701
|
Hou L, Xie S, Li G, Xiong B, Gao Y, Zhao X, Hu J, Deng S, Jiang J. IL-6 Triggers the Migration and Invasion of Oestrogen Receptor-Negative Breast Cancer Cells via Regulation of Hippo Pathways. Basic Clin Pharmacol Toxicol 2018; 123:549-557. [PMID: 29781562 DOI: 10.1111/bcpt.13042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the major challenges for women's health. However, the role and mechanisms of interleukins (ILs) on the progression of breast cancer are not well illustrated. Our present study revealed that the expressions of IL-6 and IL-8 were significantly increased in oestrogen receptor-negative (ER-) breast cancer cells. Increased expression of IL-6 was observed in 83.9% (26/31) ER- breast cancer tissues as compared with their matched adjacent normal tissues. In vitro studies indicated that IL-6 can significantly promote the migration and invasion of ER- breast cancer cells via increasing the dephosphorylation, nuclear translocation and transcriptional activities of YAP in breast cancer cells. Knockdown of YAP can attenuate IL-6-induced migration and invasion of cancer cells, suggesting that YAP plays an essential role in IL-6-induced malignancy of breast cancer cells. Furthermore, IL-6 treatment also decreased the phosphorylation of LATS1/2. The knockdown of LATS1/2 synergistically suppressed si-IL-6-induced deactivation of YAP. Targeted inhibition of IL-6/YAP can significantly suppress the invasion of ER- breast cancer cells. Collectively, our study revealed that IL-6 can trigger the malignancy of breast cancer cells via activation of YAP signals. Targeted inhibition of IL-6/YAP might be a novel therapeutic approach for the treatment of ER- breast cancer.
Collapse
Affiliation(s)
- Lingmi Hou
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.,Department of Thyroid Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shaoli Xie
- Department of Thyroid Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Xiong
- Department of Thyroid Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanchun Gao
- Department of Thyroid Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaobo Zhao
- Department of Thyroid Breast Surgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Shishan Deng
- Department of Anatomy, The North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
702
|
Zhang J, He Y, Yu Y, Chen X, Cui G, Wang W, Zhang X, Luo Y, Li J, Ren F, Ren Z, Sun R. Upregulation of miR-374a promotes tumor metastasis and progression by downregulating LACTB and predicts unfavorable prognosis in breast cancer. Cancer Med 2018; 7:3351-3362. [PMID: 29790671 PMCID: PMC6051141 DOI: 10.1002/cam4.1576] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BRCA) is the second leading cause of cancer-related death among female worldwide. Recent studies have revealed that LACTB was frequently repressed and functioned as a bona fide new tumor suppressor in a series of cancers, including BRCA. However, the molecular mechanisms underlying LACTB dysregulation in BRCA have not been reported. In the present study, we find that LACTB is repressed in BRCA and associated with poor prognosis by BRCA tissue microarray (TMA) analysis. Moreover, we confirm that LACTB is a direct target of miR-374a, which is significantly overexpressed and associated with malignancies in BRCA. Mechanistically, applying loss-of-function and gain-of-function approaches in a series of in vitro and in vivo experiments show that miR-374a knockdown suppresses the cell proliferative and colony formation activity, as well as migration and invasion capacity, but LACTB silencing in these cells reverses this change. Furthermore, we find that miR-374a silencing markedly reduces the tumor growth in xenograft mouse models. In summary, our findings suggest the miR-374a/LACTB axis plays a critical role in the tumorigenicity and progression of BRCA. miR-374a/LACTB axis may be a potential target in the development of therapeutic strategies for BRCA patients.
Collapse
Affiliation(s)
- Jun Zhang
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuting He
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yan Yu
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaolong Chen
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guangying Cui
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weiwei Wang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaojian Zhang
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yonggang Luo
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Juan Li
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fang Ren
- Key Laboratory of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhigang Ren
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ranran Sun
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
703
|
Yao L, Liu Y, Cao Z, Li J, Huang Y, Hu X, Shao Z. MicroRNA-493 is a prognostic factor in triple-negative breast cancer. Cancer Sci 2018; 109:2294-2301. [PMID: 29777630 PMCID: PMC6029816 DOI: 10.1111/cas.13644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases in women. Triple‐negative breast cancer (TNBC) shows higher aggressiveness and recurrence rates than other subtypes, and there are no effective targets or tailored treatments for TNBC patients. Thus, finding effective prognostic markers for TNBC could help clinicians in their ability to care for their patients. We used tissue microarrays (TMAs) to detect microRNA‐493 (miR‐493) expression in breast cancer samples. A miRCURY LNA detection probe specific for miR‐493 was used in in situ hybridization assays. Staining results were reviewed by two independent pathologists and classified as high or low expression of miR‐493. Kaplan–Meier survival plots and multivariate Cox analysis were carried out to clarify the relationship between miR‐493 and survival. In the Kaplan–Meier analysis, patients with high miR‐493 expression had better disease‐free survival than patients with low miR‐493 expression. After adjusting for common clinicopathological factors in breast cancer, the expression level of miR‐493 was still a significant prognostic factor in breast cancer. Further subtype analysis revealed that miR‐493 expression levels were only significantly prognostic in TNBC patients. These results were validated in the Molecular Taxonomy of Breast Cancer International Consortium database for overall survival. We proved the prognostic role of miR‐493 in TNBC by using one of the largest breast cancer TMAs available and validated it in a large public RNA sequencing database.
Collapse
Affiliation(s)
- Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yirong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhigang Cao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junjing Li
- Department of Breast Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanni Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
704
|
Cancemi P, Buttacavoli M, Di Cara G, Albanese NN, Bivona S, Pucci-Minafra I, Feo S. A multiomics analysis of S100 protein family in breast cancer. Oncotarget 2018; 9:29064-29081. [PMID: 30018736 PMCID: PMC6044374 DOI: 10.18632/oncotarget.25561] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Gianluca Di Cara
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Nadia Ninfa Albanese
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Serena Bivona
- Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy
| | - Ida Pucci-Minafra
- Center of Experimental Oncobiology (C.OB.S.), La Maddalena Hospital III Level Oncological Dept., Palermo, Italy
| | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network Center (ATeN), University of Palermo, Palermo, Italy.,Institute of Biomedicine and Molecular Immunology, CNR, Palermo, Italy
| |
Collapse
|
705
|
Kalra S, Kaur RP, Ludhiadch A, Shafi G, Vashista R, Kumar R, Munshi A. Association of CYP2C19*2 and ALDH1A1*1/*2 variants with disease outcome in breast cancer patients: results of a global screening array. Eur J Clin Pharmacol 2018; 74:1291-1298. [DOI: 10.1007/s00228-018-2505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
|
706
|
Grégoire C, Nicolas H, Bragard I, Delevallez F, Merckaert I, Razavi D, Waltregny D, Faymonville ME, Vanhaudenhuyse A. Efficacy of a hypnosis-based intervention to improve well-being during cancer: a comparison between prostate and breast cancer patients. BMC Cancer 2018; 18:677. [PMID: 29929493 PMCID: PMC6013950 DOI: 10.1186/s12885-018-4607-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate and breast cancer can have a lot of negative consequences such as fatigue, sleep difficulties and emotional distress, which decrease quality of life. Group interventions showed benefits to emotional distress and fatigue, but most of these studies focus on breast cancer patients. However, it is important to test if an effective intervention for breast cancer patients could also have benefits for prostate cancer patients. METHODS Our controlled study aimed to compare the efficacy of a self-hypnosis/self-care group intervention to improve emotional distress, sleep difficulties, fatigue and quality of life of breast and prostate cancer patients. 25 men with prostate cancer and 68 women with breast cancer participated and were evaluated before (T0) and after (T1) the intervention. RESULTS After the intervention, the breast cancer group showed positive effects for anxiety, depression, fatigue, sleep difficulties, and global health status, whereas there was no effect in the prostate cancer group. We showed that women suffered from higher difficulties prior to the intervention and that their oncological treatments were different in comparison to men. CONCLUSION The differences in the efficacy of the intervention could be explained by the baseline differences. As men in our sample reported few distress, fatigue or sleep problems, it is likely that they did not improve on these dimensions. TRIAL REGISTRATION ClinicalTrials.gov ( NCT02569294 and NCT03423927 ). Retrospectively registered in October 2015 and February 2018 respectively.
