751
|
Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis. Neoplasia 2018; 20:813-825. [PMID: 30015157 PMCID: PMC6037882 DOI: 10.1016/j.neo.2018.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant glycosylation plays a critical role in tumor aggressiveness, progression, and metastasis. Emerging evidence associates cancer initiation and metastasis to the enrichment of cancer stem cells (CSCs). Several universal markers have been identified for CSCs characterization; however, a specific marker has not yet been identified for different cancer types. Specific glycosylation variation plays a major role in the progression and metastasis of different cancers. Interestingly, many of the CSC markers are glycoproteins and undergo differential glycosylation. Given the importance of CSCs and altered glycosylation in tumorigenesis, the present review will discuss current knowledge of altered glycosylation of CSCs and its application in cancer research.
Collapse
Affiliation(s)
- Srikanth Barkeer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
752
|
Mobilized Peripheral Blood versus Cord Blood: Insight into the Distinct Role of Proinflammatory Cytokines on Survival, Clonogenic Ability, and Migration of CD34 + Cells. Mediators Inflamm 2018; 2018:5974613. [PMID: 30116149 PMCID: PMC6079419 DOI: 10.1155/2018/5974613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/12/2023] Open
Abstract
Inflammation may play a role in cancer. However, the contribution of cytokine-mediated crosstalk between normal hemopoietic stem/progenitor cells (HSPCs) and their (inflammatory) microenvironment is largely elusive. Here we compared survival, phenotype, and function of neonatal (umbilical cord blood (CB)) and adult (normal G-CSF-mobilized peripheral blood (mPB)) CD34+ cells after in vitro exposure to combined crucial inflammatory factors such as interleukin- (IL-) 1β, IL-6, tumor necrosis factor- (TNF-) α, or tissue inhibitor of metalloproteinases-1 (TIMP-1). To mimic bone marrow (BM) niche, coculture experiments with normal BM stromal cells (BMSCs) were also performed. We found that combined inflammatory cytokines increased only the in vitro survival of CB-derived CD34+ cells by reducing apoptosis. Conversely, selected combinations of inflammatory cytokines (IL-1β + TNF-α, IL-6 + TNF-α, and IL-1β + TNF-α + TIMP-1) mainly enhanced the in vitro CXCR4-driven migration of mPB-derived CD34+ cells. TNF-α, alone or in combination, upregulated CD44 and CD13 expression in both sources. Finally, BMSCs alone increased survival/migration of CB- and mPB-derived CD34+ cells at the same extent of the combined inflammatory cytokines; importantly, their copresence did not show additive/synergistic effect. Taken together, these data indicate that combined proinflammatory stimuli promote distinct in vitro functional activation of neonatal or adult normal HSPCs.
Collapse
|
753
|
Ryoo IG, Choi BH, Ku SK, Kwak MK. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol 2018; 17:246-258. [PMID: 29729523 PMCID: PMC6006726 DOI: 10.1016/j.redox.2018.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/24/2022] Open
Abstract
Cluster of differentiation 44 (CD44) is the most common cancer stem cell (CSC) marker and high CD44 expression has been associated with anticancer drug resistance, tumor recurrence, and metastasis. In this study, we aimed to investigate the molecular mechanism by which CD44 and nuclear factor erythroid 2-like 2 (NFE2L2; NRF2), a key regulator of antioxidant genes, are linked to CSC resistance using CD44high breast CSC-like cells. NRF2 expression was higher in CD44high cell populations isolated from doxorubicin-resistant MCF7 (ADR), as well as MCF7, MDA-MB231, and A549 cells, than in corresponding CD44low cells. High NRF2 expression in the CD44highCD24low CSC population (ADR44P) established from ADR cells depended on standard isoform of CD44. Silencing of CD44 or overexpression of CD44 resulted in the reduction or elevation of NRF2, respectively, and treatment with hyaluronic acid, a CD44 ligand, augmented