701
|
Zhang H, Brown RL, Wei Y, Zhao P, Liu S, Liu X, Deng Y, Hu X, Zhang J, Gao XD, Kang Y, Mercurio AM, Goel HL, Cheng C. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev 2019; 33:166-179. [PMID: 30692202 PMCID: PMC6362815 DOI: 10.1101/gad.319889.118] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Zhang et al. show that manipulating the splicing regulator ESRP1 to shift alternative splicing from splice isoform CD44v to CD44s leads to an induction of cancer stem cell properties. Although changes in alternative splicing have been observed in cancer, their functional contributions still remain largely unclear. Here we report that splice isoforms of the cancer stem cell (CSC) marker CD44 exhibit strikingly opposite functions in breast cancer. Bioinformatic annotation in patient breast cancer in The Cancer Genome Atlas (TCGA) database reveals that the CD44 standard splice isoform (CD44s) positively associates with the CSC gene signatures, whereas the CD44 variant splice isoforms (CD44v) exhibit an inverse association. We show that CD44s is the predominant isoform expressed in breast CSCs. Elimination of the CD44s isoform impairs CSC traits. Conversely, manipulating the splicing regulator ESRP1 to shift alternative splicing from CD44v to CD44s leads to an induction of CSC properties. We further demonstrate that CD44s activates the PDGFRβ/Stat3 cascade to promote CSC traits. These results reveal CD44 isoform specificity in CSC and non-CSC states and suggest that alternative splicing provides functional gene versatility that is essential for distinct cancer cell states and thus cancer phenotypes.
Collapse
Affiliation(s)
- Honghong Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Rhonda L Brown
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Pu Zhao
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sali Liu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Xuan Liu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yu Deng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaohui Hu
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin D Gao
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
702
|
Hsu SH, Yu A, Yeh CA, Sun WS, Lin SZ, Fu RH, Hsieh HH, Wu PY, Hung HS. Biocompatible Nanogold Carrier Coated with Hyaluronic Acid for Efficient Delivery of Plasmid or siRNA to Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:1017-1030. [PMID: 35021392 DOI: 10.1021/acsabm.8b00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Alex Yu
- Department of Acute and Critical Care, Chang-Hua Hospital, Ministry of Health and Welfare, Changhua 51341, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Wei-Shen Sun
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
703
|
Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, Roberg K. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019; 19:16. [PMID: 30651721 PMCID: PMC6332598 DOI: 10.1186/s12935-019-0733-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) tumors are often resistant to therapies. Therefore searching for predictive markers and new targets for treatment in clinically relevant in vitro tumor models is essential. Five HNSCC-derived cell lines were used to assess the effect of 3D culturing compared to 2D monolayers in terms of cell proliferation, response to anti-cancer therapy as well as expression of EMT and CSC genes. Methods The viability and proliferation capacity of HNSCC cells as well as induction of apoptosis in tumor spheroids cells after treatment was assessed by MTT assay, crystal violet- and TUNEL assay respectively. Expression of EMT and CSC markers was analyzed on mRNA (RT-qPCR) and protein (Western blot) level. Results We showed that HNSCC cells from different tumors formed spheroids that differed in size and density in regard to EMT-associated protein expression and culturing time. In all spheroids, an up regulation of CDH1, NANOG and SOX2 was observed in comparison to 2D but changes in the expression of EGFR and EMT markers varied among the cell lines. Moreover, most HNSCC cells grown in 3D showed decreased sensitivity to cisplatin and cetuximab (anti-EGFR) treatment. Conclusions Taken together, our study points at notable differences between these two cellular systems in terms of EMT-associated gene expression profile and drug response. As the 3D cell cultures imitate the in vivo behaviour of neoplastic cells within the tumor, our study suggest that 3D culture model is superior to 2D monolayers in the search for new therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12935-019-0733-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Styliani Melissaridou
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emilia Wiechec
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mustafa Magan
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Mayur Vilas Jain
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,3Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Man Ki Chung
- Department of Otorhinolaryngology-Head & Neck Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Lovisa Farnebo
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Karin Roberg
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| |
Collapse
|
704
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
705
|
Asai R, Tsuchiya H, Amisaki M, Makimoto K, Takenaga A, Sakabe T, Hoi S, Koyama S, Shiota G. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med 2019; 8:773-782. [PMID: 30636370 PMCID: PMC6382709 DOI: 10.1002/cam4.1968] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Cancer stem cells (CSCs) have attracted attention as a novel therapeutic target for cancer because they play important roles in the development and aggravation of cancer. CD44 is expressed as a standard isoform (CD44s) and several variant isoforms. CD44v is a major isoform expressed on CSCs of a variety of tumors and has been extensively studied. However, HCC tissues dominantly express CD44s, whose function in CSCs remains unclear. In the present study, we investigated the roles of CD44s in CSCs of HCC. Knock‐out of the CD44 gene in HuH7 HCC cells on which only CD44s is expressed resulted in decreased spheroid formation and increased drug sensitivity. The expression of CSC marker genes, including CD133 and EpCAM, was significantly downregulated in the spheroids of CD44‐deficient cells compared with those in the spheroids of HuH7 cells. In addition, CD44 deficiency impaired antioxidant capacity, concomitant with downregulation of glutathione peroxidase 1 (GPX1) and thioredoxin. Because GPX1 uses the reduced form of glutathione (GSH) to regenerate oxidized cellular components, GSH levels were significantly increased in the CD44‐deficient cells. We also found that NOTCH3 and its target genes were downregulated in the spheroids of CD44‐deficient cells. NOTCH3 expression in HCC tissues was significantly increased compared with that in adjacent nontumor liver tissues and was correlated with CD44 expression. These results suggest that CD44s is involved in maintenance of CSCs in a HCC cell line, possibly through the NOTCH3 signaling pathway.
Collapse
Affiliation(s)
- Ryoma Asai
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Tsuchiya
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Masataka Amisaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan.,Faculty of Medicine, Division of Surgical Oncology, Department of Surgery, Tottori University, Yonago, Japan
| | - Kazuki Makimoto
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Ai Takenaga
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Tomohiko Sakabe
- Faculty of Medicine, Division of Organ Pathology, Department of Pathology, Tottori University, Yonago, Japan
| | - Shotaro Hoi
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Shigemi Koyama
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
706
|
Ma L, Dong L, Chang P. CD44v6 engages in colorectal cancer progression. Cell Death Dis 2019; 10:30. [PMID: 30631039 PMCID: PMC6328617 DOI: 10.1038/s41419-018-1265-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane glycoprotein. When the CD44 gene is expressed, its pre-messenger RNA (mRNA) can be alternatively spliced into mature mRNAs that encode several CD44 isoforms. The mRNA assembles with ten standard exons, and the sixth variant exon encodes CD44v6, which engages in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. Mechanistically, CD44v6 interacts with hyaluronic acid (HA) or osteopontin, or it acts as a coreceptor for various cytokines, such as epidermal growth factor, vascular endothelial growth factor, hepatocyte growth factor, and C-X-C motif chemokine 12. In this context, the receptor tyrosine kinase or G protein-coupled receptor-associated signaling pathways, including mitogen-activated protein kinase/extracellular-signal-regulated kinase and phosphoinositide-3-kinase/Akt, are activated. Using these actions, homeostasis or regeneration can be facilitated among normal tissues. However, overexpression of the mature mRNA encoding CD44v6 can induce cancer progression. For example, CD44v6 assists colorectal cancer stem cells in colonization, invasion, and metastasis. Overexpression of CD44v6 predicts poor prognosis in patients with colorectal cancer, as patients with a large number of CD44v6-positive cells in their tumors are generally diagnosed at late stages. Thus, the clinical significance of CD44v6 in colorectal cancer deserves consideration. Preclinical results have indicated satisfactory efficacies of anti-CD44 therapy among several cancers, including prostate cancer, pancreatic cancer, and gastric cancer. Moreover, clinical trials aiming to evaluate the pharmacokinetics, pharmacodynamics, efficacy, and toxicity of a commercialized anti-CD44 monoclonal antibody developed by Roche (RO5429083) have been conducted among patients with CD44-expressing malignant tumors, and a clinical trial focusing on the dose escalation of this antibody is ongoing. Thus, we are hopeful that anti-CD44 therapy will be applied in the treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| | - Pengyu Chang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
707
|
Manou D, Caon I, Bouris P, Triantaphyllidou IE, Giaroni C, Passi A, Karamanos NK, Vigetti D, Theocharis AD. The Complex Interplay Between Extracellular Matrix and Cells in Tissues. Methods Mol Biol 2019; 1952:1-20. [PMID: 30825161 DOI: 10.1007/978-1-4939-9133-4_1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extracellular matrix (ECM) maintains the structural integrity of tissues and regulates cell and tissue functions. ECM is comprised of fibrillar proteins, proteoglycans (PGs), glycosaminoglycans, and glycoproteins, creating a heterogeneous but well-orchestrated network. This network communicates with resident cells via cell-surface receptors. In particular, integrins, CD44, discoidin domain receptors, and cell-surface PGs and additionally voltage-gated ion channels can interact with ECM components, regulating signaling cascades as well as cytoskeleton configuration. The interplay of ECM with recipient cells is enriched by the extracellular vesicles, as they accommodate ECM, signaling, and cytoskeleton molecules in their cargo. Along with the numerous biological properties that ECM can modify, autophagy and angiogenesis, which are critical for tissue homeostasis, are included. Throughout development and disease onset and progression, ECM endures rearrangement to fulfill cellular requirements. The main responsible molecules for tissue remodeling are ECM-degrading enzymes including matrix metalloproteinases, plasminogen activators, cathepsins, and hyaluronidases, which can modify the ECM structure and function in a dynamic mode. A brief summary of the complex interplay between ECM macromolecules and cells in tissues and the contribution of ECM in tissue homeostasis and diseases is given.
