701
|
The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system. Nat Microbiol 2018; 3:367-377. [PMID: 29403013 DOI: 10.1038/s41564-017-0103-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Specialized RNA endonucleases for the maturation of clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNAs (crRNAs) are critical in CRISPR-CRISPR-associated protein (Cas) defence mechanisms. The Cas6 and Cas5d enzymes are the RNA endonucleases in many class 1 CRISPR-Cas systems. In some class 2 systems, maturation and effector functions are combined within a single enzyme or maturation proceeds through the combined actions of RNase III and trans-activating CRISPR RNAs (tracrRNAs). Three separate CRISPR-Cas systems exist in the cyanobacterium Synechocystis sp. PCC 6803. Whereas Cas6-type enzymes act in two of these systems, the third, which is classified as subtype III-B variant (III-Bv), lacks cas6 homologues. Instead, the maturation of crRNAs proceeds through the activity of endoribonuclease E, leaving unusual 13- and 14-nucleotide-long 5'-handles. Overexpression of RNase E leads to overaccumulation and knock-down to the reduced accumulation of crRNAs in vivo, suggesting that RNase E is the limiting factor for CRISPR complex formation. Recognition by RNase E depends on a stem-loop in the CRISPR repeat, whereas base substitutions at the cleavage site trigger the appearance of secondary products, consistent with a two-step recognition and cleavage mechanism. These results suggest the adaptation of an otherwise very conserved housekeeping enzyme to accommodate new substrates and illuminate the impressive plasticity of CRISPR-Cas systems that enables them to function in particular genomic environments.
Collapse
|
702
|
Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
703
|
Chaudhary K, Chattopadhyay A, Pratap D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnol Lett 2018; 40:465-477. [PMID: 29344851 DOI: 10.1007/s10529-018-2506-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system allows biologists to edit genomic DNA of any cell in precise and specific way, entailing great potential for crop improvement, drug development and gene therapy. The system involves a nuclease (Cas9) and a designed guide RNA that are involved in wide range of applications such as genome modification, transcriptional modulation, genomic loci marking and RNA tracking. The limitation of the technique, in view of resistance of thymidine-rich genome to Cas9 cleavage, has now been overcome by the use of Cpf1 nuclease. In this review, we present an overview of CRISPR nucleases (Cas9 or Cpf1) with particular emphasis on human genome modification and compare their advantages and limitations. Furthermore, we summarize some of the pros and cons of CRISPR technology particularly in human therapeutics.
Collapse
Affiliation(s)
- Kulbhushan Chaudhary
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, Gujrat, India
| | - Dharmendra Pratap
- Department of Genetics & Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India.
| |
Collapse
|
704
|
Chen S, Yu X, Guo D. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses 2018; 10:E40. [PMID: 29337866 PMCID: PMC5795453 DOI: 10.3390/v10010040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022] Open
Abstract
Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiao Yu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China.
| | - Deyin Guo
- School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
705
|
Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. RNA-dependent RNA targeting by CRISPR-Cas9. eLife 2018; 7:e32724. [PMID: 29303478 PMCID: PMC5796797 DOI: 10.7554/elife.32724] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo. We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. These results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.
Collapse
Affiliation(s)
- Steven C Strutt
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| | - Rachel M Torrez
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| | - Emine Kaya
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| | - Oscar A Negrete
- Sandia National LaboratoriesBiotechnology and Bioengineering DepartmentLivermoreUnited States
| | - Jennifer A Doudna
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
- Howard Hughes Medical InstituteMarylandUnited States
- Department of ChemistryUniversity of CaliforniaBerkeleyUnited States
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyUnited States
- MBIB DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
706
|
Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 2018; 19:1. [PMID: 29301551 PMCID: PMC5755456 DOI: 10.1186/s13059-017-1381-1] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR/Cas systems confer immunity against invading nucleic acids and phages in bacteria and archaea. CRISPR/Cas13a (known previously as C2c2) is a class 2 type VI-A ribonuclease capable of targeting and cleaving single-stranded RNA (ssRNA) molecules of the phage genome. Here, we employ CRISPR/Cas13a to engineer interference with an RNA virus, Turnip Mosaic Virus (TuMV), in plants. RESULTS CRISPR/Cas13a produces interference against green fluorescent protein (GFP)-expressing TuMV in transient assays and stable overexpression lines of Nicotiana benthamiana. CRISPR RNA (crRNAs) targeting the HC-Pro and GFP sequences exhibit better interference than those targeting other regions such as coat protein (CP) sequence. Cas13a can also process pre-crRNAs into functional crRNAs. CONCLUSIONS Our data indicate that CRISPR/Cas13a can be used for engineering interference against RNA viruses, providing a potential novel mechanism for RNA-guided immunity against RNA viruses and for other RNA manipulations in plants.
