751
|
McGinnity CJ, Shidahara M, Feldmann M, Keihaninejad S, Riaño Barros DA, Gousias IS, Duncan JS, Brooks DJ, Heckemann RA, Turkheimer FE, Hammers A, Koepp MJ. Quantification of opioid receptor availability following spontaneous epileptic seizures: correction of [11C]diprenorphine PET data for the partial-volume effect. Neuroimage 2013; 79:72-80. [PMID: 23597934 DOI: 10.1016/j.neuroimage.2013.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 10/27/2022] Open
Abstract
Previous positron emission tomography (PET) studies in refractory temporal lobe epilepsy (TLE) using the non-selective opioid receptor antagonist [(11)C]diprenorphine (DPN) did not detect any changes in mesial temporal structures, despite known involvement of the hippocampus in seizure generation. Normal binding in smaller hippocampi is suggestive of increased receptor concentration in the remaining grey matter. Correction for partial-volume effect (PVE) has not been used in previous DPN PET studies. Here, we present PVE-corrected DPN-PET data quantifying post-ictal and interictal opioid receptor availability in humans with mTLE. Eight paired datasets of post-ictal and interictal DPN PET scans and eleven test/retest control datasets were available from a previously published study on opioid receptor changes in TLE following seizures (Hammers et al., 2007a). Five of the eight participants with TLE had documented hippocampal sclerosis. Data were re-analyzed using regions of interest and a novel PVE correction method (structural functional synergistic-resolution recovery (SFS-RR); (Shidahara et al., 2012)). Data were denoised, followed by application of SFS-RR, with anatomical information derived via precise anatomical segmentation of the participants' MRI (MAPER; (Heckemann et al., 2010)). [(11)C]diprenorphine volume-of-distribution (VT) was quantified in six regions of interest. Post-ictal increases were observed in the ipsilateral fusiform gyri and lateral temporal pole. A novel finding was a post-ictal increase in [(11)C]DPN VT relative to the interictal state in the ipsilateral parahippocampal gyrus, not observed in uncorrected datasets. As for voxel-based (SPM) analyses, correction for global VT values was essential in order to demonstrate focal post-ictal increases in [(11)C]DPN VT. This study provides further direct human in vivo evidence for changes in opioid receptor availability in TLE following seizures, including changes that were not evident without PVE correction. Denoising, resolution recovery and precise anatomical segmentation can extract valuable information from PET studies that would be missed with conventional post-processing procedures.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
752
|
Gousias IS, Hammers A, Counsell SJ, Srinivasan L, Rutherford MA, Heckemann RA, Hajnal JV, Rueckert D, Edwards AD. Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS One 2013; 8:e59990. [PMID: 23565180 PMCID: PMC3615077 DOI: 10.1371/journal.pone.0059990] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/22/2013] [Indexed: 01/18/2023] Open
Abstract
We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.81±0.02 using label propagation and fusion for the preterm population, and 0.81±0.02 using the single registration of a MPNA for the term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for neonates and the developing brain.
Collapse
Affiliation(s)
- Ioannis S Gousias
- Faculty of Medicine, Imperial College London, and Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
753
|
Stokes PR, Benecke A, Myers J, Erritzoe D, Watson BJ, Kalk N, Barros DR, Hammers A, Nutt DJ, Lingford-Hughes AR. History of cigarette smoking is associated with higher limbic GABAA receptor availability. Neuroimage 2013; 69:70-7. [DOI: 10.1016/j.neuroimage.2012.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/22/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022] Open
|
754
|
Ballanger B, Tremblay L, Sgambato-Faure V, Beaudoin-Gobert M, Lavenne F, Le Bars D, Costes N. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction. Neuroimage 2013; 77:26-43. [PMID: 23537938 DOI: 10.1016/j.neuroimage.2013.03.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022] Open
Abstract
UNLABELLED MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. METHODS Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. RESULTS Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87. CONCLUSIONS Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses.
Collapse
Affiliation(s)
- Bénédicte Ballanger
- Centre National de la Recherche Scientifique, Centre de Neurosciences Cognitives, UMR 5229, Bron, France
| | | | | | | | | | | | | |
Collapse
|
755
|
Andrews KA, Modat M, Macdonald KE, Yeatman T, Cardoso MJ, Leung KK, Barnes J, Villemagne VL, Rowe CC, Fox NC, Ourselin S, Schott JM. Atrophy rates in asymptomatic amyloidosis: implications for Alzheimer prevention trials. PLoS One 2013; 8:e58816. [PMID: 23554933 PMCID: PMC3599038 DOI: 10.1371/journal.pone.0058816] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/07/2013] [Indexed: 01/18/2023] Open
Abstract
There is considerable interest in designing therapeutic studies of individuals at risk of Alzheimer disease (AD) to prevent the onset of symptoms. Cortical β-amyloid plaques, the first stage of AD pathology, can be detected in vivo using positron emission tomography (PET), and several studies have shown that ~1/3 of healthy elderly have significant β-amyloid deposition. Here we assessed whether asymptomatic amyloid-PET-positive controls have increased rates of brain atrophy, which could be harnessed as an outcome measure for AD prevention trials. We assessed 66 control subjects (age = 73.5±7.3 yrs; MMSE = 29±1.3) from the Australian Imaging Biomarkers & Lifestyle study who had a baseline Pittsburgh Compound B (PiB) PET scan and two 3T MRI scans ~18-months apart. We calculated PET standard uptake value ratios (SUVR), and classified individuals as amyloid-positive/negative. Baseline and 18-month MRI scans were registered, and brain, hippocampal, and ventricular volumes and annualized volume changes calculated. Increasing baseline PiB-PET measures of β-amyloid load correlated with hippocampal atrophy rate independent of age (p = 0.014). Twenty-two (1/3) were PiB-positive (SUVR>1.40), the remaining 44 PiB-negative (SUVR≤1.31). Compared to PiB-negatives, PiB-positive individuals were older (76.8±7.5 vs. 71.7±7.5, p<0.05) and more were APOE4 positive (63.6% vs. 19.2%, p<0.01) but there were no differences in baseline brain, ventricle or hippocampal volumes, either with or without correction for total intracranial volume, once age and gender were accounted for. The PiB-positive group had greater total hippocampal loss (0.06±0.08 vs. 0.02±0.05 ml/yr, p = 0.02), independent of age and gender, with non-significantly higher rates of whole brain (7.1±9.4 vs. 4.7±5.5 ml/yr) and ventricular (2.0±3.0 vs. 1.1±1.0 ml/yr) change. Based on the observed effect size, recruiting 384 (95%CI 195-1080) amyloid-positive subjects/arm will provide 80% power to detect 25% absolute slowing of hippocampal atrophy rate in an 18-month treatment trial. We conclude that hippocampal atrophy may be a feasible outcome measure for secondary prevention studies in asymptomatic amyloidosis.
Collapse
Affiliation(s)
- K Abigail Andrews
- Dementia Research Centre, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
756
|
Jorge Cardoso M, Leung K, Modat M, Keihaninejad S, Cash D, Barnes J, Fox NC, Ourselin S. STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 2013; 17:671-84. [PMID: 23510558 DOI: 10.1016/j.media.2013.02.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 11/17/2022]
Abstract
Anatomical segmentation of structures of interest is critical to quantitative analysis in medical imaging. Several automated multi-atlas based segmentation propagation methods that utilise manual delineations from multiple templates appear promising. However, high levels of accuracy and reliability are needed for use in diagnosis or in clinical trials. We propose a new local ranking strategy for template selection based on the locally normalised cross correlation (LNCC) and an extension to the classical STAPLE algorithm by Warfield et al. (2004), which we refer to as STEPS for Similarity and Truth Estimation for Propagated Segmentations. It addresses the well-known problems of local vs. global image matching and the bias introduced in the performance estimation due to structure size. We assessed the method on hippocampal segmentation using a leave-one-out cross validation with optimised model parameters; STEPS achieved a mean Dice score of 0.925 when compared with manual segmentation. This was significantly better in terms of segmentation accuracy when compared to other state-of-the-art fusion techniques. Furthermore, due to the finer anatomical scale, STEPS also obtains more accurate segmentations even when using only a third of the templates, reducing the dependence on large template databases. Using a subset of Alzheimer's Disease Neuroimaging Initiative (ADNI) scans from different MRI imaging systems and protocols, STEPS yielded similarly accurate segmentations (Dice=0.903). A cross-sectional and longitudinal hippocampal volumetric study was performed on the ADNI database. Mean±SD hippocampal volume (mm(3)) was 5195 ± 656 for controls; 4786 ± 781 for MCI; and 4427 ± 903 for Alzheimer's disease patients and hippocampal atrophy rates (%/year) of 1.09 ± 3.0, 2.74 ± 3.5 and 4.04 ± 3.6 respectively. Statistically significant (p<10(-3)) differences were found between disease groups for both hippocampal volume and volume change rates. Finally, STEPS was also applied in a multi-label segmentation propagation scenario using a leave-one-out cross validation, in order to parcellate 83 separate structures of the brain. Comparisons of STEPS with state-of-the-art multi-label fusion algorithms showed statistically significant segmentation accuracy improvements (p<10(-4)) in several key structures.