Collapse
Affiliation(s)
- Dimitra Manou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Panagiotis Bouris
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | | |
Collapse
|
708
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
709
|
Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem 2019; 26:3026-3041. [PMID: 28875842 PMCID: PMC5949083 DOI: 10.2174/0929867324666170830111531] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
Chemokines, which have chemotactic abilities, are comprised of a family of small cytokines with 8-10 kilodaltons. Chemokines work in immune cells by trafficking and regulating cell proliferation, migration, activation, differentiation, and homing. CXCR-4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also known as CXCL12), which has been found to be expressed in more than 23 different types of cancers. Recently, the SDF-1/CXCR-4 signaling pathway has emerged as a potential therapeutic target for human tumor because of its critical role in tumor initiation and progression by activating multiple signaling pathways, such as ERK1/2, ras, p38 MAPK, PLC/ MAPK, and SAPK/ JNK, as well as regulating cancer stem cells. CXCL12/CXCR4 antagonists have been produced, which have shown encouraging results in anti-cancer activity. Here, we provide a brief overview of the CXCL12/CXCR4 axis as a molecular target for cancer treatment. We also review the potential utility of targeting CXCL12/CXCR4 axis in combination of immunotherapy and/or chemotherapy based on up-to-date literature and ongoing research progress.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu District, Shenyang, Liaoning Province 110034, P. R. China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Mingli Liu
- Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Matthew E. Burow
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
710
|
Zubair H, Azim S, Khan MA, Patel GK, Ahmad A, Pai S, Singh S, Singh AP. Epigenetic Control of Pancreatic Carcinogenesis and Its Regulation by Natural Products. EPIGENETICS OF CANCER PREVENTION 2019:251-270. [DOI: 10.1016/b978-0-12-812494-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
711
|
Wu G, Yuan S, Chen Z, Chen G, Fan Q, Dong H, Ye F, Li J, Zhu X. The KLF14 Transcription Factor Regulates Glycolysis by Downregulating LDHB in Colorectal Cancer. Int J Biol Sci 2019; 15:628-635. [PMID: 30745849 PMCID: PMC6367579 DOI: 10.7150/ijbs.30652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
The Krüppel-like transcription factor 14 (KLF14) is a critical regulator of a wide array of biological processes. However, the role of KLF14 in colorectal cancer (CRC) isn't fully investigated. This study aimed to explore the clinicopathological significance and potential role of KLF14 in the carcinogenesis and progression of CRC. A tissue microarray consisting of 185 samples from stage I-III CRC patients was adopted to analyze the correlation between KLF14 expression and clinicopathological parameters, as well as overall survival (OS) and disease-free survival (DFS). The underlying mechanisms of altered KLF14 expression on glycolysis were studied using in vitro and patients' samples. The results showed that KLF14 expression was downregulated in CRC than their normal controls. Low KLF14 expression correlated with advanced T stage (P< 0.001) and N stage (P= 0.040), and larger tumor size (P= 0.008). Lost KLF14 expression implied shorter OS and DFS after colectomy in both univariate and multivariate survival analysis (P<0.05). Experimentally, restore KLF14 expression significantly decreased the rate of glycolysis both in vitro and in patients' sample. Mechanically, KLF14 regulated glycolysis by downregulating glycolytic enzyme LDHB. Collectively, KLF14 is a novel prognostic biomarker for survival in CRC, and downregulation of KLF14 in CRC prompts glycolysis by target LDHB. Hence, KLF14 could constitute potential prognostic predictors and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Guiyang Wu
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Shichao Yuan
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Zaiping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Guoping Chen
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Qinghao Fan
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Hao Dong
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Fubo Ye
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| | - Jing Li
- Departments of CyberKnife, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiongwen Zhu
- Department of General Surgery, Taizhou Municipal Hospital, Medical School of Taizhou University, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
712
|
Zhang J, Zhu Z, Wu H, Yu Z, Rong Z, Luo Z, Xu Y, Huang K, Qiu Z, Huang C. PODXL, negatively regulated by KLF4, promotes the EMT and metastasis and serves as a novel prognostic indicator of gastric cancer. Gastric Cancer 2019; 22:48-59. [PMID: 29748877 PMCID: PMC6314994 DOI: 10.1007/s10120-018-0833-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Podocalyxin-like 1 (PODXL) was reported to be closely associated with the development of various cancers, yet its functional roles and molecular mechanisms remain vague. The aim of our study was to investigate the clinical significance, biological function and molecular mechanism of PODXL in gastric cancer (GC). METHODS The level of PODXL in GC tissues was detected applying GC tissues microarray, fresh GC tissues and public database (Oncomine). The invasion, metastasis and tumorigenesis role of PODXL were performed in vitro and in vivo. The correlations between KLF4 and PODXL was determined in GC tissues microarray and fresh GC tissues, and the molecular regulatory mechanism between KLF4 and PODXL was explored in vitro. RESULTS The high level of PODXL was detected in GC tissues with advanced T stage, lymph node metastasis, Union for International Cancer Control stage and poor differentiation. And Cox proportional hazards model revealed that PODXL can serve as an independent prognostic indicator for disease-free survival and overall survival of GC patients. Moreover, downregulation of PODXL could inhibit EMT and reduce invasion and metastasis in vitro as well as tumorigenesis in vivo. Additionally, our findings showed that PODXL may be a significant downstream target of KLF4. CONCLUSIONS KLF4/PODXL signaling pathway assumes an irreplaceable role in tumorigenesis, invasion and metastasis of human GC and PODXL serves as an independent prognostic indicator for GC patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Huijing Wu
- Department of Medical Affairs, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yiwei Xu
- Department of Anesthesiology, Wan Nan Medical College, Wuhu, 241002, China
| | - Kejian Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
713
|
Yu M, Hong W, Ruan S, Guan R, Tu L, Huang B, Hou B, Jian Z, Ma L, Jin H. Genome-Wide Profiling of Prognostic Alternative Splicing Pattern in Pancreatic Cancer. Front Oncol 2019; 9:773. [PMID: 31552163 PMCID: PMC6736558 DOI: 10.3389/fonc.2019.00773] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) has a critical role in tumor progression and prognosis. Our study aimed to investigate pancreatic cancer-specific AS events using RNA-seq data, gaining systematic insights into potential prognostic predictors. We downloaded 10,623 genes with 45,313 pancreatic cancer-specific AS events from the Cancer Genome Atlas (TCGA) and SpliceSeq database. Cox univariate analyses of overall survival suggested there was a remarkable association between 6,711 AS events and overall survival in pancreatic cancer patients (P < 0.05). The area under the curves (AUC) of the receiver operator characteristic curves (ROC) of risk score was 0.89 for final prognostic predictor. Results indicated that AS events of DAZAP1, RBM4, ESRP1, QKI, and SF1 were significantly associated with overall survival. The results of FunRich showed that transcription factors KLF7, GABPA, and SP1 were the most highly related to survival-associated AS genes. Furthermore, using DriverDBv2, we identified 13 driver genes associated with survival-associated AS events, including TP53 and CDC27. Thus, we concluded that the aberrant AS patterns in pancreatic cancer patients might serve as prognostic predictors.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Min Yu
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lei Tu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bowen Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Haosheng Jin
| |
Collapse
|
714
|
Zhu X, Du J, Yu J, Guo R, Feng Y, Qiao L, Xu Z, Yang F, Zhong G, Liu F, Cheng F, Chu M, Lin J. LncRNA NKILA regulates endothelium inflammation by controlling a NF-κB/KLF4 positive feedback loop. J Mol Cell Cardiol 2019; 126:60-69. [DOI: 10.1016/j.yjmcc.2018.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/22/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022]
|
715
|
Parameswaran S, Vizeacoumar FS, Kalyanasundaram Bhanumathy K, Qin F, Islam MF, Toosi BM, Cunningham CE, Mousseau DD, Uppalapati MC, Stirling PC, Wu Y, Bonham K, Freywald A, Li H, Vizeacoumar FJ. Molecular characterization of an MLL1 fusion and its role in chromosomal instability. Mol Oncol 2018; 13:422-440. [PMID: 30548174 PMCID: PMC6360371 DOI: 10.1002/1878-0261.12423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
Chromosomal rearrangements involving the mixed‐lineage leukemia (MLL1) gene are common in a unique group of acute leukemias, with more than 100 fusion partners in this malignancy alone. However, do these fusions occur or have a role in solid tumors? We performed extensive network analyses of MLL1‐fusion partners in patient datasets, revealing that multiple MLL1‐fusion partners exhibited significant interactions with the androgen‐receptor signaling pathway. Further exploration of tumor sequence data from TCGA predicts the presence of MLL1 fusions with truncated SET domain in prostate tumors. To investigate the physiological relevance of MLL1 fusions in solid tumors, we engineered a truncated version of MLL1 by fusing it with one of its known fusion partners, ZC3H13, to use as a model system. Functional characterization with cell‐based assays revealed that MLL1‐ZC3H13 fusion induced chromosomal instability, affected mitotic progression, and enhanced tumorsphere formation. The MLL1‐ZC3H13 chimera consistently increased the expression of a cancer stem cell marker (CD44); in addition, we detected potential collateral lethality between DOT1L and MLL1 fusions. Our work reveals that MLL1 fusions are likely prevalent in solid tumors and exhibit a potential pro‐tumorigenic role.