Collapse
Affiliation(s)
- C. Grégoire
- Public Health Department and Sensation and Perception Research Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - H. Nicolas
- Urology Department, CHR Citadelle, Liège, Belgium
| | - I. Bragard
- Public Health Department and Sensation and Perception Research Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - F. Delevallez
- Psychology Department, University, Free University of Brussels, Brussels, Belgium
| | - I. Merckaert
- Psychology Department, University, Free University of Brussels, Brussels, Belgium
| | - D. Razavi
- Psychology Department, University, Free University of Brussels, Brussels, Belgium
| | - D. Waltregny
- Urology Department, University Hospital of Liège, University of Liège, Liège, Belgium
| | - M.-E. Faymonville
- Algology-Palliative Care Department, University Hospital of Liège, Sensation and Perception Research Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - A. Vanhaudenhuyse
- Algology-Palliative Care Department, University Hospital of Liège, Sensation and Perception Research Group, GIGA Consciousness, University of Liège, Liège, Belgium
| |
Collapse
|
707
|
Liu W, Xu Y, Guan H, Meng H. Clinical potential of miR-940 as a diagnostic and prognostic biomarker in breast cancer patients. Cancer Biomark 2018; 22:487-493. [PMID: 29843213 DOI: 10.3233/cbm-171124] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjun Liu
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
| | - Yongmei Xu
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
| | - Hongliang Guan
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
- Department of Breast and Thyroid Surgery, Shanxian Central Hospital, Heze 274300, Shandong, China
| | - Hongwei Meng
- Department of Internal Medicine, Shanxian Central Hospital, Heze 274300, Shandong, China
| |
Collapse
|
708
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
709
|
The Safety, Cosmetic Outcome, and Patient Satisfaction after Inferior Pedicle Reduction Mammaplasty for Significant Macromastia. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1798. [PMID: 30276047 PMCID: PMC6157945 DOI: 10.1097/gox.0000000000001798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
Background: Significant macromastia is socially and physically debilitating. Reduction mammaplasty in these cases carries significant morbidity. Methods: Cases of inferior pedicle reduction mammaplasty performed at the breast unit, King Fahd Hospital, Jeddah, Saudi Arabia, over the last 10 years were reviewed. Inclusion criteria were cases with significant macromastia in which the distance from the supra-sternal notch to the nipple was ≥ 40 cm. Results: There were 26 cases of inferior pedicle reduction mammaplasty done for significant macromastia. The average age was 34.56 years (range, 16–56 years). The average sternal notch to the nipple distance was 43.08 cm (range, 40–49 cm). The average amount of breast tissue removed from the right breast was 1,057.6 g (range, 495–2,450) and from the left breast was 959.4 g (range, 445–2,100). Postoperatively, 4/26 (15.4%) had ecchymosis, 9/26 (34.6%) developed T-junction sloughing, 2/26 (7.7%) had wound infection, and 1/26 (3.8%) had unilateral partial nipple-areola complex ischemia. In 7/26 (26.9%), scars were evident and revision was performed in 4/26 (15.4%) cases. Variable degrees of upper breast flattening and bottoming were seen in most cases; however, these variations were more profound in fatty breasts and longer pedicles. The average follow-up period was 26.04 months (range, 3–68 months). All patients were satisfied with the reduced breast heaviness, but only 19/26 (73.1%) were highly satisfied with the breast shape and scars. Conclusions: In cases of significant macromastia, inferior pedicle reduction mammaplasty is a safe procedure. Evident scars, upper breast flattening, and bottoming adversely affect the level of satisfaction.
Collapse
|
710
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr 2018; 58:1428-1447. [DOI: 10.1080/10408398.2016.1263597] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, Agriculture University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Dennis G. Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
711
|
El-Naggar M, Eldehna WM, Almahli H, Elgez A, Fares M, Elaasser MM, Abdel-Aziz HA. Novel Thiazolidinone/Thiazolo[3,2- a]Benzimidazolone-Isatin Conjugates as Apoptotic Anti-proliferative Agents Towards Breast Cancer: One-Pot Synthesis and In Vitro Biological Evaluation. Molecules 2018; 23:E1420. [PMID: 29895744 PMCID: PMC6099623 DOI: 10.3390/molecules23061420] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/21/2022] Open
Abstract
In connection with our research program on the development of new isatin-based anticancer candidates, herein we report the synthesis of two novel series of thiazolidinone-isatin conjugates (4a⁻n) and thiazolo[3,2-a]benzimidazolone-isatin conjugates (7a⁻d), and in vitro evaluation of their antiproliferative activity towards two breast cancer cell lines; triple negative MDA-MB-231, and MCF-7. Compounds 4m and 7b emerged as the most active congeners against MDA-MB-231 cells (IC50 = 7.6 ± 0.5 and 13.2 ± 1.1 µM, respectively). Compounds 4m and 7b were able to provoke apoptosis in MDA-MB-231 cells, evidenced by the up-regulation of Bax and down-regulation of Bcl-2, besides boosting caspase-3 levels. Hybrid 4m induced a fourfold increase in the percentage of cells at Sub-G₁, with concurrent arrest in G₂-M phase by 2.5-folds. Furthermore, hybrid 4m resulted in a sixfold increase in the percentage of annexin V-FITC positive apoptotic MDA-MB-231 cells as compared with the control. Moreover, the cytotoxic activities of the active conjugates were assessed towards two nontumorigenic cell lines (breast MCF-10A and lung WI-38) where both conjugates 4m and 7b displayed mean tumor selectivity index: 9.6 and 13.9, respectively. Finally, several ADME descriptors were predicted for the active conjugates via a theoretical kinetic study.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Hadia Almahli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, UK.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Amr Elgez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
- School of Chemistry, University of Wollongong, Wollongong 2522, New South Wales, Australia.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt.
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
712
|
Zhou Y, Zou H, Wu E, Huang L, Yin R, Mei Y, Zhu X. Overexpression of ROD1 inhibits invasion of breast cancer cells by suppressing the translocation of β-catenin into the nucleus. Oncol Lett 2018; 16:2645-2653. [PMID: 30013660 DOI: 10.3892/ol.2018.8917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
The incidence of breast cancer is increasing throughout the world. Although significant progress has been made in diagnostic techniques and targeted therapies, the prognosis of breast cancer remains poor. Regulator of differentiation 1 (ROD1) may inhibit the development of several types of cancer. However, the role of ROD1 in breast cancer cells remains unknown. In the present study, western blot analysis and reverse transcription-quantitative polymerase chain reaction revealed that expression of ROD1 was significantly reduced in breast cancer cells. Overexpression of ROD1 reduced the proliferation rate, demonstrated using a Cell Counting Kit-8 assay. Additionally, the overexpression of ROD1 decreased the invasiveness of breast cancer cells, indicating that ROD1 may serve as a tumor suppressor. Additionally, the data suggested that ROD1 significantly suppressed the activity of Wnt luciferase reporter (TOP Flash) in MDA-MB-231 cells. Furthermore, it was demonstrated that ROD1 may interact with β-catenin by using co-immunoprecipitation, resulting in suppression of β-catenin migration into the nucleus. Notably, ROD1 demonstrated its anticancer effect by decreasing β-catenin (Y333) phosphorylation in a nude mouse xenograft model. Overexpression of ROD1 may downregulate Ki67 protein levels, as determined by immunohistochemistry. These results indicated that ROD1 may be used as a therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Ya Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hanqing Zou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Enhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lei Huang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Rui Yin
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yuxin Mei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xun Zhu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
713
|
Kai W, Yating S, Lin M, Kaiyong Y, Baojin H, Wu Y, Fangzhou Y, Yan C. Natural product toosendanin reverses the resistance of human breast cancer cells to adriamycin as a novel PI3K inhibitor. Biochem Pharmacol 2018; 152:153-164. [DOI: 10.1016/j.bcp.2018.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
|
714
|
Safi R, Hamade A, Bteich N, El Saghir J, Assaf MD, El-Sabban M, Najjar F. A ferutinin analogue with enhanced potency and selectivity against ER-positive breast cancer cells in vitro. Biomed Pharmacother 2018; 105:267-273. [PMID: 29860218 DOI: 10.1016/j.biopha.2018.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022] Open
Abstract
Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.
Collapse
Affiliation(s)
- Rémi Safi
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aline Hamade
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon
| | - Najat Bteich
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon
| | - Jamal El Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mona Diab Assaf
- Department of Chemistry and Biochemistry, Faculty of Sciences II, Lebanese University, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Fadia Najjar
- Departments of Chemistry-Biochemistry and Biology, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Lebanon.
| |
Collapse
|
715
|
Survival Benefit of Surgical Removal of Primary Tumor in Patients With Stage IV Breast Cancer. Clin Breast Cancer 2018; 18:e1037-e1044. [PMID: 29909259 DOI: 10.1016/j.clbc.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Several studies have suggested that primary tumor removal improved overall survival for patients with stage IV breast cancer. However, the survival benefit of local treatment remains controversial. The purpose of the present study was to determine whether surgical removal of the primary tumor provides survival benefits to patients with stage IV breast cancer. PATIENTS AND METHODS We retrospectively reviewed the medical records of 155 patients with an initial diagnosis of stage IV breast cancer at Seoul National University Bundang Hospital from 2003 to 2014. Kaplan-Meier analysis was used to estimate the median survival. The log-rank test was used to compare differences in patient and tumor characteristics. Multivariate Cox regression analysis for survival was used, controlling for potential confounding variables. RESULTS Of 155 patients with stage IV breast cancer, 95 (61%) underwent surgical removal of the primary tumor. The median follow-up period was 59 months (95% confidence interval [CI], 45-73 months). The median survival was longer for the patients with a better response to chemotherapy (70 vs. 47 months; P = .010) and for those who had undergone surgery (118 vs. 28 months; P < .001) than for those who without a better chemotherapy response or surgery. The median survival of the patients who received radiotherapy was better than that of the patients who did not (65 vs. 39 months; P = .004). Patients with luminal A cancer had a median survival of 118 months, the longest compared with those with other subtypes (P = .001). In addition, patients with distant metastasis at a single site had a longer median survival than did those with multiple metastatic sites. The multivariate Cox regression analysis revealed that fewer distant metastases, surgery of the primary tumor, a better response to chemotherapy, and luminal A subtype were significant independent predictors of survival. CONCLUSION Our results showed that primary tumor removal was independently associated with improvement in survival. Therefore, surgical management for the primary tumor could be considered more actively in patients with stage IV breast cancer.