Collapse
Affiliation(s)
- M Jorge Cardoso
- Centre for Medical Image Computing (CMIC), University College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
757
|
Kotrotsou A, Bennett DA, Schneider JA, Dawe RJ, Golak T, Leurgans SE, Yu L, Arfanakis K. Ex vivo MR volumetry of human brain hemispheres. Magn Reson Med 2013; 71:364-74. [PMID: 23440751 DOI: 10.1002/mrm.24661] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. METHODS An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. RESULTS This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. CONCLUSION Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics.
Collapse
Affiliation(s)
- Aikaterini Kotrotsou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
758
|
Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis 2013; 31 Suppl 3:S169-88. [PMID: 22647262 DOI: 10.3233/jad-2012-120412] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural magnetic resonance imaging (MRI) provides anatomical information about the brain in healthy as well as in diseased conditions. On the other hand, functional MRI (fMRI) provides information on the brain activity during performance of a specific task. Analysis of fMRI data requires the registration of the data to a reference brain template in order to identify the activated brain regions. Brain templates also find application in other neuroimaging modalities, such as diffusion tensor imaging and multi-voxel spectroscopy. Further, there are certain differences (e.g., brain shape and size) in the brains of populations of different origin and during diseased conditions like in Alzheimer's disease (AD), population and disease-specific brain templates may be considered crucial for accurate registration and subsequent analysis of fMRI as well as other neuroimaging data. This manuscript provides a comprehensive review of the history, construction and application of brain atlases. A chronological outline of the development of brain template design, starting from the Talairach and Tournoux atlas to the Chinese brain template (to date), along with their respective detailed construction protocols provides the backdrop to this manuscript. The manuscript also provides the automated workflow-based protocol for designing a population-specific brain atlas from structural MRI data using LONI Pipeline graphical workflow environment. We conclude by discussing the scope of brain templates as a research tool and their application in various neuroimaging modalities.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neurospectroscopy and Neuroimaging Laboratory, National Brain Research Center, Gurgaon, India.
| | | | | |
Collapse
|
759
|
Rizzo G, Turkheimer FE, Bertoldo A. Multi-scale hierarchical approach for parametric mapping: Assessment on multi-compartmental models. Neuroimage 2013; 67:344-53. [DOI: 10.1016/j.neuroimage.2012.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/03/2012] [Accepted: 11/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- G Rizzo
- Department of Information Engineering, University of Padova, via Gradenigo 6/b, 35131, Padova, Italy
| | | | | |
Collapse
|
760
|
Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 2013; 65:167-75. [PMID: 23041336 PMCID: PMC3516432 DOI: 10.1016/j.neuroimage.2012.09.065] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease, are associated with changes in multiple neuroimaging and biological measures. These may provide complementary information for diagnosis and prognosis. We present a multi-modality classification framework in which manifolds are constructed based on pairwise similarity measures derived from random forest classifiers. Similarities from multiple modalities are combined to generate an embedding that simultaneously encodes information about all the available features. Multi-modality classification is then performed using coordinates from this joint embedding. We evaluate the proposed framework by application to neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Features include regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Classification based on the joint embedding constructed using information from all four modalities out-performs the classification based on any individual modality for comparisons between Alzheimer's disease patients and healthy controls, as well as between mild cognitive impairment patients and healthy controls. Based on the joint embedding, we achieve classification accuracies of 89% between Alzheimer's disease patients and healthy controls, and 75% between mild cognitive impairment patients and healthy controls. These results are comparable with those reported in other recent studies using multi-kernel learning. Random forests provide consistent pairwise similarity measures for multiple modalities, thus facilitating the combination of different types of feature data. We demonstrate this by application to data in which the number of features differs by several orders of magnitude between modalities. Random forest classifiers extend naturally to multi-class problems, and the framework described here could be applied to distinguish between multiple patient groups in the future.
Collapse
Affiliation(s)
- Katherine R Gray
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK.
| | | | | | | | | |
Collapse
|
761
|
Edison P, Carter SF, Rinne JO, Gelosa G, Herholz K, Nordberg A, Brooks DJ, Hinz R. Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET. Neuroimage 2012; 70:423-33. [PMID: 23261639 DOI: 10.1016/j.neuroimage.2012.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/10/2012] [Accepted: 12/10/2012] [Indexed: 11/15/2022] Open
Abstract
RATIONALE [(11)C]Pittsburgh compound-B (PIB) has been the most widely used positron emission tomography (PET) imaging agent for brain amyloid. Several longitudinal studies evaluating the progression of Alzheimer's disease (AD), and numerous therapeutic intervention studies are underway using [(11)C]PIB PET as an AD biomarker. Quantitative analysis of [(11)C]PIB data requires the definition of regional volumes of interest. This investigation systematically compared two data analysis routes both using a probabilistic brain atlas with 11 bilateral regions. Route 1 used individually segmented structural magnetic resonance images (MRI) for each subject while Route 2 used a standardised [(11)C]PIB PET template. METHODS A total of 54 subjects, 20 with probable Alzheimer's disease (AD), 14 with amnestic Mild Cognitive Impairment (MCI) and 20 age-matched healthy controls, were scanned at two imaging centres either in London (UK) or in Turku (Finland). For all subjects structural volumetric MRI and [(11)C]PIB PET scans were acquired. Target-to-cerebellum ratios 40 min to 60 min post injection were used as outcome measures. Regional read outs for grey matter target regions were generated for both routes. Based on a composite neocortical, frontal, posterior cingulate, combined posterior cingulate and frontal cortical regions, scans were categorised into either 'PIB negative' (PIB-) or 'PIB positive' (PIB+) using previously reported cut-off target-to-cerebellar ratios of 1.41, 1.5 and 1.6, respectively. RESULTS Target-to-cerebellum ratios were greater when defined with a [(11)C]PIB PET template than with individual MRIs for all cortical regions regardless of diagnosis. This difference was highly significant for controls (p<0.001, paired samples t-test), less significant for MCIs and borderline for ADs. Assignment of subjects to raised or normal categories was the same with both routes with a 1.6 cut-off while with lower cut off using frontal cortex, and combined frontal cortex and posterior cingulate demonstrated similar results, while posterior cingulate alone demonstrated significantly higher proportion of controls as amyloid positive by Route 2. CONCLUSIONS Definition of cortical grey matter regions is more accurate when individually segmented MRIs (Route 1) were used rather than a population-based PET template (Route 2). The impact of this difference depends on the grey-to-white matter contrast in the PET images; specifically seen in healthy controls with high white matter and low grey matter uptake. When classifying AD, MCI and control subjects as normal or abnormal using large cortical regions; discordance was found between the MRI and template approach for those few subjects who presented with cortex-to-cerebellum ratios very close to the pre-assigned cut-off. However, posterior cingulate alone demonstrated significant discordance in healthy controls using template based approach. This study, therefore, demonstrates that the use of a [(11)C]PIB PET template (Route 2) is adequate for clinical diagnostic purposes, while MRI based analysis (Route 1) remains more appropriate for clinical research.
