751
|
Steffen HLM, Anderson JLC, Poot ML, Lei Y, Connelly MA, Bakker SJL, Öörni K, Tietge UJF. Proteoglycan binding as proatherogenic function metric of apoB-containing lipoproteins and chronic kidney graft failure. J Lipid Res 2021; 62:100083. [PMID: 33939983 PMCID: PMC8173310 DOI: 10.1016/j.jlr.2021.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Lipoprotein-proteoglycan binding is an early key event in atherosclerotic lesion formation and thus conceivably could play a major role in vasculopathy-driven chronic graft failure and cardiovascular mortality in renal transplant recipients. The present study investigated whether lipoprotein-proteoglycan binding susceptibility (LPBS) of apoB-containing lipoproteins and levels of the classical atherosclerosis biomarker LDL-C were associated with cardiovascular mortality (n = 130) and graft failure (n = 73) in 589 renal transplant recipients who were followed up from at least 1 year after transplantation for 9.5 years. At baseline, LPBS was significantly higher in patients who subsequently developed graft failure than in those with a surviving graft (1.68 ± 0.93 vs. 1.46 ± 0.49 nmol/mmol, P = 0.001). Cox regression analysis showed an association between LPBS and chronic graft failure in an age- and sex-adjusted model (hazard ratio: 1.45; 95% CI, 1.14-1.85; P = 0.002), but no association was observed with cardiovascular mortality. LDL-C levels were not associated with graft failure or cardiovascular mortality. This study shows that measurement of cholesterol retention outperformed the traditionally used quantitative parameter of LDL-C levels in predicting graft failure, suggesting a higher relevance of proatherogenic function than the quantity of apoB-containing lipoproteins in chronic kidney graft failure.
Collapse
Affiliation(s)
- Hannah L M Steffen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Josephine L C Anderson
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margot L Poot
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, USA
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
752
|
Binder CJ, Borén J, Catapano A, Kronenberg F, Mallat Z, Negrini S, Öörni K, Raggi P, von Eckardstein A. The year 2020 in Atherosclerosis. Atherosclerosis 2021; 326:35-44. [PMID: 33958158 DOI: 10.1016/j.atherosclerosis.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
753
|
HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094547. [PMID: 33925284 PMCID: PMC8123633 DOI: 10.3390/ijms22094547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
High density lipoprotein (HDL) cholesterol has traditionally been considered the “good cholesterol”, and most of the research regarding HDL cholesterol has for decades revolved around the possible role of HDL in atherosclerosis and its therapeutic potential within atherosclerotic cardiovascular disease. Randomized trials aiming at increasing HDL cholesterol have, however, failed and left questions to what role HDL cholesterol plays in human health and disease. Recent observational studies involving non-cardiovascular diseases have shown that high levels of HDL cholesterol are not necessarily associated with beneficial outcomes as observed for age-related macular degeneration, type II diabetes, dementia, infection, and mortality. In this narrative review, we discuss these interesting associations between HDL cholesterol and non-cardiovascular diseases, covering observational studies, human genetics, and plausible mechanisms.
Collapse
|
754
|
Liu F, Wang Z, Cao X, Pan Y, Zhang E, Zhou J, Zheng L. Relationship between small dense low-density lipoprotein cholesterol with carotid plaque in Chinese individuals with abnormal carotid artery intima-media thickness. BMC Cardiovasc Disord 2021; 21:216. [PMID: 33906606 PMCID: PMC8080368 DOI: 10.1186/s12872-021-02023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Aim To investigate the relationship of small dense low-density lipoprotein cholesterol (sdLDL-C) to carotid artery intima-media thickness (CA-IMT) and carotid plaque (CAP) in Chinese general population, and to evaluate whether sdLDL-C could be an independent risk factor for individuals with subclinical atherosclerosis. Methods A total of 729 subjects were randomly collected from consecutive individuals from April 2019 to April 2020 for an annual health checkup. CA-IMT > 1.0 mm was defined as abnormal IMT. Plaque stability was measured by ultrasound examination based on the property of the echo. And sdLDL-C levels were detected by LipoPrint system. Multivariate logistic regression analysis was performed to identify factors associated with CA-IMT and carotid plaque. Results The abnormal IMT group had significantly higher sdLDL-C levels than control group (p < 0.0001). And sdLDL-C levels were significantly positively correlated with IMT value (r = 0.1396, p = 0.0021) and presence of carotid plaque (r = 0.14, p = 0.002) in the subjects with abnormal IMT. In addition, subjects with higher levels of sdLDL-C (r = 0.11, p = 0.035) tended to have unstable CAP. After adjustment for age, gender and blood glucose, sdLDL-C level was an independent risk factor of the presence of CAP (OR = 1.59, 95% CI: 1.02–1.83, p = 0.034) in subjects with abnormal IMT. Conclusion SdLDL-C is an independent risk factor of the occurrence of CAP in the Chinese subjects with abnormal IMT. Our findings provide supporting evidence that sdLDL-C might be an alternative way to predict CVD in early stage.
Collapse
Affiliation(s)
- Fang Liu
- Health Management Centre, Kaifeng Central Hospital, Kaifeng, 475000, Henan, China
| | - Zheng Wang
- Health Management Centre, Kaifeng Central Hospital, Kaifeng, 475000, Henan, China
| | - Xia Cao
- Health Management Centre, Kaifeng Central Hospital, Kaifeng, 475000, Henan, China
| | - Yingxia Pan
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Erqiang Zhang
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China
| | - Jiahuan Zhou
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai, 201204, China.
| | - Lina Zheng
- Health Management Centre, Kaifeng Central Hospital, Kaifeng, 475000, Henan, China.
| |
Collapse
|
755
|
Abstract
PURPOSE OF REVIEW The relationship between elevated triglyceride levels (i.e. hypertriglyceridemia) and risk of atherosclerotic cardiovascular disease (ASCVD) has been investigated for decades. Recent genetic studies have sought to resolve the decades-old question of a causal relationship. RECENT FINDINGS Genetic studies seem to demonstrate associations between elevated triglyceride levels and ASCVD risk. Mendelian randomization studies suggest this association may be causal. However, simultaneous pleiotropic effects of metabolically linked lipid variables - such as non-HDL cholesterol, apolipoprotein B and HDL cholesterol -- often go unaccounted for in these studies. Complex underlying pleiotropic interactions of triglycerides with these lipid fractions together with unmeasured intercalated nonlipid-related mechanisms, such as inflammation and coagulation, impair the ability of genetic studies to implicate a direct role for triglycerides on ASCVD risk. One potential mechanism seems largely driven by the cholesterol carried within triglyceride-rich lipoproteins and their remnants, rather than their triglyceride content. SUMMARY Although the exact mechanisms linking elevated triglyceride levels to ASCVD remain to be determined, new therapeutics that reduce triglyceride levels might be advantageous in certain patients. Newer investigational triglyceride-lowering therapies derived from human genetics target key proteins, such as apo C-III and ANGPTL3. Although these treatments clearly lower triglyceride levels, their efficacy in atherosclerotic risk reduction remains unproven.
Collapse
|
756
|
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592:524-533. [PMID: 33883728 DOI: 10.1038/s41586-021-03392-8] [Citation(s) in RCA: 1301] [Impact Index Per Article: 325.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis-such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress-have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the 'vulnerable plaque' concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
757
|
Zhao ZW, Zhang M, Zou J, Wan XJ, Zhou L, Wu Y, Liu SM, Liao LX, Li H, Qin YS, Yu XH, Tang CK. TIGAR mitigates atherosclerosis by promoting cholesterol efflux from macrophages. Atherosclerosis 2021; 327:76-86. [PMID: 33994201 DOI: 10.1016/j.atherosclerosis.2021.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS TP53-induced glycolysis and apoptosis regulator (TIGAR) is now characterized as a fructose-2,6-bisphosphatase to reduce glycolysis and protect against oxidative stress. Recent studies have demonstrated that TIGAR is associated with cardiovascular disease. However, little is known about its role in atherosclerogenesis. In this study, we aimed to investigate the effect of TIGAR on atherosclerosis and explore the underlying molecular mechanism. METHODS The Gene Expression Omnibus (GEO) datasets were used to analyze the differential expression of relative proteins. THP-1-derived macrophages were used as an in vitro model and apolipoprotein E-deficient (Apoe-/-) mice were used as an in vivo model. [3H] labeled cholesterol was used to assess the capacity of cholesterol efflux and reverse cholesterol transport (RCT). Both qPCR and Western blot were used to evaluate the mRNA and protein expression, respectively. Lentiviral vectors were used to disturb the expression of TIGAR in vitro and in vivo. Oil Red O, hematoxylin-eosin, and Masson staining were performed to evaluate atherosclerotic plaques in Apoe-/- mice fed a Western diet. Conventional assay kits were used to measure the levels of reactive oxygen species (ROS), plasma lipid profiles and 27-hydroxycholesterol (27-HC). RESULTS Our results showed that TIGAR is increased upon the formation of macrophage foam cells and atherosclerosis. TIGAR knockdown markedly promoted lipid accumulation in macrophages. Silencing of TIGAR impaired cholesterol efflux and down-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 by interfering with liver X receptor α (LXRα) expression and activity, but did not influence cholesterol uptake by macrophages. Additionally, this inhibitory effect of TIGAR deficiency on cholesterol metabolism was mediated through the ROS/CYP27A1 pathway. In vivo experiments revealed that TIGAR deficiency decreased the levels of ABCA1 and ABCG1 in plaques and aorta and impaired the capacity of RCT, thereby leading to the progression of atherosclerosis in Apoe-/- mice. CONCLUSIONS TIGAR mitigates the development of atherosclerosis by up-regulating ABCA1 and ABCG1 expression via the ROS/CYP27A1/LXRα pathway.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yao Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shang-Ming Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ling-Xiao Liao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
758
|
Abstract
Although technological and procedural advances have resulted in substantial improvements in clinical outcomes following percutaneous coronary interventions (PCI), recurrent coronary events may occur despite achieving optimal procedural results. Beyond myocardial revascularisation failure related to anatomical or stent-related factors, adverse cardiovascular events post PCI often arise from non-culprit lesions not treated during index interventions. While stenting treats a focal manifestation of a systemic, progressive disease, the residual risk following an acute coronary syndrome (ACS) or elective PCI is largely related to the systemic pro-atherogenic effects of suboptimally controlled cardiovascular risk factors. Lowering atherogenic lipid levels, in particular low-density lipoprotein cholesterol (LDL-C), can halt the progression of coronary atherosclerosis and improve cardiovascular outcomes to an extent that is proportional to the magnitude of LDL-C reduction. Early (in-hospital) initiation of intensive statin therapy leads to a very early clinical benefit following ACS, and prolonged adherence to optimised lipid-lowering treatment effectively reduces longer-term cardiovascular events following PCI. Therefore, achieving guideline-recommended treatment goals for LDL-C with statins and, if indicated, with the addition of non-statin lipid-lowering drugs should become a priority for all physicians involved in the treatment of patients with coronary heart disease, including comprehensive strategies initiated during the in-hospital care of patients undergoing coronary interventions. This review article summarises current evidence on the role of LDL-C in the development and progression of coronary atherosclerosis, discusses the clinical benefits of intensive lipid-lowering treatments, and presents current guideline recommendations, with emphasis on patients undergoing PCI.