Collapse
|
716
|
Gaudet HM, Christensen E, Conn B, Morrow S, Cressey L, Benoit J. Methylmercury promotes breast cancer cell proliferation. Toxicol Rep 2018; 5:579-584. [PMID: 29868453 PMCID: PMC5984200 DOI: 10.1016/j.toxrep.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 05/02/2018] [Accepted: 05/13/2018] [Indexed: 10/26/2022] Open
Abstract
CONTEXT Metalloestrogens are small ionic metals that activate the estrogen receptor (ER). Studies have shown that when metalloestrogens bind to the ER, there is an increase in transcription and expression of estrogen-regulated genes, which induces proliferation of estrogen-dependent breast cancer. Methylmercury (MeHg), a metalloestrogen, is present in the environment and is toxic at moderate to high concentrations. However, at lower concentrations MeHg may promote the proliferation of ER-positive breast cancers and protect cells against pro-apoptotic signals. OBJECTIVE To investigate the effects of MeHg treatment on breast cancer cells in vitro. MATERIALS AND METHODS MCF7 breast cancer cells were treated with concentrations of MeHg ranging from 1 nM to 100 mM. Hg analysis was used to quantify intracellular mercury concentrations. Cell proliferation and apoptosis were determined by cell counting and Annexin-V staining, respectively. RESULTS We defined a protocol that maximizes cellular exposure to mercury. Treatment of human ER-positive breast cancer cells with 1 nM MeHg promoted proliferation, while treatment with a concentration of 100 nM induced apoptosis. DISCUSSION AND CONCLUSIONS Clarifying the effects of MeHg on breast cancer will improve our understanding of how environmental toxins affect tumor progression and may lead to the development of future therapeutic strategies.
Collapse
|
717
|
Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 2018; 9:636. [PMID: 29802332 PMCID: PMC5970196 DOI: 10.1038/s41419-018-0669-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
Abstract
Stress-induced cellular defense machinery has a critical role in mediating cancer drug resistance, and targeting stress-related signaling has become a novel strategy to improve chemosensitivity. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid with potent anticancer bioactivities in multiple malignancies, whereas its underlying mechanisms remain unclear. Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction, but had little cytotoxicity effects on normal mammary epithelial cells. Drug affinity responsive target stability (DARTS) strategy further identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA. BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apoptotic pathway. GRP78 silencing or ER stress inhibitor salubrinal administration was revealed to abolish the anticancer effects of BA, indicating the critical role of GRP78 in mediating the bioactivity of BA. Molecular docking and coimmunoprecipitation assay further demonstrated that BA might competitively bind with ATPase domain of GRP78 to interrupt its interaction with ER stress sensor PERK, thereby initiating the downstream apoptosis cascade. In vivo breast cancer xenografts finally validated the chemosensitizing effects of BA and its biofunction in activating GRP78 to trigger ER stress-mediated apoptosis. Taken together, our study not only uncovers GRP78 as a novel target underlying the chemosensitizing effects of BA, but also highlights GRP78-based targeting strategy as a promising approach to improve breast cancer prognosis.
Collapse
|
718
|
Novel Bacterial Cellulose/Gelatin Hydrogels as 3D Scaffolds for Tumor Cell Culture. Polymers (Basel) 2018; 10:polym10060581. [PMID: 30966615 PMCID: PMC6403570 DOI: 10.3390/polym10060581] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) cells in vitro culture are becoming increasingly popular in cancer research because some important signals are lost when cells are cultured in a two-dimensional (2D) substrate. In this work, bacterial cellulose (BC)/gelatin hydrogels were successfully synthesized and were investigated as scaffolds for cancer cells in vitro culture to simulate tumor microenvironment. Their properties and ability to support normal growth of cancer cells were evaluated. In particular, the human breast cancer cell line (MDA-MD-231) was seeded into BC/gelatin scaffolds to investigate their potential in 3D cell in vitro culture. MTT proliferation assay, scanning electron microscopy, hematoxylin and eosin staining and immunofluorescence were used to determine cell proliferation, morphology, adhesion, infiltration, and receptor expression. The in vitro MDA-MD-231 cell culture results demonstrated that cells cultured on the BC/gelatin scaffolds had significant adhesion, proliferation, ingrowth and differentiation. More importantly, MDA-MD-231 cells cultured in BC/gelatin scaffolds retained triple-negative receptor expression, demonstrating that BC/gelatin scaffolds could be used as ideal in vitro culture scaffolds for tumor cells.
Collapse
|
719
|
Zeng H, Wang L, Wang J, Chen T, Li H, Zhang K, Chen J, Zhen S, Tuluhong D, Li J, Wang S. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys 2018; 651:52-60. [PMID: 29802821 DOI: 10.1016/j.abb.2018.05.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Adriamycin resistance is closely related to therapeutic efficacy in breast cancer patients and their prognosis. Increasing evidence has suggested that miRNA functions in Adriamycin resistance in various types of cancer. microRNA-129-5p (miR-129-5p) has been considered a tumor-suppressive miRNA in several cancers, but its potential role in Adriamycin resistance in breast cancer has not been fully elucidate. By qRT-PCR assay, we revealed that the expression of miR-129-5p was significantly decreased in breast cancer tissues and Adriamycin-resistant breast cancer cells (MDA-MB-231/ADR, MCF-7/ADR). CCK-8, colony formation, wound healing, Transwell invasion, and flow cytometric profiles were examined to determine the influence of miR-129-5p on Adriamycin-resistant breast cancer in vitro. The upregulation of miR-129-5p decreased the IC50 concentration of Adriamycin and invasion and promoted the apoptosis of MDA-MB-231/ADR cells in the presence of Adriamycin, whereas the upregulation of Sex-Determining Region Y-Box 2 (SOX2) reversed these effects. A luciferase reporter assay confirmed the binding of miR-129-5p to the 3'UTR of SOX2. Collectively, it was suggested that miR-129-5p suppresses Adriamycin resistance in breast cancer by directly targeting SOX2.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Lulu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Shuang Zhen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| |
Collapse
|
720
|
Exosome-mediated miR-222 transferring: An insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res 2018; 369:129-138. [PMID: 29778754 DOI: 10.1016/j.yexcr.2018.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
The subtypes of distant-organ metastasis led to treatment failure and poor prognosis are major obstacles in the management of patients with advanced breast cancer (BCa). Emerging evidences demonstrated that exosomes act as mediators for intercellular communication between various types of cells in the local tumor microenvironment. The present study aims to investigate whether BCa-derived exosomes are capable of cell-cell transferring miR-222 for BCa metastatic progression. Results showed that exosomal miR-222 is highly expressed in BCa patients with lymphatic metastasis. Consistently, the elevated levels of exosomal miR-222 are closely correlated with the high aggressivity of BCa cell lines. miR-222 promoting the aggressivity of BCa cells was confirmed in vitro and in vivo. Mechanistically, miR-222 directly targets PDLIM2, a tumor suppressor gene, leading to activation of NF-κB signal pathway. In conclusion, the levels of exosomal miR-222 are correlated with BCa metastatic progression. Exosome-transferred miR-222 promotes migration and invasion of BCa cells. miR-222 contributes to tumorigenicity of BCa cells through down-regulation of PDLIM2 and consequently activating NF-κB.
Collapse
|
721
|
Li Y, Huang J, Zeng B, Yang D, Sun J, Yin X, Lu M, Qiu Z, Peng W, Xiang T, Li H, Ren G. PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation. Cancer Lett 2018; 430:109-122. [PMID: 29777785 DOI: 10.1016/j.canlet.2018.05.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Alterations in the ubiquitin-proteasome system (UPS) and UPS-associated proteins have been implicated in the development of many human malignancies. In this study, we investigated the expression profiles of 797 UPS-related genes using HiSeq data from The Cancer Genome Atlas and identified that PSMD2 was markedly upregulated in breast cancer. High PSMD2 expression was significantly correlated with poor prognosis. Gene set enrichment analysis revealed that transcriptome signatures involving proliferation, cell cycle, and apoptosis were critically enriched in specimens with elevated PSMD2. Consistently, PSMD2 knockdown inhibited cell proliferation and arrested cell cycle at G0/G1 phase in vitro, as well as suppressed tumor growth in vivo. Rescue assays demonstrated that the cell cycle arrest caused by silencing PSMD2 partially resulted from increased p21 and/or p27. Mechanically, PSMD2 physically interacted with p21 and p27 and mediated their ubiquitin-proteasome degradation with the cooperation of USP14. Notably, intratumor injection of therapeutic PSMD2 small interfering RNA effectively delayed xenograft tumor growth accompanied by p21 and p27 upregulation. These data provide novel insight into the role of PSMD2 in breast cancer and suggest that PSMD2 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Pneumology Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Lu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
722
|
Ren X, Li H, Song X, Wu Y, Liu Y. 5-Azacytidine treatment induces demethylation of DAPK1 and MGMT genes and inhibits growth in canine mammary gland tumor cells. Onco Targets Ther 2018; 11:2805-2813. [PMID: 29844679 PMCID: PMC5961471 DOI: 10.2147/ott.s162381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Canine mammary gland tumors (CMGTs) are the most common, spontaneous types of neoplasias in female dogs. Aberrant DAPK1 and MGMT methylation associated with tumor formation and development in various cancers. 5-Azacytidine is a known specific demethylation drug that covalently binds to DNA methyltransferase. However, the methylation of the DAPK1 and MGMT is unknown with respect to CMGTs. Therefore, we sought to demonstrate the effects of 5-azacytidine on the proliferation of CMGTs cell, and elucidate the potential molecular mechanisms of action in these cancerous cells. Materials and methods The effects of 5-azacytidine on CHMm and CHMp cell proliferation were evaluated by MTT assay. The DAPK1 and MGMT gene methylation patterns in CHMm and CHMp cells and CMGTs blood/tissue samples were analyzed by MSP assay. Effect of 5-azacytidine on the methylation of DAPK1 and MGMT gene, and DAPK1 and MGMT mRNA expression in CHMm and CHMp cells were analyzed by MSP assay and qRT-PCR assay, respectively. Results 5-Azacytidine may suppress the proliferation of CHMm and CHMp cells. Furthermore, the DAPK1 and MGMT genes were hypermethylated in CHMm/CHMp cells and clinical malignant tumor samples, but not in normal female dogs’ blood and tissue. However, the DAPK1 and MGMT genes were re-inducible in CHMm and CHMp cells treated with 5 μM 5-azacytidine. Meanwhile, 5-azacytidine increased the expression of DAPK1 and MGMT mRNA. Conclusion These results suggest that DAPK1 and MGMT methylation can serve as sensitive diagnostic biomarkers and therapeutic targets for CMGTs. 5-Azacytidine also could be a potential therapeutic candidate for CMGTs.
