701
|
Abstract
Patients suffering from Epidermodysplasia verruciformis (EV), a rare inherited skin disease, display a particular susceptibility to persistent infection with cutaneous genus beta-human papillomavirus (beta-HPV), such as HPV type 8. They have a high risk to develop non-melanoma skin cancer at sun-exposed sites. In various models evidence is emerging that cutaneous HPV E6 proteins disturb epidermal homeostasis and support carcinogenesis, however, the underlying mechanisms are not fully understood as yet. In this study we demonstrate that microRNA-203 (miR-203), a key regulator of epidermal proliferation and differentiation, is strongly down-regulated in HPV8-positive EV-lesions. We provide evidence that CCAAT/enhancer-binding protein α (C/EBPα), a differentiation-regulating transcription factor and suppressor of UV-induced skin carcinogenesis, directly binds the miR-203 gene within its hairpin region and thereby induces miR-203 transcription. Our data further demonstrate that the HPV8 E6 protein significantly suppresses this novel C/EBPα/mir-203-pathway. As a consequence, the miR-203 target ΔNp63α, a proliferation-inducing transcription factor, is up-regulated, while the differentiation factor involucrin is suppressed. HPV8 E6 specifically down-regulates C/EBPα but not C/EBPβ expression at the transcriptional level. As shown in knock-down experiments, C/EBPα is regulated by the acetyltransferase p300, a well-described target of cutaneous E6 proteins. Notably, p300 bound significantly less to the C/EBPα regulatory region in HPV8 E6 expressing keratinocytes than in control cells as demonstrated by chromatin immunoprecipitation. In situ analysis confirmed congruent suprabasal expression patterns of C/EBPα and miR-203 in non-lesional skin of EV-patients. In HPV8-positive EV-lesions both factors are potently down-regulated in vivo further supporting our in vitro data. In conclusion our study has unraveled a novel p300/C/EBPα/mir-203-dependent mechanism, by which the cutaneous HPV8 E6 protein may expand p63-positive cells in the epidermis of EV-patients and disturbs fundamental keratinocyte functions. This may drive HPV-mediated pathogenesis and may potentially also pave the way for skin carcinogenesis in EV-patients. Cutaneous genus beta-HPV types infect skin keratinocytes. Their potential role in skin carcinogenesis, particularly in immunosuppressed patients, has become a major field of interest. Patients suffering from the rare genetic disorder Epidermodysplasia verruciformis (EV) are highly susceptible to persistent genus beta-HPV infection and have an increased risk to develop non-melanoma skin cancer at sun-exposed sites. Thus, EV serves as a valuable model disease for studying genus beta-HPV biology. Here, we demonstrate that in human HPV8-infected EV skin lesions, the ‘stemness-repressing’ microRNA-203 is strongly down-regulated. In contrast, cells expressing the miR-203-regulated ‘stemness-maintaining’ factor p63, are highly amplified. Notably, we identified the transcription factor C/EBPα, a well-known suppressor of UV-induced skin carcinogenesis, as a p300-dependent target of the HPV8-encoded E6 oncoprotein and as a critical inducer of miR-203 gene expression. Our data provide evidence for a novel p300/C/EBPα/miR-203-dependent pathway, which links HPV8 infection to the expansion of p63-positive cells in the epidermis of EV-patients. This may contribute to the beta-HPV-induced disturbance of epidermal homeostasis and pave the way for skin carcinogenesis.
Collapse
|
702
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
703
|
Aschenbrenner AC, Bassler K, Brondolin M, Bonaguro L, Carrera P, Klee K, Ulas T, Schultze JL, Hoch M. A cross-species approach to identify transcriptional regulators exemplified for Dnajc22 and Hnf4a. Sci Rep 2017; 7:4056. [PMID: 28642491 PMCID: PMC5481429 DOI: 10.1038/s41598-017-04370-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
There is an enormous need to make better use of the ever increasing wealth of publicly available genomic information and to utilize the tremendous progress in computational approaches in the life sciences. Transcriptional regulation of protein-coding genes is a major mechanism of controlling cellular functions. However, the myriad of transcription factors potentially controlling transcription of any given gene makes it often difficult to quickly identify the biological relevant transcription factors. Here, we report on the identification of Hnf4a as a major transcription factor of the so far unstudied DnaJ heat shock protein family (Hsp40) member C22 (Dnajc22). We propose an approach utilizing recent advances in computational biology and the wealth of publicly available genomic information guiding the identification of potential transcription factor candidates together with wet-lab experiments validating computational models. More specifically, the combined use of co-expression analyses based on self-organizing maps with sequence-based transcription factor binding prediction led to the identification of Hnf4a as the potential transcriptional regulator for Dnajc22 which was further corroborated using publicly available datasets on Hnf4a. Following this procedure, we determined its functional binding site in the murine Dnajc22 locus using ChIP-qPCR and luciferase assays and verified this regulatory loop in fruitfly, zebrafish, and humans.
Collapse
Affiliation(s)
- A C Aschenbrenner
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - K Bassler
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - M Brondolin
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, SE1 9RT, London, United Kingdom
| | - L Bonaguro
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - P Carrera
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - K Klee
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - T Ulas
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175, Bonn, Germany
| | - M Hoch
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
704
|
Nel M, Jalali Sefid Dashti M, Gamieldien J, Heckmann JM. Exome sequencing identifies targets in the treatment-resistant ophthalmoplegic subphenotype of myasthenia gravis. Neuromuscul Disord 2017; 27:816-825. [PMID: 28673556 DOI: 10.1016/j.nmd.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/25/2022]
Abstract
Treatment-resistant ophthalmoplegia (OP-MG) is not uncommon in individuals with African genetic ancestry and myasthenia gravis (MG). To identify OP-MG susceptibility genes, extended whole exome sequencing was performed using extreme phenotype sampling (11 OP-MG vs 4 control-MG) all with acetylcholine receptor-antibody positive MG. This approach identified 356 variants that were twice as frequent in OP-MG compared to control-MG individuals. After performing probability test estimates and filtering variants according to those 'suggestive' of association with OP-MG (p < 0.05), only three variants remained which were expressed in extraocular muscles. Validation in 25 OP-MG and 50 control-MG cases supported the association of DDX17delG (p = 0.014) and SPTLC3insACAC (p = 0.055) with OP-MG, but ST8SIA1delCCC could not be verified by Sanger sequencing. A parallel approach, using a semantic model informed by current knowledge of MG-pathways, identified an African-specific interleukin-6 receptor (IL6R) variant, IL6R c.*3043 T>C, that was more frequent in OP-MG compared to control-MG cases (p = 0.069) and population controls (p = 0.043). A weighted genetic risk score, derived from the odds ratios of association of these variants with OP-MG, correlated with the OP-MG phenotype as opposed to control MG. This unbiased approach implicates several potentially functional gene variants in the gangliosphingolipid and myogenesis pathways in the development of the OP-MG subphenotype.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Division, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Jeannine M Heckmann
- Neurology Division, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
705
|
Truong N, Chun SM, Kim TI, Suh YA, Jang SJ. Hypermethylation of adjacent CpG sites is negatively correlated with the expression of lineage oncogene ASCL1 in pulmonary neuroendocrine tumors. Tumour Biol 2017. [DOI: 10.1177/1010428317706225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Nhung Truong
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Min Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Im Kim
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Ah Suh
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
706
|
Inhibition of androgen receptor promotes CXC-chemokine receptor 7-mediated prostate cancer cell survival. Sci Rep 2017; 7:3058. [PMID: 28596572 PMCID: PMC5465216 DOI: 10.1038/s41598-017-02918-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
The atypical C-X-C chemokine receptor 7 (CXCR7) has been implicated in supporting aggressive cancer phenotypes in several cancers including prostate cancer. However, the mechanisms driving overexpression of this receptor in cancer are poorly understood. This study investigates the role of androgen receptor (AR) in regulating CXCR7. Androgen deprivation or AR inhibition significantly increased CXCR7 expression in androgen-responsive prostate cancer cell lines, which was accompanied by enhanced epidermal growth factor receptor (EGFR)-mediated mitogenic signaling, promoting tumor cell survival through an androgen-independent signaling program. Using multiple approaches we demonstrate that AR directly binds to the CXCR7 promoter, suppressing transcription. Clustered regularly interspaced short palindromic repeats (CRISPR) directed Cas9 nuclease-mediated gene editing of CXCR7 revealed that prostate cancer cells depend on CXCR7 for proliferation, survival and clonogenic potential. Loss of CXCR7 expression by CRISPR-Cas9 gene editing resulted in a halt of cell proliferation, severely impaired EGFR signaling and the onset of cellular senescence. Characterization of a mutated CXCR7-expressing LNCaP cell clone showed altered intracellular signaling and reduced spheroid formation potential. Our results demonstrate that CXCR7 is a potential target for adjuvant therapy in combination with androgen deprivation therapy (ADT) to prevent androgen-independent tumor cell survival.
