751
|
Giersing BK, Modjarrad K, Kaslow DC, Moorthy VS. Report from the World Health Organization's Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 7-9th Sep 2015. Vaccine 2016; 34:2865-2869. [PMID: 26993336 PMCID: PMC7130468 DOI: 10.1016/j.vaccine.2016.02.078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 11/28/2022]
Abstract
There are more vaccines in development, against a greater number of pathogens, than ever before. A challenge with this exceptional level of activity and investment is how to select and resource the most promising approaches to have the most significant impact on public health. The WHO Product Development for Vaccines Advisory Committee (PDVAC) was established in 2014 to provide strategic advice and recommendations to WHO for vaccines in clinical development that could have a significant impact on public health in low and middle income countries. On 7-9th September 2015, PDVAC was convened for the second time, when the committee reviewed vaccine developments in 24 disease areas. This report summarises the key recommendations from that consultation.
Collapse
Affiliation(s)
- Birgitte K Giersing
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland
| | - Kayvon Modjarrad
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Vasee S Moorthy
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland.
| | | | | |
Collapse
|
752
|
Martínez de Salazar P, Suy A, Sánchez-Montalvá A, Rodó C, Salvador F, Molina I. Zika fever. Enferm Infecc Microbiol Clin 2016; 34:247-52. [PMID: 26993436 DOI: 10.1016/j.eimc.2016.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 01/11/2023]
Abstract
Zika fever is an arboviral systemic disease that has recently become a public health challenge of global concern after its spread through the Americas. This review highlights the current understanding on Zika virus epidemiology, its routes of transmission, clinical manifestations, diagnostic tests, and the current management, prevention and control strategies. It also delves the association between Zika infection and complications, such as microencephaly or Guillem-Barré syndrome.
Collapse
Affiliation(s)
- Pablo Martínez de Salazar
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Spain; IS Global and the Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain.
| | - Anna Suy
- Obstetrics and Gynaecology Department, Maternal fetal Medicine Unit, Vall d'Hebron University Hospital, Spain
| | | | - Carlota Rodó
- Obstetrics and Gynaecology Department, Maternal fetal Medicine Unit, Vall d'Hebron University Hospital, Spain
| | - Fernando Salvador
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Spain
| | - Israel Molina
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Spain
| |
Collapse
|
753
|
Moi ML, Takasaki T, Kurane I. Human antibody response to dengue virus: implications for dengue vaccine design. Trop Med Health 2016; 44:1. [PMID: 27398060 PMCID: PMC4934144 DOI: 10.1186/s41182-016-0004-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
Dengue, a global health threat, is a leading cause of morbidity and mortality in most tropical and subtropical countries. Dengue can range from asymptomatic, relatively mild dengue fever to severe and life-threatening dengue hemorrhagic fever. Disease severity and outcome is largely associated with the host immune response. Several candidate vaccines in clinical trials appear promising as effective measures for dengue disease control. Vaccine development has been hampered by safety and efficacy issues, driven by a lack of understanding of the host immune response. This review focuses on recent research findings on the dengue host immune response, particularly in humans, and the relevance of these findings to challenges in vaccine development.
Collapse
Affiliation(s)
- Meng Ling Moi
- />Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- />National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ichiro Kurane
- />National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
754
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
755
|
Pyke AT, Moore PR, Taylor CT, Hall-Mendelin S, Cameron JN, Hewitson GR, Pukallus DS, Huang B, Warrilow D, van den Hurk AF. Highly divergent dengue virus type 1 genotype sets a new distance record. Sci Rep 2016; 6:22356. [PMID: 26924208 PMCID: PMC4770315 DOI: 10.1038/srep22356] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/30/2022] Open
Abstract
Dengue viruses (DENVs) are the leading cause of mosquito-borne viral disease of humans. They exist in both endemic and sylvatic ecotypes. In 2014, a viremic patient who had recently visited the rainforests of Brunei returned to Australia displaying symptoms consistent with DENV infection. A unique DENV strain was subsequently isolated from the patient, which we propose belongs to a new genotype within DENV serotype 1 (DENV-1). Bayesian evolutionary phylogenetic analysis suggests that the putative sylvatic DENV-1 Brunei 2014 (Brun2014) is the most divergent DENV-1 yet recorded and increases the time to the most recent common ancestor (MRCA) for DENV-1 from ≈120 years to ≈315 years. DENV-1 classification of the Brun2014 strain was further supported by monoclonal antibody serotyping data. Phenotypic characterization demonstrated that Brun2014 replication rates in mosquito cells and infection rates in Aedes aegypti mosquitoes were not significantly different from an epidemic DENV-1 strain. Given its ability to cause human illness and infect Ae. aegypti, potential urban spillover and clinical disease from further Brun2014 transmission cannot be discounted.