Collapse
Affiliation(s)
- Rashid Aman
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Fatimah Aljedaani
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Zuhaib Khan
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shouwei Ding
- Center for Plant Cell Biology, Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Magdy Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
707
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
708
|
Mahas A, Neal Stewart C, Mahfouz MM. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv 2018; 36:295-310. [DOI: 10.1016/j.biotechadv.2017.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/03/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
|
709
|
De Franco S, O'Connell MR, Vandevenne M. Engineering RNA-Binding Proteins by Modular Assembly of RanBP2-Type Zinc Fingers. Methods Mol Biol 2018; 1867:57-74. [PMID: 30155815 DOI: 10.1007/978-1-4939-8799-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deciphering the function of the nonprotein-coding portion of genomes represents one of the major challenges that molecular biology is facing today. Numerous classes of RNAs have been discovered over the last past decade and appear to play important regulatory roles in gene expression and disease. The ability to study and manipulate these RNAs relies on the development of programmable RNA-binding molecules such as RNA-binding proteins. Most RNA-binding proteins have modular architectures and combine different RNA-binding domains that provide binding affinity toward a specific RNA sequence and/or structure. Herein, we describe a general strategy to design single-stranded RNA-binding proteins using RanBP2-type zinc-finger (ZF) domains that can recognize a given RNA sequence with high affinity and specificity.
Collapse
Affiliation(s)
- Simona De Franco
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
- Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
710
|
|
711
|
Kim CM, Smolke CD. Biomedical applications of RNA-based devices. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:106-115. [DOI: 10.1016/j.cobme.2017.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
712
|
Affiliation(s)
- Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
713
|
Leon LM, Mendoza SD, Bondy-Denomy J. How bacteria control the CRISPR-Cas arsenal. Curr Opin Microbiol 2017; 42:87-95. [PMID: 29169146 DOI: 10.1016/j.mib.2017.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023]
Abstract
CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR effectors, these enzymes must be carefully regulated to minimize toxicity and maximize anti-phage immunity. While attention has been given to the transcriptional regulation of these systems (reviewed in [1]), less consideration has been given to the crucial post-translational processes that govern enzyme activation and inactivation. Here, we review recent findings that describe how Cas nucleases are controlled in diverse systems to provide a robust anti-viral response while limiting auto-immunity. We also draw comparisons to a distinct bacterial immune system, restriction-modification.
Collapse
Affiliation(s)
- Lina M Leon
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Senén D Mendoza
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, United States; Quantitative Biosciences Institute, University of California, San Francisco, United States.
| |
Collapse
|
714
|
Engel M, Chen A. The emerging role of mRNA methylation in normal and pathological behavior. GENES BRAIN AND BEHAVIOR 2017; 17:e12428. [PMID: 29027751 DOI: 10.1111/gbb.12428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
Abstract
Covalent RNA modifications were recently rediscovered as abundant RNA chemical tags. Similarly to DNA epigenetic modifications, they have been proposed as essential regulators of gene expression. Here we focus on 3 of the most abundant adenosine methylations: N6-methyladenosine (m6 A), N6,2'-O-dimethyladenosine (m6 Am) and N1-methyladenosine (m1 A). We review the potential role of these modifications on mature mRNA in regulating gene expression within the adult brain, nervous system function and normal and pathological behavior. Dynamic mRNA modifications, summarized as the epitranscriptome, regulate transcript maturation, translation and decay, and thus crucially determine gene expression beyond primary transcription regulation. However, the extent of this regulation in the healthy and maladapted adult brain is poorly understood. Analyzing this novel layer of gene expression control in addition to epigenetics and posttranslational regulation of proteins will be highly relevant for understanding the molecular underpinnings of behavior and psychiatric disorders.
Collapse
Affiliation(s)
- M Engel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
715
|
Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, Oh HM, Jeong WJ, Jeong BR, Chang YK. Current status and perspectives of genome editing technology for microalgae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:267. [PMID: 29163669 PMCID: PMC5686953 DOI: 10.1186/s13068-017-0957-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/04/2017] [Indexed: 05/25/2023]
Abstract
Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by engineered nucleases, dubbed molecular scissors, including zinc-finger nuclease (ZFN), TAL effector endonuclease (TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has revolutionized genome editing fields with its simplicity, efficiency and accuracy compared to previous nucleases. CRISPR/Cas9-induced genome editing is being used in numerous organisms including microalgae. Microalgae have been subjected to extensive genetic and biological engineering due to their great potential as sustainable biofuel and chemical feedstocks. However, progress in microalgal engineering is slow mainly due to a lack of a proper transformation toolbox, and the same problem also applies to genome editing techniques. Given these problems, there are a few reports on successful genome editing in microalgae. It is, thus, time to consider the problems and solutions of genome editing in microalgae as well as further applications of this exciting technology for other scientific and engineering purposes.