Collapse
|
707
|
Garon G, Bergeron F, Brousseau C, Robert NM, Tremblay JJ. FOXA3 Is Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates Pdgfra Expression in Leydig Cells. Endocrinology 2017; 158:1886-1897. [PMID: 28379539 DOI: 10.1210/en.2016-1736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
The three FOXA transcription factors are mainly known for their roles in the liver. However, Foxa3-deficient mice become progressively sub/infertile due to germ cell loss. Because no data were available regarding the localization of the FOXA3 protein in the testis, immunohistochemistry was performed on mouse testis sections. In the fetal testis, a weak but consistent staining for FOXA3 is detected in the nucleus of Sertoli cells. In prepubertal and adult life, FOXA3 remains present in Sertoli cells of some but not all seminiferous tubules. FOXA3 is also detected in the nucleus of some peritubular cells. From postnatal day 20 onward, FOXA3 is strongly expressed in the nucleus of Leydig cells. To identify FOXA3 target genes in Leydig cells, MLTC-1 Leydig cells were transfected with a series of Leydig cell gene reporters in the presence of a FOXA3 expression vector. The platelet-derived growth factor receptor α (Pdgfra) promoter was significantly activated by FOXA3. The Pdgfra promoter contains three potential FOX elements and progressive 5' deletions and site-directed mutagenesis revealed that the most proximal element at -78 bp was sufficient to confer FOXA3 responsiveness. FOXA3 from Leydig cells could bind to this element in vitro (electrophoretic mobility shift assay) and was recruited to the proximal Pdgfra promoter in vivo (chromatin immunoprecipitation). Finally, endogenous Pdgfra messenger RNA levels were reduced in FOXA3-deficient MLTC-1 Leydig cells. Taken together, our data identify FOXA3 as a marker of the Sertoli cell lineage and of the adult Leydig cell population, and as a regulator of Pdgfra transcription in Leydig cells.
Collapse
Affiliation(s)
- Gabriel Garon
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
- Centre for Research in Reproduction, Development, and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
708
|
Eulenberg-Gustavus C, Bähring S, Maass PG, Luft FC, Kettritz R. Gene silencing and a novel monoallelic expression pattern in distinct CD177 neutrophil subsets. J Exp Med 2017; 214:2089-2101. [PMID: 28559244 PMCID: PMC5502425 DOI: 10.1084/jem.20161093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/01/2017] [Accepted: 04/12/2017] [Indexed: 12/24/2022] Open
Abstract
CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Eulenberg-Gustavus et al. show that epigenetic silencing causes CD177negative neutrophils, whereas a novel pattern of monoallelic CD177 expression results in a variable percentage of CD177positive neutrophils in bimodal individuals. CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177neg and CD177pos neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals. CD177pos, but not CD177neg neutrophils, produced CD177 protein and mRNA. Haplotype analysis indicated a unique monoallelic CD177 expression pattern, where the offspring stably transcribed either the maternal or paternal allele. Hematopoietic stem cells expressed both CD177 alleles and silenced one copy during neutrophil differentiation. ChIP and reporter assays in HeLa cells with monoallelic CD177 expression showed that methylation reduced reporter activity, whereas demethylation caused biallelic CD177 expression. HeLa cell transfection with c-Jun and c-Fos increased CD177 mRNA. Importantly, CD177pos human neutrophils, but not CD177neg neutrophils, showed a euchromatic CD177 promoter, unmethylated CpGs, and c-Jun and c-Fos binding. We describe epigenetic mechanisms explaining the two distinct CD177 neutrophil subsets and a novel monoallelic CD177 expression pattern that does not follow classical random monoallelic expression or imprinting.
Collapse
Affiliation(s)
- Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Philipp G Maass
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany .,Nephrology and Intensive Care Medicine, Campus Virchow, Medical Faculty of the Charité, Berlin, Germany
| |
Collapse
|
709
|
Ahuja R, Kumar V. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors. FEBS J 2017; 284:2066-2077. [PMID: 28488757 DOI: 10.1111/febs.14104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
710
|
Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci Rep 2017; 7:2232. [PMID: 28533548 PMCID: PMC5440382 DOI: 10.1038/s41598-017-01513-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years viruses similar to those that appear to cause no overt disease in bats have spilled-over to humans and other species causing serious disease. Since pathology in such diseases is often attributed to an over-active inflammatory response, we tested the hypothesis that bat cells respond to stimulation of their receptors for viral ligands with a strong antiviral response, but unlike in human cells, the inflammatory response is not overtly activated. We compared the response of human and bat cells to poly(I:C), a viral double-stranded RNA surrogate. We measured transcripts for several inflammatory, interferon and interferon stimulated genes using quantitative real-time PCR and observed that human and bat cells both, when stimulated with poly(I:C), contained higher levels of transcripts for interferon beta than unstimulated cells. In contrast, only human cells expressed robust amount of RNA for TNFα, a cell signaling protein involved in systemic inflammation. We examined the bat TNFα promoter and found a potential repressor (c-Rel) binding motif. We demonstrated that c-Rel binds to the putative c-Rel motif in the promoter and knocking down c-Rel transcripts significantly increased basal levels of TNFα transcripts. Our results suggest bats may have a unique mechanism to suppress inflammatory pathology.
Collapse
|
711
|
Juhnke M, Heumann A, Chirico V, Höflmayer D, Menz A, Hinsch A, Hube-Magg C, Kluth M, Lang DS, Möller-Koop C, Sauter G, Simon R, Beyer B, Pompe R, Thederan I, Schlomm T, Luebke AM. Apurinic/apyrimidinic endonuclease 1 (APE1/Ref-1) overexpression is an independent prognostic marker in prostate cancer withoutTMPRSS2:ERGfusion. Mol Carcinog 2017; 56:2135-2145. [DOI: 10.1002/mc.22670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Manuela Juhnke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Viktoria Chirico
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Doris Höflmayer
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Anne Menz
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Andrea Hinsch
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Claudia Hube-Magg
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Martina Kluth
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dagmar S. Lang
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Christina Möller-Koop
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Sauter
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ronald Simon
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Raisa Pompe
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
- Department of Urology, Section for Translational Prostate Cancer Research; University Medical Center Hamburg-Eppendorf; Germany
| | - Andreas M. Luebke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
712
|
Koushyar S, Economides G, Zaat S, Jiang W, Bevan CL, Dart DA. The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells. Oncogenesis 2017; 6:e333. [PMID: 28504694 PMCID: PMC5523065 DOI: 10.1038/oncsis.2017.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/16/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway—agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing.