Collapse
Affiliation(s)
- Alyssa T. Pyke
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Peter R. Moore
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Carmel T. Taylor
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Jane N. Cameron
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Glen R. Hewitson
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Dennis S. Pukallus
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology Laboratory, Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| |
Collapse
|
756
|
Saadatian-Elahi M, Horstick O, Breiman RF, Gessner BD, Gubler DJ, Louis J, Parashar UD, Tapia R, Picot V, Zinsou JA, Nelson CB. Beyond efficacy: The full public health impact of vaccines. Vaccine 2016; 34:1139-47. [PMID: 26808648 PMCID: PMC11345718 DOI: 10.1016/j.vaccine.2016.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
There is an active discussion in the public health community on how to assess and incorporate, in addition to safety and measures of protective efficacy, the full public health value of preventive vaccines into the evidence-based decision-making process of vaccine licensure and recommendations for public health use. The conference "Beyond efficacy: the full public health impact of vaccines in addition to efficacy measures in trials" held in Annecy, France (June 22-24, 2015) has addressed this issue and provided recommendations on how to better capture the whole public health impact of vaccines. Using key examples, the expert group stressed that we are in the midst of a new paradigm in vaccine evaluation, where all aspects of public health value of vaccines beyond efficacy should be evaluated. To yield a wider scope of vaccine benefits, additional measures such as vaccine preventable disease incidence, overall efficacy and other outcomes such as under-five mortality or non-etiologically confirmed clinical syndromes should be assessed in addition to traditional efficacy or effectiveness measurements. Dynamic modelling and the use of probe studies should also be considered to provide additional insight to the full public health value of a vaccine. The use of burden reduction and conditional licensure of vaccines based on collection of outcome results should be considered by regulatory agencies.
Collapse
Affiliation(s)
- Mitra Saadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon Cedex 03, France.
| | - Olaf Horstick
- Institute of Public Health, University of Heidelberg, Germany
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, United States
| | | | - Duane J Gubler
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Jean-Antoine Zinsou
- Sanofi Pasteur, Vaccination Policy Department, 2 Avenue du Pont Pasteur, 69367 Lyon Cedex 07, France
| | - Christopher B Nelson
- Sanofi Pasteur, Vaccination Policy Department, 2 Avenue du Pont Pasteur, 69367 Lyon Cedex 07, France
| |
Collapse
|
757
|
Velumani S, Toh YX, Balasingam S, Archuleta S, Leo YS, Gan VC, Thein TL, Wilder-Smith A, Fink K. Low antibody titers 5 years after vaccination with the CYD-TDV dengue vaccine in both pre-immune and naïve vaccinees. Hum Vaccin Immunother 2016; 12:1265-73. [PMID: 26889737 DOI: 10.1080/21645515.2015.1126012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Globally, dengue virus (DENV) is one of the most widespread vector-borne viruses. Dengue disease affects populations in endemic areas and, increasingly, tourists who travel to these countries, but there is currently no approved vaccine for dengue. A phase 3 efficacy trial with Sanofi-Pasteur's recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) conducted in South East Asia showed an overall efficacy of 56% against virologically confirmed dengue infections of any severity and any of the 4 serotypes, but the long-term protection of the vaccine has yet to be demonstrated. To address longevity of antibody titers and B cell memory, we recalled study participants from an earlier CYD immunogenicity study (Phase 2) conducted in Singapore that enrolled healthy volunteers in the year 2009. Depending on the age group, 57-84% of the participants initially generated a neutralizing antibody titer ≥ 10 to all 4 DENV serotypes 28 d after the third and final dose. We observed very low antibody titers in blood samples collected from 23 vaccinees 5 y after the first dose, particularly titers of antibodies binding to virus particles compared with those binding to recombinant E protein. The in vivo efficacy of plasma antibodies against DENV-2 challenge was also tested in a mouse model, which found that only 2 out of 23 samples were able to reduce viremia. Although the sample size is too small for general conclusions, dengue immune memory after vaccination with CYD-TDV appears relatively low.