Collapse
|
759
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
760
|
Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 2021; 51:141-164. [PMID: 33853480 DOI: 10.1080/10408444.2021.1888073] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tony Fletcher
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, UK
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Joost Westerhout
- Risk Analysis for Products In Development, The Netherlands Organization of Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
761
|
Practical guidance for combination lipid-modifying therapy in high- and very-high-risk patients: A statement from a European Atherosclerosis Society Task Force. Atherosclerosis 2021; 325:99-109. [PMID: 33892925 DOI: 10.1016/j.atherosclerosis.2021.03.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS This European Atherosclerosis Society (EAS) Task Force provides practical guidance for combination therapy for elevated low-density lipoprotein cholesterol (LDL-C) and/or triglycerides (TG) in high-risk and very-high-risk patients. METHODS Evidence-based review. RESULTS Statin-ezetimibe combination treatment is the first choice for managing elevated LDL-C and should be given upfront in very-high-risk patients with high LDL-C unlikely to reach goal with a statin, and in primary prevention familial hypercholesterolaemia patients. A proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor may be added if LDL-C levels remain high. In high and very-high-risk patients with mild to moderately elevated TG levels (>2.3 and < 5.6 mmol/L [>200 and < 500 mg/dL) on a statin, treatment with either a fibrate or high-dose omega-3 fatty acids (icosapent ethyl) may be considered, weighing the benefit versus risks. Combination with fenofibrate may be considered for both macro- and microvascular benefits in patients with type 2 diabetes mellitus. CONCLUSIONS This guidance aims to improve real-world use of guideline-recommended combination lipid modifying treatment.
Collapse
|
762
|
Obesity Does Not Interfere with the Cholesterol-Lowering Effect of Plant Stanol Ester Consumption (as Part of a Heart-Healthy Diet). J Cardiovasc Dev Dis 2021; 8:jcdd8040036. [PMID: 33916900 PMCID: PMC8067532 DOI: 10.3390/jcdd8040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/01/2022] Open
Abstract
Dietary modifications including plant stanol ester consumption are recommended measures to control serum and low-density lipoprotein (LDL)-cholesterol concentrations, but obesity can affect their responses. We investigated whether body mass index (BMI) affects serum cholesterol levels during plant stanol (mainly sitostanol) ester consumption. This ad hoc analysis was based on earlier results of a cross-over, randomized controlled trial of postmenopausal women consuming rapeseed oil-based margarine without or with plant stanol ester (3 g plant stanols/day) for seven weeks. We classified the subjects as normal-weight (BMI ≤ 25 kg/m2, n = 9, mean 22.6 kg/m2) or overweight/obese (BMI > 25 kg/m2, n = 11, mean 28.4 kg/m2), and recalculated the results, focusing on cholesterol absorption, cholesterol synthesis, and fecal steroid outputs. Serum cholesterol levels were similar in the groups during the control diet. Plant stanol ester reduced serum cholesterol by 0.63 ± 0.19 mmol/L (11%) in normal-weight and by 0.75 ± 0.13 mmol/L (12%) in overweight/obese subjects (p < 0.05 for both), and cholesterol absorption was reduced in both groups. However, relative and dietary cholesterol absorption were more effectively reduced in normal-weight subjects. In conclusion, overweight/obesity did not interfere with the serum cholesterol response to plant stanol ester consumption despite substantial differences in cholesterol metabolism between the groups.
Collapse
|
763
|
Grytten E, Laupsa-Borge J, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Changes in lipoprotein particle subclasses, standard lipids, and apolipoproteins after supplementation with n-3 or n-6 PUFAs in abdominal obesity: A randomized double-blind crossover study. Clin Nutr 2021; 40:2556-2575. [PMID: 33933722 DOI: 10.1016/j.clnu.2021.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. METHODS This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with 'subjects' as the random factor. RESULTS The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: -38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (-58%∗ vs. -0.91%, p < 0.001), small VLDLs (-57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. -4.3%∗, p = 0.002), large LDLs (+23%∗ vs. -2.1%, p = 0.004), total high-density lipoproteins (HDLs) (-6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. -5.3%, p = 0.001), medium HDLs (-24%∗ vs. +6.2%, p = 0.030), and small HDLs (-9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (-16%∗ vs. -2.6%, p = 0.014), non-esterified fatty acids (-19%∗ vs. +5.5%, p = 0.033), and total cholesterol (-0.28% vs. -4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. -6.0%∗, p = 0.008), apoA-II (-6.0%∗ vs. +1.5%, p = 0.001), apoC-II (-11%∗ vs. -1.7%, p = 0.025), and apoE (+3.3% vs. -3.8%, p = 0.028). CONCLUSIONS High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein-lipid-apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range. REGISTRATION Registered under ClinicalTrials.gov Identifier: NCT02647333. CLINICAL TRIAL REGISTRATION Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.
Collapse
Affiliation(s)
- Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Elin Strand
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Jan Erik Nordrehaug
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Simon N Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| | - Ottar K Nygård
- Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
764
|
Abstract
PURPOSE OF REVIEW Nonfasting lipid testing has been introduced into several guidelines over the past decade or so however, the uptake into clinical practice has not been universal. This review highlights some of the prevalent reasons for provider reluctance to use nonfasting testing and the evidence to support nonfasting testing for routine screening in most patients. RECENT FINDINGS Several studies have found nonfasting lipids to be as, or more, strongly associated with cardiovascular disease (CVD) risk prediction. In particular, nonfasting tests improve system efficiency, are safe for patients with diabetes, the elderly, children, and in the vast majority of patients, do not need to be followed up with fasting studies due to severe hypertriglyceridemia. SUMMARY Nonfasting lipids are a convenient first test for screening that offers equivalent, if not improved CVD risk prediction. Common misconceptions about nonfasting tests are not supported by the evidence.
Collapse
Affiliation(s)
- Zareen Farukhi
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
765
|
Wang P, Yuan Y, Xu K, Zhong H, Yang Y, Jin S, Yang K, Qi X. Biological applications of copper-containing materials. Bioact Mater 2021; 6:916-927. [PMID: 33210018 PMCID: PMC7647998 DOI: 10.1016/j.bioactmat.2020.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Copper is an indispensable trace metal element in the human body, which is mainly absorbed in the stomach and small intestine and excreted into the bile. Copper is an important component and catalytic agent of many enzymes and proteins in the body, so it can influence human health through multiple mechanisms. Based on the biological functions and benefits of copper, an increasing number of researchers in the field of biomaterials have focused on developing novel copper-containing biomaterials, which exhibit unique properties in protecting the cardiovascular system, promoting bone fracture healing, and exerting antibacterial effects. Copper can also be used in promoting incisional wounds healing, killing cancer cells, Positron Emission Tomography (PET) imaging, radioimmunological tracing and radiotherapy of cancer. In the present review, the biological functions of copper in the human body are presented, along with an overview of recent progress in our understanding of the biological applications and development of copper-containing materials. Furthermore, this review also provides the prospective on the challenges of those novel biomaterials for future clinical applications.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yonghui Yuan
- Clinical Research Center for Malignant Tumor of Liaoning Province, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Ke Xu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hongshan Zhong
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yinghui Yang
- Suzhou Silvan Medical Co., Ltd, Suzhou 215006, China
| | - Shiyu Jin
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| |
Collapse
|
766
|
Packard C, Chapman MJ, Sibartie M, Laufs U, Masana L. Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart 2021; 107:1369-1375. [PMID: 33795379 PMCID: PMC8374039 DOI: 10.1136/heartjnl-2020-318760] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Elevated levels of low-density lipoprotein cholesterol (LDL-C) are associated with increased risk of coronary heart disease and stroke. Guidelines for the management of dyslipidaemia from the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) were updated in late 2019 in light of recent intervention trials involving the use of innovative lipid-lowering agents in combination with statins. The new guidelines advocate achieving very low LDL-C levels in individuals at highest risk, within the paradigm of 'lower is better'. With the advent of combination therapy using ezetimibe and/or proprotein convertase subtilisin/kexin type 9 inhibitors in addition to statins, the routine attainment of extremely low LDL-C levels in the clinic has become a reality. Moreover, clinical trials in this setting have shown that, over the 5-7 years of treatment experience to date, profound LDL-C lowering leads to further reduction in cardiovascular events compared with more moderate lipid lowering, with no associated safety concerns. These reassuring findings are bolstered by genetic studies showing lifelong very low LDL-C levels (<1.4 mmol/L; <55 mg/dL) are associated with lower cardiovascular risk than in the general population, with no known detrimental health effects. Nevertheless, long-term safety studies are required to consolidate the present evidence base. This review summarises key data supporting the ESC/EAS recommendation to reduce markedly LDL-C levels, with aggressive goals for LDL-C in patients at highest risk, and provides expert opinion on its significance for clinical practice.