Collapse
Affiliation(s)
- Seungjib Jeon
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Sung-Eun Shin
- LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass Research and Development Center (ABC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
716
|
Garcia-Doval C, Jinek M. Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Curr Opin Struct Biol 2017; 47:157-166. [PMID: 29107822 DOI: 10.1016/j.sbi.2017.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Prokaryotic Class 2 CRISPR-Cas systems mediate adaptive immunity against invasive genetic elements by means of standalone effector proteins that function as RNA-guided nucleases. The effectors Cas9 and Cas12 generate double-strand breaks in DNA substrates, which has been exploited for genome editing applications. In turn, Cas13 enzymes function as RNA-guided ribonucleases whose non-specific activity is triggered by target RNA binding. In this review, we highlight recent structural investigations of Cas9, Cas12 and Cas13 nucleases that have illuminated many aspects of their molecular mechanisms. In particular, these studies have highlighted the role of guide RNA seed sequences in facilitating target recognition and the importance of conformational transitions in controlling target binding and cleavage.
Collapse
Affiliation(s)
- Carmela Garcia-Doval
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
717
|
Affiliation(s)
- Angela M Caliendo
- From the Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (A.M.C.); and the Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville and Greenville Health System, Greenville (R.L.H.)
| | - Richard L Hodinka
- From the Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI (A.M.C.); and the Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville and Greenville Health System, Greenville (R.L.H.)
| |
Collapse
|
718
|
Stella S, Alcón P, Montoya G. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 2017; 24:882-892. [PMID: 29035385 DOI: 10.1038/nsmb.3486] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas is a bacterial defense system against phage infection and nucleic acid invasion. Class 2 type II CRISPR-Cas9 has also been widely used for genome engineering. Here, we review novel insights into the CRISPR class 2 type V enzymes, specifically Cpf1 and C2c1, which display different DNA-recognition and cleavage characteristics than those of Cas9, the best-characterized member of class 2. Recent structures of these ribonucleoprotein complexes that capture several stages of the endonuclease reaction have provided molecular details of recognition, unzipping and cleavage of the target DNA, allowing their comparison with Cas9. A detailed understanding of these mechanisms is crucial for improving these genome engineering tools and expanding the genomic space that can be targeted.
Collapse
Affiliation(s)
- Stefano Stella
- Protein Structure & Function Programme, Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Alcón
- Protein Structure & Function Programme, Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Montoya
- Protein Structure & Function Programme, Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
719
|
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DB, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature 2017; 550:280-284. [PMID: 28976959 PMCID: PMC5706658 DOI: 10.1038/nature24049] [Citation(s) in RCA: 1323] [Impact Index Per Article: 165.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.
Collapse
Affiliation(s)
- Omar O. Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan S. Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Essletzbichler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph J. Belanto
- Department of Genetics, Cell Biology &Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Vanessa Verdine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David B.T. Cox
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max J. Kellner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology &Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alice Y. Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
720
|
Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell 2017; 68:15-25. [PMID: 28985502 PMCID: PMC5683099 DOI: 10.1016/j.molcel.2017.09.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022]
Abstract
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Karthik Murugan
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Kesavan Babu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Ramya Sundaresan
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
721
|
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
|
722
|
Montalbano A, Canver MC, Sanjana NE. High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Mol Cell 2017; 68:44-59. [PMID: 28985510 PMCID: PMC5701515 DOI: 10.1016/j.molcel.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas nuclease system is a powerful tool for genome editing, and its simple programmability has enabled high-throughput genetic and epigenetic studies. These high-throughput approaches offer investigators a toolkit for functional interrogation of not only protein-coding genes but also noncoding DNA. Historically, noncoding DNA has lacked the detailed characterization that has been applied to protein-coding genes in large part because there has not been a robust set of methodologies for perturbing these regions. Although the majority of high-throughput CRISPR screens have focused on the coding genome to date, an increasing number of CRISPR screens targeting noncoding genomic regions continue to emerge. Here, we review high-throughput CRISPR-based approaches to uncover and understand functional elements within the noncoding genome and discuss practical aspects of noncoding library design and screen analysis.
