron-restrictive silencer factor (NRSF)/RE-1-silencing transcription factor (REST), the transcription factor which binds to NRSE/RE-1, was expressed at similar levels in both PC12 and A126.1B2 cells. Although nuclear extracts containing NRSF/REST from A126.1B2 exhibited binding to NRSE/RE-1, nuclear extracts from PC12 cells did not. The NRSF/REST isoform REST4 was expressed in PC12 cells but not in A126.1B2. REST4 inhibited binding of NRSF/REST to NRSE/RE-1 as determined by gel mobility shift assays. Coimmunoprecipitation was used to demonstrate interaction between NRSF/REST and REST4. Expression of recombinant REST4 in A126.1B2 was sufficient to transcriptionally activate the cholinergic gene locus. Thus, in PC12 cells, protein kinase A promotes the production of REST4, which inhibits repression of the cholinergic gene locus by NRSF/REST.
Collapse
Affiliation(s)
- M Shimojo
- Department of Biochemistry, University of Kentucky, Lexington 40536-0298, USA
| | | | | | | |
Collapse
|
747
|
Abstract
Glial cells are pivotal players during the development and function of complex nervous systems. In Drosophila, recent genetic analyses have revealed several genes that control differentiation and function of CNS glial cells and their interactions with neurons can be studied in detail at the CNS midline, where it is essential for the correct establishment of the commissural axon pattern.
Collapse
Affiliation(s)
- S Granderath
- Institut für Neurobiologie Universität Münster Badestrasse 9, D-48149, Münster, Germany
| | | |
Collapse
|
748
|
Huang Y, Myers SJ, Dingledine R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 1999; 2:867-72. [PMID: 10491605 DOI: 10.1038/13165] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many genes whose expression is restricted to neurons in the brain contain a silencer element (RE1/NRSE) that limits transcription in nonneuronal cells by binding the transcription factor REST (also named NRSF or XBR). Although two independent domains of REST are known to confer repression, the mechanisms of transcriptional repression by REST remain obscure. We provide multiple lines of evidence that the N-terminal domain of REST represses transcription of the GluR2 and type II sodium-channel genes by recruiting the corepressor Sin3A and histone deacetylase (HDAC) to the promoter region in nonneuronal cells. These results identify a general mechanism for controlling the neuronal expression pattern of a specific set of genes via the RE1 silencer element.
Collapse
Affiliation(s)
- Y Huang
- Department of Pharmacology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
749
|
Malosio ML, Benfante R, Racchetti G, Borgonovo B, Rosa P, Meldolesi J. Neurosecretory cells without neurosecretion: evidence of an independently regulated trait of the cell phenotype. J Physiol 1999; 520 Pt 1:43-52. [PMID: 10517799 PMCID: PMC2269568 DOI: 10.1111/j.1469-7793.1999.t01-1-00043.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neurosecretion competence is a fundamental property that enables differentiated neurones and professional neurosecretory cells to store neurotransmitters and hormones in specialized organelles, the synaptic-like vesicles and dense granules, and to release them by regulated exocytosis. In our laboratory, the study of rat phaeochromocytoma (PC12) clones that fail to express the above organelles or any other components involved in neurosecretion, whilst maintaining most of the general markers of the parental population, has served to demonstrate that this trait is controlled independently from the rest of the phenotype. The present review focuses on recent advances in elucidating the molecular mechanisms governing neurosecretion competence. Moreover, the opportunities that such neurosecretion-defective PC12 clones offer for the investigation of new aspects of regulated exocytosis and the localization of its components are summarized.
Collapse
Affiliation(s)
- M L Malosio
- DIBIT, Department of Neurosciences, San Raffaele Institute, Department of Pharmacology, B. Ceccarelli Neurobiology Centre, University of Milan, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
750
|
Gan L, Hahn SJ, Kaczmarek LK. Cell type-specific expression of the Kv3.1 gene is mediated by a negative element in the 5' untranslated region of the Kv3.1 promoter. J Neurochem 1999; 73:1350-62. [PMID: 10501178 DOI: 10.1046/j.1471-4159.1999.0731350.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Kv3.1 potassium channel gene is restrictively expressed in the CNS, and its expression level is especially high in neurons that are able to follow synaptic inputs at high frequencies. To understand the transcriptional mechanisms controlling Kv3.1 expression, we have conducted a functional analysis of the Kv3.1 promoter in various cell lines of different tissue origins and in transgenic mice. Our results suggest that an upstream regulatory fragment coupled with the 5' untranslated region (UTR) is able to confer tissue-specific expression in both cell lines and in transgenic mice. Deletion analysis of the regulatory region carried out in cell lines reveals that a strong negatively acting element, uniquely residing in the 5' UTR (+350 to +158), appears able to confer cell type specificity on both the Kv3.1 promoter and the thymidine kinase promoter in transient transfection assays. A weak cell type-specific enhancer in the proximal region of the promoter (-123 to -71) also contributes to cell type-specific expression of the Kv3.1 gene.
Collapse
Affiliation(s)
- L Gan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|