Collapse
Affiliation(s)
- Chris Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M John Chapman
- Endocrinology-Metabolism Division, Sorbonne University and Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), Paris, Île-de-France, France
| | | | - Ulrich Laufs
- Klinik und Poliklinik fur Kardiologie, University Clinic Leipzig, Leipzig, Sachsen, Germany
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Sant Joan University Hospital of Reus, Reus, Catalunya, Spain
| |
Collapse
|
767
|
Griffin BA, Mensink RP, Lovegrove JA. Does variation in serum LDL-cholesterol response to dietary fatty acids help explain the controversy over fat quality and cardiovascular disease risk? Atherosclerosis 2021; 328:108-113. [PMID: 33863548 DOI: 10.1016/j.atherosclerosis.2021.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Controversy over fat quality and cardiovascular disease risk stems from a series of meta-analyses of prospective cohort and randomised intervention trials, which found little evidence for a significant relationship between the intake of saturated fat and disease endpoints. Possible explanations for these null findings include difficulties inherent in estimating true food intake, the confounding effects of macronutrient replacement and food composition, and marked inter-individual variation in the response of serum LDL-cholesterol. The aim of this narrative review was to present evidence for the existence and origins of variation in serum LDL-cholesterol response to the replacement of dietary saturated fat, and its potential to explain the controversy over the latter. The review provides evidence to suggest that variation in LDL-responsiveness may harbour significant potential to confound the relationship between saturated fat and atherosclerotic cardiovascular disease risk, thus undermining the effectiveness of the dietary guideline to replace saturated fat with unsaturated fat. It concludes that the identification and application of a simple biomarker of this phenomenon, would make it possible to tailor dietary guidelines to LDL responsive individuals, who stand to gain a greater benefit to their cardiovascular health.
Collapse
Affiliation(s)
- Bruce A Griffin
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences. University of Surrey, Guildford, Surrey, GU2 7WG, UK.
| | - Ronald P Mensink
- Nutrition and Movement Sciences, School for Nutrition Toxic and Metab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Minderbroedersberg 4-6, 6211 LK, Maastricht, the Netherlands
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Pepper Lane, Reading, RG6 6DZ, UK
| |
Collapse
|
768
|
Stock JK. Latest European Atherosclerosis Society statement reaffirms commitment to the UN Sustainable Development Goals 2030 Agenda. Atherosclerosis 2021; 324:121-122. [PMID: 33827764 DOI: 10.1016/j.atherosclerosis.2021.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jane K Stock
- European Atherosclerosis Society, World Trade Center Göteborg, Mässans Gata 10, SE-412 51, Göteborg, Sweden.
| |
Collapse
|
769
|
Pearson GJ, Thanassoulis G, Anderson TJ, Barry AR, Couture P, Dayan N, Francis GA, Genest J, Grégoire J, Grover SA, Gupta M, Hegele RA, Lau D, Leiter LA, Leung AA, Lonn E, Mancini GBJ, Manjoo P, McPherson R, Ngui D, Piché ME, Poirier P, Sievenpiper J, Stone J, Ward R, Wray W. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can J Cardiol 2021; 37:1129-1150. [PMID: 33781847 DOI: 10.1016/j.cjca.2021.03.016] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
The 2021 guidelines primary panel selected clinically relevant questions and produced updated recommendations, on the basis of important new findings that have emerged since the 2016 guidelines. In patients with clinical atherosclerosis, abdominal aortic aneurysm, most patients with diabetes or chronic kidney disease, and those with low-density lipoprotein cholesterol ≥ 5 mmol/L, statin therapy continues to be recommended. We have introduced the concept of lipid/lipoprotein treatment thresholds for intensifying lipid-lowering therapy with nonstatin agents, and have identified the secondary prevention patients who have been shown to derive the largest benefit from intensification of therapy with these agents. For all other patients, we emphasize risk assessment linked to lipid/lipoprotein evaluation to optimize clinical decision-making. Lipoprotein(a) measurement is now recommended once in a patient's lifetime, as part of initial lipid screening to assess cardiovascular risk. For any patient with triglycerides ˃ 1.5 mmol/L, either non-high-density lipoprotein cholesterol or apolipoprotein B are the preferred lipid parameter for screening, rather than low-density lipoprotein cholesterol. We provide updated recommendations regarding the role of coronary artery calcium scoring as a clinical decision tool to aid the decision to initiate statin therapy. There are new recommendations on the preventative care of women with hypertensive disorders of pregnancy. Health behaviour modification, including regular exercise and a heart-healthy diet, remain the cornerstone of cardiovascular disease prevention. These guidelines are intended to provide a platform for meaningful conversation and shared-decision making between patient and care provider, so that individual decisions can be made for risk screening, assessment, and treatment.
Collapse
Affiliation(s)
- Glen J Pearson
- Faculty of Medicine and Dentistry, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada.
| | - George Thanassoulis
- McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Todd J Anderson
- Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Arden R Barry
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Couture
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Québec, Canada
| | | | - Gordon A Francis
- Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacques Genest
- McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Jean Grégoire
- Institut de Cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada
| | | | - Milan Gupta
- Department of Medicine, McMaster University, Hamilton, Ontario, and Canadian Collaborative Research Network, Brampton, Ontario, Canada
| | - Robert A Hegele
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Lau
- Department of Medicine, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Leung
- Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eva Lonn
- Department of Medicine and Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - G B John Mancini
- University of British Columbia; Department of Medicine, Division of Cardiology, Vancouver, British Columbia, Canada
| | - Priya Manjoo
- University of British Columbia, Victoria, British Columbia, Canada
| | - Ruth McPherson
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel Ngui
- University of British Columbia, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Marie-Eve Piché
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada
| | - John Sievenpiper
- Department of Medicine and Li Ka Shing Knowledge Institute, St Michael's Hospital and Departments of Nutritional Sciences and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Stone
- University of Calgary, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Rick Ward
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wendy Wray
- McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
770
|
van Eenige R, Ying Z, Tambyrajah L, Pronk ACM, Blomberg N, Giera M, Wang Y, Coskun T, van der Stelt M, Rensen PCN, Kooijman S. Cannabinoid type 1 receptor inverse agonism attenuates dyslipidemia and atherosclerosis in APOE∗3-Leiden.CETP mice. J Lipid Res 2021; 62:100070. [PMID: 33766515 PMCID: PMC8082266 DOI: 10.1016/j.jlr.2021.100070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Pharmacological blockade of the cannabinoid type 1 receptor, a G protein-coupled receptor expressed in the central nervous system and various peripheral tissues, reverses diet-induced obesity and dyslipidemia through the reduction of food intake and altered nutrient partitioning. This strategy is being explored for a number of therapeutic applications; however, its potency for the treatment of atherosclerotic cardiovascular disease via improvements in lipid metabolism remains unclear. Therefore, here, we aimed to investigate whether inhibition of the endocannabinoid system can attenuate atherosclerosis development through improvement of dyslipidemia. Lean, dyslipidemic female APOE∗3-Leiden.CETP transgenic mice were fed a Western-type diet supplemented with or without the cannabinoid type 1 receptor inverse agonist rimonabant (20 mg·kg body weight-1 day-1) for up to 20 weeks. Plasma lipids and bile acids were determined, and atherosclerotic lesions were scored in the aortic valve region. Rimonabant lowered plasma levels of triglyceride (TG) (-56%) and non-HDL-C (-19%) and increased HDL-C (+57%). These effects were explained by decreased VLDL-TG production (-52%) and accelerated VLDL-TG turnover accompanied by pronounced browning of white adipose tissue. In addition, rimonabant attenuated reverse cholesterol transport (-30%), increased plasma bile acid levels (+160%), and increased hepatic cholesterol accumulation (+88%). Importantly, rimonabant markedly lowered atherosclerotic lesion size (-64%), which coincided with decreased lesion severity (28% vs. 56% severe lesions) and which strongly correlated with non-HDL-C exposure (R2 = 0.60). Taken together, inhibition of the endocannabinoid system potently reverses dyslipidemia and prevents atherogenesis, even in the absence of obesity.
Collapse
Affiliation(s)
- Robin van Eenige
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhixiong Ying
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lauren Tambyrajah
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Amanda C M Pronk
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Niek Blomberg
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Center for Immunological and Metabolic Diseases, MED-X institute, and Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tamer Coskun
- Department of Diabetes/Endocrine, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Center for Immunological and Metabolic Diseases, MED-X institute, and Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
771
|
Krychtiuk KA, Lenz M, Hohensinner P, Distelmaier K, Schrutka L, Kastl SP, Huber K, Dostal E, Oravec S, Hengstenberg C, Wojta J, Speidl WS. Circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) are associated with monocyte subsets in patients with stable coronary artery disease. J Clin Lipidol 2021; 15:512-521. [PMID: 33789832 DOI: 10.1016/j.jacl.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type-9 (PCSK9) is an enzyme promoting the degradation of low-density lipoprotein receptors (LDL-R) in hepatocytes. Inhibition of PCSK9 has emerged as a novel target for lipid-lowering therapy. Monocytes are crucially involved in the pathogenesis of atherosclerosis and can be divided into three subsets. OBJECTIVE The aim of this study was to examine whether circulating levels of PCSK9 are associated with monocyte subsets. METHODS We included 69 patients with stable coronary artery disease. PCSK9 levels were measured and monocyte subsets were assessed by flow cytometry and divided into classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). RESULTS Mean age was 64 years and 80% of patients were male. Patients on statin treatment (n = 55) showed higher PCSK9-levels (245.4 (206.0-305.5) ng/mL) as opposed to those without statin treatment (186.1 (162.3-275.4) ng/mL; p = 0.05). In patients on statin treatment, CM correlated with circulating PCSK9 levels (R = 0.29; p = 0.04), while NCM showed an inverse correlation with PCSK9 levels (R = -0.33; p = 0.02). Patients with PCSK9 levels above the median showed a significantly higher proportion of CM as compared to patients with PCSK9 below the median (83.5 IQR 79.2-86.7 vs. 80.4, IQR 76.5-85.2%; p = 0.05). Conversely, PCSK9 levels >median were associated with a significantly lower proportion of NCM as compared to those with PCSK9 <median (10.2, IQR 7.3-14.6 vs. 14.3, IQR 10.9-18.7%; p = 0.02). In contrast, IM showed no association with PCSK9 levels. CONCLUSIONS We hereby provide a novel link between PCSK9 regulation, innate immunity and atherosclerotic disease in statin-treated patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Max Lenz
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Klaus Distelmaier
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Lore Schrutka
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Stefan P Kastl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminenhospital, Vienna, Austria
| | | | - Stanislav Oravec
- 1st Medical Clinic; Medical Faculty of Comenius University Bratislava, Bratislava, Slovakia
| | - Christian Hengstenberg
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Walter S Speidl
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
772
|
Yu H. Atherosclerotic Plaque Regression: Experimental Approaches and Therapeutic Advances. Trends Cell Biol 2021; 31:424-427. [PMID: 33726967 DOI: 10.1016/j.tcb.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Reversal of atherosclerosis has been well documented in humans on intensive lifestyle changes or lipid-lowering therapies. The development of mouse models has greatly advanced our understanding of molecular mechanisms underlying this biological process. I seek to summarize the established mouse models and highlight the recent therapeutic progress on plaque regression.