Collapse
Affiliation(s)
- Sreejit Parameswaran
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Md Fahmid Islam
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Behzad M Toosi
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chelsea E Cunningham
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Darrell D Mousseau
- Cell Signaling Laboratory, Departments of Psychiatry and Physiology, University of Saskatchewan, Saskatoon, Canada
| | - Maruti C Uppalapati
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Yuliang Wu
- Department of Biochemistry, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Keith Bonham
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Canada
| |
Collapse
|
716
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M, Ortiz-Sánchez E. Cancer stem cell impact on clinical oncology. World J Stem Cells 2018; 10:183-195. [PMID: 30613312 PMCID: PMC6306557 DOI: 10.4252/wjsc.v10.i12.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a widespread worldwide chronic disease. In most cases, the high mortality rate from cancer correlates with a lack of clear symptoms, which results in late diagnosis for patients, and consequently, advanced tumor disease with poor probabilities for cure, since many patients will show chemo- and radio-resistance. Several mechanisms have been studied to explain chemo- and radio-resistance to anti-tumor therapies, including cell signaling pathways, anti-apoptotic mechanisms, stemness, metabolism, and cellular phenotypes. Interestingly, the presence of cancer stem cells (CSCs), which are a subset of cells within the tumors, has been related to therapy resistance. In this review, we focus on evaluating the presence of CSCs in different tumors such as breast cancer, gastric cancer, lung cancer, and hematological neoplasias, highlighting studies where CSCs were identified in patient samples. It is evident that there has been a great drive to identify the cell surface phenotypes of CSCs so that they can be used as a tool for anti-tumor therapy treatment design. We also review the potential effect of nanoparticles, drugs, natural compounds, aldehyde dehydrogenase inhibitors, cell signaling inhibitors, and antibodies to treat CSCs from specific tumors. Taken together, we present an overview of the role of CSCs in tumorigenesis and how research is advancing to target these highly tumorigenic cells to improve oncology patient outcomes.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | - Miguel Ibáñez Hernández
- Departamento de Bioquímica, Laboratorio de Terapia Génica, Escuela Nacional de Ciencias Biológicas, Posgrado de Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
717
|
Rogez B, Pascal Q, Bobillier A, Machuron F, Lagadec C, Tierny D, Le Bourhis X, Chopin V. CD44 and CD24 Expression and Prognostic Significance in Canine Mammary Tumors. Vet Pathol 2018; 56:377-388. [PMID: 30558511 DOI: 10.1177/0300985818813653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD44+/CD24- phenotype has been used to identify human and canine mammary cancer stem-like cells. In canine mammary tumors, CD44+/CD24- phenotype has been associated with high grade and lymph node infiltration. However, several studies have reported opposing results regarding the clinical significance of phenotypic groups formed by the combination of CD44 and CD24 in both human and canine mammary tumors. So far, no study has investigated the correlation between these phenotypes and survival in dogs. The aim of this study was to investigate the expression and distribution of CD44 and CD24 in canine mammary carcinomas and to correlate them with histological diagnosis and survival in a well-characterized cohort. Immunohistochemistry was performed in 96 mammary carcinomas with antibodies against CD44 and CD24. Expression of CD44+ and CD44+/CD24- phenotype was detected in 75 of 96 (78%) and 63 of 96 (65.6%) carcinomas, respectively. Their expression was associated with tumor type, occurring more often in tubular complex carcinomas than in solid carcinomas. CD44+/CD24- phenotype was associated with a better overall survival ( P = .001). CD24+ expression was detected in 52 of 96 tumors (54%) and CD44-/CD24+ phenotype in 39 of 96 tumors (40.6%). Both were associated with poor clinicopathological parameters (high grade, and emboli). No correlation with overall survival was observed. CD44+/CD24- expression was associated with a better prognosis and occurred at high frequency and high level, indicating that this phenotype is not suitable to detect cancer stem cells in canine mammary carcinomas. Although further studies are needed, our results suggest that CD24 may constitute a valuable marker of poor prognosis for canine mammary carcinomas.
Collapse
Affiliation(s)
- Bernadette Rogez
- 1 University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,2 OCR (Oncovet Clinical Research), Parc Eurasanté, Lille Métropole, Loos, France
| | - Quentin Pascal
- 2 OCR (Oncovet Clinical Research), Parc Eurasanté, Lille Métropole, Loos, France
| | - Audrey Bobillier
- 3 VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| | - François Machuron
- 4 University of Lille, CHU Lille, EA 2694-Santé publique: épidémiologie et qualité des soins, Lille, France
| | - Chann Lagadec
- 1 University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France
| | - Dominique Tierny
- 2 OCR (Oncovet Clinical Research), Parc Eurasanté, Lille Métropole, Loos, France
| | - Xuefen Le Bourhis
- 1 University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,These authors contributed equally to this work
| | - Valérie Chopin
- 1 University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,5 University of Picardie Jules Verne, UFR Sciences, Amiens, France.,These authors contributed equally to this work
| |
Collapse
|
718
|
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19:E4036. [PMID: 30551640 PMCID: PMC6321478 DOI: 10.3390/ijms19124036] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Collapse
Affiliation(s)
- Toni Nunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Diaddin Hamdan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Hôpital de La Porte Verte, F-78004 Versailles, France.