Collapse
Affiliation(s)
- Xiaoli Ren
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huatao Li
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xianyi Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhong Wu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
723
|
Jasra S, Anampa J. Anthracycline Use for Early Stage Breast Cancer in the Modern Era: a Review. Curr Treat Options Oncol 2018; 19:30. [PMID: 29752560 DOI: 10.1007/s11864-018-0547-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT Anthracycline-based regimens have been an important treatment component for patients with breast cancer. As demonstrated in the last Early Breast Cancer Trialists' Collaborative Group (EBCTCG) meta-analysis, anthracycline-based regimens decrease breast cancer mortality by 20-30%. Anthracycline toxicities include the rare-but potential morbid-cardiotoxicity or leukemogenic effect, and the almost universal-but very distressing-alopecia. Due to potential toxicities, and large number of patients being exposed, several worldwide trials have re-examined the role of anthracycline-based regimens in the management of breast cancer. Current literature supports that anthracyclines are not required for all patients with breast cancer and should be avoided in those with high cardiac risk. Recent results from the ABC trials suggest that anthracyclines should not be spared for patients with triple negative breast cancer (regardless of axillary node involvement) or HER2-/ER+ with significant node involvement. Based on current literature, for HER2-negative patients with low-risk breast cancer, anthracyclines could be spared with regimens such as cyclophosphamide, methotrexate, and fluorouracil (CMF) or docetaxel and cyclophosphamide (TC). Patients with intermediate or high-risk breast cancer should be considered for anthracycline-based regimens based on other factors such as age, comorbidities, tumor grade, lymphovascular invasion, and genomic profiling. Patients with HER2-positive breast cancer with low risk could be treated with paclitaxel and trastuzumab. For the remaining patients with HER2 overexpression, while docetaxel, carboplatin, and trastuzumab (TCH) has demonstrated to improve disease-free survival (DFS), anthracycline-containing regimens should be discussed, especially for those with very high-risk breast cancer. Although several biomarkers, such as topoisomerase II (TOP2A) and chromosome 17 centromeric duplication (Ch17CEP) have been proposed to predict benefit from anthracycline regimens, further research is required to delineate their proper utility in the clinical setting.
Collapse
Affiliation(s)
- Sakshi Jasra
- Department of Oncology, Section of Breast Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jesus Anampa
- Department of Oncology, Section of Breast Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1695 Eastchester Rd., Bronx, NY, 10461, USA.
| |
Collapse
|
724
|
Murciano-Goroff YR, McCarthy AM, Bristol MN, Groeneveld P, Domchek SM, Motanya UN, Armstrong K. Uptake of BRCA 1/2 and oncotype DX testing by medical and surgical oncologists. Breast Cancer Res Treat 2018; 171:173-180. [PMID: 29737473 DOI: 10.1007/s10549-018-4810-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/30/2023]
Abstract
PURPOSE The diffusion of genomic testing is critical to the success of precision medicine, but there is limited information on oncologists' uptake of genetic technology. We aimed to assess the frequency with which medical oncologists and surgeons order BRCA 1/2 and Oncotype DX testing for breast cancer patients. METHODS We surveyed 732 oncologists and surgeons treating breast cancer patients. Physicians were from Florida, New York, New Jersey, and Pennsylvania, and were listed in the 2010 AMA Masterfile or identified by patients. RESULTS 80.6% of providers ordered BRCA 1/2 testing at least sometimes and 85.4% ordered Oncotype DX (p = 0.01). More frequent ordering of BRCA 1/2 was associated with more positive attitudes toward genetic innovation (OR 1.14, p = 0.001), a belief that testing was likely to be covered by patients' insurance (OR 2.84, p < 0.001), and more frequent ordering of Oncotype DX testing (OR 8.69, p < 0.001). More frequent use of Oncotype DX was associated with a belief that testing was likely to be covered by insurance (OR 7.33, p < 0.001), as well as with more frequent ordering of BRCA 1/2 testing (OR 9.48, p < 0.001). CONCLUSIONS Nearly one in five providers never or rarely ever ordered BRCA 1/2 testing for their breast cancer patients, and nearly 15% never or rarely ever ordered Oncotype DX. Less frequent ordering of BRCA 1/2 is associated with less frequent use of Oncotype DX testing, and vice versa. Those who do not order BRCA 1/2 testing report less positive attitudes toward genetic innovation. Further education of this subset of providers regarding the benefits of precision medicine may enable more rapid diffusion of genetic technology.
Collapse
Affiliation(s)
- Yonina R Murciano-Goroff
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA,, 02114, USA.
| | - Anne Marie McCarthy
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA,, 02114, USA
| | - Mirar N Bristol
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA,, 02114, USA
| | - Peter Groeneveld
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Susan M Domchek
- University of Pennsylvania Abramson Cancer Center, Philadelphia, USA
| | - U Nkiru Motanya
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Katrina Armstrong
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA,, 02114, USA
| |
Collapse
|
725
|
Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer. Int J Mol Sci 2018; 19:ijms19051375. [PMID: 29734730 PMCID: PMC5983844 DOI: 10.3390/ijms19051375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023] Open
Abstract
Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.
Collapse
|
726
|
Ben Ramadan AA, Jackson-Thompson J, Schmaltz CL. Improving Visualization of Female Breast Cancer Survival Estimates: Analysis Using Interactive Mapping Reports. JMIR Public Health Surveill 2018; 4:e42. [PMID: 29724710 PMCID: PMC5958288 DOI: 10.2196/publichealth.8163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/22/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background The Missouri Cancer Registry collects population-based cancer incidence data on Missouri residents diagnosed with reportable malignant neoplasms. The Missouri Cancer Registry wanted to produce data that would be of interest to lawmakers as well as public health officials at the legislative district level on breast cancer, the most common non-skin cancer among females. Objective The aim was to measure and interactively visualize survival data of female breast cancer cases in the Missouri Cancer Registry. Methods Female breast cancer data were linked to Missouri death records and the Social Security Death Index. Unlinked female breast cancer cases were crossmatched to the National Death Index. Female breast cancer cases in subcounty senate districts were geocoded using TIGER/Line shapefiles to identify their district. A database was created and analyzed in SEER*Stat. Senatorial district maps were created using US Census Bureau’s cartographic boundary files. The results were loaded with the cartographic data into InstantAtlas software to produce interactive mapping reports. Results Female breast cancer survival profiles of 5-year cause-specific survival percentages and 95% confidence intervals, displayed in tables and interactive maps, were created for all 34 senatorial districts. The maps visualized survival data by age, race, stage, and grade at diagnosis for the period from 2004 through 2010. Conclusions Linking cancer registry data to the National Death Index database improved accuracy of female breast cancer survival data in Missouri and this could positively impact cancer research and policy. The created survival mapping report could be very informative and usable by public health professionals, policy makers, at-risk women, and the public.
Collapse
Affiliation(s)
- Awatef Ahmed Ben Ramadan
- Missouri Cancer Registry and Research Center, University of Missouri-Columbia, Columbia, MO, United States.,Department of Mathematics, Science and Informatics, Penfield College, Mercer University, Atlanta, GA, United States.,Department of Health Management and Informatics, School of Medicine, University of Missouri-Columbia, Columbia, MO, United States.,MU Informatics Institute, University of Missouri-Columbia, Columbia, MO, United States
| | - Jeannette Jackson-Thompson
- Missouri Cancer Registry and Research Center, University of Missouri-Columbia, Columbia, MO, United States.,Department of Health Management and Informatics, School of Medicine, University of Missouri-Columbia, Columbia, MO, United States.,MU Informatics Institute, University of Missouri-Columbia, Columbia, MO, United States
| | - Chester Lee Schmaltz
- Missouri Cancer Registry and Research Center, University of Missouri-Columbia, Columbia, MO, United States.,Department of Health Management and Informatics, School of Medicine, University of Missouri-Columbia, Columbia, MO, United States
| |
Collapse
|
727
|
Miles RC, Onega T, Lee CI. Addressing Potential Health Disparities in the Adoption of Advanced Breast Imaging Technologies. Acad Radiol 2018; 25:547-551. [PMID: 29729855 DOI: 10.1016/j.acra.2017.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/31/2017] [Indexed: 11/16/2022]
Abstract
With the advent of new screening technologies, including digital breast tomosynthesis, screening ultrasound, and breast magnetic resonance imaging, there is growing concern that existing disparities among traditionally underserved populations will worsen. These newer screening modalities purport improved cancer detection over mammography alone but are not offered at all screening facilities and often require a larger co-pay or out-of-pocket expense. Thus, the potential for worsening disparities with regard to access and appropriate utilization of supplemental screening technologies exists. Currently, there is a dearth of literature on the topic of health disparities related to access and the use of supplemental breast cancer screening and their impact on outcomes. Identifying and addressing explanatory factors for persistent and potentially worsening disparities remain a central focus of efforts to improve equity in breast cancer care. Therefore, this paper provides an overview of factors that may contribute to present and future disparities in breast cancer screening and outcomes, and explores specific relevant topics requiring greater research efforts as more personalized, multimodality breast cancer screening approaches are adopted into clinical practice.