Collapse
Affiliation(s)
- P Edison
- Division of Neuroscience, Imperial College London, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
762
|
Pre- and postsynaptic serotonergic differences in males with extreme levels of impulsive aggression without callous unemotional traits: a positron emission tomography study using (11)C-DASB and (11)C-MDL100907. Biol Psychiatry 2012; 72:1004-11. [PMID: 22835812 DOI: 10.1016/j.biopsych.2012.06.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Impulsive aggression (IA) in adults is associated with brain serotonin (5-HT) system abnormalities and is more common following childhood adversity. Within aggressive behavior, IA and callous unemotional (CU) traits are core components of differentiable factors with opposing 5-HT abnormalities. We aimed to investigate 5-HT abnormalities in IA and potential correlations with severity of childhood adversity while controlling for confounding 5-HT effects of high CU traits and mental disorders. METHODS Healthy male subjects (mean age 34 ± 9 years) without high CU traits were recruited with IA ratings in the high (n = 14) and low (n = 13) population extremes. Serotonin transporter (SERT) and 5-HT(2A) receptor availability was measured in multiple brain regions using positron emission tomography with (11)C-DASB and (11)C-MDL100907, respectively, and compared between high-IA and low-IA groups. Correlations were measured between SERT and 5-HT(2A) receptor availability, impulsivity and aggression, and childhood adversity. RESULTS Compared with the low-IA group, SERT were significantly higher in brainstem regions in the high-IA group (by 29.0% ± 11.4%) and modestly lower across cortical regions (by 11.1% ± 6.0%), whereas 5-HT(2A) receptors were also modestly lower (by 8.6% ± 4.0%). Across all subjects, brainstem SERT were significantly positively correlated with impulsivity, aggression, and childhood trauma ratings. Within the high-IA group, higher brainstem SERT was most strongly predicted by severity of childhood trauma (r = .76 in midbrain). CONCLUSIONS Pre-and postsynaptic 5-HT differences are present in men with high levels of IA and are strongly suggestive of a persisting effect of childhood adversity on serotonergic neurodevelopment and emotional-behavioral control.
Collapse
|
763
|
Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 2012; 17:1254-60. [PMID: 22665264 DOI: 10.1038/mp.2012.78] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) neurotransmission is implicated in cognitive and emotional processes and a number of neuropsychiatric disorders. The use of positron emission tomography (PET) to measure ligand displacement has allowed estimation of endogenous dopamine release in the human brain; however, applying this methodology to assess central 5-HT release has proved more challenging. The aim of this study was to assess the sensitivity of a highly selective 5-HT(1A) partial agonist radioligand [(11)C]CUMI-101 to changes in endogenous 5-HT levels induced by an intravenous challenge with the selective 5-HT re-uptake inhibitor (SSRI), citalopram, in healthy human participants. We studied 15 healthy participants who underwent PET scanning in conjunction with [(11)C]CUMI-101 after receiving an intravenous infusion of citalopram 10 mg or placebo in a double-blind, crossover, randomized design. Regional estimates of binding potential (BP(ND)) were obtained by calculating total volumes of distribution (V(T)) for presynaptic dorsal raphe nucleus (DRN) and postsynaptic cortical regions. Relative to placebo, citalopram infusion significantly increased [(11)C]CUMI-101 BP(ND) at postsynaptic 5-HT(1A) receptors in several cortical regions, but there was no change in binding at 5-HT(1A) autoreceptors in the DRN. Across the postsynaptic brain regions, citalopram treatment induced a mean 7% in [(11)C]CUMI-101 BP(ND) (placebo 1.3 (0.2); citalopram 1.4 (0.2); paired t-test P=0.003). The observed increase in postsynaptic [(11)C]CUMI-101 availability identified following acute citalopram administration could be attributable to a decrease in endogenous 5-HT availability in cortical terminal regions, consistent with preclinical animal studies, in which acute administration of SSRIs decreases DRN cell firing through activation of 5-HT(1A) autoreceptors to reduce 5-HT levels in postsynaptic regions. We conclude that [(11)C]CUMI-101 may be sensitive to changes in endogenous 5-HT release in humans.
Collapse
|
764
|
Arciuli J, McMahon K, Zubicaray GD. Probabilistic orthographic cues to grammatical category in the brain. BRAIN AND LANGUAGE 2012; 123:202-210. [PMID: 23117157 DOI: 10.1016/j.bandl.2012.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 06/01/2023]
Abstract
What helps us determine whether a word is a noun or a verb, without conscious awareness? We report on cues in the way individual English words are spelled, and, for the first time, identify their neural correlates via functional magnetic resonance imaging (fMRI). We used a lexical decision task with trisyllabic nouns and verbs containing orthographic cues that are either consistent or inconsistent with the spelling patterns of words from that grammatical category. Significant linear increases in response times and error rates were observed as orthography became less consistent, paralleled by significant linear decreases in blood oxygen level dependent (BOLD) signal in the left supramarginal gyrus of the left inferior parietal lobule, a brain region implicated in visual word recognition. A similar pattern was observed in the left superior parietal lobule. These findings align with an emergentist view of grammatical category processing which results from sensitivity to multiple probabilistic cues.
Collapse
Affiliation(s)
- Joanne Arciuli
- Faculty of Health Sciences, University of Sydney, Lidcombe 1825, Australia.
| | | | | |
Collapse
|
765
|
Focke NK, Kallenberg K, Mohr A, Djukic M, Nau R, Schmidt H. Distributed, limbic gray matter atrophy in patients after bacterial meningitis. AJNR Am J Neuroradiol 2012. [PMID: 23194831 DOI: 10.3174/ajnr.a3351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The structural basis of cognitive sequelae after bacterial meningitis in humans is still poorly understood. In animal models and human autopsy cases, neuronal apoptosis of the hippocampal formation in particular seems to play an important role. Here, we aimed to analyze if BM entails MR imaging structural consequences in humans in vivo. MATERIALS AND METHODS We applied voxel-based morphometry in a cohort of BM survivors with normal conventional MR imaging after resolution of the acute inflammation to assess morphologic differences. RESULTS We found clear gray matter volume loss in the limbic system including the hippocampal formation, thalamus, and cingulate gyri bilaterally as well as in the temporal lobe. These results were corroborated by an alternative atlas-based method. CONCLUSIONS Even in patients with normal routine MR imaging results, clear-cut gray matter atrophy with a mesial temporal/limbic pattern was evident. The anatomic distribution is compatible with the neuropsychological deficit commonly observed in patients after BM. The similarity of the observed atrophy may point to causal link between BM and mesial temporal epilepsy.
Collapse
Affiliation(s)
- N K Focke
- Department of Clinical Neurophysiology, University of Go¨ttingen, Robert-Koch-Str 40, Go¨ttingen, 37099, Germany.
| | | | | | | | | | | |
Collapse
|
766
|
Allen P, Luigjes J, Howes OD, Egerton A, Hirao K, Valli I, Kambeitz J, Fusar-Poli P, Broome M, McGuire P. Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophr Bull 2012; 38:1268-76. [PMID: 22290265 PMCID: PMC3494046 DOI: 10.1093/schbul/sbr194] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND People at ultra high risk (UHR) of psychosis have an elevated risk of developing a psychotic disorder, but it is difficult to predict which individuals will make a transition to frank illness. We investigated whether functional magnetic resonance imaging (fMRI) in conjunction with a phonological fluency task at presentation could distinguish subjects who subsequently developed psychosis from those who did not. METHODS Sixty-five subjects (41 with an UHR and 24 healthy controls) were assessed at clinical presentation using fMRI, in conjunction with a verbal fluency task. [18F]-DOPA positron emission tomography (PET) data were also available in a subgroup of 21 UHR and 14 healthy controls subjects. UHR subjects were followed clinically for at least 2 years. RESULTS Compared with UHR subjects who did not become psychotic, UHR subjects who subsequently developed psychosis showed increased activation in bilateral prefrontal cortex (PFC), brainstem (midbrain/basilar pons), the left hippocampus, and greater midbrain-PFC connectivity. Furthermore, exploratory analysis of [18F]-DOPA PET data showed that transition to psychosis was associated with elevated dopaminergic function in the brainstem region. CONCLUSIONS In people at high risk of psychosis, increased activation in a network of cortical and subcortical regions may predict the subsequent onset of illness. Functional neuroimaging, in conjunction with clinical assessment and other investigations, may facilitate the prediction of outcome in subjects who are vulnerable to psychosis.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK.