Collapse
Affiliation(s)
- S Koushyar
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - G Economides
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - S Zaat
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - W Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| | - C L Bevan
- Androgen Signalling Laboratory, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - D A Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
713
|
Naderi A. C1orf64 is a novel androgen receptor target gene and coregulator that interacts with 14-3-3 protein in breast cancer. Oncotarget 2017; 8:57907-57933. [PMID: 28915724 PMCID: PMC5593696 DOI: 10.18632/oncotarget.17826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the network of genes that are co-expressed with androgen receptor (AR) to discover novel AR targets in breast cancer. Bioinformatics analysis of two datasets from breast cancer cell lines resulted in the identification of an AR-gene signature constituted of 98 genes that highly correlated with AR expression. Notably, C1orf64 showed the highest positive correlation with AR across the datasets with a correlation coefficient (CC) of 0.737. In addition, C1orf64 closely correlated with AR expression in primary and metastatic breast tumors and C1orf64 expression was relatively higher in breast tumors with a lower grade and lobular histology. Furthermore, there is a functional interplay between AR and C1orf64 in breast cancer. In this process, AR activation directly represses C1orf64 transcription and C1orf64, in turn, interacts with AR as a corepressor and negatively regulates the AR-mediated induction of prolactin-induced protein (PIP) and AR reporter activity. Moreover, the corepressor effect of C1orf64 results in a reduction of AR binding to PIP promoter. The other aspect of this interplay involves a cross-talk between AR and estrogen receptor (ER) signaling in which C1orf64 silencing intensifies the AR-mediated down-regulation of ER target gene, progesterone receptor. Therefore, the repression of C1orf64 by AR provides an underlying mechanism for the AR inhibitory effects on ER signaling. To elucidate the biochemical mechanisms of C1orf64 function, this study demonstrates that C1orf64 is a phosphothreonine protein that interacts with the chaperone protein 14-3-3. In summary, C1orf64 is a novel AR coregulator and a 14-3-3 binding partner in breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- University of Hawaii Cancer Center, Cancer Biology Program, Honolulu, Hawaii 96813, USA
| |
Collapse
|
714
|
Gangwar I, Kumar Sharma N, Panzade G, Awasthi S, Agrawal A, Shankar R. Detecting the Molecular System Signatures of Idiopathic Pulmonary Fibrosis through Integrated Genomic Analysis. Sci Rep 2017; 7:1554. [PMID: 28484236 PMCID: PMC5431532 DOI: 10.1038/s41598-017-01765-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/12/2017] [Indexed: 01/22/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is an incurable progressive fibrotic disease of the lungs. We currently lack a systematic understanding of IPF biology and a systems approach may offer new therapeutic insights. Here, for the first time, a large volume of high throughput genomics data has been unified to derive the most common molecular signatures of IPF. A set of 39 differentially expressed genes (DEGs) was found critical to distinguish IPF. Using high confidence evidences and experimental data, system level networks for IPF were reconstructed, involving 737 DEGs found common across at least two independent studies. This all provided one of the most comprehensive molecular system views for IPF underlining the regulatory and molecular consequences associated. 56 pathways crosstalks were identified which included critical pathways with specified directionality. The associated steps gained and lost due to crosstalk during IPF were also identified. A serially connected system of five crucial genes was found, potentially controlled by nine miRNAs and eight transcription factors exclusively in IPF when compared to NSIP and Sarcoidosis. Findings from this study have been implemented into a comprehensive molecular and systems database on IPF to facilitate devising diagnostic and therapeutic solutions for this deadly disease.
Collapse
Affiliation(s)
- Indu Gangwar
- Studio of Computational Biology & Bioinformatics, CSIR-IHBT, Palampur, HP, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Nitesh Kumar Sharma
- Studio of Computational Biology & Bioinformatics, CSIR-IHBT, Palampur, HP, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Ganesh Panzade
- Studio of Computational Biology & Bioinformatics, CSIR-IHBT, Palampur, HP, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Supriya Awasthi
- Studio of Computational Biology & Bioinformatics, CSIR-IHBT, Palampur, HP, India
| | - Anurag Agrawal
- Centre of Excellence for Translational Research in Asthma & Lung Diseases, CSIR-IGIB, Mall Road, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, CSIR-IHBT, Palampur, HP, India. .,Academy of Scientific and Innovative Research (AcSIR), Chennai, TN, India.
| |
Collapse
|
715
|
LIM-Only Protein FHL2 Is a Negative Regulator of Transforming Growth Factor β1 Expression. Mol Cell Biol 2017; 37:MCB.00636-16. [PMID: 28223370 DOI: 10.1128/mcb.00636-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) is a master cytokine in many biological processes, including tissue homeostasis, epithelial-to-mesenchymal transition, and wound repair. Here, we report that four and a half LIM-only protein 2 (FHL2) is a critical regulator of TGF-β1 expression. Devoid of a DNA-binding domain, FHL2 is a transcriptional cofactor that plays the role of coactivator or corepressor, depending on the cell and promoter contexts. We detected association of FHL2 with the TGF-β1 promoter, which showed higher activity in Fhl2-/- cells than in wild-type (WT) cells in a reporter assay. Overexpression of FHL2 abrogates the activation of the TGF-β1 promoter, whereas the upregulation of TGF-β1 gene transcription correlates with reduced occupancy of FHL2 on the promoter. Moreover, ablation of FHL2 facilitates recruitment of RNA polymerase II on the TGF-β1 promoter, suggesting that FHL2 may be involved in chromatin remodeling in the control of TGF-β1 gene transcription. Enhanced expression of TGF-β1 mRNA and cytokine was evidenced in the livers of Fhl2-/- mice. We tested the in vivo impact of Fhl2 loss on hepatic fibrogenesis that involves TGF-β1 activation. Fhl2-/- mice developed more severe fibrosis than their WT counterparts. These results demonstrate the repressive function of FHL2 on TGF-β1 expression and contribute to the understanding of the TGF-β-mediated fibrogenic response.
Collapse
|
716
|
Stapel B, Kotsiari A, Scherr M, Hilfiker-Kleiner D, Bleich S, Frieling H, Kahl KG. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells. J Psychiatr Res 2017; 88:18-27. [PMID: 28073046 DOI: 10.1016/j.jpsychires.2016.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients.
Collapse
Affiliation(s)
- Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Department of Cardiology and Angiology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Alexandra Kotsiari
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
717
|
Jin M, Ye D, Li Y, Jing F, Jiang X, Gu S, Mao Y, Li Q, Chen K. Association of a novel genetic variant in RP11-650L12.2 with risk of colorectal cancer in Han Chinese population. Gene 2017; 624:21-25. [PMID: 28442398 DOI: 10.1016/j.gene.2017.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND This study aimed to investigate the associations of selected polymorphisms in RP11-650L12.2 with the risk of colorectal cancer (CRC) in a Chinese population. METHODS A total of 821 CRC cases (test set: 320, validation set: 501) and 857 healthy controls (test set: 319, validation set: 538) were enrolled in this study. Demographic characteristics and lifestyle information were collected by a validated questionnaire. A sample of 5ml venous blood was collected from each subject for DNA isolation, and the selected polymorphisms (rs144182521, rs514743, rs76071148, rs149941240) were genotyped by MassArray technique. RESULTS The rs149941240 polymorphism was significantly associated with the risk of CRC, with ORs of 1.50 (95% CI: 1.15-1.96) by co-dominant model and 1.45 (95% CI: 1.21-1.87) by dominant model in the test set, respectively. Correspondingly, the ORs were 1.48 (95% CI: 1.19-1.82) and 1.41 (95% CI: 1.15-1.73) in the validation set, respectively. The crossover analysis showed that non-smokers with the variant genotypes in rs149941240 had a significantly increased risk of CRC than those with wild genotype by dominant model in the validation set (OR 1.42, 95% CI 1.04-1.96). However, no gene-environment multiplicative interactions of rs149941240 with tobacco smoking were found on risk of CRC. CONCLUSIONS Our findings suggest that rs149941240 polymorphism was associated with the risk of CRC, and might contribute to the susceptibility to CRC. The effects of this polymorphism should be validated in a larger sample and require further mechanistic investigations to determine the nature of its influence on CRC.
Collapse
Affiliation(s)
- Mingjuan Jin
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yingjun Li
- Department of Public Health, Hangzhou Medical School, Hangzhou, China
| | - Fangyuan Jing
- Department of Public Health, Hangzhou Medical School, Hangzhou, China
| | - Xiyi Jiang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Simeng Gu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology and Biostatistics, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Qilong Li
- Jiashan Institute of Cancer Prevention and Treatment, Zhejiang Province, China
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China.
| |
Collapse
|
718
|
TβRII Regulates the Proliferation of Metanephric Mesenchyme Cells through Six2 In Vitro. Int J Mol Sci 2017; 18:ijms18040853. [PMID: 28420207 PMCID: PMC5412437 DOI: 10.3390/ijms18040853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor-β (TGFβ) family signaling pathways play an important role in regulatory cellular networks and exert specific effects on developmental programs during embryo development. However, the function of TGFβ signaling pathways on the early kidney development remains unclear. In this work, we aim to detect the underlying role of TGFβ type II receptor (TβRII) in vitro, which has a similar expression pattern as the crucial regulator Six2 during early kidney development. Firstly, the 5-ethynyl-2′-deoxyuridine (EdU) assay showed knock down of TβRII significantly decreased the proliferation ratio of metanephric mesenchyme (MM) cells. Additionally, real-time Polymerase Chain Reaction (PCR) and Western blot together with immunofluorescence determined that the mRNA and protein levels of Six2 declined after TβRII knock down. Also, Six2 was observed to be able to partially rescue the proliferation phenotype caused by the depletion of TβRII. Moreover, bioinformatics analysis and luciferase assay indicated Smad3 could transcriptionally target Six2. Further, the EdU assay showed that Smad3 could also rescue the inhibition of proliferation caused by the knock down of TβRII. Taken together, these findings delineate the important function of the TGFβ signaling pathway in the early development of kidney and TβRII was shown to be able to promote the expression of Six2 through Smad3 mediating transcriptional regulation and in turn activate the proliferation of MM cells.