Collapse
Affiliation(s)
- Randy C Miles
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114.
| | - Tracy Onega
- Departments of Medicine and Community & Family Medicine, Dartmouth Institute for Health Policy & Clinical Practice, Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, New Hampshire
| | - Christoph I Lee
- Department of Radiology, University of Washington School of Medicine, Department of Health Services, University of Washington School of Public Health, Hutchinson Institute for Cancer Outcomes Research, Seattle, Washington
| |
Collapse
|
728
|
Lee J, Guan W, Han S, Hong D, Kim L, Kim H. MicroRNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Sci 2018; 109:1404-1413. [PMID: 29575368 PMCID: PMC5980212 DOI: 10.1111/cas.13588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis and chemoresistance remain major challenges in the clinical treatment of breast cancer. Recent studies show that dysregulated microRNAs (miRNAs) play an important role in metastasis and chemoresistance development in breast cancer. Herein, we identified downregulated expression of miR-708-3p in breast cancers. In particular, miR-708-3p expression was significantly decreased in specimens from breast cancer patients with metastasis compared to that in specimens from patients with no metastasis. Consistent with clinical data, our in vitro data show that miR-708-3p was more significantly decreased in invasive breast cancer cell lines. In addition, our data show that inhibition of miR-708-3p significantly stimulated breast cancer cell metastasis and induced chemoresistance both in vitro and in vivo. In contrast, overexpression of miR-708-3p dramatically inhibited breast cancer cell metastasis and enhanced the sensitivity of breast cancer cells to chemotherapy both in vitro and in vivo. Furthermore, we identified that miR-708-3p inhibits breast cancer cell epithelial-to-mesenchymal transition (EMT) by directly targeting EMT activators, including ZEB1, CDH2 and vimentin. Taken together, our findings suggest that miR-708-3p acts as a cancer suppressor miRNA and carries out its anticancer function by inhibiting EMT in breast cancer. In addition, our findings suggest that restoration of miR-708-3p may be a novel strategy for inhibiting breast cancer metastasis and overcoming the chemoresistance of breast cancer cells.
Collapse
Affiliation(s)
- Jin‐Won Lee
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Wei Guan
- Cancer CenterDaping Hospital and Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Sanghak Han
- Department of PathologyChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Deok‐Ki Hong
- Department of BiochemistryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Lee‐Su Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Haesung Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| |
Collapse
|
729
|
Niinivehmas S, Postila PA, Rauhamäki S, Manivannan E, Kortet S, Ahinko M, Huuskonen P, Nyberg N, Koskimies P, Lätti S, Multamäki E, Juvonen RO, Raunio H, Pasanen M, Huuskonen J, Pentikäinen OT. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J Enzyme Inhib Med Chem 2018; 33:743-754. [PMID: 29620427 PMCID: PMC6010071 DOI: 10.1080/14756366.2018.1452919] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-β-hydroxysteroid dehydrogenase 2 – a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.
Collapse
Affiliation(s)
- Sanna Niinivehmas
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pekka A Postila
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Sanna Rauhamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elangovan Manivannan
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,b School of Pharmacy , Devi Ahilya University , Indore , India
| | - Sami Kortet
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Mira Ahinko
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pasi Huuskonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Niina Nyberg
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | | | - Sakari Lätti
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elina Multamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Risto O Juvonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Hannu Raunio
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Markku Pasanen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Juhani Huuskonen
- c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Olli T Pentikäinen
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,f Institute of Biomedicine, University of Turku , Turku , Finland
| |
Collapse
|
730
|
Khan RT, Siddique A, Shahid N, Khokher S, Fatima W. Breast cancer risk associated with genes encoding DNA repair MRN complex: a study from Punjab, Pakistan. Breast Cancer 2018; 25:350-355. [PMID: 29368209 DOI: 10.1007/s12282-018-0837-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Variants of DNA repair genes are extensively reported to cause genetic instability and increase the risk of breast cancer. In combination with NBS1, MRE11 and RAD50 constitute an MRN (MRE11-RAD50-NBS1) complex that repairs DNA damage. However, certain genetic alterations in MRE11 and RAD50 produce abnormal protein that affects the repairing process and may result in malignancy. We aimed to investigate the association of MRE11 and RAD50 polymorphisms with breast risk in the female population of Punjab, Pakistan. METHODS We collected blood samples of 100 breast cancer patients and 100 tumor-free females selected as controls. Extracted DNA was genotyped by tetra ARMS-PCR followed by gel electrophoresis. Results were analyzed by SPSS and SNPstats to analyze the association of different clinical factors and SNPs (single nucleotide polymorphisms) with the risk of breast cancer. RESULTS We found that the increased risk of breast cancer is associated with MRE11 variant rs684507 (odds ratio-OR 3.71, 95% confidence interval-CI 1.68-8.18, p value < 0.0001), whereas, RAD50 variant rs28903089 appeared to have protective effect (OR 0.55, CI 0.29-1.02, p value = 0.003). Additionally, clinical factors such as positive family history, life style, and marital status also play significant roles in breast cancer development. CONCLUSION In the present study, strong risk of breast cancer was associated with MRE11 gene. However, RAD50 showed protective effect. Additionally, clinical factors are also pivotal in risk assessment. We anticipate that targeting specific genetic variations confined to ethnic groups would be more effective in future therapeutic approaches for prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Rabbia Tariq Khan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Ayesha Siddique
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| | - Naeem Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Samina Khokher
- Services Institute of Medical Sciences, Lahore, Pakistan
| | - Warda Fatima
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
731
|
Proietti S, Catizone A, Masiello MG, Dinicola S, Fabrizi G, Minini M, Ricci G, Verna R, Reiter RJ, Cucina A, Bizzarri M. Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J Pineal Res 2018; 64:e12467. [PMID: 29338098 DOI: 10.1111/jpi.12467] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023]
Abstract
Through activation of the ERK pathway, nicotine, in both normal MCF-10A and low-malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on nonstimulated cells, it is likely that melatonin can counteract ERK activation only downstream of nicotine-induced activation. This finding suggests that melatonin hampers ERK phosphorylation presumably by targeting a still unknown intermediate factor that connects nicotine stimulation to ERK phosphorylation. Furthermore, downstream of ERK activation, melatonin significantly reduces fascin and calpain activation while restoring normal vinculin levels. Melatonin also counteracts nicotine effects by reshaping the overall cytoskeleton architecture and abolishing invasive membrane protrusion. In addition, melatonin decreases nicotine-dependent ROCK1/ROCK2 activation, thus further inhibiting cell contractility and motility. Melatonin actions are most likely attributable to ERK inhibition, although melatonin could display other ERK-independent effects, namely through a direct modulation of additional molecular and structural factors, including coronin, cofilin, and cytoskeleton components.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Dinicola
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianmarco Fabrizi
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
| | - Mirko Minini
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Roberto Verna
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Alessandra Cucina
- Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
- Systems Biology Group, Rome, Italy
- Azienda Policlinico Umberto I, Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
732
|
Tan Y, Zhou G, Wang X, Chen W, Gao H. USP18 promotes breast cancer growth by upregulating EGFR and activating the AKT/Skp2 pathway. Int J Oncol 2018; 53:371-383. [PMID: 29749454 DOI: 10.3892/ijo.2018.4387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that ubiquitin-specific peptidase (USP)18 may act as an oncogene in various types of cancer. Although the role of USP18 in breast cancer cell lines has been elucidated, the underlying mechanisms and clinical role of USP18 in breast cancer are currently not well understood. The bioinformatics analysis and experimental results of the present study demonstrated that aberrant promoter methylation led to increased expression of USP18 in breast cancer. In addition, correlation analysis suggested that a negative correlation between methylation and USP18 mRNA expression was observed in The Cancer Genome Atlas database. USP18 promoted cell proliferation, colony formation and cell cycle progression in vitro. Furthermore, the Gene Set Enrichment Analysis results demonstrated that USP18 may be negatively associated with apoptosis in patients with breast cancer. Bioinformatics analysis results indicated that USP18 was also revealed to be associated with the protein kinase B (AKT) signaling pathway and mammary tumorigenesis in vivo. In addition, the results indicated that USP18 may promote the epidermal growth factor (EGF)-mediated EGF receptor (EGFR)/AKT/S‑phase kinase-associated protein 2 (Skp2) pathway by upregulating EGFR and Skp2 in a AKT/forkhead box O3-dependent manner in breast cancer. The results of bioinformatics analysis revealed that increased USP18 expression was associated with a higher TNM stage and unfavorable prognosis in clinical patients. USP18 was also significantly enhanced in patients with human epidermal growth factor receptor 2-positive breast cancer; furthermore, Kaplan‑Meier curve demonstrated that combining USP18 and Skp2 expression improved prognostic capability in breast cancer. Taken together, these results suggested that USP18 may serve a key role in breast cancer development by upregulating EGFR and subsequently activating the AKT/Skp2 feedback loop pathway. The role of USP18 in breast cancer provides a novel insight into the clinical application of the USP18/AKT/Skp2 pathway.