Collapse
Affiliation(s)
- Sumathy Velumani
- a Singapore Immunology Network, Agency for Science, Technology (A*STAR) , Singapore , Singapore
| | - Ying Xiu Toh
- a Singapore Immunology Network, Agency for Science, Technology (A*STAR) , Singapore , Singapore
| | - Shobana Balasingam
- b Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore , Singapore
| | - Sophia Archuleta
- c Division of Infectious Diseases, University Medicine Cluster, National University Hospital , Singapore , Singapore.,d Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Yee Sin Leo
- e Communicable Disease Center, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore.,f Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Victor C Gan
- e Communicable Disease Center, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore
| | - Tun Linn Thein
- e Communicable Disease Center, Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital , Singapore , Singapore
| | - Annelies Wilder-Smith
- b Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore , Singapore
| | - Katja Fink
- a Singapore Immunology Network, Agency for Science, Technology (A*STAR) , Singapore , Singapore.,b Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore , Singapore
| |
Collapse
|
758
|
Wilder-Smith A, Massad E. Age specific differences in efficacy and safety for the CYD-tetravalent dengue vaccine. Expert Rev Vaccines 2016; 15:437-41. [PMID: 26775653 DOI: 10.1586/14760584.2016.1143366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CYD-TDV is the first dengue vaccine to have completed Phase 3 efficacy trials. Efficacy was consistently higher in those aged 9 and above for all variables studied: efficacy against virologically confirmed dengue of any severity and serotype, serotype specific efficacy, efficacy dependent on baseline seropositivity, efficacy against hospitalizations and efficacy against severe disease. Because of the higher efficacy and the absence of a safety signal, the age group with the best benefit of the use of CYD-TDV is individuals aged 9 and above - the age group for which licensure is now being sought.
Collapse
Affiliation(s)
| | - Eduardo Massad
- b School of Medicine, University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
759
|
Rothman AL, Ennis FA. Dengue Vaccine: The Need, the Challenges, and Progress. J Infect Dis 2016; 214:825-7. [PMID: 26908750 DOI: 10.1093/infdis/jiw068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics Department of Cell and Molecular Biology, University of Rhode Island, Providence
| | - Francis A Ennis
- Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
760
|
Suppressive Effects of the Site 1 Protease (S1P) Inhibitor, PF-429242, on Dengue Virus Propagation. Viruses 2016; 8:v8020046. [PMID: 26875984 PMCID: PMC4776201 DOI: 10.3390/v8020046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
Dengue virus (DENV) infection causes one of the most widespread mosquito-borne diseases in the world. Despite the great need, effective vaccines and practical antiviral therapies are still under development. Intracellular lipid levels are regulated by sterol regulatory elements-binding proteins (SREBPs), which are activated by serine protease, site 1 protease (S1P). Small compound PF-429242 is known as a S1P inhibitor and the antivirus effects have been reported in some viruses. In this study, we examined the anti-DENV effects of PF-429242 using all four serotypes of DENV by several primate-derived cell lines. Moreover, emergence of drug-resistant DENV mutants was assessed by sequential passages with the drug. DENV dependency on intracellular lipids during their infection was also evaluated by adding extracellular lipids. The addition of PF-429242 showed suppression of viral propagation in all DENV serotypes. We showed that drug-resistant DENV mutants are unlikely to emerge after five times sequential passages through treatment with PF-429242. Although the levels of intracellular cholesterol and lipid droplets were reduced by PF-429242, viral propagations were not recovered by addition of exogenous cholesterol or fatty acids, indicating that the reduction of LD and cholesterol caused by PF-429242 treatment is not related to its mechanism of action against DENV propagation. Our results suggest that PF-429242 is a promising candidate for an anti-DENV agent.