| | - Judy Luigjes
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | | | - Kazuyuki Hirao
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | - Joseph Kambeitz
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - Matthew Broome
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK,Health Sciences Research Institute, University of Warwick, Coventry, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
767
|
Gousias IS, Edwards AD, Rutherford MA, Counsell SJ, Hajnal JV, Rueckert D, Hammers A. Magnetic resonance imaging of the newborn brain: Manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage 2012; 62:1499-509. [DOI: 10.1016/j.neuroimage.2012.05.083] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/09/2012] [Accepted: 05/26/2012] [Indexed: 11/28/2022] Open
|
768
|
Allen P, Chaddock CA, Howes OD, Egerton A, Seal ML, Fusar-Poli P, Valli I, Day F, McGuire PK. Abnormal relationship between medial temporal lobe and subcortical dopamine function in people with an ultra high risk for psychosis. Schizophr Bull 2012; 38:1040-9. [PMID: 21536784 PMCID: PMC3446221 DOI: 10.1093/schbul/sbr017] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2011] [Indexed: 11/14/2022]
Abstract
BACKGROUND Neuroimaging studies in humans have implicated both dysfunction of the medial temporal lobe (MTL) and the dopamine system in psychosis, but the relationship between them is unclear. We addressed this issue by measuring MTL activation and striatal dopaminergic function in individuals with an At Risk Mental State (ARMS) for psychosis, using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), respectively. METHODS Thirty-four subjects (20 ARMS and 14 Controls), matched for age, gender, digit span performance, and premorbid IQ, were scanned using fMRI, while performing a verbal encoding and recognition task, and using 18F-DOPA PET. All participants were naïve to antipsychotic medication. RESULTS ARMS subjects showed reduced MTL activation when encoding words and made more false alarm responses for Novel words than controls. The relationship between striatal dopamine function and MTL activation during both verbal encoding and verbal recognition was significantly different in ARMS subjects compared with controls. CONCLUSION An altered relationship between MTL function and dopamine storage/synthesis capacity exists in the ARMS and may be related to psychosis vulnerability.
Collapse
Affiliation(s)
- Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
769
|
An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 2012; 9:381-400. [PMID: 21373993 DOI: 10.1007/s12021-011-9109-y] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs ( http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.
Collapse
|
770
|
Liu S, Cai W, Wen L, Eberl S, Fulham MJ, Feng DD. Generalized regional disorder-sensitive-weighting scheme for 3D neuroimaging retrieval. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:7009-12. [PMID: 22255952 DOI: 10.1109/iembs.2011.6091772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
3D functional neuroimaging is used in the diagnosis and management of neurological disorders. The efficient management and analysis of these large imaging datasets has prompted research in the field of content-based image retrieval. In this context, our generalized regional disorder-sensitive-weighting (DSW) scheme gives greater weight to brain regions affected by the diseases than regions that are relatively spared. We used two DSW matrices; one matrix is based on the occurrence maps that highlight abnormal functional regions; the other is based on the regional Fisher discriminant ratio. Our results suggest that our DSW matrices enhance neuroimaging data retrieval and provide a flexible weighting solution for the clinical analysis of different types of neurological disorders.
Collapse
Affiliation(s)
- Sidong Liu
- Biomedical and Multimedia Information Technology Research Group, School of Information Technologies, University of Sydney, Australia
| | | | | | | | | | | |
Collapse
|
771
|
Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Malik O, Matthews PM, Reynolds R, Nicholas R, Piccini P. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 2012; 79:523-30. [PMID: 22764258 PMCID: PMC3413767 DOI: 10.1212/wnl.0b013e3182635645] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/29/2011] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Activated microglia are thought to play a major role in cortical gray matter (GM) demyelination in multiple sclerosis (MS). Our objective was to evaluate microglial activation in cortical GM of patients with MS in vivo and to explore its relationship to measures of disability. METHODS Using PET and optimized modeling and segmentation procedures, we investigated cortical (11)C-PK11195 (PK11195) binding in patients with relapsing-remitting MS (RRMS), patients with secondary progressive MS (SPMS), and healthy controls. Disability was assessed with the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impact Scale (MSIS-29). RESULTS Patients with MS showed increased cortical GM PK11195 binding relative to controls, which was multifocal and highest in the postcentral, middle frontal, anterior orbital, fusiform, and parahippocampal gyri. Patients with SPMS also showed additional increases in precentral, superior parietal, lingual and anterior superior, medial and inferior temporal gyri. Total cortical GM PK11195 binding correlated with EDSS scores, with a stronger correlation for the subgroup of patients with SPMS. In patients with SPMS, PK11195 binding also correlated with MSIS-29 scores. No correlation with disability measures was seen for PK11195 binding in white matter. Higher EDSS scores correlated with higher levels of GM PK11195 binding in the postcentral gyrus for patients with RRMS and in precentral gyrus for those with SPMS. CONCLUSIONS Microglial activation in cortical GM of patients with MS can be assessed in vivo. The distribution is not uniform and shows a relationship to clinical disability. We speculate that the increased PK11195 binding corresponds to enhanced microglial activation described in postmortem SPMS cortical GM.
Collapse
Affiliation(s)
- Marios Politis
- Centre for Neuroscience, Hammersmith Hospital, Imperial College London, London.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
772
|
Evans AC, Janke AL, Collins DL, Baillet S. Brain templates and atlases. Neuroimage 2012; 62:911-22. [DOI: 10.1016/j.neuroimage.2012.01.024] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/19/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022] Open
|
773
|
Lothe A, Saoud M, Bouvard S, Redouté J, Lerond J, Ryvlin P. 5-HT(1A) receptor binding changes in patients with major depressive disorder before and after antidepressant treatment: a pilot [¹⁸F]MPPF positron emission tomography study. Psychiatry Res 2012; 203:103-4. [PMID: 22863653 DOI: 10.1016/j.pscychresns.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 10/28/2022]
Abstract
This is the first [¹⁸F]MPPF PET study in positron emission tomography study in depressed patients, both before and after treatment with a selective serotonin reuptake inhibitor (SSRI). Dynamic changes in [¹⁸F]MPPF binding potential were observed primarily in the medial orbital regions from baseline to 30 days of treatment, suggesting SSRI-mediated serotoninergic adaptative mechanisms.
Collapse
|
774
|
Das SR, Pluta J, Mancuso L, Kliot D, Orozco S, Dickerson BC, Yushkevich PA, Wolk DA. Increased functional connectivity within medial temporal lobe in mild cognitive impairment. Hippocampus 2012; 23:1-6. [PMID: 22815064 DOI: 10.1002/hipo.22051] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 12/30/2022]
Abstract
Pathology at preclinical and prodromal stages of Alzheimer's disease (AD) may manifest itself as measurable functional change in neuronal networks earlier than detectable structural change. Functional connectivity as measured using resting-state functional magnetic resonance imaging has emerged as a useful tool for studying disease effects on baseline states of neuronal networks. In this study, we use high resolution MRI to label subregions within the medial temporal lobe (MTL), a site of early pathology in AD, and report an increase in functional connectivity in amnestic mild cognitive impairment between entorhinal cortex and subregions of the MTL, with the strongest effect in the anterior hippocampus. However, our data also replicated the effects of decreased connectivity of the MTL to other nodes of the default mode network reported by other researchers. This dissociation of changes in functional connectivity within the MTL versus the MTL's connection with other neocortical structures can help enrich the characterization of early stages of disease progression in AD.