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Morad El Bouchtaoui
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Guillaume Gapihan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Thi Thuy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Solveig Meles
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Eurydice Angeli
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Philippe Ratajczak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - He Lu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Mélanie Di Benedetto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
| | - Guilhem Bousquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
- Service d'Oncologie Médicale, AP-HP-Hôpital Avicenne, F-93008 Bobigny, France.
| | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Service de Pathologie, AP-HP-Hôpital Saint-Louis, F-75010 Paris, France.
| |
Collapse
|
719
|
Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, Genta I. The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics 2018; 10:pharmaceutics10040267. [PMID: 30544868 PMCID: PMC6321127 DOI: 10.3390/pharmaceutics10040267] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
The microfluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking in vivo conditions. This review covers the general aspects of the microfluidic technique and its application in several fields, such as the synthesis, recovering, and samples analysis of nanoparticles, and in vitro characterization and their in vivo application. Among these, advantages in the production of polymeric nanoparticles in a well-controlled, reproducible, and high-throughput manner have been highlighted, and detailed descriptions of microfluidic devices broadly used for the synthesis of polysaccharide nanoparticles have been provided. These nanoparticulate systems have drawn attention as drug delivery vehicles over many years; nevertheless, their synthesis using the microfluidic technique is still largely unexplored. This review deals with the use of the microfluidic technique for the synthesis of polysaccharide nanoparticles; evaluating features of the most studied polysaccharide drug carriers, such as chitosan, hyaluronic acid, and alginate polymers. The critical assessment of the most recent research published in literature allows us to assume that microfluidics will play an important role in the discovery and clinical translation of nanoplatforms.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Gloria Bergamini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
720
|
Turano M, Costabile V, Cerasuolo A, Duraturo F, Liccardo R, Delrio P, Pace U, Rega D, Dodaro CA, Milone M, Izzo P, De Rosa M. Characterisation of mesenchymal colon tumour-derived cells in tumourspheres as a model for colorectal cancer progression. Int J Oncol 2018; 53:2379-2396. [PMID: 30272331 PMCID: PMC6203159 DOI: 10.3892/ijo.2018.4565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cellular plasticity, the ability of cells to switch from an epitheial phenotype to a mesenchymal one and vice versa, plays a crucial role in tumour progression and metastases development. In 20-25% of patients with colon cancer and in 18% of patients with rectal cancer, metastases are present at the time of the first diagnosis. They are the first cause of colorectal cancer (CRC)-related mortality, defining stage IV CRC, which is characterized by a relatively short overall survival. We previously isolated two primary colon adenocarcinoma cell cultures that had undergone epithelial-mesenchymal transition (EMT), one with a high microsatellite instability phenotype (T88) and one with a chromosomal instability phenotype (T93). The aim of this study was to establish a model with which to study EMT, stemness features and cell plasticity in cancer progression and to examine the effects of incubation with lithium chloride (LiCl), a specific glycogen synthase kinase 3 β (GSK-3β) inhibitor, on these cellular processes. Indeed, GSK3β is an important regulator of cell survival, which promotes tumourigenesis in colon cells by facilitating the crosstalk between colorectal cancer pathways. Thus, we further characterized our system of adherent primary mesenchymal colon cancer cells and their paired tumourspheres by examining the expression and localisation of a panel of markers, including E- and N‑cadherin, CD133, CD44v6, aldehyde dehydrogenase 1 (ALDH1) and leucine-rich repeat‑containing G-protein coupled receptor 5 (LGR5). We also characterised the molecular features of these tumourspheres and examined their response to LiCl. Furthermore, we explored the effects of LiCl on cell motility and plasticity. We demonstrated that LiCl reduced cell migration, stemness features and cell plasticity. We also observed the atypical nuclear localisation of membrane proteins, including N‑cadherin, CD133 and CD44v6 in mesenchymal tumour cells. Of note, CD133 and CD44v6 appeared to localise at the plasma membrane in cells with a more epithelial phenotype, suggesting that the cytoplasmic/nuclear localisation of these proteins could favour and characterize cell plasticity in colorectal cancer progression.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples
| | - Valeria Costabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II
| | | | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II
| | - Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II
| | - Paolo Delrio
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS
| | - Ugo Pace
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS
| | - Daniela Rega
- Colorectal Surgical Oncology - Abdominal Oncology Department, Istituto Nazionale per lo studio e la cura dei tumori, 'Fondazione Giovanni Pascale' IRCCS
| | | | - Marco Milone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II
| |
Collapse
|
721
|
The CD44 variant induces K562 cell acquired with resistance to adriamycin via NF-κB/Snail/Bcl-2 pathway. Med Hypotheses 2018; 121:142-148. [DOI: 10.1016/j.mehy.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023]
|
722
|
Li Y, Shi S, Ming Y, Wang L, Li C, Luo M, Li Z, Li B, Chen J. Specific cancer stem cell-therapy by albumin nanoparticles functionalized with CD44-mediated targeting. J Nanobiotechnology 2018; 16:99. [PMID: 30501644 PMCID: PMC6271611 DOI: 10.1186/s12951-018-0424-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are highly proliferative and tumorigenic, which contributes to chemotherapy resistance and tumor occurrence. CSCs specific therapy may achieve excellent therapeutic effects, especially to the drug-resistant tumors. RESULTS In this study, we developed a kind of targeting nanoparticle system based on cationic albumin functionalized with hyaluronic acid (HA) to target the CD44 overexpressed CSCs. All-trans-retinoic acid (ATRA) was encapsulated in the nanoparticles with ultrahigh encapsulation efficiency (EE%) of 93% and loading content of 8.37%. TEM analysis showed the nanoparticles were spherical, uniform-sized and surrounded by a coating layer consists of HA. Four weeks of continuously measurements of size, PDI and EE% revealed the high stability of nanoparticles. Thanks to HA conjugation on the surface, the resultant nanoparticles (HA-eNPs) demonstrated high affinity and specific binding to CD44-enriched B16F10 cells. In vivo imaging revealed that HA-eNPs can targeted accumulate in tumor-bearing lung of mouse. The cytotoxicity tests illustrated that ATRA-laden HA-eNPs possessed better killing ability to B16F10 cells than free drug or normal nanoparticles in the same dose, indicating its good targeting property. Moreover, HA-eNPs/ATRA treatment decreased side population of B16F10 cells significantly in vitro. Finally, tumor growth was significantly inhibited by HA-eNPs/ATRA in lung metastasis tumor mice. CONCLUSIONS These results demonstrate that the HA functionalized albumin nanoparticles is an efficient system for targeted delivery of antitumor drugs to eliminate the CSCs.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Sanjun Shi
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Yue Ming
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Linli Wang
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Chenwen Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Minghe Luo
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Ziwei Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Bin Li
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| | - Jianhong Chen
- Department of Pharmacy, Third Affiliated Hospital & Research Institute of Surgery of Army Medical University, 10# Changjiangzhilu, Chongqing, 400042 People’s Republic of China
| |
Collapse
|
723
|
Wang L, Shen F, Stroehlein JR, Wei D. Context-dependent functions of KLF4 in cancers: Could alternative splicing isoforms be the key? Cancer Lett 2018; 438:10-16. [PMID: 30217565 DOI: 10.1016/j.canlet.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an important transcription factor that is expressed in a variety of tissues and regulates many critical physiologic and cellular processes, including cell proliferation, differentiation, stem cell reprogramming, maintenance of genomic stability, and normal tissue homeostasis. KLF4 has both tumor suppressive and oncogenic functions in gastrointestinal and other cancers. These functions are thought to be context dependent, but how KLF4 exerts these differential functions and the molecular mechanisms behind them remain poorly understood. Recent studies have shown that the KLF4 gene undergoes alternative splicing, and the protein products of certain transcripts antagonize wild-type KLF4 function, suggesting an additional layer of regulation of KLF4 function. Therefore, detailed study of KLF4 alternative splicing may not only provide new insights into the complexity of KLF4 functions but also lead to rational targeting of KLF4 for cancer prevention and therapy.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Shen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Stroehlein
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
724
|
Degen M, Wiederkehr A, La Scala GC, Carmann C, Schnyder I, Katsaros C. Keratinocytes Isolated From Individual Cleft Lip/Palate Patients Display Variations in Their Differentiation Potential in vitro. Front Physiol 2018; 9:1703. [PMID: 30555344 PMCID: PMC6281767 DOI: 10.3389/fphys.2018.01703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
To gain more understanding of the complex molecular processes underlying cleft lip/palate (CLP), we established a unique human cell bank, consisting of keratinocytes and corresponding fibroblasts from individual CLP patients as a new study tool. After their careful characterization, we used such patient-derived cell cultures as well as control keratinocytes for in vitro differentiation and proliferation assays. Foreskin-derived control cells as a group showed significant higher induction of the late differentiation markers Loricrin and Filaggrin than the group of CLP patients-derived keratinocytes. Additionally, we detected great variations between individual CLP keratinocyte cell cultures in regard to their potential to terminally differentiate as assessed by the induction of Loricrin and Filaggrin. Primary patient cell cultures that did not properly differentiate, exhibited high proliferation rates. Moreover, we could correlate the expression levels of transcription factor IRF6 to the ability of individual cell cultures to terminally differentiate. Using clinically relevant, patient-derived cells, our results suggest that some of the genetic predispositions causing CLP might also lead to deficiencies in keratinocyte differentiation manifested in in vitro assays.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Astrid Wiederkehr
