701
|
Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276:98-108. [DOI: 10.1016/j.atherosclerosis.2018.07.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
702
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018; 52:48-64. [PMID: 30172025 DOI: 10.1016/j.cellsig.2018.08.019] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
Collapse
Affiliation(s)
- Agne Frismantiene
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
703
|
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, and Departments of Pediatrics and Pathology, University of Washington.
| |
Collapse
|
704
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
705
|
Newman AA, Baylis RA, Hess DL, Griffith SD, Shankman LS, Cherepanova OA, Owens GK. Irradiation abolishes smooth muscle investment into vascular lesions in specific vascular beds. JCI Insight 2018; 3:121017. [PMID: 30089722 PMCID: PMC6129122 DOI: 10.1172/jci.insight.121017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
The long-term adverse effects of radiotherapy on cardiovascular disease are well documented. However, the underlying mechanisms responsible for this increased risk are poorly understood. Previous studies using rigorous smooth muscle cell (SMC) lineage tracing have shown abundant SMC investment into atherosclerotic lesions, where SMCs contribute to the formation of a protective fibrous cap. Studies herein tested whether radiation impairs protective adaptive SMC responses during vascular disease. To do this, we exposed SMC lineage tracing (Myh11-ERT2Cre YFP+) mice to lethal radiation (1,200 cGy) followed by bone marrow transplantation prior to atherosclerosis development or vessel injury. Surprisingly, following irradiation, we observed a complete loss of SMC investment in 100% of brachiocephalic artery (BCA), carotid artery, and aortic arch lesions. Importantly, this was associated with a decrease in multiple indices of atherosclerotic lesion stability within the BCA. Interestingly, we observed anatomic heterogeneity, as SMCs accumulated normally into lesions of the aortic root and abdominal aorta, suggesting that SMC sensitivity to lethal irradiation occurs in blood vessels of neural crest origin. Taken together, these results reveal an undefined and unintended variable in previous studies using lethal irradiation and may help explain why patients exposed to radiation have increased risk for cardiovascular disease.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/pathology
- Aorta, Abdominal/radiation effects
- Atherosclerosis/etiology
- Atherosclerosis/pathology
- Bone Marrow/radiation effects
- Bone Marrow Transplantation
- Brachiocephalic Trunk/pathology
- Brachiocephalic Trunk/radiation effects
- Cell Differentiation/radiation effects
- Disease Models, Animal
- Humans
- Male
- Mice
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/radiation effects
- Myocytes, Smooth Muscle/radiation effects
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Alexandra A.C. Newman
- Robert M. Berne Cardiovascular Research Center
- Department of Biochemistry and Molecular Genetics, and
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center
- Department of Biochemistry and Molecular Genetics, and
| | - Daniel L. Hess
- Robert M. Berne Cardiovascular Research Center
- Department of Biochemistry and Molecular Genetics, and
| | - Steven D. Griffith
- Robert M. Berne Cardiovascular Research Center
- Department of Biochemistry and Molecular Genetics, and
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Olga A. Cherepanova
- Robert M. Berne Cardiovascular Research Center
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
706
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
707
|
Affiliation(s)
- Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
708
|
Gomez D, Owens GK. Reconciling Smooth Muscle Cell Oligoclonality and Proliferative Capacity in Experimental Atherosclerosis. Circ Res 2018; 119:1262-1264. [PMID: 27932466 DOI: 10.1161/circresaha.116.310104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Delphine Gomez
- From the Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville (D.G., G.K.O.)
| | - Gary K Owens
- From the Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville (D.G., G.K.O.).
| |
Collapse
|
709
|
Affiliation(s)
- Renjing Liu
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT
| | - Ashley J Bauer
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT
| | - Kathleen A Martin
- From the Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Section of Cardiovascular Medicine, Department of Medicine, Yale Cardiovascular Research Center (A.J.B., K.A.M.) and Department of Pharmacology, Yale School of Medicine (A.J.B., K.A.M.), Yale University, New Haven, CT.
| |
Collapse
|
710
|
Haskins RM, Nguyen AT, Alencar GF, Billaud M, Kelly-Goss MR, Good ME, Bottermann K, Klibanov AL, French BA, Harris TE, Peirce SM, Isakson BE, Owens GK. Klf4 has an unexpected protective role in perivascular cells within the microvasculature. Am J Physiol Heart Circ Physiol 2018; 315:H402-H414. [PMID: 29631369 PMCID: PMC6139624 DOI: 10.1152/ajpheart.00084.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 11/22/2022]
Abstract
Recent smooth muscle cell (SMC) lineage-tracing studies have revealed that SMCs undergo remarkable changes in phenotype during development of atherosclerosis. Of major interest, we demonstrated that Kruppel-like factor 4 (KLF4) in SMCs is detrimental for overall lesion pathogenesis, in that SMC-specific conditional knockout of the KLF4 gene ( Klf4) resulted in smaller, more-stable lesions that exhibited marked reductions in the numbers of SMC-derived macrophage- and mesenchymal stem cell-like cells. However, since the clinical consequences of atherosclerosis typically occur well after our reproductive years, we sought to identify beneficial KLF4-dependent SMC functions that were likely to be evolutionarily conserved. We tested the hypothesis that KLF4-dependent SMC transitions play an important role in the tissue injury-repair process. Using SMC-specific lineage-tracing mice positive and negative for simultaneous SMC-specific conditional knockout of Klf4, we demonstrate that SMCs in the remodeling heart after ischemia-reperfusion injury (IRI) express KLF4 and transition to a KLF4-dependent macrophage-like state and a KLF4-independent myofibroblast-like state. Moreover, heart failure after IRI was exacerbated in SMC Klf4 knockout mice. Surprisingly, we observed a significant cardiac dilation in SMC Klf4 knockout mice before IRI as well as a reduction in peripheral resistance. KLF4 chromatin immunoprecipitation-sequencing analysis on mesenteric vascular beds identified potential baseline SMC KLF4 target genes in numerous pathways, including PDGF and FGF. Moreover, microvascular tissue beds in SMC Klf4 knockout mice had gaps in lineage-traced SMC coverage along the resistance arteries and exhibited increased permeability. Together, these results provide novel evidence that Klf4 has a critical maintenance role within microvascular SMCs: it is required for normal SMC function and coverage of resistance arteries. NEW & NOTEWORTHY We report novel evidence that the Kruppel-like factor 4 gene ( Klf4) has a critical maintenance role within microvascular smooth muscle cells (SMCs). SMC-specific Klf4 knockout at baseline resulted in a loss of lineage-traced SMC coverage of resistance arteries, dilation of resistance arteries, increased blood flow, and cardiac dilation.