Collapse
|
719
|
Ma Q, Feng W, Zhuang Z, Liu S. Cloning, expression profiling and promoter functional analysis of Bone morphogenetic protein 6 and 7 in tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:435-454. [PMID: 28013423 DOI: 10.1007/s10695-016-0298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in vertebrate developmental process and are associated with the mechanisms which drive early skeletal development. As a first approach to elucidating the role of BMPs in regulating fish bone formation and growth, we describe the cloning, expression profiling and promoter functional analysis of bmp6 and bmp7 in tongue sole (Cynoglossus semilaevis). The full length of bmp6 and bmp7 cDNA sequences is 1939 and 1836 bp, which encodes a protein of 428 and 427 amino acids, respectively. Tissue expression distribution of bmp6 and bmp7 was examined in 14 tissues of mature individuals by quantitative real-time PCR (qRT-PCR). The results revealed that bmp6 was predominantly expressed in the gonad, and bmp7 exhibited the highest expression level in the dorsal fin. Further comparison of bmp6 expression levels between female and male gonads showed that the expression in the ovary was significantly higher than in the testis. Moreover, bmp6 and bmp7 expression levels were detected at 15 sampling time points of early developmental stages (egg, larva, juvenile and fingerling stages). The highest expression level of bmp6 was observed in the egg stage (multi-cell and gastrula stage); while bmp7 exhibited the highest expression in the larva stage (1-4 days old). The high expression levels of BMP6 in the ovary as well as at early embryonic stages indicated that the maternally stored transcripts of bmp6 might play a role in early embryonic development. Whole-mount in situ hybridization showed that bmp6 and bmp7 exhibited similar spatial expression patterns. Both bmp6 and bmp7 signals were first detected in the head and anterior regions in newly hatched larvae, and then, the mRNAs appeared in the crown-like larval fin, jaw, operculum and fins (pectoral, dorsal, pelvic and anal) along with early development. Subsequently, we characterized the 5'-flanking regions of bmp6 and bmp7 by testing the promoter activity by luciferase reporter assays. Positive regulatory regions were, respectively, detected at the location of -272 to +28 and -740 to -396 in bmp6 and bmp7 gene. The predicted transcription factor binding sites (CREB, AP1 and methyl-CpG-binding protein) in the regions might participate in the transcriptional regulation of these two genes.
Collapse
Affiliation(s)
- Qian Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Wenrong Feng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
720
|
Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:1-12. [PMID: 28189748 DOI: 10.1016/j.ibmb.2017.02.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Colorado potato beetle (CPB), Leptinotarsa decemlineata is a notorious pest of potato. Co-evolution with Solanaceae plants containing high levels of toxins (glycoalkaloids) helped this insect to develop an efficient detoxification system and resist almost every chemical insecticide introduced for its control. Even though the cross-resistance between plant allelochemicals and insecticides is well acknowledged, the underlying molecular mechanisms are not understood. Here, we investigated the molecular mechanisms involved in detoxification of potato plant allelochemicals and imidacloprid resistance in the field-collected CPB. Our results showed that the imidacloprid-resistant beetles employ metabolic detoxification of both potato plant allelochemicals and imidacloprid by upregulation of common cytochrome P450 genes. RNAi aided knockdown identified four cytochromes P450 genes (CYP6BJa/b, CYP6BJ1v1, CYP9Z25, and CYP9Z29) that are required for defense against both natural and synthetic chemicals. These P450 genes are regulated by the xenobiotic transcription factors Cap n Collar C, CncC and muscle aponeurosis fibromatosis, Maf. Studies on the CYP9Z25 promoter using the luciferase reporter assay identified two binding sites (i.e. GCAGAAT and GTACTGA) for CncC and Maf. Overall, these data showed that CPB employs the metabolic resistance mediated through xenobiotic transcription factors CncC and Maf to regulate multiple P450 genes and detoxify both imidacloprid and potato plant allelochemicals.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
721
|
Banlaki Z, Cimarelli G, Viranyi Z, Kubinyi E, Sasvari-Szekely M, Ronai Z. DNA methylation patterns of behavior-related gene promoter regions dissect the gray wolf from domestic dog breeds. Mol Genet Genomics 2017; 292:685-697. [DOI: 10.1007/s00438-017-1305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
|
722
|
Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization. Front Cell Infect Microbiol 2017; 7:78. [PMID: 28361042 PMCID: PMC5350129 DOI: 10.3389/fcimb.2017.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus, the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally, NaO (1 mM) might exert anti-inflammatory effects after bacterial internalization.
Collapse
Affiliation(s)
- Nayeli Alva-Murillo
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de OcampoSahuayo, Mexico
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| |
Collapse
|
723
|
Serine hydroxymethyl transferase 1 stimulates pro-oncogenic cytokine expression through sialic acid to promote ovarian cancer tumor growth and progression. Oncogene 2017; 36:4014-4024. [PMID: 28288142 PMCID: PMC5509519 DOI: 10.1038/onc.2017.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
High-grade serous (HGS) ovarian cancer accounts for 90% of all ovarian cancer-related deaths. However, factors that drive HGS ovarian cancer tumor growth have not been fully elucidated. In particular, comprehensive analysis of the metabolic requirements of ovarian cancer tumor growth has not been performed. By analyzing The Cancer Genome Atlas mRNA expression data for HGS ovarian cancer patient samples, we observed that six enzymes of the folic acid metabolic pathway were overexpressed in HGS ovarian cancer samples compared with normal ovary samples. Systematic knockdown of all six genes using short hairpin RNAs (shRNAs) and follow-up functional studies demonstrated that serine hydroxymethyl transferase 1 (SHMT1) was necessary for ovarian cancer tumor growth and cell migration in culture and tumor formation in mice. SHMT1 promoter analysis identified transcription factor Wilms tumor 1 (WT1) binding sites, and WT1 knockdown resulted in reduced SHMT1 transcription in ovarian cancer cells. Unbiased large-scale metabolomic analysis and transcriptome-wide mRNA expression profiling identified reduced levels of several metabolites of the amino sugar and nucleotide sugar metabolic pathways, including sialic acid N-acetylneuraminic acid (Neu5Ac), and downregulation of pro-oncogenic cytokines interleukin-6 and 8 (IL-6 and IL-8) as unexpected outcomes of SHMT1 loss. Overexpression of either IL-6 or IL-8 partially rescued SHMT1 loss-induced tumor growth inhibition and migration. Supplementation of culture medium with Neu5Ac stimulated expression of IL-6 and IL-8 and rescued the tumor growth and migratory phenotypes of ovarian cancer cells expressing SHMT1 shRNAs. In agreement with the ovarian tumor-promoting role of Neu5Ac, treatment with Neu5Ac-targeting glycomimetic P-3Fax-Neu5Ac blocked ovarian cancer growth and migration. Collectively, these results demonstrate that SHMT1 controls the expression of pro-oncogenic inflammatory cytokines by regulating sialic acid Neu5Ac to promote ovarian cancer tumor growth and migration. Thus, targeting of SHMT1 and Neu5Ac represents a precision therapy opportunity for effective HGS ovarian cancer treatment.
Collapse
|
724
|
Mattison SA, Blatch GL, Edkins AL. HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature. Cell Stress Chaperones 2017; 22:213-223. [PMID: 27987076 PMCID: PMC5352595 DOI: 10.1007/s12192-016-0755-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.
Collapse
Affiliation(s)
- Stacey A Mattison
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| |
Collapse
|
725
|
Briones-Orta MA, Avendaño-Vázquez SE, Aparicio-Bautista DI, Coombes JD, Weber GF, Syn WK. Osteopontin splice variants and polymorphisms in cancer progression and prognosis. Biochim Biophys Acta Rev Cancer 2017; 1868:93-108.A. [PMID: 28254527 DOI: 10.1016/j.bbcan.2017.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is an extracellular matrix protein that is overexpressed in various cancers and promotes oncogenic features including cell proliferation, survival, migration, and angiogenesis, among others. OPN can participate in the regulation of the tumor microenvironment, affecting both cancer and neighboring cells. Here, we review the roles of OPN splice variants (a, b, c) in cancer development, progression, and prognosis, and also discuss the identities of isoforms 4 and 5. We also discussed how single-nucleotide polymorphisms (SNPs) of the OPN gene are an additional factor influencing the level of OPN in individuals, modulating the risks of cancer development and outcome.