Collapse
Affiliation(s)
- Haojie Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
773
|
Abstract
Purpose of review Based on the recent data of the DA VINCI study, it is clear that, besides utilization of statins, there is a need to increase non-statin lipid lowering approaches to reduce the cardiovascular burden in patients at highest risk. Recent findings For hypercholesterolemia, the small synthetic molecule bempedoic acid has the added benefit of selective liver activation, whereas inclisiran, a hepatic inhibitor of the PCSK9 synthesis, has comparable effects with PCSK9 monoclonal antibodies. For hypertriglyceridemia, cardiovascular benefit has been achieved by the use of icosapent ethyl, whereas results with pemafibrate, a selective agonist of PPAR-α, are eagerly awaited. In the era of RNA-based therapies, new options are offered to dramatically reduce levels of lipoprotein(a) (APO(a)LRX) and of triglycerides (ANGPTL3LRX and APOCIII-LRx). Summary Despite the demonstrated benefits of statins, a large number of patients still remain at significant risk because of inadequate LDL-C reduction or elevated blood triglyceride-rich lipoproteins or lipoprotein(a). The area of lipid modulating agents is still ripe with ideas and major novelties are to be awaited in the next few years.
Collapse
|
774
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
775
|
VLDL Cholesterol Accounts for One-Half of the Risk of Myocardial Infarction Associated With apoB-Containing Lipoproteins. J Am Coll Cardiol 2021; 76:2725-2735. [PMID: 33272366 DOI: 10.1016/j.jacc.2020.09.610] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Plasma apolipoprotein B (apoB) is a composite measure of all apoB-containing lipoproteins causing atherosclerotic cardiovascular disease; however, it is unclear which fraction of risk is explained by cholesterol and triglycerides, respectively, in very low-density lipoproteins (VLDLs). OBJECTIVES The authors tested the hypothesis that VLDL cholesterol and triglycerides each explain part of the myocardial infarction risk from apoB-containing lipoproteins. METHODS Nested within 109,751 individuals from the Copenhagen General Population Study, the authors examined 25,480 subjects free of lipid-lowering therapy and myocardial infarction at study entry. All had measurements of plasma apoB (quantitating number of apoB-containing lipoproteins) and cholesterol and triglyceride content of VLDL, intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs). RESULTS During a median 11 years of follow-up, 1,816 were diagnosed with myocardial infarction. Per 1-mmol/l higher levels, multivariable-adjusted hazard ratios for myocardial infarction were 2.07 (95% confidence interval [CI]: 1.81 to 2.36) for VLDL cholesterol, 1.19 (95% CI: 1.14 to 1.25) for VLDL triglycerides, 5.38 (95% CI: 3.73 to 7.75) for IDL cholesterol, and 1.86 (95% CI: 1.62 to 2.14) for LDL cholesterol. Per 1-g/l higher plasma apoB, the corresponding value was 2.21 (95% CI: 1.90 to 2.58). In a step-up Cox regression, risk factors for myocardial infarction entered by importance as VLDL cholesterol, systolic blood pressure, smoking, and IDL + LDL cholesterol, whereas VLDL triglycerides did not enter the model. VLDL cholesterol explained 50% and IDL + LDL cholesterol 29% of the risk of myocardial infarction from apoB-containing lipoproteins, whereas VLDL triglycerides did not explain risk. CONCLUSIONS VLDL cholesterol explained one-half of the myocardial infarction risk from elevated apoB-containing lipoproteins, whereas VLDL triglycerides did not explain risk.
Collapse
|
776
|
Mills CE, Harding SV, Bapir M, Mandalari G, Salt LJ, Gray R, Fielding BA, Wilde PJ, Hall WL, Berry SE. Palmitic acid-rich oils with and without interesterification lower postprandial lipemia and increase atherogenic lipoproteins compared with a MUFA-rich oil: A randomized controlled trial. Am J Clin Nutr 2021; 113:1221-1231. [PMID: 33675343 PMCID: PMC8106759 DOI: 10.1093/ajcn/nqaa413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Interesterified (IE) fats are widely used in place of trans fats; however, little is known about their metabolism. OBJECTIVES To test the impact of a commonly consumed IE compared with a non-IE equivalent fat on in vivo postprandial and in vitro lipid metabolism, compared with a reference oil [rapeseed oil (RO)]. METHODS A double-blinded, 3-phase crossover, randomized controlled trial was performed in healthy adults (n = 20) aged 45-75 y. Postprandial plasma triacylglycerol and lipoprotein responses (including stable isotope tracing) to a test meal (50 g fat) were evaluated over 8 h. The test fats were IE 80:20 palm stearin/palm kernel fat, an identical non-IE fat, and RO (control). In vitro, mechanisms of digestion were explored using a dynamic gastric model (DGM). RESULTS Plasma triacylglycerol 8-h incremental area under the curves were lower following non-IE compared with RO [-1.7 mmol/L⋅h (95% CI: -3.3, -0.0)], but there were no differences between IE and RO or IE and non-IE. LDL particles were smaller following IE and non-IE compared with RO (P = 0.005). Extra extra large, extra large, and large VLDL particle concentrations were higher following IE and non-IE compared with RO at 6-8 h (P < 0.05). No differences in the appearance of [13C]palmitic acid in plasma triacylglycerol were observed between IE and non-IE fats. DGM revealed differences in phase separation of the IE and non-IE meals and delayed release of SFAs compared with RO. CONCLUSIONS Interesterification did not modify fat digestion, postprandial lipemia, or lipid metabolism measured by stable isotope and DGM analysis. Despite the lower lipemia following the SFA-rich fats, increased proatherogenic large triacylglycerol-rich lipoprotein remnant and small LDL particles following the SFA-rich fats relative to RO adds a new postprandial dimension to the mechanistic evidence linking SFAs to cardiovascular disease risk.
Collapse
Affiliation(s)
- Charlotte E Mills
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK,Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Scott V Harding
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mariam Bapir
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Giuseppina Mandalari
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, UK,Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Louise J Salt
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, UK
| | - Robert Gray
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | - Peter J Wilde
- Food Innovation and Health Programme, Quadram Institute Bioscience, Norwich, UK
| | | | | |
Collapse
|
777
|
Nurmohamed NS, Navar AM, Kastelein JJP. New and Emerging Therapies for Reduction of LDL-Cholesterol and Apolipoprotein B: JACC Focus Seminar 1/4. J Am Coll Cardiol 2021; 77:1564-1575. [PMID: 33766264 DOI: 10.1016/j.jacc.2020.11.079] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
Adding to the foundation of statins, ezetimibe and proprotein convertase subtilisin-kexin type 9 inhibitors (PCSK9i), novel, emerging low-density lipoprotein cholesterol (LDL-C)-lowering therapies are under development for the prevention of cardiovascular disease. Inclisiran, a small interfering RNA molecule that inhibits PCSK9, only needs to be dosed twice a year and has the potential to help overcome current barriers to persistence and adherence to lipid-lowering therapies. Bempedoic acid, which lowers LDL-C upstream from statins, provides a novel alternative for patients with statin intolerance. Angiopoetin-like 3 protein (ANGPTL3) inhibitors have been shown to provide potent LDL-C lowering in patients with homozygous familial hypercholesterolemia without major adverse effects as seen with lomitapide and mipomersen, and may reduce the need for apheresis. Finally, CETP inhibitors may yet be effective with the development of obicetrapib. These novel agents provide the clinician the tools to effectively lower LDL-C across the entire range of LDL-C-induced elevation of cardiovascular risk, from primary prevention and secondary prevention to null-null homozygous familial hypercholesterolemia patients.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. https://twitter.com/NickNurmohamed
| | - Ann Marie Navar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/AnnMarieNavar
| | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
778
|
Song Y, Choi JE, Kwon YJ, Chang HJ, Kim JO, Park DH, Park JM, Kim SJ, Lee JW, Hong KW. Identification of susceptibility loci for cardiovascular disease in adults with hypertension, diabetes, and dyslipidemia. J Transl Med 2021; 19:85. [PMID: 33632238 PMCID: PMC7905883 DOI: 10.1186/s12967-021-02751-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertension (HTN), diabetes mellitus (DM), and dyslipidemia (DL) are well-known risk factors of cardiovascular disease (CVD), but not all patients develop CVDs. Studies have been limited investigating genetic risk of CVDs specific to individuals with metabolic diseases. This study aimed to identify disease-specific and/or common genetic loci associated with CVD susceptibility in chronic metabolic disease patients. METHODS We conducted a genome-wide association study (GWAS) of a multiple case-control design with data from the City Cohort within Health EXAminees subcohort of the Korean Genome and Epidemiology Study (KoGES_HEXA). KoGES_HEXA is a population-based prospective cohort of 173,357 urban Korean adults that had health examinations at medical centers. 42,393 participants (16,309 HTN; 5,314 DM; 20,770 DL) were analyzed, and each metabolic disease group was divided into three CVD case-controls: coronary artery disease (CAD), ischemic stroke (IS), and cardio-cerebrovascular disease (CCD). GWASs were conducted for each case-control group with 7,975,321 imputed single nucleotide polymorphisms using the Phase 3 Asian panel from 1000 Genomes Project, by logistic regression and controlled for confounding variables. Genome-wide significant levels were implemented to identify important susceptibility loci. RESULTS Totaling 42,393 individuals, this study included 16,309 HTN (mean age [SD], 57.28 [7.45]; 816 CAD, 398 IS, and 1,185 CCD cases), 5,314 DM (57.79 [7.39]; 361 CAD, 153 IS, and 497 CCD cases), and 20,770 DL patients (55.34 [7.63]; 768 CAD, 295 IS, and 1,039 CCD cases). Six genome-wide significant CVD risk loci were identified, with relatively large effect sizes: 1 locus in HTN (HTN-CAD: 17q25.3/CBX8-CBX4 [OR, 2.607; P = 6.37 × 10-9]), 2 in DM (DM-IS: 4q32.3/MARCH1-LINC01207 [OR, 5.587; P = 1.34 × 10-8], and DM-CCD: 17q25.3/RPTOR [OR, 3.511; P = 1.99 × 10-8]), and 3 in DL (DL-CAD: 9q22.2/UNQ6494-LOC101927847 [OR, 2.282; P = 7.78 × 10-9], DL-IS: 3p22.1/ULK4 [OR, 2.162; P = 2.97 × 10-8], and DL-CCD: 2p22.2/CYP1B1-CYP1B1-AS1 [OR, 2.027; P = 4.24 × 10-8]). CONCLUSIONS This study identified 6 susceptibility loci and positional candidate genes for CVDs in HTN, DM, and DL patients using an unprecedented study design. 1 locus (17q25.3) was commonly associated with CAD. These associations warrant validation in additional studies for potential therapeutic applications.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea
| | - Ja-Eun Choi
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Gyeonggi-do, Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung Oh Kim
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Da-Hyun Park
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Jae-Min Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea
| | - Seong-Jin Kim
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Ji Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea.