Collapse
Affiliation(s)
- Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
775
|
A robust method for investigating thalamic white matter tracts after traumatic brain injury. Neuroimage 2012; 63:779-88. [PMID: 22813952 PMCID: PMC3471070 DOI: 10.1016/j.neuroimage.2012.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/21/2012] [Accepted: 07/10/2012] [Indexed: 11/30/2022] Open
Abstract
Damage to the structural connections of the thalamus is a frequent feature of traumatic brain injury (TBI) and can be a key factor in determining clinical outcome. Until recently it has been difficult to quantify the extent of this damage in vivo. Diffusion tensor imaging (DTI) provides a validated method to investigate traumatic axonal injury, and can be applied to quantify damage to thalamic connections. DTI can also be used to assess white matter tract structure using tractography, and this technique has been used to study thalamo-cortical connections in the healthy brain. However, the presence of white matter injury can cause failure of tractography algorithms. Here, we report a method for investigating thalamo-cortical connectivity that bypasses the need for individual tractography. We first created a template for a number of thalamo-cortical connections using probabilistic tractography performed in ten healthy subjects. This template for investigating white matter structure was validated by comparison with individual tractography in the same group, as well as in an independent control group (N = 11). We also evaluated two methods of masking tract location using the tract skeleton generated by tract based spatial statistics, and a cerebrospinal fluid mask. Voxel-wise estimates of fractional anisotropy derived from the template were more strongly correlated with individual tractography when both types of masking were used. The tract templates were then used to sample DTI measures from a group of TBI patients (N = 22), with direct comparison performed against probabilistic tractography in individual patients. Probabilistic tractography often failed to produce anatomically plausible tracts in TBI patients. Importantly, we show that this problem increases as tracts become more damaged, and leads to underestimation of the amount of traumatic axonal injury. In contrast, the tract template can be used in these cases, allowing a more accurate assessment of white matter damage. In summary, we propose a method suitable for assessing specific thalamo-cortical white matter connections after TBI that is robust to the presence of varying amounts of traumatic axonal injury, as well as highlighting the potential problems of applying tractography algorithms in patient populations.
Collapse
|
776
|
Powell JL, Kemp GJ, Roberts N, García-Finaña M. Sulcal morphology and volume of Broca's area linked to handedness and sex. BRAIN AND LANGUAGE 2012; 121:206-218. [PMID: 22482924 DOI: 10.1016/j.bandl.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
We investigated the effect of handedness and sex on: (i) sulcal contours defining PO and PTR and (ii) volume estimates of PO and PTR subfields in 40 left- and 42 right-handers. Results show an effect of handedness on discontinuity of the inferior frontal sulcus (IFS: P<0.01). Discontinuity of IFS was observed in: 43% left- and 62% right hemispheres in right-handers and in 65% left- and 48% right-hemispheres in left-handers. PO volume asymmetry was rightward in left-handed males (P=0.007) and females (P=0.02), showed a leftward trend in right-handed males (P=0.06), and was non-asymmetrical in right-handed females (P=0.96, i.e. left- and right-hemisphere PO volumes did not differ significantly). PO volume asymmetry in males differed significantly between handedness groups (P=0.001). Findings indicate a high degree of variability in the sulcal contours of PO and PTR and volume asymmetry of PO: the factors sex and handedness can explain some of this variability.
Collapse
Affiliation(s)
- Joanne L Powell
- Magnetic Resonance and Image Analysis Research Centre (MARIARC), University of Liverpool, UK.
| | | | | | | |
Collapse
|
777
|
Shidahara M, Tsoumpas C, McGinnity CJ, Kato T, Tamura H, Hammers A, Watabe H, Turkheimer FE. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [¹¹C]raclopride data. Phys Med Biol 2012; 57:3107-22. [PMID: 22547469 DOI: 10.1088/0031-9155/57/10/3107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [¹¹C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical 'true' value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BP(ND)) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [¹¹C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.
Collapse
Affiliation(s)
- M Shidahara
- Division of Medical Physics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
778
|
Wolz R, Aljabar P, Hajnal JV, Lötjönen J, Rueckert D. Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal 2012; 16:819-30. [DOI: 10.1016/j.media.2011.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|
779
|
Reeves SJ, Polling C, Stokes PRA, Lappin JM, Shotbolt PP, Mehta MA, Howes OD, Egerton A. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res 2012; 202:60-4. [PMID: 22595510 DOI: 10.1016/j.pscychresns.2011.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
Abstract
Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function.
Collapse
Affiliation(s)
- Suzanne J Reeves
- Department of Old Age Psychiatry, Institute of Psychiatry, Kings College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
780
|
Keihaninejad S, Heckemann RA, Gousias IS, Hajnal JV, Duncan JS, Aljabar P, Rueckert D, Hammers A. Classification and lateralization of temporal lobe epilepsies with and without hippocampal atrophy based on whole-brain automatic MRI segmentation. PLoS One 2012; 7:e33096. [PMID: 22523539 PMCID: PMC3327701 DOI: 10.1371/journal.pone.0033096] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022] Open
Abstract
Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study.
Collapse
Affiliation(s)
- Shiva Keihaninejad
- Division of Experimental Medicine, Centre for Neuroscience, Faculty of Medicine, Imperial College London, United Kingdom
| | - Rolf A. Heckemann
- Division of Experimental Medicine, Centre for Neuroscience, Faculty of Medicine, Imperial College London, United Kingdom
- Neurodis Foundation,CERMEP – Imagerie du Vivant, Lyon, France
| | - Ioannis S. Gousias
- Division of Experimental Medicine, Centre for Neuroscience, Faculty of Medicine, Imperial College London, United Kingdom
- Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
| | - Joseph V. Hajnal
- Imaging Sciences Department, MRC Clinical Sciences Centre, Imperial College London, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, and National Society for Epilepsy MRI Unit,Chalfont St Peter, United Kingdom
| | - Paul Aljabar
- Department of Computing, Imperial College London, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, United Kingdom
| | - Alexander Hammers
- Division of Experimental Medicine, Centre for Neuroscience, Faculty of Medicine, Imperial College London, United Kingdom
- Neurodis Foundation,CERMEP – Imagerie du Vivant, Lyon, France
- * E-mail:
| |
Collapse
|
781
|
Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): how to assign scans to categories without using spatial normalization. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:634165. [PMID: 22548125 PMCID: PMC3328164 DOI: 10.1155/2012/634165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022]
Abstract
We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA) suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations to predefined categories, (2) gives factorial maps displaying observations and categories, and (3) optimally assigns observations to categories. MUSUBADA handles cases with more variables than observations and can project portions of the data table (e.g., subtables, which can represent participants or ROIs) on the factorial maps. Therefore MUSUBADA can analyze datasets with different voxel numbers per participant and, so does not require spatial normalization. MUSUBADA statistical inferences are implemented with cross-validation techniques (e.g., jackknife and bootstrap), its performance is evaluated with confusion matrices (for fixed and random models) and represented with prediction, tolerance, and confidence intervals. We present an example where we predict the image categories (houses, shoes, chairs, and human, monkey, dog, faces,) of images watched by participants whose brains were scanned. This example corresponds to a DA question in which the data table is made of subtables (one per subject) and with more variables than observations.
Collapse
|
782
|
Marchand WR, Lee JN, Johnson S, Thatcher J, Gale P, Wood N, Jeong EK. Striatal and cortical midline circuits in major depression: implications for suicide and symptom expression. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:290-9. [PMID: 22079109 DOI: 10.1016/j.pnpbp.2011.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND In major depression, the neural mechanisms underlying suicide related thoughts and behaviors as well as the expression of other depressive symptoms are incompletely characterized. Evidence indicates that both the striatum and cortical midline structures (CMS) may be involved with both suicide and emotional dysregulation in unipolar illness. The aim of this study was to identify striatal-CMS circuits associated with current depression severity and suicidal ideation (SI) as well as a history of self-harm. METHODS Twenty-two male subjects with recurrent unipolar depression were studied using functional MRI. All subjects were unmedicated and without current psychiatric comorbidity. Correlational analyses were used to determine whether striatal-CMS functional connectivity was associated with any of the three clinical variables. RESULTS A network involving the bilateral striatum and anterior CMS was found to be associated with depressive symptom severity. Current SI was associated with a similar but less extensive circuit in the left hemisphere. A distinct striatal motor/sensory network was associated with self-harm behaviors, but not current SI or depression severity. CONCLUSIONS The striatal-anterior CMS circuit likely plays a significant role in the expression of depressive symptoms and SI. In contrast, a striatum-motor/sensory cortex network may be a trait marker of suicide-related behaviors. If replicated, this result might eventually lead to the development of a biomarker that would be useful for studies of pharmacologic and/or psychotherapeutic suicide prevention interventions.