Collapse
Affiliation(s)
- Antonino Montalbano
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | | | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
723
|
Hess GT, Tycko J, Yao D, Bassik MC. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol Cell 2017; 68:26-43. [PMID: 28985508 PMCID: PMC5997582 DOI: 10.1016/j.molcel.2017.09.029] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
Affiliation(s)
- Gaelen T Hess
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Josh Tycko
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - David Yao
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA.
| |
Collapse
|
724
|
|
725
|
Beyond Native Cas9: Manipulating Genomic Information and Function. Trends Biotechnol 2017; 35:983-996. [DOI: 10.1016/j.tibtech.2017.06.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
|
726
|
Soppe JA, Lebbink RJ. Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends Microbiol 2017; 25:833-850. [PMID: 28522157 DOI: 10.1016/j.tim.2017.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems are RNA-guided sequence-specific prokaryotic antiviral immune systems. In prokaryotes, small RNA molecules guide Cas effector endonucleases to invading foreign genetic elements in a sequence-dependent manner, resulting in DNA cleavage by the endonuclease upon target binding. A rewired CRISPR/Cas9 system can be used for targeted and precise genome editing in eukaryotic cells. CRISPR/Cas has also been harnessed to target human pathogenic viruses as a potential new antiviral strategy. Here, we review recent CRISPR/Cas9-based approaches to combat specific human viruses in humans and discuss challenges that need to be overcome before CRISPR/Cas9 may be used in the clinic as an antiviral strategy.
Collapse
Affiliation(s)
- Jasper Adriaan Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
727
|
Knott GJ, East-Seletsky A, Cofsky JC, Holton JM, Charles E, O’Connell MR, Doudna JA. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol 2017; 24:825-833. [PMID: 28892041 PMCID: PMC5961731 DOI: 10.1038/nsmb.3466] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Abstract
CRISPR adaptive immune systems protect bacteria from infections by deploying CRISPR RNA (crRNA)-guided enzymes to recognize and cut foreign nucleic acids. Type VI-A CRISPR-Cas systems include the Cas13a enzyme, an RNA-activated RNase capable of crRNA processing and single-stranded RNA degradation upon target-transcript binding. Here we present the 2.0-Å resolution crystal structure of a crRNA-bound Lachnospiraceae bacterium Cas13a (LbaCas13a), representing a recently discovered Cas13a enzyme subtype. This structure and accompanying biochemical experiments define the Cas13a catalytic residues that are directly responsible for crRNA maturation. In addition, the orientation of the foreign-derived target-RNA-specifying sequence in the protein interior explains the conformational gating of Cas13a nuclease activation. These results describe how Cas13a enzymes generate functional crRNAs and how catalytic activity is blocked before target-RNA recognition, with implications for both bacterial immunity and diagnostic applications.
Collapse
Affiliation(s)
- Gavin J. Knott
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
| | - Alexandra East-Seletsky
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
| | - Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
| | - James M. Holton
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence
Berkeley National Laboratory, Berkeley, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National
Accelerator Laboratory, Menlo Park, USA
- Department of Biochemistry and Biophysics, University of California,
San Francisco, USA
| | - Emeric Charles
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
| | - Mitchell R. O’Connell
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California,
Berkeley, California, 94720, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence
Berkeley National Laboratory, Berkeley, USA
- Department of Chemistry, University of California, Berkeley,
California, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley,
California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley,
California 94720, USA
| |
Collapse
|
728
|
Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biol Evol 2017; 9:2812-2825. [PMID: 28985291 PMCID: PMC5737515 DOI: 10.1093/gbe/evx192] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2017] [Indexed: 12/13/2022] Open
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
729
|
Madigan NN, Staff NP, Windebank AJ, Benarroch EE. Genome editing technologies and their potential to treat neurologic disease. Neurology 2017; 89:1739-1748. [PMID: 28931646 DOI: 10.1212/wnl.0000000000004558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Nathan P Staff
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
730
|
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR “dark matter.” We performed a comprehensive analysis of the spacers from all CRISPR-cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers match any sequences in the current databases, and of these, only a minority correspond to known parasitic elements. We show that nearly all spacers with matches originate from viral or plasmid genomes that are either free or have been integrated into the host genome. We further demonstrate that spacers with no matches have the same properties as those of identifiable origins, strongly suggesting that all spacers originate from mobile elements.
Collapse
|
731
|
Edited course of biomedical research: leaping forward with CRISPR. Pharmacol Res 2017; 125:258-265. [PMID: 28918173 DOI: 10.1016/j.phrs.2017.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
Within the short few years since the report of its application in precise genome editing, CRISPR technology has become the method of choice to modify and modulate gene expression in biomedical research and therapeutic development. Subsequently, a variety of research, diagnostic, and therapeutic tools have been developed based upon CRISPR's mechanism of action. Such tools have helped to deepen the understanding of fundamental biology and broaden the horizon in the search for treatments for diseases that have been considered hard or impossible to cure. As CRISPR technology advances closer to clinical applications, its short comings are becoming more apparent, thus creating opportunities to improve the technology's efficacy, specificity, and safety profile in this setting. We will summarize the current status of CRISPR technology and discuss its future impact in this review.