Collapse
Affiliation(s)
| | | | | | - Jason D Coombes
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Wing-Kin Syn
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom; Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC., United States; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
726
|
Glucocorticoid receptor positively regulates transcription of FNDC5 in the liver. Sci Rep 2017; 7:43296. [PMID: 28240298 PMCID: PMC5327437 DOI: 10.1038/srep43296] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Irisin is secreted by skeletal muscle during exercise and influences energy and metabolic homeostasis. This hormone is a cleaved and secreted fragment of fibronectin type III domain-containing 5 (FNDC5). Elucidation of the FNDC5 gene regulation mechanism is necessary to clarify the function of irisin as a potential therapeutic target in human metabolic diseases. Thus, we investigated the genetic and epigenetic mechanisms that regulate expression of the FNDC5 gene. FNDC5 mRNA was strong expressed in major energy-dependent human tissues, including heart, brain, liver, and skeletal muscle. Promoter analysis of the FNDC5 gene revealed that the core promoter region of the FNDC5 gene contained one CpG island that was located just upstream of the transcriptional start site for variants 2 and 3. Treatment with the histone deacetylase inhibitor sodium butyrate and the demethylating agent 5-azacytidine increased mRNA expression of FNDC5 in Huh7 cells. Prediction of transcription factor binding sites suggested that the glucocorticoid receptor was involved in the regulation of FNDC5 expression, and indeed, cortisol treatment increased mRNA expression of FNDC5 in Huh7 cells. Collectively, these findings offer insight into the genetic and epigenetic regulation of FNDC5, providing the initial steps required for understanding the role of irisin in the metabolic homeostasis.
Collapse
|
727
|
Chen JL, Ping YH, Tseng MJ, Chang YI, Lee HC, Hsieh RH, Yeh TS. Notch1-promoted TRPA1 expression in erythroleukemic cells suppresses erythroid but enhances megakaryocyte differentiation. Sci Rep 2017; 7:42883. [PMID: 28220825 PMCID: PMC5318885 DOI: 10.1038/srep42883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The Notch1 pathway plays important roles in modulating erythroid and megakaryocyte differentiation. To screen the Notch1-related genes that regulate differentiation fate of K562 and HEL cells, the expression of transient receptor potential ankyrin 1 (TRPA1) was induced by Notch1 receptor intracellular domain (N1IC), the activated form of Notch1 receptor. N1IC and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1) bound to TRPA1 promoter region to regulate transcription in K562 cells. Transactivation of TRPA1 promoter by N1IC depended on the methylation status of TRPA1 promoter. N1IC and Ets-1 suppressed the DNA methyltransferase 3B (DNMT3B) level in K562 cells. Inhibition of TRPA1 expression after Notch1 knockdown could be attenuated by nanaomycin A, an inhibitor of DNMT3B, in K562 and HEL cells. Functionally, hemin-induced erythroid differentiation could be suppressed by TRPA1, and the reduction of erythroid differentiation of both cells by N1IC and Ets-1 occurred via TRPA1. However, PMA-induced megakaryocyte differentiation could be enhanced by TRPA1, and the surface markers of megakaryocytes could be elevated by nanaomycin A. Megakaryocyte differentiation could be reduced by Notch1 or Ets-1 knockdown and relieved by TRPA1 overexpression. The results suggest that Notch1 and TRPA1 might be critical modulators that control the fate of erythroid and megakaryocyte differentiation.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Min-Jen Tseng
- Department of Life Science, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Yuan-I Chang
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
- Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
728
|
Wilson NC, Choudhury A, Carstens N, Mavri-Damelin D. Organic Cation Transporter 2 (OCT2/SLC22A2) Gene Variation in the South African Bantu-Speaking Population and Functional Promoter Variants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:169-176. [PMID: 28253084 DOI: 10.1089/omi.2016.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SLC22A2 facilitates the transport of endogenous and exogenous cationic compounds. Many pharmacologically significant compounds are transported by SLC22A2, including the antidiabetic drug metformin, anticancer agent cisplatin, and antiretroviral lamivudine. Genetic polymorphisms in SLC22A2 can modify the pharmacokinetic profiles of such important medicines and could therefore prove useful as precision medicine biomarkers. Since the frequency of SLC22A2 polymorphisms varies among different ethnic populations, we evaluated these in South African Bantu speakers, a majority group in the South African population, who exhibit unique genetic diversity, and we subsequently functionally characterized promoter polymorphisms. We identified 11 polymorphisms within the promoter and 9 single-nucleotide polymorphisms (SNPs) within the coding region of SLC22A2. While some polymorphisms appeared with minor allele frequencies similar to other African and non-African populations, some differed considerably; this was especially notable for three missense polymorphisms. In addition, we functionally characterized two promoter polymorphisms; rs138765638, a three base-pair deletion that bioinformatics analysis suggested could alter c-Ets-1/2, Elk1, and/or STAT4 binding, and rs59695691, an SNP that could abolish TFII-I binding. Significantly higher luciferase reporter gene expression was found for rs138765638 (increase of 37%; p = 0.001) and significantly lower expression for rs59695691 (decrease of 25%; p = 0.038), in comparison to the wild-type control. These observations highlight the importance of identifying and functionally characterizing genetic variation in genes of pharmacological significance. Finally, our data for SLC22A2 attest to the importance of considering genetic variation in different populations for drug safety, response, and global pharmacogenomics, through, for example, projects such as the Human Heredity and Health in Africa initiative.
Collapse
Affiliation(s)
- Nina C Wilson
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | - Ananyo Choudhury
- 2 Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand , Johannesburg, South Africa
| | - Nadia Carstens
- 3 Division of Human Genetics, National Health Laboratory Service , Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
729
|
Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C. SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System. Neuron 2017; 93:1110-1125.e5. [PMID: 28215559 DOI: 10.1016/j.neuron.2017.01.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/06/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptional regulation of contralateral RGC development. Here we demonstrate that SoxC genes (Sox4, 11, and 12) act on the progenitor-to-postmitotic transition to implement contralateral, but not ipsilateral, RGC differentiation, by binding to Hes5 and thus repressing Notch signaling. When SoxC genes are deleted in postmitotic RGCs, contralateral RGC axons grow poorly on chiasm cells in vitro and project ipsilaterally at the chiasm midline in vivo, and Plexin-A1 and Nr-CAM expression in RGCs is downregulated. These data implicate SoxC transcription factors in the regulation of contralateral RGC differentiation and axon guidance.
Collapse
Affiliation(s)
- Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Célia A Soares
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Austen A Sitko
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
730
|
Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10:eaaf5185. [PMID: 28196914 DOI: 10.1126/scisignal.aaf5185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Effective recognition of viral components and the subsequent stimulation of the production of type I interferons (IFNs) is crucial for the induction of host antiviral immunity. The failure of the host to efficiently produce type I IFNs in response to infection by the Japanese encephalitis virus (JEV) is linked with an increased probability for the disease to become lethal. JEV is a neurotropic virus of the Flaviviridae family that causes encephalitis in humans. JEV infection is regulated by several host factors, including microRNAs, which are conserved noncoding RNAs that participate in various physiological and pathological processes. We showed that the JEV-induced expression of miR-301a led to inhibition of the production of type I IFN by reducing the abundances of the transcription factor IFN regulatory factor 1 (IRF1) and the signaling protein suppressor of cytokine signaling 5 (SOCS5). Mechanistically, induction of miR-301a expression during JEV infection required the transcription factor nuclear factor κB. In mouse neurons, neutralization of miR-301a restored the host innate immune response by enabling IFN-β production, thereby restricting viral propagation. Inhibition of miR-301a in mouse brain rescued the production of IRF1 and SOCS5, increased the generation of IFN-β, and reduced the extent of JEV replication, thus improving mouse survival. Thus, our study suggests that the JEV-induced expression of miR-301a assists viral pathogenesis by suppressing IFN production, which might be targeted by antiviral therapies.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
731
|
Benzina S, Beauregard AP, Guerrette R, Jean S, Faye MD, Laflamme M, Maïcas E, Crapoulet N, Ouellette RJ, Robichaud GA. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes. Oncotarget 2017; 8:12052-12066. [PMID: 28076843 PMCID: PMC5355325 DOI: 10.18632/oncotarget.14511] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/16/2016] [Indexed: 01/06/2023] Open
Abstract
Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression.