Collapse
Affiliation(s)
- Ryan M Haskins
- Department of Pathology, University of Virginia , Charlottesville, Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia , Charlottesville, Virginia
| | - Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Molly R Kelly-Goss
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | | | - Alexander L Klibanov
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia , Charlottesville, Virginia
| | - Shayn M Peirce
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
711
|
Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G, Perrea D, Kostakis ID, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol 2018; 17:106. [PMID: 30049285 PMCID: PMC6063004 DOI: 10.1186/s12933-018-0749-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Sodium glucose co-transporter2 inhibitors reduce the incidence of cardiovascular events in patients with type 2 diabetes mellitus based on the results of recent cardiovascular outcome studies. Herein, we investigated the effects of long-term treatment with canagliflozin on biochemical and immunohistochemical markers related to atherosclerosis and atherosclerosis development in the aorta of apolipoprotein E knockout (Apo-E(−/−)) mice. Methods At the age of 5 weeks, mice were switched from normal to a high-fat diet. After 5 weeks, Apo-E(−/−) mice were divided into control-group (6 mice) treated with 0.5% hydroxypropyl methylcellulose and Cana-group (7 mice) treated with canagliflozin (10 mg/kg per day) per os. After 5 weeks of intervention, animals were sacrificed, and heart and aorta were removed. Sections stained with hematoxylin–eosin (H&E) were used for histomorphometry whereas Masson’s stained tissues were used to quantify the collagen content. Immunohistochemistry to assess MCP-1, CD68, a-smooth muscle actin, MMP-2, MMP-9, TIMP-1 and TIMP-2 expression was carried out and q-PCR experiments were performed to quantify mRNA expression. Results Canagliflozin-group mice had lower total-cholesterol, triglycerides and glucose levels (P < 0.01), while heart rate was significantly lower (P < 0.05). Histomorphometry revealed that one in seven Cana-group mice versus four in six control mice developed atheromatosis, while aortic root plaque was significantly less, and collagen was 1.6 times more intense in canagliflozin-group suggesting increased plaque stability. Immunohistochemistry revealed that MCP-1 was significantly less expressed (P < 0.05) in the aortic root of canagliflozin-group while reduced expression of a-actin and CD68 was not reaching significance (P = 0.15). VCAM-1 and MCP-1 mRNA levels were lower (P = 0.02 and P = 0.07, respectively), while TIMP-1/MMP-2 ratio expression was higher in canagliflozin-group approaching statistical significance (P = 0.07). Conclusions Canagliflozin attenuates the progression of atherosclerosis, reducing (1) hyperlipidemia and hyperglycemia, and (2) inflammatory process, by lowering the expression of inflammatory molecules such as MCP-1 and VCAM-1. Moreover, canagliflozin was found to increase the atherosclerotic plaque stability via increasing TIMP-1/MMP-2 ratio expression. Electronic supplementary material The online version of this article (10.1186/s12933-018-0749-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Νarjes Nasiri-Ansari
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgios K Dimitriadis
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Division of Endocrinology and Experimental Medicine, Imperial College London, Hammersmith Campus, London, UK.,Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Georgios Agrogiannis
- Laboratory of Pathological Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Perrea
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis D Kostakis
- Second Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Medical School, 'Laiko' General Hospital, Athens, Greece
| | - Gregory Kaltsas
- Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Harpal S Randeva
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK. .,Human Metabolism Research Unit, WISDEM Centre, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK. .,Division of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Eva Kassi
- Department of Biological Chemistry, National and Kapodistrian University of Athens Medical School, Athens, Greece. .,First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
712
|
Karunakaran D. Beyond cholesterol homeostasis: A novel role for PDZK1 in macrophage apoptosis and atherosclerosis. Atherosclerosis 2018; 276:168-170. [PMID: 30031591 DOI: 10.1016/j.atherosclerosis.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Denuja Karunakaran
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Canada; Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Australia.
| |
Collapse
|
713
|
Dutzmann J, Koch A, Weisheit S, Sonnenschein K, Korte L, Haertlé M, Thum T, Bauersachs J, Sedding DG, Daniel JM. Sonic hedgehog-dependent activation of adventitial fibroblasts promotes neointima formation. Cardiovasc Res 2018; 113:1653-1663. [PMID: 29088375 DOI: 10.1093/cvr/cvx158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aims Adventitial cells have been suggested to contribute to neointima formation, but the functional relevance and the responsible signalling pathways are largely unknown. Sonic hedgehog (Shh) is a regulator of vasculogenesis and promotes angiogenesis in the adult. Methods and results Here we show that proliferation of vascular smooth muscle cells (SMC) after wire-induced injury in C57BL/6 mice is preceded by proliferation of adventitial fibroblasts. Simultaneously, the expression of Shh and its downstream signalling protein smoothened (SMO) were robustly increased within injured arteries. In vitro, combined stimulation with Shh and platelet-derived growth factor (PDGF)-BB strongly induced proliferation and migration of human adventitial fibroblasts. The supernatant of these activated fibroblasts contained high levels of interleukin-6 and -8 and strongly induced proliferation and migration of SMC. Inhibition of SMO selectively prevented fibroblast proliferation, cytokine release, and paracrine SMC activation. Mechanistically, we found that PDGF-BB activates protein kinase A in fibroblasts and thereby induces trafficking of SMO to the plasma membrane, where it can be activated by Shh. In vivo, SMO-inhibition significantly prevented the proliferation of adventitial fibroblasts and neointima formation following wire-induced injury. Conclusions The initial activation of adventitial fibroblasts is essential for the subsequent proliferation of SMC and neointima formation. We identified SMO-dependent Shh signalling as a specific process for the activation of adventitial fibroblasts.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Alexander Koch
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Simona Weisheit
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Kristina Sonnenschein
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.,Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Laura Korte
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Marco Haertlé
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.,National Heart and Lung Institute, Imperial College, Sydney St, Chelsea, London SW3 6NP, UK
| | - Johann Bauersachs
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Daniel G Sedding
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Jan-Marcus Daniel
- Vascular Remodeling and Regeneration Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
714
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
715
|
Vasamsetti SB, Florentin J, Coppin E, Stiekema LCA, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ESG, Kim K, Dutta P. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018; 49:93-106.e7. [PMID: 29958804 PMCID: PMC6051926 DOI: 10.1016/j.immuni.2018.05.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023]
Abstract
There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the β2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lotte C A Stiekema
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Muhammad Umer Nisar
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David J Levinthal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kang Kim
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
716
|