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
779
|
Temporelli PL, Arca M, D’Erasmo L, De Caterina R. Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible? J Clin Med 2021; 10:886. [PMID: 33671688 PMCID: PMC7926692 DOI: 10.3390/jcm10040886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Hyperlipidemia is a powerful risk factor for coronary heart disease (CHD). It has been known for a long time that lipid-lowering drugs significantly reduce morbidity from CHD, thus proving a causal role for cholesterol in coronary events. Conversely, the relationship between low-density lipoprotein cholesterol (LDL-C) levels and stroke has been less clear and debated for many years. Recent data conclusively demonstrate not only the inverse epidemiological relationship of blood LDL-C with stroke, but also the efficacy of different strategies to attain cholesterol-lowering on stroke. They also dissipate lingering doubts about the possibility that lipid-lowering is linked to an increase in hemorrhagic stroke. However, despite current international lipid guidelines now strongly recommend aggressive lipid-lowering therapy in patients with atherosclerotic cardiovascular disease, including CHD and cerebrovascular disease (CeVD), secondary prevention patients are often undertreated with lipid-lowering therapies in routine clinical practice. This review highlights that patients with CHD and concomitant CeVD do not receive aggressive lipid-lowering therapy despite being at very high risk and with clear evidence of benefit from lowering LDL-C levels below current targets.
Collapse
Affiliation(s)
- Pier Luigi Temporelli
- Division of Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Via Revislate 13, 28013 Gattico-Veruno, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00161 Roma, Italy; (M.A.); (L.D.)
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale dell’Università 37, 00161 Roma, Italy; (M.A.); (L.D.)
| | - Raffaele De Caterina
- Chair of Cardiology, Cardiovascular Division, Pisa University Hospital, University of Pisa, Via Paradisa 2, 56126 Pisa, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
| |
Collapse
|
780
|
Kauerova S, Bartuskova H, Muffova B, Janousek L, Fronek J, Petras M, Poledne R, Kralova Lesna I. Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation. Biomedicines 2021; 9:biomedicines9020211. [PMID: 33669779 PMCID: PMC7923086 DOI: 10.3390/biomedicines9020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Statins represent one of the most widely used classes of drugs in current medicine. In addition to a substantial decrease in atherogenic low density lipoprotein (LDL) particle concentrations, several large trials have documented their potent anti-inflammatory activity. Based on our preliminary data, we showed that statins are able to decrease the proportion of pro-inflammatory macrophages (CD14+16+CD36high) in visceral adipose tissue in humans. In the present study including 118 healthy individuals (living kidney donors), a very close relationship between the pro-inflammatory macrophage proportion and LDL cholesterol levels was found. This was confirmed after adjustment for the most important risk factors. The effect of statins on the proportion of pro-inflammatory macrophages was also confirmed in an experimental model of the Prague hereditary hypercholesterolemia rat. A direct anti-inflammatory effect of fluvastatin on human macrophage polarization in vitro was documented. Based on modifying the LDL cholesterol concentrations, statins are suggested to decrease the cholesterol inflow through the lipid raft of macrophages in adipose tissue and hypercholesterolemia to enhance the pro-inflammatory macrophage phenotype polarization. On the contrary, due to their opposite effect, statins respond with anti-inflammatory activity, affecting the whole organism.
Collapse
Affiliation(s)
- Sona Kauerova
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (R.P.); (I.K.L.)
- Correspondence: ; Tel.: +420-236-05-5446
| | - Hana Bartuskova
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (R.P.); (I.K.L.)
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Barbora Muffova
- Department of Immunology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic;
| | - Libor Janousek
- Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (L.J.); (J.F.)
| | - Jiri Fronek
- Department of Transplantation Surgery, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (L.J.); (J.F.)
| | - Marek Petras
- Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (R.P.); (I.K.L.)
| | - Ivana Kralova Lesna
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (H.B.); (R.P.); (I.K.L.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 169 02 Prague, Czech Republic
| |
Collapse
|
781
|
Liu Y, Shen X, Pang M, Sun Z, Qian Y, Xue W, Wang Z, Li L. Role of histone deacetylase Sirt3 in the development and regression of atherosclerosis. Life Sci 2021; 272:119178. [PMID: 33610576 DOI: 10.1016/j.lfs.2021.119178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
Atherosclerosis (AS) is the most common cause of death in cardiovascular diseases and poses severe challenges to human life and safety. Epigenetics plays a vital role in every single link of AS. Whereas, how epigenetics regulates its development and regression is still unknown. Sirt3, a recognized histone deacetylase, having been reported to be involved in other acylation processes in recent years, is broadening its role in epigenetic modifications. Sirt3 is an important factor in the normal physiology of blood vessels through deacetylation of mitochondrial proteins and participates in various metabolic activities. Besides, medical research targeting Sirt3 is in full swing as well. This review combining histone deacetylase Sirt3 with AS, aims to clarify the latest progress in the significant role of Sirt3 in the development and regression of AS and to provide a novel prospect for a new regulatory factor and potential intervention target for AS.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mingchang Pang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenxin Xue
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
782
|
Liu CX, Yin RX, Shi ZH, Zheng PF, Deng GX, Guan YZ, Wei BL. Associations between TUBB-WWOX SNPs, their haplotypes, gene-gene, and gene-environment interactions and dyslipidemia. Aging (Albany NY) 2021; 13:5906-5927. [PMID: 33612478 PMCID: PMC7950260 DOI: 10.18632/aging.202514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/29/2020] [Indexed: 04/21/2023]
Abstract
In this study, we investigated associations between single nucleotide polymorphisms (SNPs) in the tubulin beta class I (TUBB) and WW domain-containing oxidoreductase (WWOX) genes, gene-gene interactions, and gene-environment interactions and dyslipidemia in the Chinese Maonan ethnic group. Four SNPs (rs3132584, rs3130685, rs2222896, and rs2548861) were genotyped in unrelated subjects with normal lipid levels (864) or dyslipidemia (1129). While 5.0% of Maonan subjects carried the rs3132584TT genotype, none of the Chinese Han in Beijing subjects did. Allele and genotype frequencies differed between the normal and dyslipidemia groups for three SNPs (rs3132584, rs3130685, and rs2222896). rs2222896G allele carriers in the normal group had higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol levels. The rs3132584GG, rs3130685CC+TT, and rs2222896GG genotypes as well as the rs2222896G-rs2548861G and rs2222896G-rs2548861T haplotypes were associated with an elevated risk of dyslipidemia; the rs2222896A-rs2548861T and rs2222896A-rs2548861G haplotypes were associated with a reduced risk of dyslipidemia. Among the thirteen TUBB-WWOX interaction types identified, rs3132584T-rs3130685T-rs2222896G-rs2548861T increased the risk of dyslipidemia 1.371-fold. Fourteen two- to four-locus optimal interactive models for SNP-SNP, haplotype-haplotype, gene-gene, and gene-environment interactions exhibited synergistic or contrasting effects on dyslipidemia. Finally, the interaction between rs3132584 and rs2222896 increased the risk of dyslipidemia 2.548-fold and predicted hypertension.