Collapse
|
761
|
Wilder-Smith A, Byass P. The elusive global burden of dengue. THE LANCET. INFECTIOUS DISEASES 2016; 16:629-631. [PMID: 26874620 DOI: 10.1016/s1473-3099(16)00076-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Epidemiology and Global Health, Umeå University, Umeå, Sweden.
| | - Peter Byass
- Epidemiology and Global Health, Umeå University, Umeå, Sweden
| |
Collapse
|
762
|
Halstead SB, Russell PK. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 2016; 34:1643-7. [PMID: 26873054 DOI: 10.1016/j.vaccine.2016.02.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Clinical observations from the third year of the Sanofi Pasteur chimeric yellow fever dengue tetravalent vaccine (CYD) trials document both protection and vaccination-enhanced dengue disease among vaccine recipients. Children who were 5 years-old or younger when vaccinated experienced a DENV disease resulting in hospitalization at 5 times the rate of controls. On closer inspection, hospitalized cases among vaccinated seropositives, those at highest risk to hospitalized disease accompanying a dengue virus (DENV) infection, were greatly reduced by vaccination. But, seronegative individuals of all ages after being vaccinated were only modestly protected from mild to moderate disease throughout the entire observation period despite developing neutralizing antibodies at high rates. Applying a simple epidemiological model to the data, vaccinated seronegative individuals of all ages were at increased risk of developing hospitalized disease during a subsequent wild type DENV infection. The etiology of disease in placebo and vaccinated children resulting in hospitalization during a DENV infection, while clinically similar are of different origin. The implications of the observed mixture of DENV protection and enhanced disease in CYD vaccinees are discussed.
Collapse
Affiliation(s)
- Scott B Halstead
- Private Consultant, 5824 Edson Lane, North Bethesda, MD 20852, USA.
| | | |
Collapse
|
763
|
Abstract
The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.
Collapse
Affiliation(s)
- Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.,Laboratory of Organic Synthesis, Institute of Chemistry of the Academy of Sciences of Moldova , Academiei 3, 2028 Chisinau, Moldova
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
764
|
Abstract
Dengue is an emerging threat to billions of people worldwide. In the last 20 years, the incidence has increased four-fold and this trend appears to be continuing. Caused by one of four viral serotypes, dengue can present as a wide range of clinical phenotypes with the severe end of the spectrum being defined by a syndrome of capillary leak, coagulopathy, and organ impairment. The pathogenesis of severe disease is thought to be in part immune mediated, but the exact mechanisms remain to be defined. The current treatment of dengue relies on supportive measures with no licensed therapeutics available to date. There have been recent advances in our understanding of a number of areas of dengue research, of which the following will be discussed in this review: the drivers behind the global dengue pandemic, viral structure and epitope binding, risk factors for severe disease and its pathogenesis, as well as the findings of recent clinical trials including therapeutics and vaccines. We conclude with current and future dengue control measures and key areas for future research.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of medicine, Imperial College London, London, UK; Oxford University Clinical research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Juthathip Mongkolsapaya
- Department of medicine, Imperial College London, London, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Department of medicine, Imperial College London, London, UK
| |
Collapse
|
765
|
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 2016; 67:387-404. [DOI: 10.1146/annurev-med-091014-090848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Jean Lang
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Melanie Saville
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | | |
Collapse
|
766
|
Abstract
Dengue is a major public health concern in tropical and subtropical areas of the world. The prospects for dengue prevention have recently improved with the results of efficacy trials of a tetravalent dengue vaccine. Although partially effective, once licensed, its introduction can be a public health priority in heavily affected countries because of the perceived public health importance of dengue. This review explores the most immediate economic considerations of introducing a new dengue vaccine and evaluates the published economic analyses of dengue vaccination. Findings indicate that the current economic evidence base is of limited utility to support country-level decisions on dengue vaccine introduction. There are a handful of published cost-effectiveness studies and no country-specific costing studies to project the full resource requirements of dengue vaccine introduction. Country-level analytical expertise in economic analyses, another gap identified, needs to be strengthened to facilitate evidence-based decision-making on dengue vaccine introduction in endemic countries.