Collapse
Affiliation(s)
- Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Guanglin Zhou
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xianming Wang
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Weicai Chen
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
733
|
Kikkawa Y, Enomoto-Okawa Y, Fujiyama A, Fukuhara T, Harashima N, Sugawara Y, Negishi Y, Katagiri F, Hozumi K, Nomizu M, Ito Y. Internalization of CD239 highly expressed in breast cancer cells: a potential antigen for antibody-drug conjugates. Sci Rep 2018; 8:6612. [PMID: 29700410 PMCID: PMC5919910 DOI: 10.1038/s41598-018-24961-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 01/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are attractive in cancer therapy because they can directly bind to cancer cells and provide anticancer activity. To kill cancer cells with ADCs, the target antigens are required not only to be highly and/or selectively expressed on cancer cells but also internalized by the cells. CD239, also known as the Lutheran blood group glycoprotein (Lu) or basal cell adhesion molecule (B-CAM), is a specific receptor for laminin α5, a major component of basement membranes. Here, we show that CD239 is strongly expressed in a subset of breast cancer cells and internalized into the cells. We also produced a human single-chain variable fragment (scFv) specific to CD239 fused with human IgG1 Fc, called C7-Fc. The binding affinity of the C7-Fc antibody is similar to that of mouse monoclonal antibodies. Although the C7-Fc antibody alone does not influence cellular functions, when conjugated with a fragment of diphtheria toxin lacking the receptor-binding domain (fDT), it can selectively kill breast cancer cells. Interestingly, fDT-bound C7-Fc shows anticancer activity in CD239-highly positive SKBR3 cells, but not in weakly positive cells. Our results show that CD239 is a promising antigen for ADC-based breast cancer therapy.
Collapse
Affiliation(s)
- Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.
| | - Yurie Enomoto-Okawa
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Aiko Fujiyama
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Takeshi Fukuhara
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan.,Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nozomi Harashima
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yumika Sugawara
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kentaro Hozumi
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065, Japan
| |
Collapse
|
734
|
Moghaddam Tabrizi F, Vahdati S, Khanahmadi S, Barjasteh S. Determinants of Breast Cancer Screening by Mammography in Women Referred to Health Centers of Urmia, Iran. Asian Pac J Cancer Prev 2018; 19:997-1003. [PMID: 29693968 PMCID: PMC6031808 DOI: 10.22034/apjcp.2018.19.4.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: In women, breast cancer accounts for 30 percent of all cancers and it is the second leading cause of mortality. Mammography is considered an effective procedure to detect early breast cancer recommended by World Health Organization. This study was aimed to evaluate breast cancer screening determinants in women referred to health centers of Urmia for mammography in 2017. Materials and Methods: In this descriptive-analytic cross-sectional study, 348 women referred to health centers of Urmia were selected using multistage sampling. Data were collected using a standard questionnaire for mammography screening determinants, with a checklist including demographic characteristics, family, social and economic factors and midwifery background. Analysis was with SPSS software version 20for descriptive and inferential statistic tests, P<0.05 being considered significant. Results: The proportion performing mammography was 12%. Significant relationships were noted with income, menopause status, a history of breast cancer in close relatives, beliefs, inaccessibility, knowledge, cues to action, emotions, self-care, and life priorities (P<0.05). There were no significant links with age at marriage, first age of delivery, number of children, duration of breastfeeding, status of residency, education, marital status, occupation, history of breastfeeding, and previous breast problems (P>0.05). Conclusions: The findings of this study showed that the status of breast cancer screening in participating women was not satisfactory. Therefore, promotion of screening methods by health policy makers in Iran is necessary and given that reliance solely on education is not sufficient, it is essential to pay attention to barriers and eliminate them.
Collapse
|
735
|
Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract 2018; 214:801-805. [PMID: 29728310 DOI: 10.1016/j.prp.2018.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Long noncoding RNAs (lncRNA) are a type of noncoding RNA that comprise of longer than 200 nucleotides sequences. They can regulate chromosome structure, gene expression and play an essential role in the pathophysiology of human diseases, especially in tumorigenesis and progression. Nowadays, they are being targeted as potential biomarkers for various cancer types. And many research studies have proven that lncRNAs might bring a new era to cancer diagnosis and support treatment management. The purpose of this review was to inspect the molecular mechanism and clinical significance of long non-coding RNA- differentiation antagonizing nonprotein coding RNA(DANCR) in various types of human cancers. MATERIALS AND METHODS In this review, we summarize and figure out recent research studies concerning the expression and biological mechanisms of lncRNA-DANCR in tumour development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. RESULTS Long non-coding RNAs-DANCR is a valuable cancer-related lncRNA that its dysregulated expression was found in a variety of malignancies, including hepatocellular carcinoma, breast cancer, glioma, colorectal cancer, gastric cancer, and lung cancer. The aberrant expressions of DANCR have been shown to contribute to proliferation, migration and invasion of cancer cells. CONCLUSIONS Long non-coding RNAs-DANCR likely serves as a useful disease biomarker or therapeutic cancer target.
Collapse
Affiliation(s)
- Khaing Zar Thin
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xuefang Liu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaobo Feng
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Sudheesh Raveendran
- Department of Radiology & Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang, Hubei Province, Wuhan, 430071, China
| | - Jian Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
736
|
Abstract
BACKGROUND Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. METHODS An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. RESULTS The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (P<0.05). Moreover, the results of the MTT assay show that Urtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. CONCLUSION Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group.
Collapse
|
737
|
Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
738
|
O'Grady S, Morgan MP. Microcalcifications in breast cancer: From pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2018; 1869:310-320. [PMID: 29684522 DOI: 10.1016/j.bbcan.2018.04.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023]
Abstract
The implementation of mammographic screening programmes in many countries has been linked to a marked increase in early detection and improved prognosis for breast cancer patients. Breast tumours can be detected by assessing several features in mammographic images but one of the most common are the presence of small deposits of calcium known as microcalcifications, which in many cases may be the only detectable sign of a breast tumour. In addition to their efficacy in the detection of breast cancer, the presence of microcalcifications within a breast tumour may also convey useful prognostic information. Breast tumours with associated calcifications display an increased rate of HER2 overexpression as well as decreased survival, increased risk of recurrence, high tumour grade and increased likelihood of spread to the lymph nodes. Clearly, the presence of microcalcifications in a tumour is a clinically significant finding, suggesting that a detailed understanding of their formation may improve our knowledge of the early stages of breast tumourigenesis, yet there are no reports which attempt to bring together recent basic science research findings and current knowledge of the clinical significance of microcalcifications. This review will summarise the most current understanding of the formation of calcifications within breast tissue and explore their associated clinical features and prognostic value.
Collapse
Affiliation(s)
- S O'Grady
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - M P Morgan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
739
|
DUOX1 Silencing in Mammary Cell Alters the Response to Genotoxic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3570526. [PMID: 29849884 PMCID: PMC5933011 DOI: 10.1155/2018/3570526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/23/2022]
Abstract
DUOX1 is an H2O2-generating enzyme related to a wide range of biological features, such as hormone synthesis, host defense, cellular proliferation, and fertilization. DUOX1 is frequently downregulated in lung and liver cancers, suggesting a tumor suppressor role for this enzyme. Here, we show that DUOX1 expression is decreased in breast cancer cell lines and also in breast cancers when compared to the nontumor counterpart. In order to address the role of DUOX1 in breast cells, we stably knocked down the expression of DUOX1 in nontumor mammary cells (MCF12A) with shRNA. This led to higher cell proliferation rates and decreased migration and adhesion properties, which are typical features for transformed cells. After genotoxic stress induced by doxorubicin, DUOX1-silenced cells showed reduced IL-6 and IL-8 secretion and increased apoptosis levels. Furthermore, the cell proliferation rate was higher in DUOX1-silenced cells after doxorubicin medication in comparison to control cells. In conclusion, we demonstrate here that DUOX1 is silenced in breast cancer, which seems to be involved in breast carcinogenesis.
Collapse
|
740
|
Huang Y, Jian W, Zhao J, Wang G. Overexpression of HDAC9 is associated with poor prognosis and tumor progression of breast cancer in Chinese females. Onco Targets Ther 2018; 11:2177-2184. [PMID: 29713186 PMCID: PMC5909784 DOI: 10.2147/ott.s164583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Breast cancer represents a serious health issue among females. HDAC9 has been identified as an oncogene in human cancers. This study sought to assess the prognostic value and the biologic function of HDAC9 in breast cancer patients. METHODS Expression of HDAC9 in breast cancer tissues and cells was evaluated by quantitative real-time polymerase chain reaction. Kaplan-Meier survival analysis and Cox regression assay were conducted to explore the prognostic significance of HDAC9. Cell experiments were performed to investigate the effects of HDAC9 on the biologic behaviors of breast cancer cells. RESULTS Expression of HDAC9 was significantly upregulated in both cancerous tissues and cells compared with the normal controls (all P<0.05). Overexpression of HDAC9 was correlated with lymph node metastasis (P=0.021) and TNM stage (P=0.004). Patients with high HDAC9 had poor overall survival compared to those with low levels of HDAC9 (log-rank P<0.05). Elevated HDAC9 was found to be an independent prognostic factor for the patients (hazard ratio=2.996, 95% CI=1.611-5.572, P=0.001). According to the cell experiments, tumor cell proliferation, migration and invasion were suppressed by knockdown of HDAC9. CONCLUSION All data demonstrated that overexpression of HDAC9 serves as a prognostic biomarker and may be involved in the tumor progression of breast cancer.