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Christina Carmann
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
725
|
Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, García M, Bolontrade MF, Passi A, Cristina C, Alaniz L. Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 2018; 9:36585-36602. [PMID: 30564299 PMCID: PMC6290962 DOI: 10.18632/oncotarget.26379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan, the main glycosaminoglycan of extracellular matrices, is concentrated in tissues with high cell proliferation and migration rates. In cancer, hyaluronan expression is altered and it becomes fragmented into low-molecular-weight forms, affecting mechanisms associated with cell proliferation, invasion, angiogenesis and multidrug resistance. Here, we analyzed the effect of low-molecular-weight hyaluronan on the response of T lymphoma, osteosarcoma, and mammary adenocarcinoma cell lines to the antineoplastic drug doxorubicin, and whether co-treatment with hyaluronan and doxorubicin modified the behavior of endothelial cells. Our aim was to associate the hyaluronan-doxorubicin response with angiogenic alterations in these tumors. After hyaluronan and doxorubicin co-treatment, hyaluronan altered drug accumulation and modulated the expression of ATP-binding cassette transporters in T-cell lymphoma cells. In contrast, no changes in drug accumulation were observed in cells from solid tumors, indicating that hyaluronan might not affect drug efflux. However, when we evaluated the effect on angiogenic mechanisms, the supernatant from tumor cells treated with doxorubicin exhibited a pro-angiogenic effect on endothelial cells. Hyaluronan-doxorubicin co-treatment increased migration and vessel formation in endothelial cells. This effect was independent of vascular endothelial growth factor but related to fibroblast growth factor-2 expression. Besides, we observed a pro-angiogenic effect on endothelial cells during hyaluronan and doxorubicin co-treatment in the in vivo murine model of T-cell lymphoma. Our results demonstrate for the first time that hyaluronan is a potential modulator of doxorubicin response by mechanisms that involve not only drug efflux but also angiogenic processes, providing an adverse tumor stroma during chemotherapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Daiana Del Dago
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Gianina Demarchi
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT-CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Laboratorio de Células Madre-Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| |
Collapse
|
726
|
Zammit V, Brincat MR, Cassar V, Muscat-Baron Y, Ayers D, Baron B. MiRNA influences in mesenchymal stem cell commitment to neuroblast lineage development. Noncoding RNA Res 2018; 3:232-242. [PMID: 30533571 PMCID: PMC6257889 DOI: 10.1016/j.ncrna.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) are widely used in therapeutic applications. Their plasticity and predisposition to differentiate into a variety of cell types, including those of the neuronal lineage, makes them ideal to study whether a selection of miRNAs may direct the differentiation of MSCs into neuroblasts or neuroblastoma to mature neurons. Following a short-listing, miR-107, 124 and 381 were selected as the most promising candidates for this differentiation. MSCs differentiated into cells of the neural lineage (Conditioned Cells) upon addition of conditioned medium (rich in microvesicles containing miRNAs) obtained from cultured SH-SY5Y neuroblastoma cells. Characterisation of stemness (including SOX2, OCT4, Nanog and HCG) and neural markers (including Nestin, MASH1, TUBB3 and NeuN1) provided insight regarding the neuronal state of each cell type. This was followed by transfection of the three miRNA antagonists and mimics, and quantification of their respective target genes. MiRNA target gene expression following transfection of MSCs with miRNA inhibitors and mimics demonstrated that these three miRNAs were not sufficient to induce differentiation. In conditioned cells the marginal changes in the miRNA target expression levels reflected potential for the modulation of intermediate neural progenitors and immature neuron cell types. Transfection of various combinations of miRNA inhibitors and/or mimics revealed more promise. Undoubtedly, a mix of biomolecules is being released by the SH-SY5Y in culture that induce MSCs to differentiate. Screening for those biomolecules acting synergistically with specific miRNAs will allow further combinatorial testing to elucidate the role of miRNA modulation.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, G'Mangia, PTA1010, Malta.,School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Mark R Brincat
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Viktor Cassar
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Yves Muscat-Baron
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
727
|
De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Dig Liver Dis 2018; 50:1115-1123. [PMID: 30217732 DOI: 10.1016/j.dld.2018.08.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths and the fifth most common cancer worldwide. Most of these patients are seen with advanced disease at the time of presentation. In spite of its high prevalence, there are not many therapeutic options available for patients with advanced-stage HCC. There is an urgent need for improving early detection and prognostication of patients with HCC. In addition, the development of new therapies targeting specific pathways involved in the pathogenesis of HCC should be a major goal for future research, with the objective of improving outcomes of patients with HCC. Biomarkers represent a relatively easy and noninvasive way to detect and estimate disease prognosis. In spite of the numerous efforts to find molecules as possible biomarkers, there is not a single ideal marker in HCC. Many new findings have shown promising results both in diagnosing and treating HCC. In this review, we summarized the most recent and relevant biomarkers in HCC.
Collapse
Affiliation(s)
- Felice De Stefano
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eduardo Chacon
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lilia Turcios
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
728
|
Cao J, Ma J, Sun L, Li J, Qin T, Zhou C, Cheng L, Chen K, Qian W, Duan W, Wang F, Wu E, Wang Z, Ma Q, Han L. Targeting glypican-4 overcomes 5-FU resistance and attenuates stem cell-like properties via suppression of Wnt/β-catenin pathway in pancreatic cancer cells. J Cell Biochem 2018; 119:9498-9512. [PMID: 30010221 DOI: 10.1002/jcb.27266] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
The existences of cancer stem cells in patients with pancreatic cancer are considered as pivotal factors contributing to chemoresistance and disease relapse. Glypican-4 (GPC4) is one of the members of the glypicans family, which underlies human congenital malformations and multiple diseases. However, its potential biological function in pancreatic cancer still remains elusive. In this study, we are the first to demonstrate that GPC4 was involved in 5-fluorouracil (5-FU) resistance and pancreatic cancer stemness through comprehensive bioinformatical analysis. Functional experiments showed that knockdown of GPC4 sensitized pancreatic cancer cells to 5-FU and attenuated stem cell-like properties. In terms of mechanism research, knockdown of GPC4 suppressed the activation of Wnt/β-catenin pathway and its downstream targets. Furthermore, the expression of GPC4 was significantly upregulated in pancreatic cancer tissues compared with normal tissues and remarkably correlated with patients' overall survival according to the data derived from the Cancer Genome Atlas database. Taken together, our results suggest that GPC4 is a key regulator in chemoresistance and pancreatic cancer stemness. Thus, targeting GPC4 may serve as a promising strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Junyu Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University College of Medicine, College Station, Texas
- Department of Neurology, Baylor Scott & White Health, Temple, Texas
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University College of Medicine, College Station, Texas
- Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, Texas
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
729
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|
730
|
Demystifying the Differences Between Tumor-Initiating Cells and Cancer Stem Cells in Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2018. [DOI: 10.1007/s11888-018-0421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
731
|
The combination of aldehyde dehydrogenase 1 (ALDH1) and CD44 is associated with poor outcomes in endometrial cancer. PLoS One 2018; 13:e0206685. [PMID: 30372483 PMCID: PMC6205661 DOI: 10.1371/journal.pone.0206685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Aldehyde dehydrogenase 1 (ALDH1) and CD44 have been established as biomarkers for predicting the survival of many types of cancer patients. This study evaluated the expression and clinical significance of these putative cancer-cell markers in a series of tumor samples from endometrial cancer (EC) patients using tissue microarray. We examined 245 endometrial samples, including 132 (53.87%) pre-malignancy lesions and 113 (46.12%) malignant endometrial lesions from biopsies or hysterectomies. We examined the expression of CD44 and ALDH1 in these samples using immunohistochemistry staining. Correlations in the relative expression of these markers with clinicopathological parameters were also assessed. A high level of expression of ALDH1 was found in 44.25% (50/113) of the endometrial cancer samples, which was significantly correlated with a poor overall survival rate (p = 0.035). High-level CD44 expression was found in 35.4% (40/113) of the cases and was also correlated with a poor overall survival rate (p = 0.035). A simultaneous high expression of both markers was correlated with an extremely poor overall survival (p = 0.013). Our results show that tumors with higher expressions of both ALDH1 and CD44 were related to a poorer overall survival rate among EC patients. The combination of ALDH1 and CD44 could be a promising marker for developing additional targeted therapy for severe endometrial cancers.