Collapse
Affiliation(s)
- Yesim Tozan
- a College of Global Public Health , New York University , New York , NY , USA
| |
Collapse
|
767
|
Orellano PW, Reynoso JI, Stahl HC, Salomon OD. Cost-utility analysis of dengue vaccination in a country with heterogeneous risk of dengue transmission. Vaccine 2015; 34:616-621. [PMID: 26724542 DOI: 10.1016/j.vaccine.2015.12.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/17/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dengue is one of the most important vector-borne diseases worldwide, and annually, nearly 390 million people are infected and 500,000 patients are hospitalized for severe dengue. Argentina has great variability in the risk of dengue transmission due to eco-climatic reasons. Currently no vaccines are available for dengue even though several vaccines are under development. OBJECTIVE The aim of this study was to estimate the cost-effectiveness of a dengue vaccine in a country with heterogeneous risk of dengue transmission like Argentina. METHODS The analysis was carried out from a societal perspective using a Markov model that included both vaccine and disease parameters. Utility was measured as disability adjusted life years (DALYs) averted, and the incremental cost-effectiveness ratio (ICER) of the vaccination was expressed in 2014 American dollars (US$) per DALY averted. One-way and probabilistic sensitivity analyses were performed to evaluate uncertainty in model outcomes, and a threshold analysis was conducted to estimate the highest possible price of the vaccine. RESULTS The ICER of the vaccination program was found to be US$ 5714 per DALY averted. This value is lower than 3 times the per capita GDP of Argentina (US$ 38,619 in 2014); 54.9% of the simulations were below this value. If a vaccination program would be implemented the maximum vaccine price per dose has to be US$1.49 for a vaccination at national level or US$28.72 for a targeted vaccination in high transmission areas. CONCLUSIONS These results demonstrate that vaccination against dengue would be cost-effective in Argentina, especially if carried out in predetermined regions at high risk of dengue transmission. However, these results should be interpreted with caution because the probabilistic sensitivity analysis showed that there was considerable uncertainty around the ICER value. The influence of variations in vaccine efficacy, cost and other important parameters are discussed in the text.
Collapse
Affiliation(s)
- Pablo Wenceslao Orellano
- Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina; Universidad Tecnologica Nacional, Facultad Regional San Nicolas, San Nicolas, Argentina.
| | | | | | - Oscar Daniel Salomon
- Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina; Instituto Nacional de Medicina Tropical, Puerto Iguazu, Argentina
| |
Collapse
|
768
|
Lambrechts L. Predicting Wolbachia potential to knock down dengue virus transmission. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:288. [PMID: 26697448 DOI: 10.3978/j.issn.2305-5839.2015.09.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Releasing mosquitoes infected with the intracellular bacteria Wolbachia is a candidate strategy for dengue control that has recently advanced to field-testing. A critical next step is to evaluate the impact of this strategy on dengue epidemiology. A recent study by Ferguson and colleagues presents a mathematical framework to predict the likely effect of mosquitoes carrying Wolbachia on dengue virus transmission. Fitting the mathematical model to empirical data obtained with Wolbachia-infected mosquitoes experimentally challenged with viremic blood from dengue patients indicates that dengue virus transmission could be reduced by a degree that would have a significant impact on public health.
Collapse
Affiliation(s)
- Louis Lambrechts
- 1 Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France ; 2 Centre National de la Recherche Scientifique, URA 3012, Paris, France
| |
Collapse
|
769
|
Acosta EG, Bartenschlager R. Paradoxical role of antibodies in dengue virus infections: considerations for prophylactic vaccine development. Expert Rev Vaccines 2015; 15:467-82. [PMID: 26577689 DOI: 10.1586/14760584.2016.1121814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly effective prophylactic vaccines for flaviviruses including yellow fever virus, tick-borne encephalitis virus and Japanese encephalitis virus are currently in use. However, the development of a dengue virus (DENV) vaccine has been hampered by the requirement of simultaneous protection against four distinct serotypes and the threat that DENV-specific antibodies might either mediate neutralization or, on the contrary, exacerbate disease through the phenomenon of antibody-dependent enhancement (ADE) of infection. Therefore, understanding the cellular, biochemical and molecular basis of antibody-mediated neutralization and ADE are fundamental for the development of a safe DENV vaccine. Here we summarize current structural and mechanistic knowledge underlying these phenomena. We also review recent results demonstrating that the humoral immune response triggered during natural DENV infection is able to generate neutralizing antibodies binding complex quaternary epitopes only present on the surface of intact virions.