Lin H, Ni T, Zhang J, Meng L, Gao F, Pan S, Luo H, Xu F, Ru G, Chi J, Guo H. Knockdown of Herp alleviates hyperhomocysteinemia mediated atherosclerosis through the inhibition of vascular smooth muscle cell phenotype switching. Int J Cardiol 2018; 269:242-249. [PMID: 30017525 DOI: 10.1016/j.ijcard.2018.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. We aimed to investigate whether Homocysteine-responsive endoplasmic reticulum protein (Herp) was involved in VSMC phenotypic switching and affected atheroprogression. METHODS To assess the role of Herp in homocysteine (Hcy)-associated atherosclerosis, Herp-/- and LDLR-/- double knockout mice were generated and fed with a high methionine diet (HMD) to induce Hyperhomocysteinemia (HHcy). Atherosclerotic lesions, cholesterol homeostasis, endoplasmic reticulum (ER) stress activation, and the phenotype of VSMCs were assessed in vivo. We used siRNAs to knockdown Herp in cultured VSMCs to further validate our findings in vitro. RESULTS HMD significantly activated the activating transcription factor 6 (ATF6)/Herp arm of ER stress in LDLR-/- mice, and induced the phenotypic switch of VSMCs, with the loss of contractile proteins (SMA and calponin) and an increase of OPN protein. Herp-/-/LDLR-/- mice developed reduced atherosclerotic lesions in the aortic sinus and the whole aorta when compared with LDLR-/- mice. However, Herp deficiency had no effect on diet-induced HHcy and hyperlipidemia. Inhibition of VSMC phenotypic switching, decreased proliferation and collagen accumulation were observed in Herp-/-/LDLR-/- mice when compared with LDLR-/- mice. In vitro experiments demonstrated that Hcy caused VSMC phenotypic switching, promoted cell proliferation and migration; this was reversed by Herp depletion. We achieved similar results via inhibition of ER stress using 4-phenylbutyric-acid (4-PBA) in Hcy-treated VSMCs. CONCLUSION Herp deficiency inhibits the phenotypic switch of VSMCs and the development of atherosclerosis, thus providing novel insights into the role of Herp in atherogenesis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Sunlei Pan
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| | - Fukang Xu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Guomei Ru
- Medical Research Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
717
|
Gao P, Wu W, Ye J, Lu YW, Adam AP, Singer HA, Long X. Transforming growth factor β1 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cell Signal 2018; 50:160-170. [PMID: 30006123 DOI: 10.1016/j.cellsig.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGFβ) signaling plays crucial roles in maintaining vascular integrity and homeostasis, and is established as a strong activator of vascular smooth muscle cell (VSMC) differentiation. Chronic inflammation is a hallmark of various vascular diseases. Although TGFβ signaling has been suggested to be protective against inflammatory aortic aneurysm progression, its exact effects on VSMC inflammatory process and the underlying mechanisms are not fully unraveled. Here we revealed that TGFβ1 suppressed the expression of a broad array of proinflammatory genes while potently induced the expression of contractile genes in cultured primary human coronary artery SMCs (HCASMCs). The regulation of TGFβ1 on VSMC contractile and proinflammatory gene programs appeared to occur in parallel and both processes were through a SMAD4-dependent canonical pathway. We also showed evidence that the suppression of TGFβ1 on VSMC proinflammatory genes was mediated, at least partially through the blockade of signal transducer and activator of transcription 3 (STAT3) and NF-κB pathways. Interestingly, our RNA-seq data also revealed that TGFβ1 suppressed gene expression of a battery of autophagy mediators, which was validated by western blot for the conversion of microtubule-associated protein light chain 3 (LC3) and by immunofluo-rescence staining for LC3 puncta. However, impairment of VSMC autophagy by ATG5 deletion failed to rescue TGFβ1 influence on both VSMC contractile and proinflammatory gene programs, suggesting that TGFβ1-regulated VSMC differentiation and inflammation are not attributed to TGFβ1 suppression on autophagy. In summary, our results demonstrated an important role of TGFβ signaling in suppressing proinflammatory gene program in cultured primary human VSMCs via the blockade on STAT3 and NF-κB pathway, therefore providing novel insights into the mechanisms underlying the protective role of TGFβ signaling in vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States; Department of Ophthalmology, Albany Medical College, Albany, NY, United States
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
718
|
Moss ME, DuPont JJ, Iyer SL, McGraw AP, Jaffe IZ. No Significant Role for Smooth Muscle Cell Mineralocorticoid Receptors in Atherosclerosis in the Apolipoprotein-E Knockout Mouse Model. Front Cardiovasc Med 2018; 5:81. [PMID: 30038907 PMCID: PMC6046374 DOI: 10.3389/fcvm.2018.00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Elevated levels of the hormone aldosterone are associated with increased risk of myocardial infarction and stroke in humans and increased progression and inflammation of atherosclerotic plaques in animal models. Aldosterone acts through the mineralocorticoid receptor (MR) which is expressed in vascular smooth muscle cells (SMCs) where it promotes SMC calcification and chemokine secretion in vitro. The objective of this study is to explore the role of the MR specifically in SMCs in the progression of atherosclerosis and the associated vascular inflammation in vivo in the apolipoprotein E knockout (ApoE−/−) mouse model. Methods and Results: Male ApoE−/− mice were bred with mice in which MR could be deleted specifically from SMCs by tamoxifen injection. The resulting atheroprone SMC-MR-KO mice were compared to their MR-Intact littermates after high fat diet (HFD) feeding for 8 or 16 weeks or normal diet for 12 months. Body weight, tail cuff blood pressure, heart and spleen weight, and serum levels of glucose, cholesterol, and aldosterone were measured for all mice at the end of the treatment period. Serial histologic sections of the aortic root were stained with Oil Red O to assess plaque size, lipid content, and necrotic core area; with PicroSirius Red for quantification of collagen content; by immunofluorescent staining with anti-Mac2/Galectin-3 and anti-smooth muscle α-actin antibodies to assess inflammation and SMC marker expression; and with Von Kossa stain to detect plaque calcification. In the 16-week HFD study, these analyses were also performed in sections from the brachiocephalic artery. Flow cytometry of cell suspensions derived from the aortic arch was also performed to quantify vascular inflammation after 8 and 16 weeks of HFD. Deletion of the MR specifically from SMCs did not significantly change plaque size, lipid content, necrotic core, collagen content, inflammatory staining, actin staining, or calcification, nor were there differences in the extent of vascular inflammation between MR-Intact and SMC-MR-KO mice in the three experiments. Conclusion: SMC-MR does not directly contribute to the formation, progression, or inflammation of atherosclerotic plaques in the ApoE−/− mouse model of atherosclerosis. This indicates that the MR in non-SMCs mediates the pro-atherogenic effects of MR activation.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Surabhi L Iyer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States.,Department of Developmental, Molecular, and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
719
|
Nakagawa K, Nakashima Y. Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells. Atherosclerosis 2018; 274:235-242. [DOI: 10.1016/j.atherosclerosis.2018.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/05/2018] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
|
720
|
Vallin B, Legueux-Cajgfinger Y, Clément N, Glorian M, Duca L, Vincent P, Limon I, Blaise R. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1326-1340. [PMID: 29940197 DOI: 10.1016/j.bbamcr.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Here, we cloned a new family of four adenylyl cyclase (AC) splice variants from interleukin-1β (IL-1β)-transdifferentiated vascular smooth muscle cells (VSMCs) encoding short forms of AC8 that we have named "AC8E-H". Using biosensor imaging and biochemical approaches, we showed that AC8E-H isoforms have no cyclase activity and act as dominant-negative regulators by forming heterodimers with other full-length ACs, impeding the traffic of functional units towards the plasma membrane. The existence of these dominant-negative isoforms may account for an unsuspected additional degree of cAMP signaling regulation. It also reconciles the induction of an AC in transdifferentiated VSMCs with the vasoprotective influence of cAMP. The generation of alternative splice variants of ACs may constitute a generalized strategy of adaptation to the cell's environment whose scope had so far been ignored in physiological and/or pathological contexts.