Collapse
Affiliation(s)
- Sami Benzina
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Annie-Pier Beauregard
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Roxann Guerrette
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Stéphanie Jean
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Mame Daro Faye
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Mark Laflamme
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Department of Fisheries and Oceans Canada, Molecular Biology Unit, Moncton, NB, E1C 9B6, Canada
| | - Emmanuel Maïcas
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
- Georges-L.-Dumont University Hospital Centre, Pathology Department, Moncton, NB, E1C 2Z3, Canada
| | | | - Rodney J. Ouellette
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| | - Gilles A. Robichaud
- Université de Moncton, Département de chimie et biochimie, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8×3, Canada
| |
Collapse
|
732
|
Lo CL, Choudhury SR, Irudayaraj J, Zhou FC. Epigenetic Editing of Ascl1 Gene in Neural Stem Cells by Optogenetics. Sci Rep 2017; 7:42047. [PMID: 28181538 PMCID: PMC5299429 DOI: 10.1038/srep42047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Enzymes involved in epigenetic processes such as methyltransferases or demethylases are becoming highly utilized for their persistent DNA or histone modifying efficacy. Herein, we have developed an optogenetic toolbox fused to the catalytic domain (CD) of DNA-methyltransferase3A (DNMT3A-CD) or Ten-Eleven Dioxygenase-1 (TET1-CD) for loci-specific alteration of the methylation state at the promoter of Ascl1 (Mash1), a candidate proneuron gene. Optogenetical protein pairs, CRY2 linked to DNMT3A-CD or TET1-CD and CIB1 fused to a Transcription Activator-Like Element (TALE) locating an Ascl1 promoter region, were designed for site specific epigenetic editing. A differentially methylated region at the Ascl1 promoter, isolated from murine dorsal root ganglion (hypermethylated) and striated cells (hypomethylated), was targeted with these optogenetic-epigenetic constructs. Optimized blue-light illumination triggered the co-localization of TALE constructs with DNMT3A-CD or TET1-CD fusion proteins at the targeted site of the Ascl1 promoter. We found that this spatiotemporal association of the fusion proteins selectively alters the methylation state and also regulates gene activity. This proof of concept developed herein holds immense promise for the ability to regulate gene activity via epigenetic modulation with spatiotemporal precision.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samrat Roy Choudhury
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center, Department of Agricultural &Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Feng C Zhou
- Department of Anatomy &Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Stark Institute of Neuroscience Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
733
|
Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes. Sci Rep 2017; 7:41816. [PMID: 28165486 PMCID: PMC5292964 DOI: 10.1038/srep41816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/28/2016] [Indexed: 01/19/2023] Open
Abstract
Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina's GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P < 0.05) with AD-ND codependence in both AAs and EAs. One CpG (HTR2B cg27531267) was hypomethylated in AA cases (P = 7.2 × 10-5), while 17 CpGs in 16 genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10-9 ≤ P ≤ 9.5 × 10-5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around.
Collapse
|
734
|
Zámbó B, Várady G, Padányi R, Szabó E, Németh A, Langó T, Enyedi Á, Sarkadi B. Decreased calcium pump expression in human erythrocytes is connected to a minor haplotype in the ATP2B4 gene. Cell Calcium 2017; 65:73-79. [PMID: 28216081 DOI: 10.1016/j.ceca.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Plasma membrane Ca2+-ATPases are key calcium exporter proteins in most tissues, and PMCA4b is the main calcium transporter in the human red blood cells (RBCs). In order to assess the expression level of PMCA4b, we have developed a flow cytometry and specific antibody binding method to quantitatively detect this protein in the erythrocyte membrane. Interestingly, we found several healthy volunteers showing significantly reduced expression of RBC-PMCA4b. Western blot analysis of isolated RBC membranes confirmed this observation, and indicated that there are no compensatory alterations in other PMCA isoforms. In addition, reduced PMCA4b levels correlated with a lower calcium extrusion capacity in these erythrocytes. When exploring the potential genetic background of the reduced PMCA4b levels, we found no missense mutations in the ATP2B4 coding regions, while a formerly unrecognized minor haplotype in the predicted second promoter region closely correlated with lower erythrocyte PMCA4b protein levels. In recent GWA studies, SNPs in this ATP2B4 haplotype have been linked to reduced mean corpuscular hemoglobin concentrations (MCHC), and to protection against malaria infection. Our data suggest that an altered regulation of gene expression is responsible for the reduced RBC-PMCA4b levels that is probably linked to the development of human disease-related phenotypes.
Collapse
Affiliation(s)
- Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Rita Padányi
- 2nd Department of Pathology, Faculty of Medicine, Semmelweis University, Ulloi ut 26., Budapest, 1085, Hungary
| | - Edit Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Adrienn Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Tamás Langó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Ágnes Enyedi
- 2nd Department of Pathology, Faculty of Medicine, Semmelweis University, Ulloi ut 26., Budapest, 1085, Hungary; Molecular Oncology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Ulloi ut 26., Budapest, 1085, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary; MTA-SE Molecular Biophysics Research Group, Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-43., Budapest, 1094, Hungary.
| |
Collapse
|
735
|
Chu Q, Sun Y, Bi D, Cui J, Xu T. Up-regulated of miR-8159-5p and miR-217-5p by LPS stimulation negatively co-regulate TLR1 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:117-125. [PMID: 27832948 DOI: 10.1016/j.dci.2016.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern-recognition receptors which play vital roles in ligand recognition and activation of the innate immune response. As an important member of TLRs family, TLR1 is mainly responsible for PAMPs from bacteria and play a pivotal role in sensing microbial products. Recent studies revealed that TLR1 could perceive LPS stimulation and transfer signals to activate the NF-κB pathway, whereas ligands and signaling pathway of TLR1 are still unclear in fish. Growing evidence has shown that miRNAs (microRNAs) play as negative regulators in controlling the diverse of biophysical and biochemical processes at the post-transcriptional level. In this study, we used a combination of bioinformatics and experimental techniques to exhibit that both miR-8159-5p and miR-217-5p were the direct negative regulators of TLR1 in miiuy croaker. Furthermore, dual-luciferase reporter assays showed that combining miR-8159-5p and miR-217-5p exhibited a greater negative regulatory effect on TLR1 than only miR-8159-5p or miR-217-5p. Additionally, we also demonstrated that the expression of both the two miRNAs could be up-regulated by LPS stimulation in either LPS-stimulation spleen tissue or LPS-treated cultured macrophage, which indicating that miR-8159-5p and miR-217-5p could be induced by LPS and may be as the negative regulators of TLR1 involved in the immune response to LPS stimulation. These results would enhance our understanding of the miRNA regulation in fish TLR signaling pathways.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
736
|
Delbaere J, Vancamp P, Van Herck SLJ, Bourgeois NMA, Green MJ, Wingate RJT, Darras VM. MCT8 deficiency in Purkinje cells disrupts embryonic chicken cerebellar development. J Endocrinol 2017; 232:259-272. [PMID: 27879339 DOI: 10.1530/joe-16-0323] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023]
Abstract
Inactivating mutations in the human SLC16A2 gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in the Allan-Herndon-Dudley syndrome accompanied by severe locomotor deficits. The underlying mechanisms of the associated cerebellar maldevelopment were studied using the chicken as a model. Electroporation of an MCT8-RNAi vector into the cerebellar anlage of a 3-day-old embryo allowed knockdown of MCT8 in Purkinje cell precursors. This resulted in the downregulation of the thyroid hormone-responsive gene RORα and the Purkinje cell-specific differentiation marker LHX1/5 at day 6. MCT8 knockdown also results in a smaller and less complex dendritic tree at day 18 suggesting a pivotal role of MCT8 for cell-autonomous Purkinje cell maturation. Early administration of the thyroid hormone analogue 3,5,3'-triiodothyroacetic acid partially rescued early Purkinje cell differentiation. MCT8-deficient Purkinje cells also induced non-autonomous effects as they led to a reduced granule cell precursor proliferation, a thinner external germinal layer and a loss of PAX6 expression. By contrast, at day 18, the external germinal layer thickness was increased, with an increase in presence of Axonin-1-positive post-mitotic granule cells in the initial stage of radial migration. The concomitant accumulation of presumptive migrating granule cells in the molecular layer, suggests that inward radial migration to the internal granular layer is stalled. In conclusion, early MCT8 deficiency in Purkinje cells results in both cell-autonomous and non-autonomous effects on cerebellar development and indicates that MCT8 expression is essential from very early stages of development, providing a novel insight into the ontogenesis of the Allan-Herndon-Dudley syndrome.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| | - Mary J Green
- Medical Research Council Centre for Developmental NeurobiologyKing's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental NeurobiologyKing's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative EndocrinologyDepartment of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
737
|
Bi D, Cui J, Chu Q, Xu T. MicroRNA-21 contributes to suppress cytokines production by targeting TLR28 in teleost fish. Mol Immunol 2017; 83:107-114. [PMID: 28129531 DOI: 10.1016/j.molimm.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) as important pattern recognition receptors, play critical roles in identifying pathogens and activating the immune response. However, when the dysregulation was occurred in this process, it could lead to excessive immune response, so it need many regulatory factors to control this process. Recently, microRNAs (miRNAs) have been shown to act as an important regulator in TLRs signaling pathway. As a member of TLRs family, TLR28 has been newly discovered in teleost fish, and play an important role in the immune response. In this study, we found that the expression of miR-21 was up-regulated after poly(I:C) stimulation, and miR-21 could inhibit the expression of cytokines. Then we predicted the target genes of miR-21, and found that TLR28 is a direct target of miR-21, which could be significantly down-regulated by both miR-21 mimics and pre-miR-21. These results suggested that miR-21 can inhibit the expression of cytokines by negative regulation of TLR28, thereby inhibiting the generation of excessive immunity and maintaining the balance of the body. This study is the first to demonstrate that miRNA can suppresses cytokines by regulating the TLR signaling pathway in teleost fish, and also can provides some new ideas for the research of the regulation of miRNA and immune system in mammals.