NRF2 activation. As functional implications, NRF2 silencing rendered ADR44P cells to retain higher levels of reactive oxygen species and to be sensitive to anticancer drug toxicity. Moreover, NRF2-silenced ADR44P cells displayed tumor growth retardation and reduced colony/sphere formation and invasion capacity. In line with these, CD44 significantly colocalized with NRF2 in breast tumor clinical samples. The molecular mechanism of CD44-mediated NRF2 activation was found to involve high p62 expression. CD44 elevation led to an increase in p62, and inhibition of p62 resulted in NRF2 suppression in ADR44P. Collectively, our results showed that high CD44 led to p62-associated NRF2 activation in CD44high breast CSC-like cells. NRF2 activation contributed to the aggressive phenotype, tumor growth, and anticancer drug resistance of CD44high CSCs. Therefore, the CD44-NRF2 axis might be a promising therapeutic target for the control of stress resistance and survival of CD44high CSC population within breast tumors.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institue for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacy and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, Republic of Korea
| | - Sae-Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeonsangbuk-do 712-715, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institue for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea; Department of Pharmacy and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, Graduate School of The Catholic University of Korea, Republic of Korea; College of Pharmacy, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
754
|
Kozovska Z, Patsalias A, Bajzik V, Durinikova E, Demkova L, Jargasova S, Smolkova B, Plava J, Kucerova L, Matuskova M. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer 2018; 18:656. [PMID: 29902974 PMCID: PMC6003038 DOI: 10.1186/s12885-018-4572-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Background Recent evidence in cancer research, developed the notion that malignant tumors consist of different subpopulations of cells, one of them, known as cancer stem cells, being attributed many important properties such as enhanced tumorigenicity, proliferation potential and profound multidrug resistance to chemotherapy. Several key stem cells markers were identified in colon cancer. In our study we focused on the aldehyde dehydrogenase type 1 (ALDH1) expression in colon cancer-derived cell lines HT-29/eGFP, HCT-116/eGFP and LS-180/eGFP, and its role in the chemoresistance and tumorigenic potential. Methods The effect of pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde (DEAB) and also effect of molecular inhibition by specific siRNA was evaluated in vitro in cultures of human colorectal cell lines. The expression level of different isoenzymes of aldehyde dehydrogenase was determined using qPCR. Changes in cell biology were evaluated by expression analysis, western blot and apoptosis assay. The efficiency of cytotoxic treatment in the presence of different chemotherapeutic drugs was analyzed by fluorimetric assay. Tumorigenicity of cells with specific ALDH1A1 siRNA was tested in xenograft model in vivo. Results Treatment by DEAB partially sensitized the tested cell lines to chemotherapeutics. Subsequently the molecular inhibition of specific isoforms of ALDH by ALDH1A1 or ALDH1A3 siRNA led to sensitizing of cell lines HT-29/eGFP, HCT-116/eGFP to capecitabine and 5-FU. On the model of athymic mice we observed the effect of molecular inhibition of ALDH1A1 in HT-29/eGFP cells by siRNA. We observed inhibition of proliferation of subcutaneous xenografts in comparison to control cells. Conclusion This research, verifies the significance of the ALDH1A isoforms in multidrug resistance of human colorectal cancer cells and its potential as a cancer stem cell marker. This provides the basis for the development of new approaches regarding the treatment of patients with colorectal adenocarcinoma and potentially the treatment of other tumor malignancies.