Collapse
Affiliation(s)
- Eliana G Acosta
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany
| | - Ralf Bartenschlager
- a Department of Infectious Diseases, Molecular Virology , Heidelberg University , Heidelberg , Germany.,b German Center for Infection Research , Heidelberg University , Heidelberg , Germany
| |
Collapse
|
770
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
771
|
Guy B, Jackson N. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat Rev Microbiol 2015; 14:45-54. [PMID: 26639777 DOI: 10.1038/nrmicro.2015.2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dengue virus (DENV) is a human pathogen with a large impact on public health. Although no vaccine against DENV is currently licensed, a recombinant vaccine - chimeric yellow fever virus-DENV tetravalent dengue vaccine (CYD-TDV) - has shown efficacy against symptomatic dengue disease in two recent Phase III clinical trials. Safety observations were also recently reported for these trials. In this Opinion article, we review the data from recent vaccine clinical trials and discuss the putative mechanisms behind the observed efficacy of the vaccine against different forms of the disease, focusing on the interactions between the infecting virus, pre-existing host immunity and vaccine-induced immune responses.
Collapse
Affiliation(s)
- Bruno Guy
- Sanofi Pasteur, Research &Development, 2 Avenue du Pont Pasteur, 69007 Lyon, France
| | - Nicholas Jackson
- Sanofi Pasteur, Research &Development, 2 Avenue du Pont Pasteur, 69007 Lyon, France
| |
Collapse
|
772
|
Whitehead SS. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine? Expert Rev Vaccines 2015; 15:509-17. [PMID: 26559731 PMCID: PMC4956407 DOI: 10.1586/14760584.2016.1115727] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™.
Collapse
Affiliation(s)
- Stephen S Whitehead
- a Laboratory of Infectious Diseases , NIAID, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
773
|
Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 2015; 33:7100-11. [DOI: 10.1016/j.vaccine.2015.09.108] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023]
|
774
|
Lodha R, Kabra SK. Dengue Infection: Challenges and Way Forward. Indian J Pediatr 2015; 82:1077-9. [PMID: 26590155 DOI: 10.1007/s12098-015-1946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
775
|
New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 2015; 15:745-59. [DOI: 10.1038/nri3916] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
776
|
Abstract
Dengue virus is the leading cause of vector-borne viral disease with four serotypes in circulation. Vaccine development has been complicated by the potential for both protection and disease enhancement during heterologous infection. Secondary infection triggers cross-reactive immune memory responses that have varying functional and epitope specificities that determine protection or risk. Strongly neutralizing antibodies to quaternary epitopes may be especially important for virus neutralization. Cell-mediated immunity dominated by Th1 functions may also play an important role. Determining an immune correlate of protection or risk would be highly beneficial for vaccine development but is hampered by mechanistic uncertainties and assay limitations. Clinical efficacy trials and human infection models along with a systems approach may provide future opportunities to elucidate such correlates.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- a Division of Infectious Diseases and Immunology, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - In-Kyu Yoon
- b Dengue Vaccine Initiative , International Vaccine Institute, SNU Research Park , Seoul , Korea
| |
Collapse
|
777
|
Coudeville L, Baurin N, Vergu E. Estimation of parameters related to vaccine efficacy and dengue transmission from two large phase III studies. Vaccine 2015; 34:6417-6425. [PMID: 26614588 DOI: 10.1016/j.vaccine.2015.11.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND A tetravalent dengue vaccine was shown to be efficacious against symptomatic dengue in two phase III efficacy studies performed in five Asian and five Latin American countries. The objective here was to estimate key parameters of a dengue transmission model using the data collected during these studies. METHODS Parameter estimation was based on a Sequential Monte Carlo approach and used a cohort version of the transmission model. Serotype-specific basic reproduction numbers were derived for each country. Parameters related to serotype interactions included duration of cross-protection and level of cross-enhancement characterized by differences in symptomaticity for primary, secondary and post-secondary infections. We tested several vaccine efficacy profiles and simulated the evolution of vaccine efficacy over time for the scenarios providing the best fit to the data. RESULTS Two reference scenarios were identified. The first included temporary cross-protection and the second combined cross-protection and cross-enhancement upon wild-type infection and following vaccination. Both scenarios were associated with differences in efficacy by serotype, higher efficacy for pre-exposed subjects and against severe dengue, increase in efficacy with doses for naïve subjects and by a more important waning of vaccine protection for subjects when naïve than when pre-exposed. Over 20 years, the median reduction of dengue risk induced by the direct protection conferred by the vaccine ranged from 24% to 47% according to country for the first scenario and from 34% to 54% for the second. CONCLUSION Our study is an important first step in deriving a general framework that combines disease dynamics and mechanisms of vaccine protection that could be used to assess the impact of vaccination at a population level.