Collapse
Affiliation(s)
- Benjamin Vallin
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Yohan Legueux-Cajgfinger
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Nathalie Clément
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Martine Glorian
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| | - Laurent Duca
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne (URCA), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), Campus Moulin de la Housse, 51687 Reims, France
| | - Pierre Vincent
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Isabelle Limon
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France.
| | - Régis Blaise
- Sorbonne Université, Université Pierre et Marie Curie (UPMC), Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), 75005 Paris, France
| |
Collapse
|
721
|
Ma S, Motevalli SM, Chen J, Xu MQ, Wang Y, Feng J, Qiu Y, Han D, Fan M, Ding M, Fan L, Guo W, Liang XJ, Cao F. Precise theranostic nanomedicines for inhibiting vulnerable atherosclerotic plaque progression through regulation of vascular smooth muscle cell phenotype switching. Theranostics 2018; 8:3693-3706. [PMID: 30026877 PMCID: PMC6037040 DOI: 10.7150/thno.24364] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a prevalent and fatal killer caused by vulnerable atherosclerotic plaques (VASPs). However, the precise detection and treatment of VASPs remains a difficult challenge. Here, we present the development of noninvasive human serum albumin (HSA)-based theranostic nanomedicines (NMs) for the specific diagnosis and effective therapy of VASPs. Methods: The ICG/SRT@HSA-pept NMs were formulated to contain payloads of the near-infrared (NIR) fluorescent dye indocyanine green (ICG) and the sirtuin 1 (Sirt1) activator SRT1720, and modified with a peptide moiety targeting osteopontin (OPN). The in vivo atherosclerotic mouse model was established with the high-fat diet (HFD). The in vitro vascular smooth muscle cells (VSMCs) phenotypic switching was induced using the ox-LDL stimulation. Results: Due to the overexpression of OPN in activated VSMCs and VASPs, the targeted NMs specifically accumulated within the VASPs region after intravenous injection into the atherosclerotic mice, achieving the precise detection of VASPs. In addition, in the presence of SRT1720, the NMs could activate intracellular Sirt1 and activate an antiatherogenesis effect by inhibiting the phenotypic switching of VSMCs, which is an essential contributor to the vulnerability and progression of atherosclerotic plaques. After therapeutic administration of the ICG/SRT@HSA-pept NMs for two weeks, the physiological sizes and plaque compositions of VASPs were markedly improved. Furthermore, ICG/SRT@HSA-pept NMs-treated mice presented a more favorable plaque phenotype than that was observed in free SRT1720-treated mice, suggesting the enhanced delivery of pharmaceutical agents to the atherosclerotic lesions and improved therapeutic efficacy of NMs compared with free SRT1720. Conclusions: The theranostic ICG/SRT@HSA-pept NMs showed great potential for the precise identification and targeted treatment of atherosclerotic diseases.
Collapse
|
722
|
Oishi Y, Manabe I. Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease. Front Cardiovasc Med 2018; 5:69. [PMID: 29942807 PMCID: PMC6004387 DOI: 10.3389/fcvm.2018.00069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/21/2018] [Indexed: 12/16/2022] Open
Abstract
Members of the Krüppel-like factor (KLF) family of transcription factors, which are characterized by the presence of three conserved Cys2/His2 zinc-fingers in their C-terminal domains, control a wide variety of biological processes. In particular, recent studies have revealed that KLFs play diverse and essential roles in the control of metabolism at the cellular, tissue and systemic levels. In both liver and skeletal muscle, KLFs control glucose, lipid and amino acid metabolism so as to coordinate systemic metabolism in the steady state and in the face of metabolic stresses, such as fasting. The functions of KLFs within metabolic tissues are also important contributors to the responses to injury and inflammation within those tissues. KLFs also control the function of immune cells, such as macrophages, which are involved in the inflammatory processes underlying both cardiovascular and metabolic diseases. This review focuses mainly on the physiological and pathological functions of KLFs in the liver and skeletal muscle. The involvement of KLFs in inflammation in these tissues is also summarized. We then discuss the implications of KLFs' control of metabolism and inflammation in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
723
|
Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. Nat Med 2018; 24:711-720. [PMID: 29867229 DOI: 10.1038/s41591-018-0064-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Recent advances in cell tracing and sequencing technologies have expanded our knowledge on leukocyte behavior. As a consequence, inflammatory cells, such as monocyte-derived macrophages, and their actions and products are increasingly being considered as potential drug targets for treatment of atherosclerosis, myocardial infarction and heart failure. Particularly promising developments are the identification of harmful arterial and cardiac macrophage subsets, the cells' altered, sometimes even clonal production in hematopoietic organs, and epigenetically entrained memories of myeloid progenitors and macrophages in the setting of cardiovascular disease. Given the roles of monocytes and macrophages in host defense, intricately understanding the involved cellular subsets, sources and functions is essential for the design of precision therapeutics that preserve protective innate immunity. Here I review how new clinical and preclinical data, often linking the cardiovascular, immune and other organ systems, propel conceptual advances to a point where cardiovascular immunotherapy appears within reach.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
724
|
The Impact of Uremic Toxins on Vascular Smooth Muscle Cell Function. Toxins (Basel) 2018; 10:toxins10060218. [PMID: 29844272 PMCID: PMC6024314 DOI: 10.3390/toxins10060218] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with profound vascular remodeling, which accelerates the progression of cardiovascular disease. This remodeling is characterized by intimal hyperplasia, accelerated atherosclerosis, excessive vascular calcification, and vascular stiffness. Vascular smooth muscle cell (VSMC) dysfunction has a key role in the remodeling process. Under uremic conditions, VSMCs can switch from a contractile phenotype to a synthetic phenotype, and undergo abnormal proliferation, migration, senescence, apoptosis, and calcification. A growing body of data from experiments in vitro and animal models suggests that uremic toxins (such as inorganic phosphate, indoxyl sulfate and advanced-glycation end products) may directly impact the VSMCs’ physiological functions. Chronic, low-grade inflammation and oxidative stress—hallmarks of CKD—are also strong inducers of VSMC dysfunction. Here, we review current knowledge about the impact of uremic toxins on VSMC function in CKD, and the consequences for pathological vascular remodeling.