Collapse
Affiliation(s)
- William R Marchand
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA.
| | | | | | | | | | | | | |
Collapse
|
783
|
Walker MD, Feldmann M, Matthews JC, Anton-Rodriguez JM, Wang S, Koepp MJ, Asselin MC. Optimization of methods for quantification of rCBF using high-resolution [¹⁵O]H₂O PET images. Phys Med Biol 2012; 57:2251-71. [PMID: 22455998 DOI: 10.1088/0031-9155/57/8/2251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aimed to derive accurate estimates of regional cerebral blood flow (rCBF) from noisy dynamic [¹⁵O]H₂O PET images acquired on the high-resolution research tomograph, while retaining as much as possible the high spatial resolution of this brain scanner (2-3 mm) in parametric maps of rCBF. The PET autoradiographic method and generalized linear least-squares (GLLS), with fixed or extended to include spatially variable estimates of the dispersion of the measured input function, were compared to nonlinear least-squares (NLLS) for rCBF estimation. Six healthy volunteers underwent two [¹⁵O]H₂O PET scans with continuous arterial blood sampling. rCBF estimates were obtained from three image reconstruction methods (one analytic and two iterative, of which one includes a resolution model) to which a range of post-reconstruction filters (3D Gaussian: 2, 4 and 6 mm FWHM) were applied. The optimal injected activity was estimated to be around 11 MBq kg⁻¹ (800 MBq) by extrapolation of patient-specific noise equivalent count rates. Whole-brain rCBF values were found to be relatively insensitive to the method of reconstruction and rCBF quantification. The grey and white matter rCBF for analytic reconstruction and NLLS were 0.44 ± 0.03 and 0.15 ± 0.03 mL min⁻¹ cm⁻³, respectively, in agreement with literature values. Similar values were obtained from the other methods. For generation of parametric images using GLLS or the autoradiographic method, a filter of ≥ 4 mm was required in order to suppress noise in the PET images which otherwise produced large biases in the rCBF estimates.
Collapse
Affiliation(s)
- M D Walker
- Institute of Neurology, University College London, WC1N 3BG, UK.
| | | | | | | | | | | | | |
Collapse
|
784
|
Bocquillon P, Bourriez JL, Palmero-Soler E, Destée A, Defebvre L, Derambure P, Dujardin K. Role of basal ganglia circuits in resisting interference by distracters: a swLORETA study. PLoS One 2012; 7:e34239. [PMID: 22470542 PMCID: PMC3314607 DOI: 10.1371/journal.pone.0034239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/24/2012] [Indexed: 01/05/2023] Open
Abstract
Background The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. Methodology/Principal Findings In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. Conclusions/Significance Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders.
Collapse
|
785
|
Bonelli SB, Thompson PJ, Yogarajah M, Vollmar C, Powell RHW, Symms MR, McEvoy AW, Micallef C, Koepp MJ, Duncan JS. Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia 2012; 53:639-50. [PMID: 22429073 PMCID: PMC4471632 DOI: 10.1111/j.1528-1167.2012.03433.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Purpose: Anterior temporal lobe resection (ATLR) controls seizures in up to 70% of patients with intractable temporal lobe epilepsy (TLE) but, in the language dominant hemisphere, may impair language function, particularly naming. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated reorganization of language in left-hemisphere–dominant patients before and after ATLR; whether preoperative functional magnetic resonance imaging (fMRI) predicts postoperative naming decline; and efficiency of postoperative language networks. Methods: We studied 44 patients with TLE due to unilateral hippocampal sclerosis (24 left) on a 3T GE-MRI scanner. All subjects performed language fMRI and neuropsychological testing preoperatively and again 4 months after left or right ATLR. Key Findings: Postoperatively, individuals with left TLE had greater bilateral middle/inferior frontal fMRI activation and stronger functional connectivity from the left inferior/middle frontal gyri to the contralateral frontal lobe than preoperatively, and this was not observed in individuals with right TLE. Preoperatively, in left and right TLE, better naming correlated with greater preoperative left hippocampal and left frontal activation for verbal fluency (VF). In left TLE, stronger preoperative left middle frontal activation for VF was predictive of greater decline in naming after ATLR. Postoperatively, in left TLE with clinically significant naming decline, greater right middle frontal VF activation correlated with better postoperative naming. In patients without postoperative naming decline, better naming correlated with greater activation in the remaining left posterior hippocampus. In right TLE, naming ability correlated with left hippocampal and left and right frontal VF activation postoperatively. Significance: In left TLE, early postoperative reorganization to the contralateral frontal lobe suggests multiple systems support language function. Postoperatively, ipsilateral recruitment involving the posterior hippocampal remnant is important for maintaining language, and reorganization to the contralateral hemisphere is less effective. Preoperative left middle frontal activation for VF was predictive of naming decline in left TLE after ATLR.
Collapse
Affiliation(s)
- Silvia B Bonelli
- Epilepsy Society MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
786
|
Gray KR, Wolz R, Heckemann RA, Aljabar P, Hammers A, Rueckert D. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. Neuroimage 2012; 60:221-9. [PMID: 22236449 PMCID: PMC3303084 DOI: 10.1016/j.neuroimage.2011.12.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/15/2011] [Accepted: 12/24/2011] [Indexed: 12/31/2022] Open
Abstract
Imaging biomarkers for Alzheimer's disease are desirable for improved diagnosis and monitoring, as well as drug discovery. Automated image-based classification of individual patients could provide valuable diagnostic support for clinicians, when considered alongside cognitive assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-region FDG-PET information for classification, using clinical and imaging data from the Alzheimer's Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically defined regions were automatically generated for baseline and 12-month FDG-PET images. Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity over the follow-up period. Features were provided to a support vector machine classifier. By combining 12-month signal intensities and changes over 12 months, we achieve significantly increased classification performance compared with using any of the three feature sets independently. Based on this combined feature set, we report classification accuracies of 88% between patients with Alzheimer's disease and elderly healthy controls, and 65% between patients with stable mild cognitive impairment and those who subsequently progressed to Alzheimer's disease. We demonstrate that information extracted from serial FDG-PET through regional analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer's disease, predicting disease course in individuals with mild cognitive impairment, and in the selection of participants for clinical trials.
Collapse
Affiliation(s)
- Katherine R Gray
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK.
| | | | | | | | | | | |
Collapse
|
787
|
Automated VOI Analysis in FDDNP PET Using Structural Warping: Validation through Classification of Alzheimer's Disease Patients. Int J Alzheimers Dis 2012; 2012:512069. [PMID: 22482071 PMCID: PMC3310148 DOI: 10.1155/2012/512069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022] Open
Abstract
We evaluate an automated approach to the cortical surface mapping (CSM) method of VOI analysis in PET. Although CSM has been previously shown to be successful, the process can be long and tedious. Here, we present an approach that removes these difficulties through the use of 3D image warping to a common space. We test this automated method using studies of FDDNP PET in Alzheimer's disease and mild cognitive impairment. For each subject, VOIs were created, through CSM, to extract regional PET data. After warping to the common space, a single set of CSM-generated VOIs was used to extract PET data from all subjects. The data extracted using a single set of VOIs outperformed the manual approach in classifying AD patients from MCIs and controls. This suggests that this automated method can remove variance in measurements of PET data and can facilitate accurate, high-throughput image analysis.
Collapse
|
788
|
Marchand WR, Lee JN, Suchy Y, Johnson S, Thatcher J, Gale P. Aberrant functional connectivity of cortico-basal ganglia circuits in major depression. Neurosci Lett 2012; 514:86-90. [PMID: 22395089 DOI: 10.1016/j.neulet.2012.02.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/08/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
Abstract
There is considerable evidence of functional abnormalities of the cortico-basal ganglia circuitry in affective disorders. However, it has been unknown whether this represented primary pathology within these circuits or altered activation as a result of aberrant input from other brain regions. The aim of this study was to test the hypothesis that cortico-basal ganglia circuit dysfunction represents primary pathology in unipolar depression. Eighteen male subjects with recurrent unipolar depression and eighteen controls without psychiatric illness were studied using functional MRI and functional connectivity analyses. All unipolar subjects were unmedicated and without current psychiatric comorbidity. Compared to controls, unipolar subjects exhibited altered connectivity between bilateral subcortical components of the circuitry (putamen-thalamus) and left hemisphere input and output components. Results provided evidence that functional abnormalities of these circuits represent primary pathology. Further, we found that age of onset but not duration of illness impacts circuit function. These findings suggest that the cortico-basal ganglia circuitry is likely one of several loci of primary pathology in major depression. Additionally, early age of onset is associated with greater circuit abnormality and as such may impact clinical characteristics and/or treatment response through a mechanism of decreasing functional connectivity of some circuit segments. Finally, altered cortico-basal ganglia circuit connectivity with cortical regions (anterior cingulate, inferior frontal gyrus and sensorimotor) may contribute to the emotional dysregulation, impaired emotional recognition and psychomotor symptoms associated with unipolar illness.