Collapse
Affiliation(s)
| | - Nicolas Baurin
- Vaccination Value Modeling, Sanofi Pasteur, Lyon, France
| | - Elisabeta Vergu
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
778
|
Byers AM, Broder R, Haupfear K, Timiryasova TM, Hu BT, Boaz M, Warren WL, Jackson N, Moser JM, Guy B. Influence of FcγRIIa-Expressing Cells on the Assessment of Neutralizing and Enhancing Serum Antibodies Elicited by a Live-Attenuated Tetravalent Dengue Vaccine. Open Forum Infect Dis 2015; 2:ofv172. [PMID: 26719844 PMCID: PMC4689971 DOI: 10.1093/ofid/ofv172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Background. Recent trials of recombinant, live-attenuated chimeric yellow fever-dengue tetravalent dengue vaccine (CYD-TDV) demonstrated efficacy against symptomatic, virologically confirmed dengue disease with higher point estimates of efficacy toward dengue virus (DENV)3 and DENV4 and moderate levels toward DENV1 and DENV2. It is interesting to note that serotype-specific efficacy did not correlate with absolute neutralizing antibody (nAb) geometric mean titer (GMT) values measured in a Vero-based plaque reduction neutralization test assay. The absence of Fcγ receptors on Vero cells may explain this observation. Methods. We performed parallel seroneutralization assays in Vero cells and CV-1 cells that express FcγRIIa (CV-1-Fc) to determine the neutralizing and enhancing capacity of serotype-specific DENV Abs present in CYD-TDV clinical trial sera. Results. Enhancement of DENV infection was observed in CV-1-Fc cells in naturally exposed nonvaccine sera, mostly for DENV3 and DENV4, at high dilutions. The CYD-TDV-vaccinated sera showed similar enhancement patterns. The CV-1-Fc nAb GMT values were 2- to 9-fold lower than Vero for all serotypes in both naturally infected individuals and CYD-TDV-vaccinated subjects with and without previous dengue immunity. The relative (CV-1-Fc/Vero) GMT decrease for anti-DENV1 and anti-DENV2 responses was not greater than for the other serotypes. Conclusions. In vitro neutralization assays utilizing FcγRIIa-expressing cells provide evidence that serotype-specific Ab enhancement may not be a primary factor in the serotype-specific efficacy differences exhibited in the CYD-TDV trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Boaz
- Sanofi Pasteur , Swiftwater, Pennsylvania
| | | | | | | | | |
Collapse
|
779
|
|
780
|
Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines 2015; 15:483-95. [PMID: 26508565 DOI: 10.1586/14760584.2016.1106318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.