Collapse
|
725
|
Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat Commun 2018; 9:2073. [PMID: 29802249 PMCID: PMC5970166 DOI: 10.1038/s41467-018-04447-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/10/2018] [Indexed: 01/16/2023] Open
Abstract
Smooth muscle cells (SMCs) play a key role in atherogenesis. However, mechanisms regulating expansion and fate of pre-existing SMCs in atherosclerotic plaques remain poorly defined. Here we show that multiple SMC progenitors mix to form the aorta during development. In contrast, during atherogenesis, a single SMC gives rise to the smooth muscle-derived cells that initially coat the cap of atherosclerotic plaques. Subsequently, highly proliferative cap cells invade the plaque core, comprising the majority of plaque cells. Reduction of integrin β3 (Itgb3) levels in SMCs induces toll-like receptor 4 expression and thereby enhances Cd36 levels and cholesterol-induced transdifferentiation to a macrophage-like phenotype. Global Itgb3 deletion or transplantation of Itgb3(−/−) bone marrow results in recruitment of multiple pre-existing SMCs into plaques. Conditioned medium from Itgb3-silenced macrophages enhances SMC proliferation and migration. Together, our results suggest SMC contribution to atherogenesis is regulated by integrin β3-mediated pathways in both SMCs and bone marrow-derived cells. Smooth muscle cells (SMCs) invade atherosclerotic lesions and expand, contributing to plaque progression. Here Misra et al. show that SMC-derived plaque cells come from a single SMC and integrin β3 in SMCs and macrophages regulate the fate, expansion and migration of SMCs during plaque formation.
Collapse
|
726
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
727
|
Augstein A, Mierke J, Poitz DM, Strasser RH. Sox9 is increased in arterial plaque and stenosis, associated with synthetic phenotype of vascular smooth muscle cells and causes alterations in extracellular matrix and calcification. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2526-2537. [PMID: 29777903 DOI: 10.1016/j.bbadis.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMC) exhibit a dual role in progression and maintenance of arteriosclerosis. They are fundamental for plaque stability but also can drive plaque progression. During pathogenic vascular remodeling, VSMC transdifferentiate into a phenotype with enhanced proliferation and migration. Moreover, they exert an increased capacity to generate extracellular matrix proteins. A special lineage of transdifferentiated VSMC expresses Sox9, a multi-functional transcription factor. The aim of the study was to examine the role of Sox9 in phenotypic alterations leading to arteriosclerosis. Using mouse models for arterial stenosis, Sox9 induction in diseased vessels was verified. The phenotypic switch of VSMC from contractile to proliferative nature caused a significant increase of Sox9 expression. Various factors known to be involved in the progression of arteriosclerosis were examined for their ability to modulate Sox9 expression in VSMC. While PDGF-BB resulted in a strong transient upregulation of Sox9, TGF-β1 appeared to be responsible for a moderate, but prolonged increase of Sox9 expression. Beside the regulation, functional studies focused on knockout and overexpression of Sox9. A Sox9-dependent alteration of extracellular matrix could be revealed and was associated with an upregulated calcium deposition. Taken together, Sox9 is identified as important factor of VSMC function by modulation the extracellular matrix composition and calcium deposition, which are important processes in plaque development.
Collapse
Affiliation(s)
- Antje Augstein
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany.
| | - Johannes Mierke
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - David M Poitz
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| | - Ruth H Strasser
- Internal Medicine and Cardiology, Heart Center Dresden, TU Dresden, Germany
| |
Collapse
|
728
|
Zhang J, Chen C, Li L, Zhou HJ, Li F, Zhang H, Yu L, Chen Y, Min W. Endothelial AIP1 Regulates Vascular Remodeling by Suppressing NADPH Oxidase-2. Front Physiol 2018; 9:396. [PMID: 29731721 PMCID: PMC5921534 DOI: 10.3389/fphys.2018.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Objective: AIP1 expression is downregulated in human atherosclerotic plaques and global deletion of AIP1 in mice exacerbates atherosclerosis in ApoE-KO mouse models. However, the direct role of AIP1 in endothelium, vascular remodeling and associated vascular diseases has not been determined. Approach and Results: We used endothelial cell (EC)-specific AIP1-deficient (AIP1-ECKO) mice to define the role of AIP1 in vascular remodeling and intima-media thickening in a mouse carotid artery ligation model characterized by both neointimal hyperplasia and inward vessel remodeling. Compared to WT littermates, AIP1-ECKO mice had 2.2-fold larger intima area and 4.4-fold thicker intima as measured by intima/media ratio in arteries with more proliferating vascular smooth muscle cells (VSMCs) at week 2-4 post-injury. Increased reactive oxygen species (ROS) in endothelium at early time points induced inflammation and vessel dysfunction in AIP1-ECKO prior to VSMC accumulations. Moreover, knockdown of AIP1 in human EC enhanced ROS generation which was attenuated by co-silencing of NOX2. Mechanistically, AIP1 via its proline-rich region binds to the SH3 domain of cytosolic subunit p47phox to disrupt formation of an active NOX2 complex, attenuating ROS production. Conclusion: Our study supports that AIP1 regulates vascular remodeling with intima-media thickening by suppressing endothelial NOX2-dependent oxidative stress. Highlights: •In a carotid ligation model, endothelial cell (EC)-specific AIP1-deficient (AIP1-ECKO) mice had much larger media area, thicker vessel wall and augmented neointima formation.•Increased production of reactive oxygen species in vascular EC at early time points concomitant with vessel dysfunction in AIP1-ECKO.•AIP1 via its proline-rich region binds to the SH3 domain of cytosolic subunit p47phox to disrupt formation of an active NOX2 complex, attenuating ROS production.