Collapse
Affiliation(s)
- Dekun Bi
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
738
|
Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, Roust LR, De Filippis EA, Mandarino LJ, Coletta DK. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics 2017; 12:254-263. [PMID: 28106509 DOI: 10.1080/15592294.2017.1281501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.
Collapse
Affiliation(s)
- Samantha E Day
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Richard L Coletta
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Joon Young Kim
- c Division of Weight Management and Wellness , Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Luis A Garcia
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Latoya E Campbell
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Tonya R Benjamin
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | - Lori R Roust
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | | | - Lawrence J Mandarino
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA
| | - Dawn K Coletta
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA.,f Department of Basic Medical Sciences , The University of Arizona College of Medicine , Phoenix , AZ , USA
| |
Collapse
|
739
|
Manghera M, Magnusson A, Douville RN. The sense behind retroviral anti-sense transcription. Virol J 2017; 14:9. [PMID: 28088235 PMCID: PMC5237517 DOI: 10.1186/s12985-016-0667-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022] Open
Abstract
Retroviruses are known to rely extensively on the expression of viral proteins from the sense proviral genomic strand. Yet, the production of regulatory retroviral proteins from antisense-encoded viral genes is gaining research attention, due to their clinical significance. This report will discuss what is known about antisense transcription in Retroviridae, and provide new information about antisense transcriptional regulation through a comparison of Human Immunodeficiency Virus (HIV), Human T-cell Lymphotrophic Virus (HTLV-1) and endogenous retrovirus-K (ERVK) long terminal repeats (LTRs). We will attempt to demonstrate that the potential for antisense transcription is more widespread within retroviruses than has been previously appreciated, with this feature being the rule, rather than the exception.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Alycia Magnusson
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Renée N Douville
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
740
|
Makki MS, Haqqi TM. Histone deacetylase inhibitor vorinostat (SAHA, MK0683) perturb miR-9-MCPIP1 axis to block IL-1β-induced IL-6 expression in human OA chondrocytes. Connect Tissue Res 2017; 58:64-75. [PMID: 27404795 PMCID: PMC5233650 DOI: 10.1080/03008207.2016.1211113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY High levels of IL-6 are believed to contribute to osteoarthritis (OA) pathogenesis. The expression of IL-6 is regulated post-transcriptionally by the miR-9-MCPIP-1 axis in chondrocytes. Vorinostat (SAHA) inhibits the IL-6 expression in OA chondrocytes. We investigated whether SAHA suppresses the expression of IL-6 by perturbing the miR-9-MCPIP1 axis in OA chondrocytes under pathological conditions. MATERIALS AND METHODS OA chondrocytes were isolated by enzymatic digestion and treated with IL-1β in the absence or presence of SAHA. Genes and protein expression levels were determined by TaqMan assays and Western blotting, respectively. Secreted IL-6 was quantified by enzyme linked immunosorbent assay (ELISA). MCPIP1 promoter deletion mutants were generated by polymerase chain reaction (PCR). Promoter recruitment of transcription factors was determined by ChIP. Nuclear run-on was employed to measure the ongoing transcription. siRNA-mediated knockdown of the CEBPα expression was employed for loss of function studies. RESULTS Expression of MCPIP1 was high in SAHA treated OA chondrocytes but expression of IL-6 mRNAs and secreted IL-6 were reduced by ~70%. SAHA suppressed the expression of miR-9 but enhanced the activity of the MCPIP1 promoter localized to a 156bp region which also harbors the binding site for CEBPα. Treatment with SAHA enhanced the recruitment of CEBPα to the MCPIP1 promoter. Ectopically expressed CEBPα enhanced the promoter activity and the expression of MCPIP1 while siRNA-mediated knockdown of CEBPα inhibited the expression of MCPIP1. CONCLUSIONS Taken together our data indicate that SAHA-mediated suppression of the IL-6 expression is achieved through increased recruitment of CEBPα to the MCPIP1 promoter and by relieving the miR-9-mediated inhibition of MCPIP1 expression in OA chondrocytes.
Collapse
Affiliation(s)
- Mohammad S Makki
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio 44272
| |
Collapse
|
741
|
Irimia JM, Guerrero M, Rodriguez-Miguelez P, Cadefau JA, Tesch PA, Cussó R, Fernandez-Gonzalo R. Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise. J Appl Physiol (1985) 2017; 122:96-103. [DOI: 10.1152/japplphysiol.00521.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/25/2016] [Accepted: 11/30/2016] [Indexed: 11/22/2022] Open
Abstract
As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle.
Collapse
Affiliation(s)
- José M. Irimia
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana
| | - Mario Guerrero
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Paula Rodriguez-Miguelez
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, Georgia; and
| | - Joan A. Cadefau
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Per A. Tesch
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Roser Cussó
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Rodrigo Fernandez-Gonzalo
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium
| |
Collapse
|
742
|
Transforming growth factor-β1 regulation of ATF-3, c-Jun and JunB proteins for activation of matrix metalloproteinase-13 gene in human breast cancer cells. Int J Biol Macromol 2017; 94:370-377. [DOI: 10.1016/j.ijbiomac.2016.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
|
743
|
Yuan P, He XH, Rong YF, Cao J, Li Y, Hu YP, Liu Y, Li D, Lou W, Liu MF. KRAS/NF-κB/YY1/miR-489 Signaling Axis Controls Pancreatic Cancer Metastasis. Cancer Res 2017; 77:100-111. [PMID: 27793842 DOI: 10.1158/0008-5472.can-16-1898] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022]
Abstract
KRAS activation occurring in more than 90% of pancreatic ductal adenocarcinomas (PDAC) drives progression and metastasis, but the underlying mechanisms involved in these processes are still poorly understood. Here, we show how KRAS acts through inflammatory NF-κB signaling to activate the transcription factor YY1, which represses expression of the tumor suppressor gene miR-489. In PDAC cells, repression of miR-489 by KRAS signaling inhibited migration and metastasis by targeting the extracellular matrix factors ADAM9 and MMP7. miR-489 downregulation elevated levels of ADAM9 and MMP7, thereby enhancing the migration and metastasis of PDAC cells. Together, our results establish a pivotal mechanism of PDAC metastasis and suggest miR-489 as a candidate therapeutic target for their attack. Cancer Res; 77(1); 100-11. ©2016 AACR.