Collapse
Affiliation(s)
- Z Kozovska
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - A Patsalias
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - V Bajzik
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - E Durinikova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - L Demkova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - S Jargasova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - B Smolkova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - J Plava
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - L Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Matuskova
- Laboratory of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of SAS, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| |
Collapse
|
755
|
Phan TTV, Bui NQ, Cho SW, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim CS, Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci Rep 2018; 8:8809. [PMID: 29891947 PMCID: PMC5995888 DOI: 10.1038/s41598-018-27204-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer theragnosis agents with both cancer diagnosis and therapy abilities would be the next generation of cancer treatment. Recently, nanomaterials with strong absorption in near-infrared (NIR) region have been explored as promising cancer theragnosis agents for bio-imaging and photothermal therapy (PTT). Herein, we reported the synthesis and application of a novel multifunctional theranostic nanoagent based on hyaluronan (HA)-coated FeOOH@polypyrrole (FeOOH@PPy) nanorods (HA-FeOOH@PPy NRs) for photoacoustic imaging (PAI)-guided PTT. The nanoparticles were intentionally designed with rod-like shape and conjugated with tumor-targeting ligands to enhance the accumulation and achieve the entire tumor distribution of nanoparticles. The prepared HA-FeOOH@PPy NRs showed excellent biocompatible and physiological stabilities in different media. Importantly, HA-FeOOH@PPy NRs exhibited strong NIR absorbance, remarkable photothermal conversion capability, and conversion stability. Furthermore, HA-FeOOH@PPy NRs could act as strong contrast agents to enhance PAI, conducting accurate locating of cancerous tissue, as well as precise guidance for PTT. The in vitro and in vivo photothermal anticancer activity results of the designed nanoparticles evidenced their promising potential in cancer treatment. The tumor-bearing mice completely recovered after 17 days of PTT treatment without obvious side effects. Thus, our work highlights the great potential of using HA-FeOOH@PPy NRs as a theranostic nanoplatform for cancer imaging-guided therapy.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nhat Quang Bui
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subramaniyan Bharathiraja
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
756
|
Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Front Oncol 2018; 8:203. [PMID: 29922594 PMCID: PMC5996058 DOI: 10.3389/fonc.2018.00203] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors contain heterogeneous populations of cells in various states of proliferation and differentiation. The presence of cancer stem or initiating cells is a well-established concept wherein quiescent and poorly differentiated cells within a tumor mass contribute to drug resistance, and under permissive conditions, are responsible for tumor recurrence and metastasis. A number of studies have identified molecular markers that are characteristic of tissue-specific cancer stem cells (CSCs). Isolation of CSCs has enabled studies on the metabolic status of CSCs. As metabolic plasticity is a hallmark of cancer cell adaptation, the intricacies of CSC metabolism and their phenotypic behavior are critical areas of research. Unlike normal stem cells, which rely heavily on oxidative phosphorylation (OXPHOS) as their primary source of energy, or cancer cells, which are primarily glycolytic, CSCs demonstrate a unique metabolic flexibility. CSCs can switch between OXPHOS and glycolysis in the presence of oxygen to maintain homeostasis and, thereby, promote tumor growth. Here, we review key factors that impact CSC metabolic phenotype including heterogeneity of CSCs across different histologic tumor types, tissue-specific variations, tumor microenvironment, and CSC niche. Furthermore, we discuss how targeting key players of glycolytic and mitochondrial pathways has shown promising results in cancer eradication and attenuation of disease recurrence in preclinical models. In addition, we highlight studies on other potential therapeutic targets including complex interactions within the microenvironment and cellular communications in the CSC niche to interfere with CSC growth, resistance, and metastasis.
Collapse
Affiliation(s)
- Vusala Snyder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamika C Reed-Newman
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, United States.,Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shrikant Anant
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS, United States.,Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
757
|
Chen W, Li Y, Easton J, Finkelstein D, Wu G, Chen X. UMI-count modeling and differential expression analysis for single-cell RNA sequencing. Genome Biol 2018; 19:70. [PMID: 29855333 PMCID: PMC5984373 DOI: 10.1186/s13059-018-1438-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/30/2018] [Indexed: 01/30/2023] Open
Abstract
Read counting and unique molecular identifier (UMI) counting are the principal gene expression quantification schemes used in single-cell RNA-sequencing (scRNA-seq) analysis. By using multiple scRNA-seq datasets, we reveal distinct distribution differences between these schemes and conclude that the negative binomial model is a good approximation for UMI counts, even in heterogeneous populations. We further propose a novel differential expression analysis algorithm based on a negative binomial model with independent dispersions in each group (NBID). Our results show that this properly controls the FDR and achieves better power for UMI counts when compared to other recently developed packages for scRNA-seq analysis.