Collapse
Affiliation(s)
- Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning 530021, Guangxi, People’s Republic of China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning 530021, Guangxi, People’s Republic of China
| | - Zong-Hu Shi
- Department of Prevention and Health Care, The Fourth Affiliated Hospital, Guangxi Medical University, Liuzhou 545005, Guangxi, People’s Republic of China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People’s Republic of China
| |
Collapse
|
783
|
Banach M, Penson PE, Vrablik M, Bunc M, Dyrbus K, Fedacko J, Gaita D, Gierlotka M, Jarai Z, Magda SL, Margetic E, Margoczy R, Durak-Nalbantic A, Ostadal P, Pella D, Trbusic M, Udroiu CA, Vlachopoulos C, Vulic D, Fras Z, Dudek D, Reiner Ž. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP). Pharmacol Res 2021; 166:105499. [PMID: 33607265 DOI: 10.1016/j.phrs.2021.105499] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/05/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) and consequent acute coronary syndromes (ACS) are substantial contributors to morbidity and mortality across Europe. Much of these diseases burden is modifiable, in particular by lipid-lowering therapy (LLT). Current guidelines are based on the sound premise that with respect to low density lipoprotein cholesterol (LDL-C), "lower is better for longer", and the recent data have strongly emphasized the need of also "the earlier the better". In addition to statins, which have been available for several decades, the availability of ezetimibe and inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) are additional very effective approach to LLT, especially for those at very high and extremely high cardiovascular risk. LLT is initiated as a response to an individual's calculated risk of future ASCVD and is intensified over time in order to meet treatment goals. However, in real-life clinical practice goals are not met in a substantial proportion of patients. This Position Paper complements existing guidelines on the management of lipids in patients following ACS. Bearing in mind the very high risk of further events in ACS, we propose practical solutions focusing on immediate combination therapy in strict clinical scenarios, to improve access and adherence to LLT in these patients. We also define an 'Extremely High Risk' group of individuals following ACS, completing the attempt made in the recent European guidelines, and suggest mechanisms to urgently address lipid-medicated cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Maciej Banach
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Department of Hypertension, Medical University of Lodz (MUL), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matjaz Bunc
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Krzysztof Dyrbus
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jan Fedacko
- MEDIPARK, University Research Park for Preclinical and Clinical Research, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Dan Gaita
- Institute of Cardiovascular Diseases, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Marek Gierlotka
- Department of Cardiology, University Hospital in Opole, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Zoltan Jarai
- Department of Cardiology, Saint Imre University Teaching Hospital, Budapest, Hungary
| | - Stefania Lucia Magda
- University of Medicine and Pharmacy "Carol Davila" and University and Emergency Hospital, Department of Cardiology and Cardiovascular Surgery, Bucharest, Romania
| | - Eduard Margetic
- Clinic of Cardiovascular Diseases, University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Roman Margoczy
- Middle Slovak Institute of Cardiovascular Diseases, Banska Bystrica, Slovakia
| | - Azra Durak-Nalbantic
- Department for Cardiology, Clinic for Heart, Blood Vessel and Rheumatic Diseases, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Petr Ostadal
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| | - Daniel Pella
- 2nd Department of Cardiology Clinic of PJ Safarik University and East Slovak Institute for Cardiovascular Diseases, Košice, Slovakia
| | - Matias Trbusic
- Department of Cardiology, Sestre Milosrdnice University Hospital Center, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Cristian Alexandru Udroiu
- University of Medicine and Pharmacy "Carol Davila" and University and Emergency Hospital, Department of Cardiology and Cardiovascular Surgery, Bucharest, Romania
| | - Charalambos Vlachopoulos
- First Cardiology Department, Hippokration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Dusko Vulic
- Faculty of Medicine, University of Banja Luka, Bosnia and Herzegovina
| | - Zlatko Fras
- Preventive Cardiology Unit, Department of Vascular Medicine, Division of Medicine, University Medical Centre Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dariusz Dudek
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
784
|
Parini P, Frikke-Schmidt R, Tselepis AD, Moulin P, von Eckardstein A, Binder CJ, Catapano AL, Ray KK, Tokgözoğlu L. Taking action: European Atherosclerosis Society targets the United Nations Sustainable Development Goals 2030 agenda to fight atherosclerotic cardiovascular disease in Europe. Atherosclerosis 2021; 322:77-81. [PMID: 33750635 DOI: 10.1016/j.atherosclerosis.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Paolo Parini
- Department of Medicine and Department of Laboratory Medicine, Karolinska Institutet, and Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen and Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, Univ-Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI, Univ-Lyon1, 69003 Lyon, France
| | | | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
785
|
Life-Course Implications of Pediatric Risk Factors for Cardiovascular Disease. Can J Cardiol 2021; 37:766-775. [PMID: 33581191 DOI: 10.1016/j.cjca.2021.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
The concept that origins of cardiovascular disease (CVD) begin in childhood is supported by substantial evidence. Prospective studies beginning in childhood report associations of childhood obesity, abnormal blood pressure (BP), dyslipidemia, diabetes, and tobacco use with intermediate CVD markers, including left ventricular hypertrophy and vascular stiffness in young adulthood. Trajectory analyses from longitudinal studies describe discrete BP pathways from childhood to young adult status of hypertension and prehypertension. Among individuals with familial hypercholesterolemia, abnormal low-density lipoprotein cholesterol levels are present in childhood. Some children are at risk for future CVD owing to hereditary factors, psychosocial stress, race, low birth weight, or other nonmodifiable exposures. Behavioural factors, including suboptimal diet, sedentary activity, and tobacco use, in childhood augment risk and can be modified to reduce risk. Pharmacologic treatments are reserved for those at high levels of the BP and cholesterol distributions and for those with diabetes and additional risk factors.
Collapse
|
786
|
Gill D, Georgakis MK, Walker VM, Schmidt AF, Gkatzionis A, Freitag DF, Finan C, Hingorani AD, Howson JM, Burgess S, Swerdlow DI, Davey Smith G, Holmes MV, Dichgans M, Scott RA, Zheng J, Psaty BM, Davies NM. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res 2021; 6:16. [PMID: 33644404 PMCID: PMC7903200 DOI: 10.12688/wellcomeopenres.16544.2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline.
Collapse
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
- Novo Nordisk Research Centre, Oxford, UK
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George’s, University of London, London, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Venexia M. Walker
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A. Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Apostolos Gkatzionis
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Daniel F. Freitag
- Bayer Pharmaceuticals, Open Innovation & Digital Technologies, Wuppertal, Germany
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Acceleratorversity College London, London, UK
- UCL Hospitals, NIHR Biomedical Research Centre, London, UK
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Acceleratorversity College London, London, UK
- UCL Hospitals, NIHR Biomedical Research Centre, London, UK
| | | | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Daniel I. Swerdlow
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Michael V. Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Jie Zheng
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Neil M. Davies
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
787
|
Zhao ZW, Zhang M, Liao LX, Zou J, Wang G, Wan XJ, Zhou L, Li H, Qin YS, Yu XH, Tang CK. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158904. [PMID: 33578049 DOI: 10.1016/j.bbalip.2021.158904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the role of long noncoding RNA (lncRNA) prostate cancer antigen 3 (PCA3) in atherosclerosis and the underlying mechanism. METHODS The Gene Expression Omnibus (GEO) datasets were used to divide differentially expressed lncRNAs, microRNAs (miRNAs), and mRNAs. The expression of PCA3, miR-140-5p, RFX7 and ABCA1 were determined by qPCR or Western blot in ox-LDL-treated macrophages. Macrophage lipid accumulation s was evaluated using the Oil Red O staining and high-performance liquid chromatography. Target relationships among PCA3, miR-140-5p, RFX7, and ABCA1 promoter area were validated via dual-luciferase reporter gene assay or chromatin immunoprecipitation assay. The apoE-/- mouse model in vivo was designed to evaluate the effect of PCA3 on the reverse cholesterol transport (RCT) and atherosclerosis. RESULTS PCA3 was down-regulated in foam cells, whereas miR-140-5p was highly expressed. Overexpression of PCA3 promoted ABCA1-mediated cholesterol efflux and reduced lipid accumulation in macrophages. Besides, RFX7 bound to the ABCA1 promoter and increased ABCA1 expression. Targeted relationships and interactions on the expression between miR-140-5p and PCA3 or RFX7 were elucidated. PCA3 up-regulated ABCA1 expression by binding to miR-140-5p to up-regulate RFX7 and ABCA1 expression in macrophages. PCA3 promoted RCT and impeded the progression of atherosclerosis by sponging miR-140-5p in apoE-/- mice. Meanwhile, miR-140-5p also inhibit ABCA1 expression via downregulation of RFX7 to impede RCT and aggravate atherosclerosis. CONCLUSIONS lncRNA PCA3 promotes ABCA1-mediated cholesterol efflux to inhibit atherosclerosis through sponging miR-140-5p and up-regulating RFX7.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ling-Xiao Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.; Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China..
| |
Collapse
|
788
|
Zinöcker MK, Svendsen K, Dankel SN. The homeoviscous adaptation to dietary lipids (HADL) model explains controversies over saturated fat, cholesterol, and cardiovascular disease risk. Am J Clin Nutr 2021; 113:277-289. [PMID: 33471045 DOI: 10.1093/ajcn/nqaa322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
SFAs play the leading role in 1 of the greatest controversies in nutrition science. Relative to PUFAs, SFAs generally increase circulating concentrations of LDL cholesterol, a risk factor for atherosclerotic cardiovascular disease (ASCVD). However, the purpose of regulatory mechanisms that control the diet-induced lipoprotein cholesterol dynamics is rarely discussed in the context of human adaptive biology. We argue that better mechanistic explanations can help resolve lingering controversies, with the potential to redefine aspects of research, clinical practice, dietary advice, public health management, and food policy. In this paper we propose a novel model, the homeoviscous adaptation to dietary lipids (HADL) model, which explains changes in lipoprotein cholesterol as adaptive homeostatic adjustments that serve to maintain cell membrane fluidity and hence optimal cell function. Due to the highly variable intake of fatty acids in humans and other omnivore species, we propose that circulating lipoproteins serve as a buffer to enable the rapid redistribution of cholesterol molecules between specific cells and tissues that is necessary with changes in dietary fatty acid supply. Hence, circulating levels of LDL cholesterol may change for nonpathological reasons. Accordingly, an SFA-induced raise in LDL cholesterol in healthy individuals could represent a normal rather than a pathologic response. These regulatory mechanisms may become disrupted secondarily to pathogenic processes in association with insulin resistance and the presence of other ASCVD risk factors, as supported by evidence showing diverging lipoprotein responses in healthy individuals as opposed to those with metabolic disorders such as insulin resistance and obesity. Corresponding with the model, we suggest alternative contributing factors to the association between elevated LDL cholesterol concentrations and ASCVD, involving dietary factors beyond SFAs, such as an increased endotoxin load from diet-gut microbiome interactions and subsequent chronic low-grade inflammation that interferes with fine-tuned signaling pathways.