Collapse
Affiliation(s)
- William R Marchand
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | | | | | | | | | | |
Collapse
|
789
|
Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 2012; 53:37-46. [PMID: 22213821 DOI: 10.2967/jnumed.110.087031] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Astrocytes colocalize with fibrillar amyloid-β (Aβ) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar Aβ. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using (11)C-deuterium-L-deprenyl ((11)C-DED) to measure monoamine oxidase B located in astrocytes. Along with (11)C-DED PET, (11)C-Pittsburgh compound B ((11)C-PIB; fibrillar Aβ deposition), (18)F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. METHODS (11)C-DED PET was performed in MCI patients (n = 8; mean age ± SD, 62.6 ± 7.5 y; mean Mini Mental State Examination, 27.5 ± 2.1), AD patients (n = 7; mean age, 65.1 ± 6.3 y; mean Mini Mental State Examination, 24.4 ± 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 ± 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the (11)C-DED data. (11)C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional (18)F-FDG uptake and (11)C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. RESULTS ANOVA analysis of the regional (11)C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high (11)C-PIB retention. Increased (11)C-DED binding in most cortical and subcortical regions was observed in MCI (11)C-PIB+ patients relative to controls, MCI (11)C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. CONCLUSION Increased (11)C-DED binding throughout the brain of the MCI (11)C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.
Collapse
Affiliation(s)
- Stephen F Carter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
790
|
Metereau E, Dreher JC. Cerebral Correlates of Salient Prediction Error for Different Rewards and Punishments. Cereb Cortex 2012; 23:477-87. [DOI: 10.1093/cercor/bhs037] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
791
|
Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. Abnormal Brain Structure Implicated in Stimulant Drug Addiction. Science 2012; 335:601-4. [PMID: 22301321 DOI: 10.1126/science.1214463] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Karen D Ersche
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
792
|
van de Giessen M, van der Laan A, Hendriks EA, Vidorreta M, Reiber JHC, Jost CR, Tanke HJ, Lelieveldt BPF. Fully automated attenuation measurement and motion correction in FLIP image sequences. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:461-473. [PMID: 21997250 DOI: 10.1109/tmi.2011.2171497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence loss in photobleaching (FLIP) is a method to study compartment connectivity in living cells. A FLIP sequence is obtained by alternatively bleaching a spot in a cell and acquiring an image of the complete cell. Connectivity is estimated by comparing fluorescence signal attenuation in different cell parts. The measurements of the fluorescence attenuation are hampered by the low signal to noise ratio of the FLIP sequences, by sudden sample shifts and by sample drift. This paper describes a method that estimates the attenuation by modeling photobleaching as exponentially decaying signals. Sudden motion artifacts are minimized by registering the frames of a FLIP sequence to target frames based on the estimated model and by removing frames that contain deformations. Linear motion (sample drift) is reduced by minimizing the entropy of the estimated attenuation coefficients. Experiments on 16 in vivo FLIP sequences of muscle cells in Drosophila show that the proposed method results in fluorescence attenuations similar to the manually identified gold standard, but with standard deviations of approximately 50 times smaller. As a result of this higher precision, cell compartment edges and details such as cell nuclei become clearly discernible. The main value of this method is that it uses a model of the bleaching process to correct motion and that the model based fluorescence intensity and attenuation estimates can be interpreted easily. The proposed method is fully automatic, and runs in approximately one minute per sequence, making it suitable for unsupervised batch processing of large data series.
Collapse
Affiliation(s)
- Martijn van de Giessen
- Division of Image Processing (LKEB), Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
793
|
Lingford-Hughes A, Reid AG, Myers J, Feeney A, Hammers A, Taylor LG, Rosso L, Turkheimer F, Brooks DJ, Grasby P, Nutt DJ. A [11C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced α5 benzodiazepine receptors in limbic regions. J Psychopharmacol 2012; 26:273-81. [PMID: 20870689 DOI: 10.1177/0269881110379509] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preclinical evidence suggests the α5 subtype of the GABA-benzodiazepine receptor is involved in some of the actions of alcohol and in memory. The positron emission tomography (PET) tracer, [(11)C]Ro15 4513 shows relative selectivity in labelling the α5 subtype over the other GABA-benzodiazepine receptor subtypes in limbic regions of the brain. We used this tracer to investigate the distribution of α5 subtype availability in human alcohol dependence and its relationship to clinical variables. Abstinent (>6 weeks) alcohol-dependent men and healthy male controls underwent an [(11)C]Ro15 4513 PET scan. We report [(11)C]Ro15 4513 brain uptake for 8 alcohol-dependent men and 11 healthy controls. We found a significant reduction in [(11)C]Ro15 4513 binding in the nucleus accumbens, parahippocampal gyri, right hippocampus and amygdala in the alcohol-dependent compared with the healthy control group. Levels of [(11)C]Ro15 4513 binding in both hippocampi were significantly and positively associated with performance on a delayed verbal memory task in the alcohol-dependent but not the control group. We speculate that the reduced limbic [(11)C]Ro15 4513 binding seen here results from the effects of alcohol, though we cannot currently distinguish whether they are compensatory in nature or evidence of brain toxicity.
Collapse
Affiliation(s)
- Anne Lingford-Hughes
- Psychopharmacology Unit, Dorothy Hodgkin Building, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
794
|
Edison P, Hinz R, Ramlackhansingh A, Thomas J, Gelosa G, Archer HA, Turkheimer FE, Brooks DJ. Can target-to-pons ratio be used as a reliable method for the analysis of [11C]PIB brain scans? Neuroimage 2012; 60:1716-23. [PMID: 22306804 DOI: 10.1016/j.neuroimage.2012.01.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/16/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
RATIONALE (11)C]PIB is the most widely used PET imaging marker for amyloid in dementia studies. In the majority of studies the cerebellum has been used as a reference region. However, cerebellar amyloid may be present in genetic Alzheimer's (AD), cerebral amyloid angiopathy and prion diseases. Therefore, we investigated whether the pons could be used as an alternative reference region for the analysis of [(11)C]PIB binding in AD. The aims of the study were to: 1) Evaluate the pons as a reference region using arterial plasma input function and Logan graphical analysis of binding. 2) Assess the power of target-to-pons ratios to discriminate controls from AD subjects. 3) Determine the test-retest reliability in AD subjects. 4) Demonstrate the application of target-to-pons ratio in subjects with elevated cerebellar [(11)C]PIB binding. METHODS 12 sporadic AD subjects aged 65 ± 4.5 yrs with a mean MMSE 21.4 ± 4 and 10 age-matched control subjects had [(11)C]PIB PET with arterial blood sampling. Three additional subjects (two subjects with pre-symptomatic presenilin-1 mutation carriers and one probable familial AD) were also studied. Object maps were created by segmenting individual MRIs and spatially transforming the gray matter images into standard stereotaxic MNI space and then superimposing a probabilistic atlas. Cortical [(11)C]PIB binding was assessed with an ROI (region of interest) analysis. Parametric maps of the volume of distribution (V(T)) were generated with Logan analysis. Additionally, parametric maps of the 60-90 min target-to-cerebellar ratio (RATIO(CER)) and the 60-90 min target-to-pons ratio (RATIO(PONS)) were computed. RESULTS All three approaches were able to differentiate AD from controls (p<0.0001, nonparametric Wilcoxon rank sum test) in the target regions with RATIO(CER) and RATIO(PONS) differences higher than V(T) with use of an arterial input function. All methods had a good reproducibility (intraclass correlation coefficient>0.83); RATIO(CER) performed best closely followed by RATIO(PONS). The two subjects with presenilin-1 mutations and the probable familial AD case showed no significant differences in cortical binding using RATIO(CER), but the RATIO(PONS) approach revealed higher [(11)C]PIB binding in cortex and cerebellum. CONCLUSION This study established 60-90 min target-to-pons RATIOs as a reliable method of analysis in [(11)C]PIB PET studies where cerebellum is not an appropriate reference region.