Collapse
|
732
|
RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Mol Cell 2017; 66:373-383.e3. [PMID: 28475872 PMCID: PMC5999320 DOI: 10.1016/j.molcel.2017.04.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Abstract
CRISPR adaptive immunity pathways protect prokaryotic cells against foreign nucleic acids using CRISPR RNA (crRNA)-guided nucleases. In type VI-A CRISPR-Cas systems, the signature protein Cas13a (formerly C2c2) contains two separate ribonuclease activities that catalyze crRNA maturation and ssRNA degradation. The Cas13a protein family occurs across different bacterial phyla and varies widely in both protein sequence and corresponding crRNA sequence conservation. Although grouped phylogenetically together, we show that the Cas13a enzyme family comprises two distinct functional groups that recognize orthogonal sets of crRNAs and possess different ssRNA cleavage specificities. These functional distinctions could not be bioinformatically predicted, suggesting more subtle co-evolution of Cas13a enzymes. Additionally, we find that Cas13a pre-crRNA processing is not essential for ssRNA cleavage, although it enhances ssRNA targeting for crRNAs encoded internally within the CRISPR array. We define two Cas13a protein subfamilies that can operate in parallel for RNA detection both in bacteria and for diagnostic applications.
Collapse
|
733
|
Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y. The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell 2017; 170:714-726.e10. [PMID: 28757251 DOI: 10.1016/j.cell.2017.06.050] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
Cas13a, a type VI-A CRISPR-Cas RNA-guided RNA ribonuclease, degrades invasive RNAs targeted by CRISPR RNA (crRNA) and has potential applications in RNA technology. To understand how Cas13a is activated to cleave RNA, we have determined the crystal structure of Leptotrichia buccalis (Lbu) Cas13a bound to crRNA and its target RNA, as well as the cryo-EM structure of the LbuCas13a-crRNA complex. The crRNA-target RNA duplex binds in a positively charged central channel of the nuclease (NUC) lobe, and Cas13a protein and crRNA undergo a significant conformational change upon target RNA binding. The guide-target RNA duplex formation triggers HEPN1 domain to move toward HEPN2 domain, activating the HEPN catalytic site of Cas13a protein, which subsequently cleaves both single-stranded target and collateral RNAs in a non-specific manner. These findings reveal how Cas13a of type VI CRISPR-Cas systems defend against RNA phages and set the stage for its development as a tool for RNA manipulation.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/ultrastructure
- Base Sequence
- CRISPR-Associated Proteins/chemistry
- CRISPR-Associated Proteins/ultrastructure
- CRISPR-Cas Systems
- Leptotrichia/chemistry
- Leptotrichia/immunology
- Leptotrichia/metabolism
- Leptotrichia/virology
- Models, Molecular
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/ultrastructure
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/ultrastructure
- RNA, Viral/chemistry
- X-Ray Diffraction
Collapse
Affiliation(s)
- Liang Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueyan Li
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Li
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilan You
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinzheng Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
734
|
|
735
|
Cebrian-Serrano A, Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 2017; 28:247-261. [PMID: 28634692 PMCID: PMC5569134 DOI: 10.1007/s00335-017-9697-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Robust and cost-effective genome editing in a diverse array of cells and model organisms is now possible thanks to the discovery of the RNA-guided endonucleases of the CRISPR-Cas system. The commonly used Cas9 of Streptococcus pyogenes shows high levels of activity but, depending on the application, has been associated with some shortcomings. Firstly, the enzyme has been shown to cause mutagenesis at genomic sequences resembling the target sequence. Secondly, the stringent requirement for a specific motif adjacent to the selected target site can limit the target range of this enzyme. Lastly, the physical size of Cas9 challenges the efficient delivery of genomic engineering tools based on this enzyme as viral particles for potential therapeutic applications. Related and parallel strategies have been employed to address these issues. Taking advantage of the wealth of structural information that is becoming available for CRISPR-Cas effector proteins, Cas9 has been redesigned by mutagenizing key residues contributing to activity and target recognition. The protein has also been shortened and redesigned into component subunits in an attempt to facilitate its efficient delivery. Furthermore, the CRISPR-Cas toolbox has been expanded by exploring the properties of Cas9 orthologues and other related effector proteins from diverse bacterial species, some of which exhibit different target site specificities and reduced molecular size. It is hoped that the improvements in accuracy, target range and efficiency of delivery will facilitate the therapeutic application of these site-specific nucleases.