Collapse
|
732
|
Gu Z, Wang X, Cheng R, Cheng L, Zhong Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 2018; 80:288-295. [PMID: 30240956 DOI: 10.1016/j.actbio.2018.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022]
Abstract
Bortezomib (BTZ) provides one of the best treatments for multiple myeloma (MM). The efficacy of BTZ is, nevertheless, restricted by its fast clearance, low selectivity, and dose limiting toxicities. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). HA-CCMs loaded with 7.3 BTZ equiv. wt% exhibited a small size of 78 nm, good stability in 10% FBS, and glutathione-triggered drug release. MTT assays in CD44 positive LP-1 multiple myeloma cells revealed that BP encapsulated in HA-CCMs caused enhanced antiproliferative effect compared with free BP. Flow cytometry, confocal microscopy and MTT assays indicated BP-loaded HA-CCMs (HA-CCMs-BP) could actively target to LP-1 cells and induce high antitumor effect. Proteasome activity assays in vitro showed HA-CCMs-BP had a similar proteasome activity inhibition as compared to free BTZ at 18 h. The fluorescence imaging using Cy5-labeled HA-CCMs showed that HA-CCMs had a long elimination half-life and enhanced tumor accumulation via HA-mediated uptake mechanism. The therapeutic studies in LP-1 MM-bearing mice revealed better treatment efficacy of HA-CCMs-BP compared with free BTZ, in which HA-CCMs-BP at 3 mg BTZ equiv./kg brought about significant tumor growth inhibition and survival benefits. Loading of lipophilized BTZ into HA-shelled multifunctional micelles has emerged as an exciting approach for bortezomib therapy of MM. STATEMENT OF SIGNIFICANCE: Multiple myeloma (MM) is the second most common hematological malignancy. Bortezomib (BTZ), a potent proteasome inhibitor, provides one of the best treatments for MM. The clinical efficacy of BTZ is, however, limited by its quick clearance, poor selectivity, and significant side effects including myelosuppression and peripheral neuropathy. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). Our results showed that BP-loaded HA-CCMs exhibit markedly enhanced toleration, broadened therapeutic window, and significantly more effective growth suppression of CD44-overexpressed multiple myeloma in nude mice than free bortezomib. Lipophilized BTZ-loaded HA-CCMs has opened a new avenue for targeted bortezomib therapy of multiple myeloma.
Collapse
Affiliation(s)
- Zhaoxin Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
733
|
Liang Z, Lu Z, Zhang Y, Shang D, Li R, Liu L, Zhao Z, Zhang P, Lin Q, Feng C, Zhang Y, Liu P, Tu Z, Liu H. Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets 2018; 19:449-467. [PMID: 30306870 DOI: 10.2174/1568009618666181010091246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/02/2023]
Abstract
Ovarian cancer is a leading cause of death worldwide from gynecological malignancies, mainly because there are few early symptoms and the disease is generally diagnosed at an advanced stage. In addition, despite the effectiveness of cytoreductive surgery for ovarian cancer and the high response rates to chemotherapy, survival has improved little over the last 20 years. The management of patients with ovarian cancer also remains similar despite studies showing striking differences and heterogeneity among different subtypes. It is therefore clear that novel targeted therapeutics are urgently needed to improve clinical outcomes for ovarian cancer. To that end, several membrane receptors associated with pivotal cellular processes and often aberrantly overexpressed in ovarian cancer cells have emerged as potential targets for receptor-mediated therapeutic strategies including specific agents and multifunctional delivery systems based on ligand-receptor binding. This review focuses on the profiles and potentials of such strategies proposed for ovarian cancer treatment and imaging.
Collapse
Affiliation(s)
- Zhiquan Liang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yafei Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongsheng Shang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ruyan Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhicong Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
734
|
Lee JR, Roh JL, Lee SM, Park Y, Cho KJ, Choi SH, Nam SY, Kim SY. Overexpression of cysteine-glutamate transporter and CD44 for prediction of recurrence and survival in patients with oral cavity squamous cell carcinoma. Head Neck 2018; 40:2340-2346. [PMID: 30303590 DOI: 10.1002/hed.25331] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/09/2018] [Accepted: 04/19/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND This study analyzed the expression of CD44 and cystine-glutamate transporter SLC7A11 (xCT) in primary oral cavity squamous cell carcinoma (SCC) and the relationships of expression to tumor recurrence and patient survival. METHODS Associations between CD44 and xCT expression and clinicopathologic results were analyzed in 231 patients with oral cavity SCC. Cox proportional hazard analyses were used to identify factors associated with recurrence-free survival (RFS), disease-specific survival (DSS), and overall survival (OS). RESULTS Overexpression of CD44 and/or xCT was associated with advanced T classification, perineural invasion, and lymphovascular invasion (P < .05 each). High expression of xCT was also associated with nodal metastasis and depth of invasion (P < .01 each). Multivariate analysis indicated that high expression of xCT and both xCT and CD44 were independent predictors of poor RFS, DSS, and OS (P < .05 each). CONCLUSION Overexpression of xCT or xCT plus CD44 may predict posttreatment recurrence and survival in patients with oral cavity SCC.
Collapse
Affiliation(s)
- Jae Ryung Lee
- Department of Otolaryngology-Head & Neck Surgery, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Mi Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Ja Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Choi
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soon Yuhl Nam
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
735
|
Overexpression of CD44 Variant 9: A Novel Cancer Stem Cell Marker in Human Cholangiocarcinoma in Relation to Inflammation. Mediators Inflamm 2018; 2018:4867234. [PMID: 30402042 PMCID: PMC6198546 DOI: 10.1155/2018/4867234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
Various CD44 isoforms are expressed in several cancer stem cells during tumor progression and metastasis. In particular, CD44 variant 9 (CD44v9) is highly expressed in chronic inflammation-induced cancer. We investigated the expression of CD44v9 and assessed whether CD44v9 is a selective biomarker of human cholangiocarcinoma (CCA). The expression profile of CD44v9 was evaluated in human liver fluke Opisthorchis viverrini-related CCA (OV-CCA) tissues, human CCA (independent of OV infection, non-OV-CCA) tissues, and normal liver tissues. CD44v9 overexpression was detected by immunohistochemistry (IHC) in CCA tissues. There was a higher level of CD44v9 expression and IHC score in OV-CCA tissues than in non-OV-CCA tissues, and there was no CD44v9 staining in the bile duct cells of normal liver tissues. In addition, we observed significantly higher expression of inflammation-related markers, such as S100P and COX-2, in OV-CCA tissues compared to that in non-OV and normal liver tissues. Thus, these findings suggest that CD44v9 may be a novel candidate CCA stem cell marker and may be related to inflammation-associated cancer development.
Collapse
|
736
|
EI24 Suppresses Tumorigenesis in Pancreatic Cancer via Regulating c-Myc. Gastroenterol Res Pract 2018; 2018:2626545. [PMID: 30369947 PMCID: PMC6189671 DOI: 10.1155/2018/2626545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/22/2018] [Accepted: 08/23/2018] [Indexed: 02/08/2023] Open
Abstract
The EI24 autophagy-associated transmembrane protein is frequently associated with tumor growth and patient survival. In the present study, we found that EI24 was downregulated in pancreatic ductal adenocarcinoma (PDAC) tissues compared with adjacent normal tissues and was associated with cancer cell differentiation. Overexpression of EI24 suppressed cancer cell growth in vitro and in vivo and induced cell cycle S phase arrest, with no impact on caspase-dependent apoptosis. EI24 overexpression also resulted in reduced c-Myc expression, an oncogene in PDAC, accompanied with increased LC3B-II formation, increased Beclin-1, and diminished p62. Together, we propose that EI24 suppresses cell proliferation and prompts cell cycle arrest in pancreatic cancer cells by activating the autophagic lysosomal degradation of c-Myc. Our results suggest a potential mechanism underlying the antitumor effects of EI24 in PDAC and provide insight into the crosstalk between autophagy and cell proliferation involving a possible EI24/Beclin-1/p62/c-Myc signaling pathway.
Collapse
|
737
|
Basu S, Cheriyamundath S, Ben-Ze'ev A. Cell-cell adhesion: linking Wnt/β-catenin signaling with partial EMT and stemness traits in tumorigenesis. F1000Res 2018; 7. [PMID: 30271576 PMCID: PMC6144947 DOI: 10.12688/f1000research.15782.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
Changes in cell adhesion and motility are considered key elements in determining the development of invasive and metastatic tumors. Co-opting the epithelial-to-mesenchymal transition (EMT) process, which is known to occur during embryonic development, and the associated changes in cell adhesion properties in cancer cells are considered major routes for tumor progression. More recent
in vivo studies in tumor tissues and circulating tumor cell clusters suggest a stepwise EMT process rather than an “all-or-none” transition during tumor progression. In this commentary, we addressed the molecular mechanisms underlying the changes in cell adhesion and motility and adhesion-mediated signaling and their relationships to the partial EMT states and the acquisition of stemness traits by cancer cells.