Collapse
Affiliation(s)
| | - Karianne Svendsen
- Department of Nutrition, University of Oslo, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
789
|
Al-Mashhadi RH, Al-Mashhadi AL, Nasr ZP, Mortensen MB, Lewis EA, Camafeita E, Ravlo K, Al-Mashhadi Z, Kjær DW, Palmfeldt J, Bie P, Jensen JM, Nørgaard BL, Falk E, Vázquez J, Bentzon JF. Local Pressure Drives Low-Density Lipoprotein Accumulation and Coronary Atherosclerosis in Hypertensive Minipigs. J Am Coll Cardiol 2021; 77:575-589. [PMID: 33538256 DOI: 10.1016/j.jacc.2020.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The mechanisms by which hypertension accelerates coronary artery disease are poorly understood. Patients with hypertension often have confounding humoral changes, and to date, no experimental models have allowed analysis of the isolated effect of pressure on atherosclerosis in a setting that recapitulates the dimensions and biomechanics of human coronary arteries. OBJECTIVES This study sought to analyze the effect of pressure on coronary atherosclerosis and explore the underlying mechanisms. METHODS Using inflatable suprarenal aortic cuffs, we increased mean arterial pressure by >30 mm Hg in the cephalad body part of wild-type and hypercholesterolemic proprotein convertase subtilisin kexin type 9 (PCSK9)D374Y Yucatan minipigs for >1 year. Caudal pressures remained normal. RESULTS Under hypercholesterolemic conditions in PCSK9D374Y transgenic minipigs, cephalad hypertension accelerated coronary atherosclerosis to almost 5-fold with consistent development of fibroatheromas that were sufficiently large to cause stenosis on computed tomography angiography. This was caused by local pressure forces, because vascular beds shielded from hypertension, but exposed to the same humoral factors, showed no changes in lesion formation. The same experiment was conducted under normocholesterolemic conditions in wild-type minipigs to examine the underlying mechanisms. Hypertension produced clear changes in the arterial proteome with increased abundance of mechanical strength proteins and reduced levels of infiltrating plasma macromolecules. This was paralleled by increased smooth muscle cells and increased intimal accumulation of low-density lipoproteins in the coronary arteries. CONCLUSIONS Increased pressure per se facilitates coronary atherosclerosis. Our data indicate that restructuring of the artery to match increased tensile forces in hypertension alters the passage of macromolecules and leads to increased intimal accumulation of low-density lipoproteins.
Collapse
Affiliation(s)
- Rozh H Al-Mashhadi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Radiology, Aarhus University Hospital, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Ahmed L Al-Mashhadi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Zahra P Nasr
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bødtker Mortensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Esmeralda A Lewis
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Kristian Ravlo
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Zheer Al-Mashhadi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Daniel W Kjær
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Bie
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper M Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne L Nørgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erling Falk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jacob F Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
790
|
Gill D, Georgakis MK, Walker VM, Schmidt AF, Gkatzionis A, Freitag DF, Finan C, Hingorani AD, Howson JM, Burgess S, Swerdlow DI, Davey Smith G, Holmes MV, Dichgans M, Scott RA, Zheng J, Psaty BM, Davies NM. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res 2021; 6:16. [PMID: 33644404 PMCID: PMC7903200 DOI: 10.12688/wellcomeopenres.16544.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 08/17/2023] Open
Abstract
Drugs whose targets have genetic evidence to support efficacy and safety are more likely to be approved after clinical development. In this paper, we provide an overview of how natural sequence variation in the genes that encode drug targets can be used in Mendelian randomization analyses to offer insight into mechanism-based efficacy and adverse effects. Large databases of summary level genetic association data are increasingly available and can be leveraged to identify and validate variants that serve as proxies for drug target perturbation. As with all empirical research, Mendelian randomization has limitations including genetic confounding, its consideration of lifelong effects, and issues related to heterogeneity across different tissues and populations. When appropriately applied, Mendelian randomization provides a useful empirical framework for using population level data to improve the success rates of the drug development pipeline.
Collapse
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
- Novo Nordisk Research Centre, Oxford, UK
- Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical Education and Institute for Infection and Immunity, St George’s, University of London, London, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Venexia M. Walker
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A. Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Apostolos Gkatzionis
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Daniel F. Freitag
- Bayer Pharmaceuticals, Open Innovation & Digital Technologies, Wuppertal, Germany
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Acceleratorversity College London, London, UK
- UCL Hospitals, NIHR Biomedical Research Centre, London, UK
| | - Aroon D. Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- UCL British Heart Foundation Research Acceleratorversity College London, London, UK
- UCL Hospitals, NIHR Biomedical Research Centre, London, UK
| | | | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Daniel I. Swerdlow
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Michael V. Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Jie Zheng
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Neil M. Davies
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
791
|
Frishberg A, van den Munckhof I, Ter Horst R, Schraa K, Joosten LA, Rutten JH, Iancu AC, Dregoesc IM, Tigu BA, Netea MG, Riksen NP, Gat-Viks I. An integrative model of cardiometabolic traits identifies two types of metabolic syndrome. eLife 2021; 10:61710. [PMID: 33507147 PMCID: PMC7906604 DOI: 10.7554/elife.61710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic, and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine responses of immune cells to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.
Collapse
Affiliation(s)
- Amit Frishberg
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inge van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kiki Schraa
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost Hw Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adrian C Iancu
- Department of Cardiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana M Dregoesc
- Department of Cardiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan A Tigu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Babeș-Bolyai University, Department of Biology and Geology, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
792
|
Bempedoic Acid in the Treatment of Patients with Dyslipidemias and Statin Intolerance. Cardiovasc Drugs Ther 2021; 35:841-852. [PMID: 33502687 DOI: 10.1007/s10557-020-07139-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/21/2022]
Abstract
An elevated plasma low-density lipoprotein cholesterol (LDL-C) level is a well-established atherosclerotic cardiovascular disease (ACSVD) risk factor. Randomized studies with statins (alone or in combination with other lipid-lowering drugs) have demonstrated their clinical efficacy in lowering LDL-C. Several classes of new, non-statin agents have been successfully studied and used (e.g., ezetimibe and inhibitors of proprotein convertase subtilisin/kexin type 9 [i-PSCK9]). However, many high ACSVD risk patients remain at a high residual cardiovascular risk, with at least 10% being statin intolerant. Bempedoic acid (ETC-1002) is a new inhibitor of cholesterol synthesis that targets ATP citrate lyase (ACL). Importantly, ETC-1002 is only converted into an active form in the liver and is free of muscle side effects.Area Covered: Mechanism of action of ETC-1002, clinical pharmacology, completed clinical studies with bempedoic acid, lipid-lowering efficacy/safety issues, and recent meta-analyses of trials with ETC-1002.Expert Opinion: ETC-1002 has been extensively studied in phase I-III clinical studies in over 4000 individuals from different patient populations (statin intolerance, familial hypercholesterolemia, and high ACSVD risk patients), ETC-1002 has been demonstrated to have moderate cholesterol-lowering efficacy and a good safety profile at a dose of 180 mg/day as a monotherapy and in combination with statins and ezetimibe. The ongoing study CLEAR Outcomes, with composite cardiovascular endpoints, will elucidate the role of bempedoic acid in the management of high ACSVD risk and statin-intolerant patients with hypercholesterolemia. Long-term safety data on bempedoic acid are needed to fully establish this agent in evidence-informed guidelines for managing of patients with dyslipidemias.
Collapse
|
793
|
Atherogenic Index of Plasma in Obstructive Sleep Apnoea. J Clin Med 2021; 10:jcm10030417. [PMID: 33499142 PMCID: PMC7865393 DOI: 10.3390/jcm10030417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Dyslipidaemia is well recognised in obstructive sleep apnoea (OSA) and could contribute to the development of cardiovascular disease (CVD). Atherogenic index of plasma (AIP) predicts cardiovascular morbidity and mortality better than the individual lipid levels. The aim of this study was to investigate the AIP in patients with OSA in relation with disease severity. Methods: Four hundred sixty-one patients with OSA and 99 controls participated in this study. AIP was assessed in the morning following a diagnostic sleep study. The association between lipid values and OSA were adjusted for age, gender, and body mass index. Results: Patients with OSA had higher AIP and triglyceride, and lower high-density lipoprotein cholesterol (HDL-C) levels (all p < 0.05). AIP significantly correlated with the Epworth Sleepiness Scale score (ρ = 0.19), the apnoea-hypopnoea index (ρ = 0.40) and oxygen desaturation index (ρ = 0.43, all p < 0.05). However, there was no relationship between the AIP and markers of sleep quality such as total sleep time, sleep period time, sleep efficiency, arousal index or percentage of REM sleep (all p > 0.05). AIP was not a better predictor for self-reported cardiovascular disease or diabetes than HDL-C. Conclusions: AIP is elevated in OSA and is related to disease severity. However, it does not seem to have an additional clinical value compared to HDL-C.
Collapse
|
794
|
Katzmann JL, Packard CJ, Chapman MJ, Katzmann I, Laufs U. Targeting RNA With Antisense Oligonucleotides and Small Interfering RNA: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 76:563-579. [PMID: 32731935 DOI: 10.1016/j.jacc.2020.05.070] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
There is an unmet clinical need to reduce residual cardiovascular risk attributable to apolipoprotein B-containing lipoproteins, particularly low-density lipoprotein and remnant particles. Pharmacological targeting of messenger RNA represents an emerging, innovative approach. Two major classes of agents have been developed-antisense oligonucleotides and small interfering RNA. Early problems with their use have been overcome by conjugation with N-acetylgalactosamine, an adduct that targets their delivery to the primary site of action in the liver. Using these agents to inhibit the translation of key regulatory proteins such as PCSK9, apolipoprotein CIII, apolipoprotein(a), and angiopoietin-like 3 has been shown to be effective in attenuating dyslipidemic states. Cardiovascular outcome trials with N-acetylgalactosamine-conjugated RNA-targeting drugs are ongoing. The advantages of these agents include long dosing intervals of up to 6 months and the potential to regulate the abundance of any disease-related protein. Long-term safety has yet to be demonstrated in large-scale clinical trials.