Collapse
Affiliation(s)
| | - Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
736
|
Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA-guided genome editing enzymes. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:917-926. [PMID: 28371222 PMCID: PMC5506654 DOI: 10.1111/pbi.12736] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 05/14/2023]
Abstract
CRISPR-mediated genome editing using the Streptococcus pyogenes Cas9 enzyme is revolutionizing life science by providing new, precise, facile and high-throughput tools for genetic modification by the specific targeting of double-strand breaks in the genome of hosts. Plant biotechnologists have extensively used the S. pyogenes Cas9-based system since its inception in 2013. However, there are still some limitations to its even broader usage in plants. Major restrictions, especially in agricultural biotechnology, are the currently unclear regulatory status of plants modified with CRISPR/Cas9 and the lack of suitable delivery methods for some plant species. Solutions to these limitations could come in the form of new variants of genome editing enzymes that have recently been discovered and have already proved comparable to or even better in performance than S. pyogenes CRISPR/Cas9 in terms of precision and ease of delivery in mammal cells. Although some of them have already been tested in plants, most of them are less well known in the plant science community. In this review, we describe the following new enzyme systems engineered for genome editing, transcriptional regulation and cellular imaging-C2c2 from L. shahii; Cas9 from F. novicida, S. aureus, S. thermophiles, N. meningitidis; Cpf1 from F. novicida, Acidaminococcus and Lachnospiraceae; nickase, split, enhanced and other Cas9 variants from S. pyogenes; catalytically inactive SpCas9 linked to various nuclease or gene-regulating domains-with an emphasis on their advantages in comparison with the broadly used SpCas9. In addition, we discuss new possibilities they offer in plant biotechnology.
Collapse
Affiliation(s)
- Jana Murovec
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Žan Pirc
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Bing Yang
- Department of GeneticsDevelopment and Cell BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
737
|
Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature 2017; 548:543-548. [PMID: 28722012 DOI: 10.1038/nature23467] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
In many prokaryotes, type III clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems detect and degrade invasive genetic elements by an RNA-guided, RNA-targeting multisubunit interference complex. The CRISPR-associated protein Csm6 additionally contributes to interference by functioning as a standalone RNase that degrades invader RNA transcripts, but the mechanism linking invader sensing to Csm6 activity is not understood. Here we show that Csm6 proteins are activated through a second messenger generated by the type III interference complex. Upon target RNA binding by the interference complex, its Cas10 subunit converts ATP into a cyclic oligoadenylate product, which allosterically activates Csm6 by binding to its CRISPR-associated Rossmann fold (CARF) domain. CARF domain mutations that abolish allosteric activation inhibit Csm6 activity in vivo, and mutations in the Cas10 Palm domain phenocopy loss of Csm6. Together, these results point to an unprecedented mechanism for regulation of CRISPR interference that bears striking conceptual similarity to oligoadenylate signalling in mammalian innate immunity.
Collapse
Affiliation(s)
- Ole Niewoehner
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carmela Garcia-Doval
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jakob T Rostøl
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399, USA
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH, Flughafendamm 9a, D-28199 Bremen, Germany
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute for Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, New York 10065-6399, USA
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
738
|
Yang H, Patel DJ. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Mol Cell 2017; 67:117-127.e5. [PMID: 28602637 PMCID: PMC5595222 DOI: 10.1016/j.molcel.2017.05.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
Prokaryotic CRISPR-Cas adaptive immune systems utilize sequence-specific RNA-guided endonucleases to defend against infection by viruses, bacteriophages, and mobile elements, while these foreign genetic elements evolve diverse anti-CRISPR proteins to overcome the CRISPR-Cas-mediated defense of the host. Recently, AcrIIA2 and AcrIIA4, encoded by Listeria monocytogene prophages, were shown to block the endonuclease activity of type II-A Streptococcus pyogene Cas9 (SpyCas9). We now report the crystal structure of AcrIIA4 in complex with single-guide RNA-bound SpyCas9, thereby establishing that AcrIIA4 preferentially targets critical residues essential for PAM duplex recognition, as well as blocks target DNA access to key catalytic residues lining the RuvC pocket. These structural insights, validated by biochemical assays on key mutants, demonstrate that AcrIIA4 competitively occupies both PAM-interacting and non-target DNA strand cleavage catalytic pockets. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms for inactivating SpyCas9, thereby broadening the applicability of CRISPR-Cas regulatory tools for genome editing.