Collapse
Affiliation(s)
- Yixiang Huang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wei Jian
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Junyong Zhao
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Gang Wang
- Department of General Surgery, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
741
|
Li Y, Huang J, Yang D, Xiang S, Sun J, Li H, Ren G. Expression patterns of E2F transcription factors and their potential prognostic roles in breast cancer. Oncol Lett 2018; 15:9216-9230. [PMID: 29844824 PMCID: PMC5958806 DOI: 10.3892/ol.2018.8514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 11/12/2022] Open
Abstract
E2Fs, as a family of pivotal transcription factors, have been implicated in multiple biological functions in human cancer; however, the expression and prognostic significance of E2Fs in breast cancer remains unknown. In the present study, the mRNA expression patterns of E2Fs in breast cancer were investigated with Oncomine and The Cancer Genome Atlas data. Prognostic values of E2Fs for patients with breast cancer were determined using the Kaplan-Meier plotter database. The results strongly indicated that E2F1, E2F2, E2F3, E2F5, E2F7 and E2F8 were overexpressed in patients with breast cancer, whereas E2F4 and E2F6 exhibited no expression difference between patients with cancer and healthy controls. In survival analyses, elevated E2F1, E2F3, E2F5, E2F7 and E2F8 expression levels were significantly associated with lower overall survival, relapse-free survival (RFS), distant metastasis-free survival (DMFS) or post-progression survival for patients with breast cancer. Furthermore, high expression of E2F4 indicated improved RFS but reduced DMFS. Subgroup analyses based on four clinicopathological factors further revealed that E2Fs were associated with the prognosis of patients with breast cancer in an estrogen receptor-, progesterone receptor-, human epidermal growth factor 2- and lymph node status-specific manner. These data indicated that E2Fs may serve as promising biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Huang
- Department of Pneumology Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shili Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
742
|
Lou L, Yu Z, Wang Y, Wang S, Zhao Y. c-Src inhibitor selectively inhibits triple-negative breast cancer overexpressed Vimentin in vitro and in vivo. Cancer Sci 2018; 109:1648-1659. [PMID: 29575318 PMCID: PMC5980174 DOI: 10.1111/cas.13572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Oncogene c‐Src has been found to be a potential target for the treatment of triple‐negative breast cancer (TNBC). However, the therapeutic effects of the c‐Src inhibitor on TNBC patients are controversial compared to those on cell lines. The molecular mechanisms of the inhibitory effects of the c‐Src inhibitor on TNBC remain unclear. Herein, we showed that a specific c‐Src inhibitor, PP2, was effective in inhibiting phosphorylation of c‐Src in 4 cell lines: T‐47D, SK‐BR‐3, SUM1315MO2, and MDA‐MB‐231, regardless of hormone receptors and human epidermal growth factor receptor 2 (HER2) expression levels. Giving PP2 preferentially reduced the S phase of cell cycles and inhibited colony formation in SUM1315MO2 and MDA‐MB‐231, but not in SK‐BR‐3 and T‐47D cells. Furthermore, PP2 effectively blocked cell migration/invasion and epithelial‐mesenchymal transition (EMT) in TNBC cell lines, SUM1315MO2 and MDA‐MB‐231. An EMT biomarker, vimentin, was highly expressed in 2 TNBC cell lines when they were compared with SK‐BR‐3 and T‐47D cells. Further depletion of vimentin by shRNA remarkably attenuated the inhibitory effects of the c‐Src inhibitor on TNBC cells in vitro and in vivo, indicating a crucial action of vimentin to affect the function of c‐Src in TNBC. This study provides an important rationale for the clinic to precisely select TNBC patients who would benefit from c‐Src inhibitor treatment. This finding suggests that traditional markers for TNBC are not sufficient to precisely define this aggressive type of cancer. Vimentin is identified as an important biomarker to enable categorization of TNBC.
Collapse
Affiliation(s)
- Longquan Lou
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
743
|
Long non-coding RNA HOXA-AS2 promotes proliferation and invasion of breast cancer by acting as a miR-520c-3p sponge. Oncotarget 2018; 8:46090-46103. [PMID: 28545023 PMCID: PMC5542252 DOI: 10.18632/oncotarget.17552] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
The long non-coding RNA (lncRNA) HOXA cluster antisense RNA2 (HOXA-AS2) has recently been shown to be dysregulated and involved in the progression of several cancers. However, the biological role and clinical significance of HOXA-AS2 in the carcinogenesis of breast cancer are still unclear. In the present study, we found that HOXA-AS2 was up-regulated in human breast cancer tissues and cell lines and associated with clinicopathological characteristics. Silencing of HOXA-AS2 inhibited the progression of breast cancer cells in vitro and in vivo. Furthermore, microarray profiling indicated that HOXA-AS2 serves as an endogenous sponge by directly binding to miR-520c-3p and down-regulating miR-520c-3p expression. We demonstrated that HOXA-AS2 controls the expression of miR-520c-3p target genes, TGFBR2 and RELA, in breast cancer cells. Therefore, our study may provide a better understanding of the pathogenesis of breast cancer and suggests that HOXA-AS2 may be a potential prognostic and therapeutic target in breast cancer.
Collapse
|
744
|
Mean platelet volume predicts survival in pancreatic cancer patients with synchronous liver metastases. Sci Rep 2018; 8:6014. [PMID: 29662100 PMCID: PMC5902615 DOI: 10.1038/s41598-018-24539-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Most pancreatic cancer (PC) patients manifest multiple liver metastases at the time of diagnosis. Activated platelets play a key role in tumor growth and tumor metastases. Mean platelet volume (MPV) is a platelet index and is altered in patients with malignancies. This study aimed to evaluate whether MPV can effectively predict death in PC patients with synchronous liver metastases. The clinical data of 411 PC patients with synchronous liver metastases between January 1, 2006 and December 31, 2013 were retrospectively analyzed. Subjects were divided into two groups by MPV levels. Clinicopathological data were collected retrospectively and relationships between MPV levels and clinical parameters were evaluated. Survival analysis was performed. Increased MPV was not significantly correlated with tumor location, tumor size, and CA19.9. The Kaplan-Meier analysis showed that the overall survival of patients with MPV > 8.7 fL was significantly shorter than that of those with MPV ≤ 8.7 fL (log-rank p < 0.001). Multivariable Cox proportional hazards model identified MPV as an independent poor prognostic factor for overall survival. In conclusion, elevated MPV is associated with worse survival outcome in PC patients with synchronous liver metastases. Further studies are warranted.
Collapse
|
745
|
Desai PP, Lampe JB, Bakre SA, Basha RM, Jones HP, Vishwanatha JK. Evidence-based approaches to reduce cancer health disparities: Discover, develop, deliver, and disseminate. J Carcinog 2018; 17:1. [PMID: 29643743 PMCID: PMC5883827 DOI: 10.4103/jcar.jcar_13_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 11/04/2022] Open
Abstract
The Texas Center for Health Disparities (TCHD) at the University of North Texas Health Science Center is a National Institute on Minority Health and Health Disparities-funded, specialized center of excellence for health disparities. TCHD organized its 12th annual conference focusing on "Evidence-Based Approaches to Reduce Cancer Health Disparities: Discover, Develop, Deliver, and Disseminate." At this conference, experts in health care, biomedical sciences, and public health gathered to discuss the current status and strategies for reducing cancer health disparities. The meeting was conducted in three sessions on breast cancer, prostate cancer, and colorectal cancer disparities, in addition to roundtable discussions and a poster session. Each session highlighted differences in the effects of cancer, based on factors such as race/ethnicity, gender, socioeconomic status, and geographical location. In each session, expert speakers presented their findings, and this was followed by a discussion panel made up of experts in that field and cancer survivors, who responded to questions from the audience. This article summarizes the approaches to fundamental, translational, clinical, and public health issues in cancer health disparities discussed at the conference.
Collapse
Affiliation(s)
- Priyanka P Desai
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| | - Jana B Lampe
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| | - Sulaimon A Bakre
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| | - Riyaz M Basha
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| | - Harlan P Jones
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| | - Jamboor K Vishwanatha
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth 76107, Texas, USA
| |
Collapse
|
746
|
Rural-metropolitan disparities in ovarian cancer survival: a statewide population-based study. Ann Epidemiol 2018; 28:377-384. [PMID: 29705053 DOI: 10.1016/j.annepidem.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/26/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate rural-metropolitan disparities in ovarian cancer survival, we assessed ovarian cancer mortality and differences in prognostic factors by rural-metropolitan residence. METHODS The Utah Population Database was used to identify ovarian cancer cases diagnosed between 1997 and 2012. Residential location information at the time of cancer diagnosis was used to stratify rural-metropolitan residence. All-cause death and ovarian cancer death risks were estimated using Cox proportional hazard regression models. RESULTS Among 1661 patients diagnosed with ovarian cancer, 11.8% were living in rural counties of Utah. Although ovarian cancer patients residing in rural counties had different characteristics compared with metropolitan residents, we did not observe an association between rural residence and risk of all-cause nor ovarian cancer-specific death after adjusting for confounders. However, among rural residents, ovarian cancer mortality risk was very high in older age at diagnosis and for mucinous carcinoma, and low in overweight at baseline. CONCLUSIONS Rural residence was not significantly associated with the risk of ovarian cancer death. Nevertheless, patients residing in rural-metropolitan areas had different factors affecting the risk of all-cause mortality and cancer-specific death. Further research is needed to quantify how mortality risk can differ by residential location accounting for degree of health care access and lifestyle-related factors.