Collapse
Affiliation(s)
- Sayon Basu
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sanith Cheriyamundath
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avri Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
738
|
Chopra S, Deodhar K, Pai V, Pant S, Rathod N, Goda JS, Sudhalkar N, Pandey P, Waghmare S, Engineer R, Mahantshetty U, Ghosh J, Gupta S, Shrivastava S. Cancer Stem Cells, CD44, and Outcomes Following Chemoradiation in Locally Advanced Cervical Cancer: Results From a Prospective Study. Int J Radiat Oncol Biol Phys 2018; 103:161-168. [PMID: 30213750 DOI: 10.1016/j.ijrobp.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/20/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Although cancer stem cells (CSCs) have been reported across solid tumors, there is a dearth of data regarding CSC and its impact on outcomes of cervical cancer. METHODS AND MATERIALS From October 2013 to December 2015, patients with squamous cancer of the cervix (stage IB2-IVA) were included. Pretreatment and posttreatment biopsy was obtained and immunohistochemistry was performed for SOX-2, OCT-4, Nanog, CD44, and Podoplanin. All patients received concurrent radiation and brachytherapy to an equivalent dose of 80 to 84 Gy to point A with concurrent weekly cisplatin. Correlation of CSC expression was performed with known prognostic factors. The effect of stem cell expression on disease outcomes was tested within multivariate analysis. RESULTS One hundred fifty patients were included. The median dose to point A was 83 Gy (46-89 Gy) and a median of 4 cycles (range, 0-6 cycles) of chemotherapy was administered. At baseline, moderate to strong immunohistochemical expression of SOX-2, OCT-4, Nanog, CD44, and Podoplanin was observed in 12.8%, 4.8%, 24.4%, 15.5%, and 1.3% of patients, respectively. At median follow-up of 30 months (range, 3-51 months), locoregional and distant relapse was observed in 12.2% and 23.1% of patients, of whom 4.7% had both local and distant relapse. The 3-year disease-free survival rate was 87%. On multivariate analysis, moderate to high CSC expression and CD44 low status (hazard ratio [HR] = 8.8; 95% confidence interval [CI], 1.0-77.2; P < .04) independently predicted for locoregional relapse-free survival. International Federation of Gynecology and Obstetrics stage (HR = 2.6; 95% CI, 1.3-5.4; P = .004) and presence of residual tumor after external radiation (HR = 3.5; 95% CI, 1.8-6.5; P = .0001) predicted for a detriment in disease-free survival. CONCLUSIONS The presence of stem cell proteins and loss of CD44 independently predicts for reduced locoregional control in locally advanced cervical cancer. Further investigation into the interaction of stem cell and CD44 biology is warranted.
Collapse
Affiliation(s)
- Supriya Chopra
- Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Kedar Deodhar
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Venkatesh Pai
- Clinical Biology Laboratory, Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sidharth Pant
- Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nidul Rathod
- Clinical Biology Laboratory, Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Jayant S Goda
- Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Niyati Sudhalkar
- Clinical Biology Laboratory, Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Puloma Pandey
- Clinical Biology Laboratory, Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sanjeev Waghmare
- Stem Cell Biology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Reena Engineer
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Umesh Mahantshetty
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Jaya Ghosh
- Medical Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Medical Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Shyam Shrivastava
- Department of Radiation Oncology, Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
739
|
Feng F, Liu J, Wang F, Zheng G, Wang Q, Liu S, Xu G, Guo M, Lian X, Zhang H. Prognostic value of differentiation status in gastric cancer. BMC Cancer 2018; 18:865. [PMID: 30176846 PMCID: PMC6122741 DOI: 10.1186/s12885-018-4780-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Up to date, investigation of the prognostic value of differentiation status mainly focused on signet ring cell and mucinous gastric cancer. Thus, the present study aims to investigate the clinicopathological features and prognosis of gastric cancer patients with well, moderately and poorly differentiation status. Methods From September 2008 to March 2015, a total of 3090 gastric cancer patients treated with radical D2 gastrectomy were enrolled in the present study. Clinicopathological characteristics and prognosis of gastric cancer patients with well, moderately and poorly differentiation status were analyzed. Results There were 2422 male (78.4%) and 668 female (21.6%). The median age was 58 (20–90) years. There were 370 (12.0%) well differentiated tumors, 836 (27.0%) moderately differentiated tumors and 1884 (61.0%) poorly differentiated tumors. Well and moderately differentiation status were associated with older age, male gender, smaller tumor, shallower invasion, less lymph node involvement and earlier tumor stage (all p < 0.001). Inversely, poorly differentiation status was associated with younger age, female gender, larger tumor, deeper invasion, more lymph node involvement and later tumor stage (all p < 0.001). With respect to prognosis, well differentiation status was associated with favorable overall survival and poorly differentiation status was associated with unfavorable overall survival (p < 0.001). However, after matching with age, tumor size, T and N stage, there was no significant difference among the overall survival of the three groups (p = 0.415). Conclusions Well, moderately and poorly differentiation status was significantly associated with clinicopathological features of gastric cancer patients. However, it was not associated with the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jinqiang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.,Cadre' s sanitarium, 62101 Army of PLA, 67 Nahu Road, Xinyang, 464000, Henan, China
| | - Fei Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.,Department of General Surgery, No. 534 Hospital of PLA, Yingzhou Road, Luoyang, 471000, Henan, China
| | - Gaozan Zheng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Qiao Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.,Department of General Surgery, No. 91 Hospital of PLA, 239Gongye Road, Jiaozuo, 454000, Henan, China
| | - Shushang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Guanghui Xu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Man Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiao Lian
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
740
|
Shirasaki T, Honda M, Yamashita T, Nio K, Shimakami T, Shimizu R, Nakasyo S, Murai K, Shirasaki N, Okada H, Sakai Y, Sato T, Suzuki T, Yoshioka K, Kaneko S. The osteopontin-CD44 axis in hepatic cancer stem cells regulates IFN signaling and HCV replication. Sci Rep 2018; 8:13143. [PMID: 30177680 PMCID: PMC6120883 DOI: 10.1038/s41598-018-31421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN) is involved in cell proliferation, migration, inflammation, and tumor progression in various tissues. OPN induces stemness by interacting with CD44, but the functional relevance of OPN-mediated interferon (IFN) signaling and hepatitis C virus (HCV) replication in stem cell populations remains unclear. In this study, we investigated the effect of OPN on HCV replication and IFN signaling in cancer stem cells (CSCs) positive for epithelial cell adhesion molecule (EpCAM) and CD44. We show that the EpCAM+/CD44+ CSCs show marked HCV replication when compared to EpCAM−/CD44− cells. In addition, OPN significantly enhances this HCV replication in EpCAM+/CD44+ CSCs and markedly suppresses IFN-stimulated gene expression. The GSK-3β inhibitor BIO increases the EpCAM+/CD44+ CSC population and OPN expression and impairs IFN signaling via STAT1 degradation. Taken together, our data suggest that OPN enhances HCV replication in the EpCAM+/CD44+ CSCs, while it also negatively regulates the IFN signaling pathway via inhibition of STAT1 phosphorylation and degradation. Therefore, OPN may represent a novel therapeutic target for treating HCV-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan. .,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of General Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryougo Shimizu
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Saki Nakasyo
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Natsumi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tokiharu Sato
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
741
|
Liu R, Li X, Hylemon PB, Zhou H. Conjugated Bile Acids Promote Invasive Growth of Esophageal Adenocarcinoma Cells and Cancer Stem Cell Expansion via Sphingosine 1-Phosphate Receptor 2-Mediated Yes-Associated Protein Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2042-2058. [PMID: 29963993 PMCID: PMC6105923 DOI: 10.1016/j.ajpath.2018.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) is the sixth leading cause of cancer deaths worldwide and has been dramatically increasing in incidence over the past decade. Gastroesophageal reflux and Barrett esophagus are well-established risk factors for disease progression. Conjugated bile acids (CBAs), including taurocholate (TCA), represent the major bile acids in the gastroesophageal refluxate of advanced Barrett esophagus and EAC patients. Our previous studies suggested that CBA-induced activation of sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in promoting cholangiocarcinoma cell invasive growth. However, the role of CBAs in EAC development and underlying mechanisms remains elusive. In the current study, we identified that the expression level of S1PR2 is correlated to invasiveness of EAC cells. TCA significantly promoted cell proliferation, migration, invasion, transformation, and cancer stem cell expansion in highly invasive EAC cells (OE-33 cells), but had less effect on the lower invasive EAC cells (OE-19 cells). Pharmacologic inhibition of S1PR2 with specific antagonist JTE-013 or knockdown of S1PR2 expression significantly reduced TCA-induced invasive growth of OE-33 cells, whereas overexpression of S1PR2 sensitized OE-19 cells to TCA-induced invasive growth. Furthermore, TCA-induced activation of S1PR2 was closely associated with YAP and β-catenin signaling pathways. In conclusion, CBA-induced activation of the S1PR2 signaling pathway is critically involved in invasive growth of EAC cells and represents a novel therapeutic target for EAC.