Collapse
Affiliation(s)
- Jiqin Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chaofei Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Li Li
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanjiao J. Zhou
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Fenghe Li
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Haifeng Zhang
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Luyang Yu
- Institute of Genetics, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
729
|
Abstract
Over the past decade, studies have repeatedly found single-nucleotide polymorphisms located in the collagen ( COL) 4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of ~160 genome-wide significant risk loci for coronary artery disease. COL4A1 and COL4A2 encode the α1- and α2-chains of collagen type IV, a major component of basement membranes in various tissues including arteries. Despite the growing body of evidence indicating a role for collagen type IV in CVD, remarkably few studies have aimed to directly investigate such a role. The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis, and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and tissue collectively supporting a role for collagen type IV in atherosclerosis and other macrovascular disease conditions.
Collapse
Affiliation(s)
- L B Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - L M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| |
Collapse
|
730
|
Lehners M, Dobrowinski H, Feil S, Feil R. cGMP Signaling and Vascular Smooth Muscle Cell Plasticity. J Cardiovasc Dev Dis 2018; 5:jcdd5020020. [PMID: 29671769 PMCID: PMC6023364 DOI: 10.3390/jcdd5020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs.
Collapse
Affiliation(s)
- Moritz Lehners
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Hyazinth Dobrowinski
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Susanne Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
731
|
Schumski A, Winter C, Döring Y, Soehnlein O. The Ins and Outs of Myeloid Cells in Atherosclerosis. J Innate Immun 2018; 10:479-486. [PMID: 29669334 DOI: 10.1159/000488091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a chronic inflammation of the arterial vessel wall that arises from an imbalanced lipid metabolism. A growing body of literature describes leukocyte recruitment as a critical step in the initiation and progression of lesion development. By contrast, the role of leukocytes during plaque regression has been described in less detail. Leukocyte egress might be an important step to resolving chronic inflammation and therefore it may be a promising target for limiting advanced lesion development. This review aims to summarize our current knowledge of leukocyte recruitment to the arterial vessel wall. We will discuss mechanisms of leukocyte egress from the lesion site, as well as potential therapeutic strategies to promote atherosclerotic regression.
Collapse
Affiliation(s)
- Ariane Schumski
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Carla Winter
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, .,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich,
| |
Collapse
|
732
|
Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc Med 2018; 5:36. [PMID: 29682509 PMCID: PMC5897433 DOI: 10.3389/fcvm.2018.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD). Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs). Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs) causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs) from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow’s triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs), alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release) and disruption of blood flow (atherothrombosis). In this paper, we review the latest relevant advances in the identification of extracellular vesicle pathways as well as VSMCs and pericyte/MSC phenotypic switching, underlying vascular calcification.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Dawid M Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
733
|
Jin H, Li DY, Chernogubova E, Sun C, Busch A, Eken SM, Saliba-Gustafsson P, Winter H, Winski G, Raaz U, Schellinger IN, Simon N, Hegenloh R, Matic LP, Jagodic M, Ehrenborg E, Pelisek J, Eckstein HH, Hedin U, Backlund A, Maegdefessel L. Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Mol Ther 2018; 26:1040-1055. [PMID: 29503197 PMCID: PMC6080193 DOI: 10.1016/j.ymthe.2018.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.
Collapse
Affiliation(s)
- Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniel Y Li
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | | | - Changyan Sun
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Suzanne M Eken
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Hanna Winter
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Uwe Raaz
- University Heart Center, Göttingen, Germany
| | | | - Nancy Simon
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Renate Hegenloh
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ewa Ehrenborg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany.
| |
Collapse
|
734
|
Hien TT, Garcia‐Vaz E, Stenkula KG, Sjögren J, Nilsson J, Gomez MF, Albinsson S. MicroRNA‐dependent regulation of KLF4 by glucose in vascular smooth muscle. J Cell Physiol 2018; 233:7195-7205. [DOI: 10.1002/jcp.26549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Tran T. Hien
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Eliana Garcia‐Vaz
- Department of Clinical Sciences in Malmö, Lund University Diabetes CentreLund UniversitySweden
| | | | - Johan Sjögren
- Department of Cardiothoracic SurgerySkåne University Hospital and Lund UniversityLundSweden
| | - Johan Nilsson
- Department of Cardiothoracic SurgerySkåne University Hospital and Lund UniversityLundSweden
| | - Maria F. Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes CentreLund UniversitySweden
| | | |
Collapse
|
735
|
Mantani PT, Dunér P, Bengtsson E, Ljungcrantz I, Sundius L, To F, Nilsson J, Björkbacka H, Fredrikson GN. Interleukin-25 (IL-25) has a protective role in atherosclerosis development in the aortic arch in mice. J Biol Chem 2018; 293:6791-6801. [PMID: 29572351 DOI: 10.1074/jbc.ra117.000292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the entrapment of apolipoprotein B-containing lipoproteins in the arterial intima, leading to local inflammation. T helper (Th) cell 1-mediated immune responses have been associated with atherosclerosis, and the cytokine interleukin-25 (IL-25 or IL-17E) has been reported to potentially regulate Th1 cell- and Th17 cell-related immune responses. In this study, we evaluated the effects of complete IL-25 deficiency or of a temporal IL-25 blockade on atherosclerosis development in apolipoprotein E-deficient (Apoe-/-) mice. Mice deficient in both apolipoprotein E and IL-25 (Apoe-/-/IL-25-/-) had more Th1 cells in the spleen, along with elevated plasma levels of IL-17 and an increased release of splenic interferon-γ (INF-γ). In support of this observation, a 4-week-long treatment of young Apoe-/- mice (at 10-14 weeks of age) with an IL-25-blocking antibody increased the release of Th1/Th17-associated cytokines in the spleen. In both mouse models, these findings were associated with increased atherosclerotic plaque formation in the aortic arch. We conclude that complete IL-25 deficiency and a temporal IL-25 blockade during early plaque development aggravate atherosclerosis development in the aortic arch of Apoe-/- mice, accompanied by an increase in Th1/Th17-mediated immune responses. Our finding that endogenous IL-25 has an atheroprotective role in the murine aortic arch has potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Polyxeni T Mantani
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Pontus Dunér
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Eva Bengtsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Irena Ljungcrantz
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Lena Sundius
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Fong To
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Jan Nilsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Harry Björkbacka
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Gunilla Nordin Fredrikson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| |
Collapse
|
736
|
Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci Rep 2018; 8:4961. [PMID: 29563538 PMCID: PMC5862840 DOI: 10.1038/s41598-018-23353-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP−/− mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, β-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.