Collapse
Affiliation(s)
- Jian Hang Lam
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Li Ching Ong
- b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| | - Sylvie Alonso
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| |
Collapse
|
781
|
A role for vector control in dengue vaccine programs. Vaccine 2015; 33:7069-74. [PMID: 26478199 DOI: 10.1016/j.vaccine.2015.09.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023]
Abstract
Development and deployment of a successful dengue virus (DENV) vaccine has confounded research and pharmaceutical entities owing to the complex nature of DENV immunity and concerns over exacerbating the risk of DENV hemorrhagic fever (DHF) as a consequence of vaccination. Thus, consensus is growing that a combination of mitigation strategies will be needed for DENV to be successfully controlled, likely involving some form of vector control to enhance a vaccine program. We present here a deterministic compartmental model to illustrate that vector control may enhance vaccination campaigns with imperfect coverage and efficacy. Though we recognize the costs and challenges associated with continuous control programs, simultaneous application of vector control methods coincident with vaccine roll out can have a positive effect by further reducing the number of human cases. The success of such an integrative strategy is predicated on closing gaps in our understanding of the DENV transmission cycle in hyperedemic locations.
Collapse
|
782
|
A new quaternary structure epitope on dengue virus serotype 2 is the target of durable type-specific neutralizing antibodies. mBio 2015; 6:e01461-15. [PMID: 26463165 PMCID: PMC4620467 DOI: 10.1128/mbio.01461-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Dengue virus serotype 2 (DENV2) is widespread and responsible for severe epidemics. While primary DENV2 infections stimulate serotype-specific protective responses, a leading vaccine failed to induce a similar protective response. Using human monoclonal antibodies (hMAbs) isolated from dengue cases and structure-guided design of a chimeric DENV, here we describe the major site on the DENV2 envelope (E) protein targeted by neutralizing antibodies. DENV2-specific neutralizing hMAb 2D22 binds to a quaternary structure epitope. We engineered and recovered a recombinant DENV4 that displayed the 2D22 epitope. DENV2 neutralizing antibodies in people exposed to infection or a live vaccine tracked with the 2D22 epitope on the DENV4/2 chimera. The chimera remained sensitive to DENV4 antibodies, indicating that the major neutralizing epitopes on DENV2 and -4 are at different sites. The ability to transplant a complex epitope between DENV serotypes demonstrates a hitherto underappreciated structural flexibility in flaviviruses, which could be harnessed to develop new vaccines and diagnostics. IMPORTANCE Dengue virus causes fever and dengue hemorrhagic fever. Dengue serotype 2 (DENV2) is widespread and frequently responsible for severe epidemics. Natural DENV2 infections stimulate serotype-specific neutralizing antibodies, but a leading DENV vaccine did not induce a similar protective response. While groups have identified epitopes of single monoclonal antibodies (MAbs), the molecular basis of DENV2 neutralization by polyclonal human immune sera is unknown. Using a recombinant DENV displaying serotype 2 epitopes, here we map the main target of DENV2 polyclonal neutralizing antibodies induced by natural infection and a live DENV2 vaccine candidate. Proper display of the epitope required the assembly of viral envelope proteins into higher-order structures present on intact virions. Despite the complexity of the epitope, it was possible to transplant the epitope between DENV serotypes. Our findings have immediate implications for evaluating dengue vaccines in the pipeline as well as designing next-generation vaccines.
Collapse
|
783
|
Vannice KS, Roehrig JT, Hombach J. Next generation dengue vaccines: A review of the preclinical development pipeline. Vaccine 2015; 33:7091-9. [PMID: 26424602 DOI: 10.1016/j.vaccine.2015.09.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 11/17/2022]
Abstract
Dengue represents a significant and growing public health problem across the globe, with approximately half of the world's population at risk. The increasing and expanding burden of dengue has highlighted the need for new tools to prevent dengue, including development of dengue vaccines. Recently, the first dengue vaccine candidate was evaluated in Phase 3 clinical trials, and other vaccine candidates are under clinical evaluation. There are also a number of candidates in preclinical development, based on diverse technologies, with promising results in animal models and likely to move into clinical trials and could eventually be next-generation dengue vaccines. This review provides an overview of the various technological approaches to dengue vaccine development with specific focus on candidates in preclinical development and with evaluation in non-human primates.
Collapse
Affiliation(s)
- Kirsten S Vannice
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - John T Roehrig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Joachim Hombach
- Initiative for Vaccine Research, Department of Immunizations, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
784
|
Affiliation(s)
- Cameron P Simmons
- From the Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|