Collapse
Affiliation(s)
- Runping Liu
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
742
|
Ryu D, Ryoo IG, Kwak MK. Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:487-493. [PMID: 30157616 PMCID: PMC6131012 DOI: 10.4062/biomolther.2018.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible factor-1α (HIF-1α) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of HIF-1α, vascular endothelial growth factor, and the HIF-1α response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased HIF-1α accumulation, and the silencing of CD44s attenuated HIF-1α elevation, which verifies the role of CD44s in HIF-1α regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and HIF-1α accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated HIF-1α augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible HIF-1α signaling via ERK pathway, and the CD44s-ERK-HIF-1α pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.
Collapse
Affiliation(s)
- Dayoung Ryu
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon 14662, Republic of Korea.,Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea.,College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
743
|
ZNF750 inhibited the malignant progression of oral squamous cell carcinoma by regulating tumor vascular microenvironment. Biomed Pharmacother 2018; 105:566-572. [DOI: 10.1016/j.biopha.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
|
744
|
Guo J, Luan X, Cong Z, Sun Y, Wang L, McKenna SL, Cahill MR, O'Driscoll CM. The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. J Control Release 2018; 286:154-166. [DOI: 10.1016/j.jconrel.2018.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
|
745
|
Carrozza F, Santoni M, Piva F, Cheng L, Lopez-Beltran A, Scarpelli M, Montironi R, Battelli N, Tamberi S. Emerging immunotherapeutic strategies targeting telomerases in genitourinary tumors. Crit Rev Oncol Hematol 2018; 131:1-6. [PMID: 30293699 DOI: 10.1016/j.critrevonc.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Telomerase activity and telomere length are essential for the pathogenesis of several human diseases, including genitourinary tumors. Telomerase constitutes a complex system that includes human telomerase reverse transcriptase (hTERT), human telomerase RNA component (hTR) and telomerase associated protein 1 (TEP1), which are overexpressed in tumor cells compared to normal cells and are involved in the carcinogenesis and progression of renal cell carcinoma (RCC), bladder (BC) and prostate cancer (PCa). In addition, telomerase degraded peptide fragments expressed on the surface of tumor cells lead to their recognition by immune cells. On this scenario, in vitro and in vivo studies have shown effective anti-tumor activity of hTERT-tailored strategies in genitourinary tumors, including active immunotherapy with hTERT-peptide vaccines and passive immunotherapy with hTERT-transduced T cell infusion. This review emphasizes the role of telomerase in the carcinogenesis and progression of genitourinary tumors, thus underlying the potential of emerging telomerase-tailored immunotherapies in these patients.
Collapse
Affiliation(s)
| | | | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | | |
Collapse
|
746
|
Lim B, Woodward WA, Wang X, Reuben JM, Ueno NT. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer 2018; 18:485-499. [PMID: 29703913 DOI: 10.1038/s41568-018-0010-y] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive disease that accounts for ~2-4% of all breast cancers. However, despite its low incidence rate, IBC is responsible for 7-10% of breast cancer-related mortality in Western countries. Thus, the discovery of robust biological targets and the development of more effective therapeutics in IBC are crucial. Despite major international efforts to understand IBC biology, genomic studies have not led to the discovery of distinct biological mechanisms in IBC that can be translated into novel therapeutic strategies. In this Review, we discuss these molecular profiling efforts and highlight other important aspects of IBC biology. We present the intrinsic characteristics of IBC, including stemness, metastatic potential and hormone receptor positivity; the extrinsic features of the IBC tumour microenvironment (TME), including various constituent cell types; and lastly, the communication between these intrinsic and extrinsic components. We summarize the latest perspectives on the key biological features of IBC, with particular emphasis on the TME as an important contributor to the aggressive nature of IBC. On the basis of the current understanding of IBC, we hope to develop the next generation of translational studies, which will lead to much-needed survival improvements in patients with this deadly disease.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
747
|
Han SW, Kim YY, Kang WJ, Kim HC, Ku SY, Kang BC, Yun JW. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 2018; 15:365-380. [PMID: 30603561 PMCID: PMC6171655 DOI: 10.1007/s13770-018-0128-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy. METHODS Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field. RESULTS Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues. CONCLUSION There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Woo-Ju Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| |
Collapse
|
748
|
Abstract
Cancer metastasis is defined as the dissemination of malignant cells from the primary tumor site, leading to colonization of distant organs and the establishment of a secondary tumor. Metastasis is frequently associated with chemoresistance and is the major cause of cancer-related mortality. Metastatic cells need to acquire the ability to resist to stresses provided by different environments, such as reactive oxygen species, shear stress, hemodynamic forces, stromal composition, and immune responses, to colonize other tissues. Hence, only a small population of cells has a metastasis-initiating potential. Several studies have revealed the misregulation of transcriptional variants during cancer progression, and many splice events can be used to distinguish between normal and tumoral tissue. These variants, which are abnormally expressed in malignant cells, contribute to an adaptive response of tumor cells and the success of the metastatic cascade, promoting an anomalous cell cycle, cellular adhesion, resistance to death, cell survival, migration and invasion. Understanding the different aspects of splicing regulation and the influence of transcriptional variants that control metastatic cells is critical for the development of therapeutic strategies. In this review, we describe how transcriptional variants contribute to metastatic competence and discuss how targeting specific isoforms may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Joice De Faria Poloni
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Diego Bonatto
- a Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
749
|
Boxberg M, Götz C, Haidari S, Dorfner C, Jesinghaus M, Drecoll E, Boskov M, Wolff KD, Weichert W, Haller B, Kolk A. Immunohistochemical expression of CD44 in oral squamous cell carcinoma in relation to histomorphological parameters and clinicopathological factors. Histopathology 2018; 73:559-572. [DOI: 10.1111/his.13496] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Melanie Boxberg
- Institute of Pathology; Technical University of Munich; Munich Germany
| | - Carolin Götz
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| | - Selgai Haidari
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| | - Christiane Dorfner
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| | - Moritz Jesinghaus
- Institute of Pathology; Technical University of Munich; Munich Germany
| | - Enken Drecoll
- Institute of Pathology; Technical University of Munich; Munich Germany
| | - Marko Boskov
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| | - Klaus D Wolff
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| | - Wilko Weichert
- Institute of Pathology; Technical University of Munich; Munich Germany
- National Centre of Tumour Diseases (NCT); Heidelberg Germany
- German Cancer Consortium (DKTK); Technical University of Munich; Munich Germany
| | - Bernhard Haller
- Institute of Medical Statistics and Epidemiology; Technical University of Munich; Munich Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery; Klinikum Rechts der Isar; Munich Germany
| |
Collapse
|
750
|
Li X, He J, Shao M, Cui B, Peng F, Li J, Ran Y, Jin D, Kong J, Chang J, Duan L, Yang X, Luo Y, Lu Y, Lin B, Liu T. Downregulation of miR-218-5p promotes invasion of oral squamous cell carcinoma cells via activation of CD44-ROCK signaling. Biomed Pharmacother 2018; 106:646-654. [PMID: 29990854 DOI: 10.1016/j.biopha.2018.06.151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
The invasion front of oral squamous cell carcinoma (OSCC) harbors the most aggressive cells of the tumor and is critical for cancer invasion and metastasis. MicroRNAs (miRNAs) play important roles in OSCC progression. In this study, we modelled the OSCC invasion front on a microfluidic chip, and investigated differences in miRNA profiles between cells in the invasion front and those in the tumor mass by small RNA sequencing. We found that miR-218-5p was downregulated in invasion front cells and negatively regulates OSCC invasiveness by targeting the CD44-ROCK pathway. Thus, miR-218-5p may serve as a useful therapeutic target for OSCC. Moreover, invasion front cell isolation based-on microfluidic technology provided a useful strategy for cancer invasion study.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Jianya He
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Miaomiao Shao
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jiao Li
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Yan Ran
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Dong Jin
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China
| | - Jinming Chang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Liqiang Duan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Yong Luo
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, China
| | - Yao Lu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bingcheng Lin
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tingjiao Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, China.
| |
Collapse
|