Collapse
|
747
|
Li JH, Sun SS, Fu CJ, Zhang AQ, Wang C, Xu R, Xie SY, Wang PY. Diagnostic and prognostic value of microRNA-628 for cancers. J Cancer 2018; 9:1623-1634. [PMID: 29760801 PMCID: PMC5950592 DOI: 10.7150/jca.24193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many studies manifested miRNA-628 (miR-628) was deregulated in various cancers, indicating that miR-628 might serve as a novel biomarker of cancer diagnosis and prognosis, but it's role was still uncertain. This study aimed to evaluate the value of miR-628 in various cancers for diagnosis and prognosis, as well as its predictive power in combination biomarkers. Materials and Methods: A literature search was performed using Medline (via PubMed), Embase, Web of Science databases, and Ovid platform up to November 2017. Meta-analysis was performed to provide summative outcomes. Quality assessment of each included study was performed. Results: Twelve articles with 20 studies were included in our meta-analysis, including 8 articles with 15 studies for diagnostic meta-analysis and 4 articles with 5 studies for prognostic meta-analysis. For the diagnostic meta-analysis of miR-628 alone, the overall pooled results for sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the summary receiver operating characteristic (SROC) curve (AUC) were 0.81 (95% CI: 0.62-0.91), 0.72 (95% CI: 0.48-0.88), 2.90 (95% CI: 1.50-5.40), 0.27 (95% CI: 0.14-0.50), 11.0 (95% CI: 4.00-25.00), and 0.84 (95% CI: 0.80-0.87), respectively. For the diagnostic meta-analysis of miR-628-related combination biomarkers, the above six parameters were 0.89 (95% CI: 0.84-0.92), 0.93 (95% CI: 0.82-0.97), 12.30 (95% CI: 4.70-32.50), 0.12 (95% CI: 0.08-0.19), and 100.00 (95% CI: 28.00-354.00), 0.93 (95% CI: 0.90-0.95), respectively. For the prognostic meta-analysis, patients with lower miR-628 had significant shorter overall survival than high expression of miR-628 (HR = 1.553, 95% CI: 1.041-2.318, z = 2.16, P = 0.031). Conclusions: This study confirms that miR-628 may be a promising biomarker for cancer diagnosis and prognosis. Expertly, microRNAs combination biomarkers could be a new alternative for clinical application.
Collapse
Affiliation(s)
- Jing-Hua Li
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Shan-Shan Sun
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Chang-Jin Fu
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - An-Qi Zhang
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Chen Wang
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Rong Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| | - Ping-Yu Wang
- Department of Epidemiology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China.,Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong, 264003, P.R.China
| |
Collapse
|
748
|
Chen JM, Bai JY, Yang KX. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life 2018; 70:491-500. [PMID: 29637742 DOI: 10.1002/iub.1749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/17/2018] [Indexed: 11/08/2022]
Abstract
In the study, we probed into the effect of Resveratrol (RES) on Doxorubicin (DOX)-resistant breast neoplasm cell line MCF-7/DOX as well as the mechanism of RES underlying the DOX-resistant breast cancer. CCK-8 assay was utilized to assess the survival rates and sensitivity of breast neoplasm cell lines MCF-7 or MDA-MB-231 to DOX and RES. DOX-resistant MCF-7 cell line was successfully cultivated with DOX dose increasing and was named MCF-7/DOX. Afterwards, wound healing and Transwell assays were performed to measure the migration and invasion capabilities of MCF-7/DOX cells, while cell propagation and apoptosis were determined by colony formation assay and flow cytometry analysis. Both western blotting and immunohistochemistry were conducted to examine the expression of proteins involved in PI3K/Akt signaling pathway. Nude mice xenograft model was constructed to further verify the effects of DOX and RES on breast neoplasm in vivo. RES restored DOX sensitivity in MCF-7/DOX cells, inhibiting biological functions of MCF-7/DOX cells and promoting cell apoptosis in vitro and impeding tumor growth in vivo. It was revealed by the mechanistic studies that MCF-7/DOX cells could regain the drug sensibility with RES treatment through inactivating the PI3K/Akt signal transduction pathway. RES could reverse DOX resistance in breast neoplasm cells and inhibited DOX-resistant breast cancer cell propagation and metastasis and facilitated cell apoptosis by modulating PI3K/Akt signaling pathway. © 2018 IUBMB Life, 70(6):491-500, 2018.
Collapse
Affiliation(s)
- Ju-Min Chen
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Jun-Yun Bai
- Department of Geriatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Kun-Xian Yang
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| |
Collapse
|
749
|
Han Q, Chen R, Wang F, Chen S, Sun X, Guan X, Yang Y, Peng B, Pan X, Li J, Yi W, Li P, Zhang H, Feng D, Chen A, Li X, Li S, Yin Z. Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLoS One 2018; 13:e0192888. [PMID: 29617363 PMCID: PMC5884488 DOI: 10.1371/journal.pone.0192888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Resistance to 5-fluorouracil (5-FU) and its induced immune suppression have prevented its extensive application in the clinical treatment of breast cancer. In this study, the combined effect of 50 Hz-EMFs and 5-FU in the treatment of breast cancer was explored. MCF-7 and MCF10A cells were pre-exposed to 50 Hz-EMFs for 0, 2, 4, 8 and 12 h and then treated with different concentrations of 5-FU for 24 h; cell viability was analyzed by MTT assay and flow cytometry. After pre-exposure to 50 Hz-EMFs for 12 h, apoptosis and cell cycle distribution in MCF-7 and MCF10A cells were detected via flow cytometry and DNA synthesis was measured by EdU incorporation assay. Apoptosis-related and cell cycle-related gene and protein expression levels were monitored by qPCR and western blotting. Pre-exposure to 50 Hz-EMFs for 12 h enhanced the antiproliferative effect of 5-FU in breast cancer cell line MCF-7 in a dose-dependent manner but not in normal human breast epithelial cell line MCF10A. Exposure to 50 Hz-EMFs had no effect on apoptosis and P53 expression of MCF-7 and MCF10A cells, whereas it promoted DNA synthesis, induced entry of MCF-7 cells into the S phase of cell cycle, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E. Considering the pharmacological mechanisms of 5-FU in specifically disrupting DNA synthesis, this enhanced inhibitory effect might have resulted from the specific sensitivity of MCF7 cells in active S phase to 5-FU. Our findings demonstrate the enhanced cytotoxic activity of 5-FU on MCF7 cells through promoting entry into the S phase of the cell cycle via exposure to 50 Hz-EMFs, which provides a novel method of cancer treatment based on the combinatorial use of 50 Hz-EMFs and chemotherapy.
Collapse
Affiliation(s)
- Qi Han
- General Hospital of Tibet Area Military Command, Lhasa, China
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Rui Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Sha Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongshan Sun
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Bingjie Peng
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinfang Li
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weijing Yi
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peng Li
- Urology, 201th Hospital of People's Liberation Army, Liaoyang, China
| | - Hongwei Zhang
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - Dongfang Feng
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- * E-mail: (ZY); (SL); (XL)
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZY); (SL); (XL)
| | - Zuoming Yin
- General Hospital of Tibet Area Military Command, Lhasa, China
- * E-mail: (ZY); (SL); (XL)
| |
Collapse
|
750
|
Attraction and Compaction of Migratory Breast Cancer Cells by Bone Matrix Proteins through Tumor-Osteocyte Interactions. Sci Rep 2018; 8:5420. [PMID: 29615735 PMCID: PMC5882940 DOI: 10.1038/s41598-018-23833-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis from breast cancer. To understand the potential role of osteocytes in bone metastasis, we investigated tumor-osteocyte interactions using two cell lines derived from the MDA-MB-231 breast cancer cells, primary breast cancer cells, and MLO-A5/MLO-Y4 osteocyte cells. When three-dimensional (3D) tumor spheroids were grown with osteocyte spheroids, tumor spheroids fused with osteocyte spheroids and shrank. This size reduction was also observed when tumor spheroids were exposed to conditioned medium isolated from osteocyte cells. Mass spectrometry-based analysis predicted that several bone matrix proteins (e.g., collagen, biglycan) in conditioned medium could be responsible for tumor shrinkage. The osteocyte-driven shrinkage was mimicked by type I collagen, the most abundant organic component in bone, but not by hydroxyapatite, a major inorganic component in bone. RNA and protein expression analysis revealed that tumor-osteocyte interactions downregulated Snail, a transcription factor involved in epithelial-to-mesenchymal transition (EMT). An agarose bead assay showed that bone matrix proteins act as a tumor attractant. Collectively, the study herein demonstrates that osteocytes attract and compact migratory breast cancer cells through bone matrix proteins, suppress tumor migration, by Snail downregulation, and promote subsequent metastatic colonization.
Collapse
|