Collapse
|
737
|
Barwari T, Rienks M, Mayr M. MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Mol Ther 2018; 26:938-940. [PMID: 29571964 DOI: 10.1016/j.ymthe.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK.
| |
Collapse
|
738
|
Goikuria H, Freijo MDM, Vega Manrique R, Sastre M, Elizagaray E, Lorenzo A, Vandenbroeck K, Alloza I. Characterization of Carotid Smooth Muscle Cells during Phenotypic Transition. Cells 2018; 7:cells7030023. [PMID: 29562638 PMCID: PMC5870355 DOI: 10.3390/cells7030023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are central players in carotid atherosclerosis plaque development. Although the precise mechanisms involved in plaque destabilization are not completely understood, it is known that VSMC proliferation and migration participate in plaque stabilization. In this study, we analyzed expression patterns of genes involved in carotid atherosclerosis development (e.g., transcription factors of regulation of SMC genes) of VSMCs located inside or outside the plaque lesion that may give clues about changes in phenotypic plasticity during atherosclerosis. VSMCs were isolated from 39 carotid plaques extracted from symptomatic and asymptomatic patients by endarterectomy. Specific biomarker expression, related with VSMC phenotype, was analyzed by qPCR, western immunoblot, and confocal microscopy. MYH11, CNN1, SRF, MKL2, and CALD1 were significantly underexpressed in VSMCs from plaques compared with VSMCs from a macroscopically intact (MIT) region, while SPP1, KLF4, MAPLC3B, CD68, and LGALS3 were found significantly upregulated in plaque VSMCs versus MIT VSMCs. The gene expression pattern of arterial VSMCs from a healthy donor treated with 7-ketocholesterol showed high similarity with the expression pattern of carotid plaque VSMCs. Our results indicate that VSMCs isolated from plaque show a typical SMC dedifferentiated phenotype with macrophage-like features compared with VSMCs isolated from a MIT region of the carotid artery. Additionally, MYH11, KLF5, and SPP1 expression patterns were found to be associated with symptomatology of human carotid atherosclerosis.
Collapse
Affiliation(s)
- Haize Goikuria
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
| | | | | | - María Sastre
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
| | | | - Ana Lorenzo
- Neurology Unit, Basurto University Hospital (BUH), 48013 Bilbao, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Iraide Alloza
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
739
|
Bentzon JF, Majesky MW. Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. Cardiovasc Res 2018; 114:492-500. [PMID: 29293902 PMCID: PMC5852531 DOI: 10.1093/cvr/cvx251] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Advances in lineage-tracking techniques have provided new insights into the origins and fates of smooth muscle cells (SMCs) in atherosclerosis. Yet new tools present new challenges for data interpretation that require careful consideration of the strengths and weaknesses of the methods employed. At the same time, discoveries in other fields have introduced new perspectives on longstanding questions about steps in atherogenesis that remain poorly understood. In this article, we address both the challenges and opportunities for a better understanding of the mechanisms by which cells appearing as or deriving from SMCs accumulate in atherosclerosis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Physiologic
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Room 525, M/S C9S-5, Seattle, WA 98011, USA
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
740
|
Fischer JW. Role of hyaluronan in atherosclerosis: Current knowledge and open questions. Matrix Biol 2018; 78-79:324-336. [PMID: 29510229 DOI: 10.1016/j.matbio.2018.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Hyaluronan (HA), HA synthases (HAS) and HA receptors are expressed during the progression of atherosclerotic plaques. HA is thought to promote the activated phenotype of local vascular smooth muscle cells characterized by increased migration, proliferation and matrix synthesis. Furthermore, HA may modulate the immune response by increasing macrophage retention and by promoting the polarization of Th1 cells that enhance macrophage driven inflammation as well. The pro-atherosclerotic functions of HA are opposed by the presence of HA in the glycocalyx where it critically contributes to anti-thrombotic and anti-inflammatory function of the glycocalyx. Patients with atherosclerosis often are affected by comorbidities among them diabetes mellitus type 2 and inflammatory comorbidities. Diabetes mellitus type 2 likely has close interrelations to HA synthesis in atherosclerosis because the activity and transcription of HA synthases are sensitive to the intracellular glucose metabolism, which determines the substrate availability and the posttranslational modifications of HA synthases. The pro-inflammatory comorbidities aggravate the course of atherosclerosis and will affect the expression of the genes related to HA biosynthesis, -degradation, HA-matrix assembly or signaling. One example being the induction of HAS3 by interleukin-1β and other cytokines. Furthermore complications of atherosclerosis such as the healing after myocardial infarction also involve HA responses.
Collapse
Affiliation(s)
- Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
741
|
Yang D, Liang S, Yang Q, Liu D, Qin Z, Zhang Z. Expression characteristics and functional analysis of Krüppel-like factor 4 in adductor muscle and mantle of Zhikong scallop Chlamys farreri. Dev Genes Evol 2018; 228:95-103. [PMID: 29502185 DOI: 10.1007/s00427-018-0606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022]
Abstract
Krüppel-like factor 4 (KLF4) is an important transcription factor involving in formation and maintenance of muscles in mammals. However, no data are available on KLF4 function in shellfish muscles which play vital roles in the movement, stress response, and physiology in shellfish. In the present study, we revealed that the Klf4 mRNA of Zhikong scallop Chlamys farreri was expressed in most tissues, which has high level in adductor muscle, mantle, kidney, and testis. Positive signals of the Klf4 mRNA and protein were visible in all skeletal muscle fibers of adductor muscle, and all the cells of C. farreri mantle. Furthermore, the knockdown of Klf4 mRNA in adductor muscle and mantle by means of in vivo RNA interference led to some different phenotypes, including disordered arrangement of muscle fibers in adductor muscle and mantle, abnormal structures of skeletal muscles, and reduced muscle fibers under endepidermis of mantle. Our findings demonstrated that Klf4 plays important roles in maintenance of muscle functions in C. farreri adductor muscle and mantle, and suggested that its regulatory way in skeletal muscle may be different from the smooth muscle in shellfish.