Collapse
Affiliation(s)
- Peng Yuan
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong He
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Fei Rong
- Department of Pancreatic Surgery, Zhong Shan Hospital, Shanghai, China
| | - Jing Cao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yun-Ping Hu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhong Shan Hospital, Shanghai, China.
| | - Mo-Fang Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
744
|
Jahantigh D, Hosseinzadeh Colagar A. XRCC5 VNTR, XRCC6 -61C>G, and XRCC7 6721G>T Gene Polymorphisms Associated with Male Infertility Risk: Evidences from Case-Control and In Silico Studies. Int J Endocrinol 2017; 2017:4795076. [PMID: 28421111 PMCID: PMC5379132 DOI: 10.1155/2017/4795076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 11/17/2022] Open
Abstract
We evaluate the association between genetic polymorphisms of XRCC5 VNTR, XRCC6 -61C>G, and XRCC7 6721G>T with male infertility susceptibility. A total of 392 men including 178 infertile males (102 idiopathic azoospermia and 76 severe oligozoospermia) and 214 healthy controls were recruited. XRCC6 -61C>G and XRCC7 6721G>T genotyping was performed by PCR-RFLP whereas XRCC5 VNTR was performed by PCR. The 2R allele and 2R allele carriers of XRCC5 VNTR polymorphism significantly decreased risk of male infertility. The mutant GG genotypes and carriers of the CG and GG genotypes of XRCC6 -61C>G showed increased risk for the male infertility. Furthermore, the G allele of the XRCC6 -61C>G was correlated with increased susceptibility to male infertility. Likewise, the T allele of the XRCC7 6721G>T polymorphism was associated with increased susceptibility to male infertility in azoospermia. In silico analysis predicted that the presence of tandem repeats in XRCC5 gene prompter can be sequence to bind to more nuclear factors. Also, rs2267437 (C>G) variant was located in a well-conserved region in XRCC6 promoter and this variation might lead to differential allelic expression. The XRCC7 6721G>T gene polymorphism occurred in an acceptor-splicing site, but this polymorphism has no severe modification on XRCC7 mRNA splicing. Our results indicate the association of XRCC5 VNTR, XRCC6 -61C>G, and XRCC7 6721G>T gene polymorphisms with male infertility in Iranian men.
Collapse
Affiliation(s)
- Danial Jahantigh
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- *Abasalt Hosseinzadeh Colagar:
| |
Collapse
|
745
|
Kunz M, Wolf B, Schulze H, Atlan D, Walles T, Walles H, Dandekar T. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools. Genes (Basel) 2016; 8:E8. [PMID: 28035947 PMCID: PMC5295003 DOI: 10.3390/genes8010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Meik Kunz
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
| | - Beat Wolf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
- University of Applied Sciences and Arts of Western Switzerland, Perolles 80, 1700 Fribourg, Switzerland.
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Wuerzburg, 97080 Wuerzburg, Germany.
| | - David Atlan
- Phenosystems SA, 137 Rue de Tubize, 1440 Braine le Château, Belgium.
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
- Translational Center Wuerzburg "Regenerative therapies in oncology and musculoskeletal disease" Wuerzburg branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB), Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
- BioComputing Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
746
|
Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese. Gene 2016; 603:34-41. [PMID: 27964944 DOI: 10.1016/j.gene.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. METHODS Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. RESULTS After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. CONCLUSIONS This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese.
Collapse
|
747
|
Chen HY, Ma SL, Huang W, Ji L, Leung VHK, Jiang H, Yao X, Tang NLS. The mechanism of transactivation regulation due to polymorphic short tandem repeats (STRs) using IGF1 promoter as a model. Sci Rep 2016; 6:38225. [PMID: 27910883 PMCID: PMC5133613 DOI: 10.1038/srep38225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Functional short tandem repeats (STR) are polymorphic in the population, and the number of repeats regulates the expression of nearby genes (known as expression STR, eSTR). STR in IGF1 promoter has been extensively studied for its association with IGF1 concentration in blood and various clinical traits and represents an important eSTR. We previously used an in-vitro luciferase reporter model to examine the interaction between STRs and SNPs in IGF1 promoter. Here, we further explored the mechanism how the number of repeats of the STR regulates gene transcription. An inverse correlation between the number of repeats and the extent of transactivation was found in a haplotype consisting of three promoter SNPs (C-STR-T-T). We showed that these adjacent SNPs located outside the STR were required for the STR to function as eSTR. The C allele of rs35767 provides a binding site for CCAAT/enhancer-binding-protein δ (C/EBPD), which is essential for the gradational transactivation property of eSTR and FOXA3 may also be involved. Therefore, we propose a mechanism in which the gradational transactivation by the eSTR is caused by the interaction of one or more transcriptional complexes located outside the STR, rather than by direct binding to a repeat motif of the STR.
Collapse
Affiliation(s)
- Holly Y Chen
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Ling Ma
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lindan Ji
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Vincent H K Leung
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Laboratory of Genetics of Disease Susceptibility, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Functional Genomics and Biostatistical Computing laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, China.,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| |
Collapse
|
748
|
Montalbano A, Juergensen L, Roeth R, Weiss B, Fukami M, Fricke-Otto S, Binder G, Ogata T, Decker E, Nuernberg G, Hassel D, Rappold GA. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol Med 2016; 8:1455-1469. [PMID: 27861128 PMCID: PMC5167135 DOI: 10.15252/emmm.201606623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency.
Collapse
Affiliation(s)
- Antonino Montalbano
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Gerhard Binder
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eva Decker
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Gudrun Nuernberg
- Center for Molecular Medicine, Cologne, Germany
- Cologne Center for Genomics, Cologne, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
749
|
Ooi DSQ, Ong SG, Heng CK, Loke KY, Lee YS. In-vitro function of upstream visfatin polymorphisms that are associated with adverse cardiometabolic parameters in obese children. BMC Genomics 2016; 17:974. [PMID: 27887573 PMCID: PMC5124300 DOI: 10.1186/s12864-016-3315-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/18/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Visfatin is an adipokine associated with glucose and lipid metabolism. We previously reported two visfatin upstream single nucleotide polymorphisms (SNPs), c.-3187G > A (rs11977021) and c.-1537C > T (rs61330082), which were in perfect linkage disequilibrium, in a Singaporean cohort of severely obese children and are associated with visfatin level and adverse cardiometabolic parameters. We aim to functionally characterize the effect of c.-3187G > A and c.-1537C > T SNPs on basal transcriptional activity. METHODS A 1.6 kb and 3.7 kb upstream promoter region of the visfatin gene was amplified by polymerase chain reaction and separately cloned into luciferase reporter vectors. Successful clones were transfected into human embryonic kidney (HEK293T) and human breast carcinoma (MCF7) cells and in-vitro dual-luciferase assay was performed. Electrophoretic mobility shift assay (EMSA) was also conducted to examine the binding affinity between transcription factors and visfatin promoter sequences. RESULTS Variant promoter with only c.-1537C > T SNP did not show a change in transcriptional activity as compared to the wild type. However, variant promoter with both c.-3187G > A and c.-1537C > T SNPs showed a statistically significant increase of 1.41 fold (p < 0.01) in transcriptional activity. The longer 3.7kbp visfatin promoter sequence was also shown to have significantly higher transcriptional activity (p < 0.05) as compared to the shorter 1.6kbp visfatin promoter. Both c.-3187G > A and c.-1537C > T variants showed an increased binding with nuclear protein. DISCUSSION AND CONCLUSIONS We have demonstrated for the first time that visfatin variant promoter with both c.-3187G > A and c.-1537C > T SNPs result in an increase in transcriptional activity. This supports our previous finding and postulation that these SNPs contribute to elevated visfatin levels which may mediate higher triglyceride levels, severe systolic blood pressure and severe hypertension in obese children. These SNPs may co-operatively affect enhancer or silencer function to regulate transcriptional activity. In conclusion, this study shows that upstream visfatin SNPs could potentially affect phenotypic outcome in obese children through alteration of circulating visfatin level.
Collapse
Affiliation(s)
- Delicia Shu Qin Ooi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Siong Gim Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Chew Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kah Yin Loke
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore.
- Singapore Institute for Clinical Sciences, Agency of Science, Technology and Research, Singapore, Singapore.
- Department of Paediatrics, Yong Loo Lin School of Medicine, NUHS tower block, Level 12, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
750
|
Alsiddig MA, Yu SG, Pan ZX, Widaa H, Badri TM, Chen J, Liu HL. Association of single nucleotide polymorphism inmelatonin receptor 1Agene with egg production traits in Yangzhou geese. Anim Genet 2016; 48:245-249. [DOI: 10.1111/age.12517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 01/20/2023]
Affiliation(s)
- M. A. Alsiddig
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
- Department of Animal Production; College of Agriculture; Alzaiem Alazhari University; 1432 Khartoum North 13311, Sudan
| | - S. G. Yu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. X. Pan
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Widaa
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - T. M. Badri
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Chen
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. L. Liu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|