Collapse
Affiliation(s)
- Hui Yang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
739
|
Castle KD, Chen M, Wisdom AJ, Kirsch DG. Genetically engineered mouse models for studying radiation biology. Transl Cancer Res 2017; 6:S900-S913. [PMID: 30733931 PMCID: PMC6363345 DOI: 10.21037/tcr.2017.06.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetically engineered mouse models (GEMMs) are valuable research tools that have transformed our understanding of cancer. The first GEMMs generated in the 1980s and 1990s were knock-in and knock-out models of single oncogenes or tumor suppressors. The advances that made these models possible catalyzed both technological and conceptual shifts in the way cancer research was conducted. As a result, dozens of mouse models of cancer exist today, covering nearly every tissue type. The advantages inherent to GEMMs compared to in vitro and in vivo transplant models are compounded in preclinical radiobiology research for several reasons. First, they accurately and robustly recapitulate primary cancers anatomically, histopathologically, and genetically. Reliable models are a prerequisite for predictive preclinical studies. Second, they preserve the tumor microenvironment, including the immune, vascular, and stromal compartments, which enables the study of radiobiology at a systems biology level. Third, they provide exquisite control over the genetics and kinetics of tumor initiation, which enables the study of specific gene mutations on radiation response and functional genomics in vivo. Taken together, these facets allow researchers to utilize GEMMs for rigorous and reproducible preclinical research. In the three decades since the generation of the first GEMMs of cancer, advancements in modeling approaches have rapidly progressed and expanded the mouse modeling toolbox with techniques such as in vivo short hairpin RNA (shRNA) knockdown, inducible gene expression, site-specific recombinases, and dual recombinase systems. Our lab and many others have utilized these tools to study cancer and radiobiology. Recent advances in genome engineering with CRISPR/Cas9 technology have made GEMMs even more accessible to researchers. Here, we review current and future approaches to mouse modeling with a focus on applications in preclinical radiobiology research.
Collapse
Affiliation(s)
- Katherine D. Castle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - Amy J. Wisdom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University Medical Center, Durham, North Carolina, USA
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
740
|
Abstract
Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| |
Collapse
|
741
|
Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Conformational regulation of CRISPR-associated nucleases. Curr Opin Microbiol 2017. [PMID: 28646675 DOI: 10.1016/j.mib.2017.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adaptive immune systems in bacteria and archaea rely on small CRISPR-derived RNAs (crRNAs) to guide specialized nucleases to foreign nucleic acids. The activation of these nucleases is controlled by a series of molecular checkpoints that ensure precise cleavage of nucleic acid targets, while minimizing toxic off-target cleavage events. In this review, we highlight recent advances in understanding regulatory mechanisms responsible for controlling the activation of these nucleases and identify emerging regulatory themes conserved across diverse CRISPR systems.
Collapse
Affiliation(s)
- Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States.
| | - Paul Bg van Erp
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| | | | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
742
|
Abstract
The bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) systems, and in particular Streptococcus pyogenes CRISPR-Cas9, have been broadly applied to edit the genome of bacterial and eukaryotic cells. Cas9, which is an RNA-guided programmable nuclease, is a powerful tool for disrupting protein-coding genes. Cas9 cleaves target sites to generate a double-strand break (DSB) that is repaired via an error-prone repair process, leading to insertion/deletion mutations and gene knockouts. However, Cas9 can also be used to modulate genome function without gene disruption, enabling base editing, transcriptional and epigenetic reprogramming, genome imaging, cellular barcoding, genetic recording, and genetic computation.
Collapse
|
743
|
|
744
|
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37:67-78. [PMID: 28605718 DOI: 10.1016/j.mib.2017.05.008] [Citation(s) in RCA: 916] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 01/17/2023]
Abstract
The bacterial and archaeal CRISPR-Cas systems of adaptive immunity show remarkable diversity of protein composition, effector complex structure, genome locus architecture and mechanisms of adaptation, pre-CRISPR (cr)RNA processing and interference. The CRISPR-Cas systems belong to two classes, with multi-subunit effector complexes in Class 1 and single-protein effector modules in Class 2. Concerted genomic and experimental efforts on comprehensive characterization of Class 2 CRISPR-Cas systems led to the identification of two new types and several subtypes. The newly characterized type VI systems are the first among the CRISPR-Cas variants to exclusively target RNA. Unexpectedly, in some of the class 2 systems, the effector protein is additionally responsible for the pre-crRNA processing. Comparative analysis of the effector complexes indicates that Class 2 systems evolved from mobile genetic elements on multiple, independent occasions.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Departments of Brain and Cognitive Science and Biological Engineering, Cambridge, MA 02139, USA
| |
Collapse
|
745
|
A decade of discovery: CRISPR functions and applications. Nat Microbiol 2017; 2:17092. [PMID: 28581505 DOI: 10.1038/nmicrobiol.2017.92] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
This year marks the tenth anniversary of the identification of the biological function of CRISPR-Cas as adaptive immune systems in bacteria. In just a decade, the characterization of CRISPR-Cas systems has established a novel means of adaptive immunity in bacteria and archaea and deepened our understanding of the interplay between prokaryotes and their environment, and CRISPR-based molecular machines have been repurposed to enable a genome editing revolution. Here, we look back on the historical milestones that have paved the way for the discovery of CRISPR and its function, and discuss the related technological applications that have emerged, with a focus on microbiology. Lastly, we provide a perspective on the impacts the field has had on science and beyond.