Collapse
Affiliation(s)
- Dandan Yang
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Shaoshuai Liang
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Qiankun Yang
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Danwen Liu
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Zhenkui Qin
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding, (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
742
|
Sun D, Li Q, Ding D, Li X, Xie M, Xu Y, Liu X. Role of Krüppel-like factor 4 in cigarette smoke-induced pulmonary vascular remodeling. Am J Transl Res 2018; 10:581-591. [PMID: 29511453 PMCID: PMC5835824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Pulmonary hypertension (PH) is characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs), leading to dysregulated vascular remodeling. Cigarette smoke (CS) is a common risk factor causing PH, and our previous study showed that CS extract (CSE) stimulated abnormal PASMC proliferation. However, the molecular mechanism remains unclear. In systemic circulation, vascular remodeling in some diseases is associated with upregulation of Krüppel-like factor 4 (KLF4), which stimulates the proliferation of vascular smooth muscle cells. We therefore hypothesized that upregulation of KLF4 may play a role in pulmonary vascular remodeling and the development of PH. Our results showed that KLF4 expression was increased significantly in remodeled pulmonary arteries from the rat smoking model of pulmonary vascular remodeling, compared with controls. In human PASMCs in vitro, KLF4 knockdown by gene silencing decreased proliferation and migration significantly. At the same time, it inhibited the CSE-induced increase of AKT phosphorylation. These results indicate that KLF4 contributes to CS-induced pulmonary vascular remodeling, and that KLF4 gene knockdown may be a useful therapeutic intervention for PH.
Collapse
Affiliation(s)
- Desheng Sun
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Dandan Ding
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Xiaochen Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan 430030, China
| |
Collapse
|
743
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
744
|
Sweet DR, Fan L, Hsieh PN, Jain MK. Krüppel-Like Factors in Vascular Inflammation: Mechanistic Insights and Therapeutic Potential. Front Cardiovasc Med 2018; 5:6. [PMID: 29459900 PMCID: PMC5807683 DOI: 10.3389/fcvm.2018.00006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
The role of inflammation in vascular disease is well recognized, involving dysregulation of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained vascular inflammation leads to pathological remodeling that eventually contributes to atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia). Signaling events during vascular inflammation orchestrate widespread transcriptional programs that affect the functions of vascular and circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription factors central in regulating vascular biology in states of homeostasis and disease. Given their abundance and diversity of function in cells associated with vascular inflammation, understanding the transcriptional networks regulated by KLFs will further our understanding of the pathogenesis underlying several pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular disease. Within this review, we will discuss the role of KLFs in coordinating protective and deleterious responses during vascular inflammation, while addressing the potential targeting of these critical transcription factors in future therapies.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Paishiun N Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
745
|
Abstract
The transcriptional signature of Kupffer cells & Alveolar macrophages are enriched for lipid metabolism genes. Lipid metabolism may control macrophage phenotype. Dysregulated lipid metabolism in macrophages contributes to disease pathology.
Distinct macrophage populations throughout the body display highly heterogeneous transcriptional and epigenetic programs. Recent research has highlighted that these profiles enable the different macrophage populations to perform distinct functions as required in their tissue of residence, in addition to the prototypical macrophage functions such as in innate immunity. These ‘extra’ tissue-specific functions have been termed accessory functions. One such putative accessory function is lipid metabolism, with macrophages in the lung and liver in particular being associated with this function. As it is now appreciated that cell metabolism not only provides energy but also greatly influences the phenotype and function of the cell, here we review how lipid metabolism affects macrophage phenotype and function and the specific roles played by macrophages in the pathogenesis of lipid-related diseases. In addition, we highlight the current questions limiting our understanding of the role of macrophages in lipid metabolism.
Collapse
Affiliation(s)
- Anneleen Remmerie
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
746
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
747
|
Goikuria H, Vandenbroeck K, Alloza I. Inflammation in human carotid atheroma plaques. Cytokine Growth Factor Rev 2018; 39:62-70. [PMID: 29396056 DOI: 10.1016/j.cytogfr.2018.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation in carotid atherosclerotic plaque is linked to plaque rupture and cerebrovascular accidents. The balance between pro- and anti-inflammatory mediators governs development of the plaque, and may mediate enhancement of lesion broadening or, on the contrary, delay progression. In addition to macrophages and endothelial cells, smooth muscle cells (SMCs), which are the dominant cell subset in advanced plaques, are crucial players in carotid atherosclerosis development given their ability to differentiate into distinct phenotypes in reponse to specific signals received from the environment of the lesion. Carotid atheroma SMCs actively contribute to the inflammation in the lesion because of their acquired capacity to produce inflammatory mediators. We review the successive stages of carotid atheroma plaque formation via fatty streak early-stage toward more advanced rupture-prone lesions and document involvement of cytokines and chemokines and their cellular sources and targets in plaque progression and rupture.
Collapse
Affiliation(s)
- Haize Goikuria
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain
| | - Koen Vandenbroeck
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Iraide Alloza
- Neurogenomiks, Neuroscience Department, Faculty of Medicine and Odontology, Basque Country University (UPV/EHU), 48940 Leioa, Spain; ACHUCARRO, Basque Centre for Neuroscience, Science Park of the Basque Country University (UPV/EHU), SEDE Building, 3rd, 48940 Leioa, Spain.
| |
Collapse
|
748
|
Deng Y, Lin C, Zhou HJ, Min W. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11515-017-1473-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
749
|
Affiliation(s)
- Chris M Brewer
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute (C.M.B., M.W.M.), Department of Pediatrics (M.W.M.), Department of Pathology (C.M.B., M.W.M.), and Molecular Basis of Disease Graduate Program (C.M.B., M.W.M.), University of Washington, Seattle
| | - Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute (C.M.B., M.W.M.), Department of Pediatrics (M.W.M.), Department of Pathology (C.M.B., M.W.M.), and Molecular Basis of Disease Graduate Program (C.M.B., M.W.M.), University of Washington, Seattle.
| |
Collapse
|
750
|
Liao M, Zhou J, Wang F, Ali YH, Chan KL, Zou F, Offermanns S, Jiang Z, Jiang Z. An X-linked Myh11-CreER T2 mouse line resulting from Y to X chromosome-translocation of the Cre allele. Genesis 2018; 55. [PMID: 28845554 DOI: 10.1002/dvg.23054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022]
Abstract
The Myh11-CreERT2 mouse line (Cre+ ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+ ), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+ /XCre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous XCre+ /XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous XCre+ /XCre+ mice produce uniform Cre activity in arterial SMCs.
Collapse
Affiliation(s)
- Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Department of Surgery, Xiangya Hospital Central South University, Changsha, Peoples Republic of China
| | - Junmei Zhou
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Yasmin H Ali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Kelvin L Chan
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Fei Zou
- Department of Biostatistics, University of Florida College of Public Health & Health Professions College of Medicine, Gainesville, Florida, 32611
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, University of Heidelberg, Bad Nauheim, Germany
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|