Collapse
Affiliation(s)
- P Edison
- Medical Research Council Clinical Sciences Centre and Division of Neuroscience, Hammersmith Hospital, Imperial College, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
795
|
Automated MR image classification in temporal lobe epilepsy. Neuroimage 2012; 59:356-62. [DOI: 10.1016/j.neuroimage.2011.07.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 07/22/2011] [Indexed: 11/23/2022] Open
|
796
|
Turkheimer FE, Selvaraj S, Hinz R, Murthy V, Bhagwagar Z, Grasby P, Howes O, Rosso L, Bose SK. Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example. J Cereb Blood Flow Metab 2012; 32:70-80. [PMID: 21811290 PMCID: PMC3323353 DOI: 10.1038/jcbfm.2011.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper aims to build novel methodology for the use of a reference region with specific binding for the quantification of brain studies with radioligands and positron emission tomography (PET). In particular: (1) we introduce a definition of binding potential BP(D)=DVR-1 where DVR is the volume of distribution relative to a reference tissue that contains ligand in specifically bound form, (2) we validate a numerical methodology, rank-shaping regularization of exponential spectral analysis (RS-ESA), for the calculation of BP(D) that can cope with a reference region with specific bound ligand, (3) we demonstrate the use of RS-ESA for the accurate estimation of drug occupancies with the use of correction factors to account for the specific binding in the reference. [(11)C]-DASB with cerebellum as a reference was chosen as an example to validate the methodology. Two data sets were used; four normal subjects scanned after infusion of citalopram or placebo and further six test-retest data sets. In the drug occupancy study, the use of RS-ESA with cerebellar input plus corrections produced estimates of occupancy very close the ones obtained with plasma input. Test-retest results demonstrated a tight linear relationship between BP(D) calculated either with plasma or with a reference input and high reproducibility.
Collapse
|
797
|
Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J, Jäger W, Böhmdorfer M, Wadsak W, Mitterhauser M, Bankstahl JP, Löscher W, Koepp M, Kuntner C, Müller M, Langer O. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 2011; 91:227-33. [PMID: 22166851 DOI: 10.1038/clpt.2011.217] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Using positron emission tomography (PET) imaging we assessed, in vivo, the interaction between a microdose of (R)-[(11)C]verapamil (a P-glycoprotein (Pgp) substrate) and escalating doses of the Pgp inhibitor tariquidar (3, 4, 6, and 8 mg/kg) at the blood-brain barrier (BBB) in healthy human subjects. We compared the dose-response relationship of tariquidar in humans with data obtained in rats using a similar methodology. Tariquidar was equipotent in humans and rats in its effect of increasing (R)-[(11)C]verapamil brain uptake (expressed as whole-brain volume of distribution (V(T))), with very similar half-maximum-effect concentrations. Both in humans and in rats, brain V(T) approached plateau levels at plasma tariquidar concentrations >1,000 ng/ml. However, Pgp inhibition in humans led to only a 2.7-fold increase in brain V(T) relative to baseline scans (before administration of tariquidar) as compared with 11.0-fold in rats. The results of this translational study add to the accumulating evidence that there are marked species-dependent differences in Pgp expression and functionality at the BBB.
Collapse
Affiliation(s)
- M Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
798
|
Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, Murray RM, McGuire P. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry 2011; 168:1311-7. [PMID: 21768612 PMCID: PMC3682447 DOI: 10.1176/appi.ajp.2011.11010160] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE While there is robust evidence of elevated dopamine synthesis capacity once a psychotic disorder has developed, little is known about whether it is altered prior to the first episode of frank illness. The authors addressed this issue by measuring dopamine synthesis capacity in individuals at ultra-high risk of psychosis and then following them to determine their clinical outcome. METHOD This prospective study included 30 patients who met standard criteria for being at ultra-high risk of psychosis and 29 healthy volunteers. Participants were scanned using [(18)F]6-fluoro-L-dopa positron emission tomography. The ultra-high-risk patients were scanned at presentation and followed up for at least 3 years to determine their clinical outcome. Six patients had comorbid schizotypal personality disorder and were excluded from the analysis (data are provided for comparison). Of the remaining patients, nine developed a psychotic disorder (psychotic transition group) and 15 did not (nontransition group). RESULTS There was a significant effect of group on striatal dopamine synthesis capacity. The psychotic transition group had greater dopamine synthesis capacity in the striatum (effect size=1.18) and its associative subdivision (effect size=1.24) than did the healthy comparison subjects and showed a positive correlation between dopamine synthesis capacity and symptom severity. Dopamine synthesis capacity was also significantly greater in the psychotic transition group than in the nontransition group. CONCLUSIONS These findings provide evidence that the onset of frank psychosis is preceded by presynaptic dopaminergic dysfunction. Further research is needed to determine the specificity of elevated dopamine synthesis capacity to particular psychotic disorders.
Collapse
|
799
|
Khullar S, Michael AM, Cahill ND, Kiehl KA, Pearlson G, Baum SA, Calhoun VD. ICA-fNORM: Spatial Normalization of fMRI Data Using Intrinsic Group-ICA Networks. Front Syst Neurosci 2011; 5:93. [PMID: 22110427 PMCID: PMC3218372 DOI: 10.3389/fnsys.2011.00093] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/27/2011] [Indexed: 11/27/2022] Open
Abstract
A common pre-processing challenge associated with group level fMRI analysis is spatial registration of multiple subjects to a standard space. Spatial normalization, using a reference image such as the Montreal Neurological Institute brain template, is the most common technique currently in use to achieve spatial congruence across multiple subjects. This method corrects for global shape differences preserving regional asymmetries, but does not account for functional differences. We propose a novel approach to co-register task-based fMRI data using resting state group-ICA networks. We posit that these intrinsic networks (INs) can provide to the spatial normalization process with important information about how each individual’s brain is organized functionally. The algorithm is initiated by the extraction of single subject representations of INs using group level independent component analysis (ICA) on resting state fMRI data. In this proof-of-concept work two of the robust, commonly identified, networks are chosen as functional templates. As an estimation step, the relevant INs are utilized to derive a set of normalization parameters for each subject. Finally, the normalization parameters are applied individually to a different set of fMRI data acquired while the subjects performed an auditory oddball task. These normalization parameters, although derived using rest data, generalize successfully to data obtained with a cognitive paradigm for each subject. The improvement in results is verified using two widely applied fMRI analysis methods: the general linear model and ICA. Resulting activation patterns from each analysis method show significant improvements in terms of detection sensitivity and statistical significance at the group level. The results presented in this article provide initial evidence to show that common functional domains from the resting state brain may be used to improve the group statistics of task-fMRI data.
Collapse
Affiliation(s)
- Siddharth Khullar
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
800
|
Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK, Murray RM, Howes OD. Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med 2011; 41:2331-2338. [PMID: 21426628 DOI: 10.1017/s0033291711000341] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Elevated striatal dopamine synthesis capacity is thought to be fundamental to the pathophysiology of schizophrenia and has also been reported in people at risk of psychosis. It is therefore unclear if striatal hyperdopaminergia is a vulnerability marker for schizophrenia, or a state feature related to the psychosis itself. Relatives of patients with schizophrenia are themselves at increased risk of developing the condition. In this study we examined striatal dopamine synthesis capacity in both members of twin pairs discordant for schizophrenia. METHOD In vivo striatal dopamine synthesis capacity was examined using fluorine-18-l-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET) scans in seven twin pairs discordant for schizophrenia and in a control sample of 10 healthy control twin pairs. RESULTS Striatal 18F-DOPA uptake was not elevated in the unaffected co-twins of patients with schizophrenia (p=0.65) or indeed in the twins with schizophrenia (p=0.89) compared to the control group. Levels of psychotic symptoms were low in the patients with schizophrenia who were in general stable [mean (s.d.) Positive and Negative Syndrome Scale (PANSS) total=56.8 (25.5)] whereas the unaffected co-twins were largely asymptomatic. CONCLUSIONS Striatal dopamine synthesis capacity is not elevated in symptom-free individuals at genetic risk of schizophrenia, or in well-treated stable patients with chronic schizophrenia. These findings suggest that striatal hyperdopaminergia is not a vulnerability marker for schizophrenia.
Collapse
Affiliation(s)
- P Shotbolt
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|