Collapse
|
746
|
Williams BO, Warman ML. CRISPR/CAS9 Technologies. J Bone Miner Res 2017; 32:883-888. [PMID: 28230927 PMCID: PMC5413371 DOI: 10.1002/jbmr.3086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/28/2016] [Accepted: 01/11/2017] [Indexed: 11/07/2022]
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) pathway is revolutionizing biological research. Modifications to this primitive prokaryotic immune system now enable scientists to efficiently edit DNA or modulate gene expression in living eukaryotic cells and organisms. Thus, many laboratories can now perform important experiments that previously were considered scientifically risky or too costly. Here, we describe the components of the CRISPR/Cas system that have been engineered for use in eukaryotes. We also explain how this system can be used to genetically modify cell lines and model organisms, or regulate gene expression in order to search for new participants in biological pathways. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew L Warman
- Orthopaedic Research Laboratories, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
747
|
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356:438-442. [PMID: 28408723 PMCID: PMC5526198 DOI: 10.1126/science.aam9321] [Citation(s) in RCA: 2162] [Impact Index Per Article: 270.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Abstract
Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a "collateral effect" of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.
Collapse
Affiliation(s)
- Jonathan S Gootenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Omar O Abudayyeh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong Wook Lee
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Patrick Essletzbichler
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron J Dy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Joung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vanessa Verdine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nina Donghia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nichole M Daringer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Catherine A Freije
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cameron Myhrvold
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Jonathan Livny
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - James J Collins
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
748
|
Swarts DC, van der Oost J, Jinek M. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol Cell 2017; 66:221-233.e4. [PMID: 28431230 PMCID: PMC6879319 DOI: 10.1016/j.molcel.2017.03.016] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 12/26/2022]
Abstract
The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- CRISPR-Associated Proteins/chemistry
- CRISPR-Associated Proteins/genetics
- CRISPR-Associated Proteins/metabolism
- CRISPR-Cas Systems
- Catalysis
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Francisella/enzymology
- Francisella/genetics
- Gene Editing/methods
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Guide, CRISPR-Cas Systems/chemistry
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Daan C Swarts
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
749
|
Puschnik AS, Majzoub K, Ooi YS, Carette JE. A CRISPR toolbox to study virus-host interactions. Nat Rev Microbiol 2017; 15:351-364. [PMID: 28420884 PMCID: PMC5800792 DOI: 10.1038/nrmicro.2017.29] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses are obligate intracellular pathogens that depend on host cellular components for replication. Genetic screens are an unbiased and comprehensive method to uncover host cellular components that are critical for the infection with viruses. Loss-of-function screens result in the genome-wide disruption of gene expression, whereas gain-of-function screens rely on large-scale overexpression of host genes. Genetic knockout screens can be conducted using haploid insertional mutagenesis or the CRISPR–Cas system. Genetic screens using the CRISPR–Cas system have provided crucial insights in the host determinants of infections with important human pathogens such as dengue virus, West Nile virus, Zika virus and hepatitis C virus. CRISPR–Cas-based techniques additionally provide ways to generate both in vitro and in vivo models to study viral pathogenesis, to manipulate viral genomes, to eradicate viral disease vectors using gene drive systems and to advance the development of antiviral therapeutics.
In this Review, Puschnik and colleagues discuss the technical aspects of using CRISPR–Cas technology in genome-scale knockout screens to study virus–host interactions, and they compare these screens with alternative genetic screening technologies. Viruses depend on their hosts to complete their replication cycles; they exploit cellular receptors for entry and hijack cellular functions to replicate their genome, assemble progeny virions and spread. Recently, genome-scale CRISPR–Cas screens have been used to identify host factors that are required for virus replication, including the replication of clinically relevant viruses such as Zika virus, West Nile virus, dengue virus and hepatitis C virus. In this Review, we discuss the technical aspects of genome-scale knockout screens using CRISPR–Cas technology, and we compare these screens with alternative genetic screening technologies. The relative ease of use and reproducibility of CRISPR–Cas make it a powerful tool for probing virus–host interactions and for identifying new antiviral targets.
Collapse
Affiliation(s)
- Andreas S Puschnik
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Karim Majzoub
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
750
|
Czapiński J, Kiełbus M, Kałafut J, Kos M, Stepulak A, Rivero-Müller A. How to Train a Cell-Cutting-Edge Molecular Tools. Front Chem 2017; 5:12. [PMID: 28344971 PMCID: PMC5344921 DOI: 10.3389/fchem.2017.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.
Collapse
Affiliation(s)
- Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of WarsawWarsaw, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of LublinLublin, Poland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi UniversityTurku, Finland
- Department of Biosciences, Åbo Akademi UniversityTurku, Finland
| |
Collapse
|