Collapse
Affiliation(s)
- Julius L Katzmann
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Isabell Katzmann
- Department of Internal Medicine, Zeisigwaldkliniken Bethanien Chemnitz, Chemnitz, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
795
|
Roy G, Boucher A, Couture P, Drouin-Chartier JP. Impact of Diet on Plasma Lipids in Individuals with Heterozygous Familial Hypercholesterolemia: A Systematic Review of Randomized Controlled Nutritional Studies. Nutrients 2021; 13:nu13010235. [PMID: 33561083 PMCID: PMC7829745 DOI: 10.3390/nu13010235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Conclusive data on the effectiveness of dietary interventions in heterozygous familial hypercholesterolemia (HeFH) management are unavailable. Whether this is due to a true lack of effects or biases in intervention designs remains unsettled. We systematically assessed the impact on LDL-C of published dietary randomized controlled trials (RCTs) conducted among individuals with HeFH in relation to their design and risk of bias. METHODS We systematically searched PubMed, Web of Science, and Embase in November 2020 to identify RCTs that assessed the impact of: (1) food-based interventions; (2) dietary counseling interventions; or (3) dietary supplements on LDL-C in individuals with HeFH. We evaluated the risk of bias of each study using the Cochrane Risk of Bias 2 method. RESULTS A total of 19 RCTs comprising 837 individuals with HeFH were included. Of those, five were food-based interventions, three were dietary counseling interventions and 12 were dietary supplement-based interventions (omega-3, n = 3; phytosterols, n = 7; guar gum, n = 1; policosanol, n = 1). One study qualified both as a food-based intervention and as a dietary supplement intervention due to its factorial design. A significant reduction in LDL-C levels was reported in 10 RCTs, including eight dietary supplement interventions (phytosterols, n = 6, omega-3, n = 1; guar gum, n = 1), one food-based intervention and one dietary counseling intervention. A total of 13 studies were judged to have some methodological biases in a way that substantially lowers confidence in the results. Studies at low risk of biases were more likely to report significant reductions in LDL-C concentrations, compared with studies at risk of bias (chi-square statistic: 5.49; p = 0.02). CONCLUSION This systemic review shows that the apparent lack of effectiveness of diet manipulation in modulating plasma levels of LDL-C among individuals with HeFH is likely due to biases in study designs, rather than a true lack of effects. The likelihood of reporting significant reductions in LDL-C was associated with the concurrent risk of bias.
Collapse
Affiliation(s)
- Gabrielle Roy
- Centre Nutrition, Santé et Société (NUTRISS), Institut Sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (G.R.); (A.B.); (P.C.)
| | - Anykim Boucher
- Centre Nutrition, Santé et Société (NUTRISS), Institut Sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (G.R.); (A.B.); (P.C.)
| | - Patrick Couture
- Centre Nutrition, Santé et Société (NUTRISS), Institut Sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (G.R.); (A.B.); (P.C.)
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-Philippe Drouin-Chartier
- Centre Nutrition, Santé et Société (NUTRISS), Institut Sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (G.R.); (A.B.); (P.C.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +418-656-2131
| |
Collapse
|
796
|
Chiriac S, Stanciu C, Girleanu I, Cojocariu C, Sfarti C, Singeap AM, Cuciureanu T, Huiban L, Muzica CM, Zenovia S, Nastasa R, Trifan A. Nonalcoholic Fatty Liver Disease and Cardiovascular Diseases: The Heart of the Matter. Can J Gastroenterol Hepatol 2021; 2021:6696857. [PMID: 33505944 PMCID: PMC7815392 DOI: 10.1155/2021/6696857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most frequent cause of liver disease worldwide, comprising a plethora of conditions, ranging from steatosis to end-stage liver disease. Cardiovascular disease (CVD) has been associated with NAFLD and CVD-related events represent the main cause of death in patients with NAFLD, surpassing liver-related mortality. This association is not surprising as NAFLD has been considered a part of the metabolic syndrome and has been related to numerous CVD risk factors, namely, insulin resistance, abdominal obesity, dyslipidemia, hyperuricemia, chronic kidney disease, and type 2 diabetes. Moreover, both NAFLD and CVD present similar pathophysiological mechanisms, such as increased visceral adiposity, altered lipid metabolism, increased oxidative stress, and systemic inflammation that could explain their association. Whether NAFLD increases the risk for CVD or these diagnostic entities represent distinct manifestations of the metabolic syndrome has not yet been clarified. This review focuses on the relation between NAFLD and the spectrum of CVD, considering the pathophysiological mechanisms, risk factors, current evidence, and future directions.
Collapse
Affiliation(s)
- Stefan Chiriac
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Carol Stanciu
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Irina Girleanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Camelia Cojocariu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Catalin Sfarti
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| | - Tudor Cuciureanu
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Laura Huiban
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Cristina Maria Muzica
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Sebastian Zenovia
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Robert Nastasa
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency Hospital, Iasi 700111, Romania
| |
Collapse
|
797
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
798
|
Li P, Lu X, Teng C, Hadley M, Cai P, Dai Q, Wang B. The Association Between Hyperlipidemia and In-Hospital Outcomes in Takotsubo Cardiomyopathy. Diabetes Metab Syndr Obes 2021; 14:117-126. [PMID: 33469329 PMCID: PMC7811457 DOI: 10.2147/dmso.s282009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Hyperlipidemia (HLD) is one of the most common cardiovascular risk factors and is prevalent in patients with takotsubo cardiomyopathy (TCM), but the association between HLD and TCM patients' outcomes is unclear. We investigated the impact of HLD on the in-hospital outcomes of TCM patients. PATIENTS AND METHODS Our retrospective cohort study used the latest available data from the National Inpatient Sample (2016-2017). Using the ICD-10 code, we identified 3139 patients with a primary diagnosis of TCM, 1530 of whom had HLD. We compared in-hospital outcomes between HLD and non-HLD groups before and after propensity score matching. RESULTS In the unmatched cohort, the HLD group had lower incidences of cardiac arrest, cardiogenic shock, and acute respiratory failure (ARF); shorter length of stay (LOS); and lower total charges (All p<0.05). In-hospital mortality (p=0.102) and ventricular arrhythmia (p=0.235) rates did not differ. After propensity score matching, the HLD group had lower rates of in-hospital mortality (1.1% vs 2.4%, p=0.027), ARF (9.1% vs 12.1%, p = 0.022) and cardiogenic shock (3.4% vs 5.6%, p=0.012), shorter LOS (3.20 ± 3.27 days vs 3.57 ± 3.14 days, p=0.005), and lower total charges (p=0.013). The matched groups did not differ significantly regarding cardiac arrest (p=0.141), ventricular arrhythmia (p=0.662) or acute kidney injury (AKI) (p = 0.167). CONCLUSION Counterintuitively, HLD was associated with better in-hospital outcomes in both the unmatched and propensity-matched cohorts of hospitalized TCM patients. Further studies are needed to investigate the mechanisms that may contribute to the association in TCM patients with HLD.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Medicine, Saint Vincent Hospital, Worcester, MA01608, USA
| | - Xiaojia Lu
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Catherine Teng
- Department of Medicine, Yale New Haven Health-Greenwich Hospital, Greenwich, CT06830, USA
| | - Michelle Hadley
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA01608, USA
| | - Peng Cai
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA01609, USA
| | - Qiying Dai
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA01609, USA
| | - Bin Wang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
- Correspondence: Bin Wang Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong515041, People’s Republic of ChinaTel +86-75488905399Fax +86 75488259850 Email
| |
Collapse
|
799
|
Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:45-54. [PMID: 33861436 DOI: 10.1007/978-3-030-64872-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orally administered curcumin has been found to have a moderate therapeutic effect on dyslipidemia and atherosclerosis. The present study was conducted to determine lipid-modulating and antiatherosclerosis effects of injectable curcumin in the rabbit model of atherosclerosis induced by a high cholesterol diet (HCD). New Zealand white male rabbits were fed on a normal chow enriched with 0.5% (w/w) cholesterol for 8 weeks. Atherosclerotic rabbits were randomly divided into three groups, including a control group receiving intravenous (IV) injection of the saline buffer, two treatment groups receiving IV administration of the injectable curcumin at low (1 mg/kg/week) and high (10 mg/kg/week) over 4 weeks. Plasma lipid parameters, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC) were measured. Aortic arch atherosclerotic lesions were assessed using hematoxylin and eosin (H&E) staining. The low dose of curcumin significantly reduced plasma levels of TC, LDL-C, and TG by -14.19 ± 5.19%, -6.22 ± 1.77%, and - 29.84 ± 10.14%, respectively, and increased HDL-C by 14.05 ± 6.39% (p < 0.05). High dose of curcumin exerted greater lipid-modifying effects, in which plasma levels of TC, LDL-C, and TG were significantly (p < 0.05) decreased by -56.59 ± 10.22%, -44.36 ± 3.24%, and - 25.92 ± 5.57%, respectively, and HDL-C was significantly increased by 36.24 ± 12.5%. H&E staining showed that the lesion severity was lowered significantly in the high dose (p = 0.03) but not significantly (p > 0.05) in the low-dose curcumin groups, compared to control rabbits. The median (interquartile range) of plaque grades in the high dose and low dose, and control groups was found to be 2 [2-3], 3 [2-3], and 4 [3-4], respectively. The injectable curcumin could significantly improve dyslipidemia and alleviate atherosclerotic lesion in HCD-induced atherosclerotic rabbits.
Collapse
|
800
|
Matjuda EN, Engwa GA, Sewani-Rusike CR, Nkeh-Chungag BN. An Overview of Vascular Dysfunction and Determinants: The Case of Children of African Ancestry. Front Pediatr 2021; 9:769589. [PMID: 34956981 PMCID: PMC8709476 DOI: 10.3389/fped.2021.769589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The balance between dilatory and constrictive factors is important as it keeps blood vessels in a homeostatic state. However, altered physiological processes as a result of obesity, hypertension, oxidative stress, and other cardiovascular risk factors may lead to vascular damage, causing an imbalance of vasoactive factors. Over time, the sustained imbalance of these vasoactive factors may lead to vascular dysfunction, which can be assessed by non-invasive methods, such as flow-mediated dilation, pulse wave velocity, flow-mediated slowing, retinal vessel analysis, peripheral vascular reactivity, and carotid intima-media thickness assessment. Although there is increasing prevalence of cardiovascular risk factors (obesity and hypertension) in children in sub-Saharan Africa, little is known about how this may affect vascular function. This review focuses on vasoactive factors implicated in vascular (dys)function, highlighting the determinants and consequences of vascular dysfunction. It further describes the non-invasive methods used for vascular (dys)function assessments and, last, describes the impact of cardiovascular risk factors on vascular dysfunction in children of African ancestry.
Collapse
Affiliation(s)
- Edna N Matjuda
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, South Africa
| |
Collapse
|