Collapse
Affiliation(s)
- Wenan Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
| | - Yan Li
- Division of Biostatistics, School of Public Health, University of Minnesota Twin Cities, Mayo Building, Minneapolis, MN 55455 USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105 USA
| |
Collapse
|
758
|
Guo P, Wang J, Gao W, Liu X, Wu S, Wan B, Xu L, Li Y. Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells. Mol Med Rep 2018; 18:1323-1334. [PMID: 29845279 PMCID: PMC6072146 DOI: 10.3892/mmr.2018.9086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Salvianolic acid B (SalB) is a water-soluble phenolic compound, extractable from Salvia miltiorrhiza, and has previously been demonstrated to reverse tumor multidrug resistance (MDR) in colon cancer cells. Cancer stem cells (CSCs) are closely associated with drug resistance. Therefore, establishing a nude mouse model bearing human colon CSCs is important for the study of the mechanisms underlying colon cancer drug resistance as well as the reversal of drug resistance. The present study aimed to establish a nude mouse model bearing human colon CSCs and to investigate the effects of SalB on the drug resistance exhibited by the nude mouse model as well as determine its underlying mechanism. Cells from two colon cancer cell lines (LoVo and HCT-116) were cultured in serum-free medium to obtain CSCs-enriched spheroid cells. Following this, nude mice were transplanted with LoVo and HCT-116 colon CSCs to establish the CSC nude mouse model, which was subsequently demonstrated to exhibit MDR. The results of the present study revealed that following treatment with SalB, the chemotherapeutic drug resistance of xenografts was reversed to a certain extent. Western blot analysis was performed to investigate the expression levels of cluster of differentiation (CD)44, CD133, transcription factor sox-2 (SOX2) and ATP-binding cassette sub-family G member 2 (ABCG2) proteins, and the results demonstrated that treatment with SalB downregulated the expression of CD44, SOX2 and ABCG2 proteins in both LoVo and HCT-116 colon CSCs xenografts. In conclusion, the results of the present study revealed that a serum-free suspension method can be performed to successfully isolate colon CSCs. In addition, a nude mice bearing colon CSCs animal model was successfully established, and associated tumors were confirmed to exhibit MDR. Furthermore, SalB was demonstrated to successfully reverse MDR in nude mice bearing LoVo and HCT-116 colon CSCs, as well as suppress the expression of CD44, SOX2 and ABCG2 proteins.
Collapse
Affiliation(s)
- Piaoting Guo
- Department of General Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jianchao Wang
- Department of Center Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Wencang Gao
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Xia Liu
- Department of Center Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Shaofei Wu
- Department of Hepatopathy, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Boshun Wan
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medical and Health Sciences, Shanghai 201899, P.R. China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Yanhua Li
- Department of General Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
759
|
Clinicopathological significance of cancer stem cell markers CD44 and ALDH1 expression in breast cancer. Breast Cancer 2018; 25:698-705. [DOI: 10.1007/s12282-018-0875-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/20/2018] [Indexed: 01/14/2023]
|
760
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. Eur J Pharm Sci 2018; 121:47-58. [PMID: 29777858 DOI: 10.1016/j.ejps.2018.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Abstract
In recent years scientific community has drawn a great deal of attention towards understanding the enigma of cluster of differentiation-44 (CD44) in order to deliver therapeutic agents more selectively towards tumor tissues. Moreover, its over-expression in variety of solid tumors has attracted drug delivery researchers to target this receptor with nanomedicines. Conventional nanomedicines based on biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. In this review, we have elaborately discussed the recent progress in the design and synthesis of CD44 targeted PLGA nanomedicines used to improve tumor-targeted drug delivery. We have also discussed strategies based on co-targeting of CD44 with other targeting moieties such as folic acid, human epidermal growth factor 2 (HER2), monoclonal antibodies using PLGA based nanomedicines.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
761
|
MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma. Sci Rep 2018; 8:7531. [PMID: 29760516 PMCID: PMC5951834 DOI: 10.1038/s41598-018-25900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Sebaceous gland carcinoma (SGC) is a rare, but life-threatening condition with a predilection for the periocular region. Eyelid SGC can be broadly categorised into two subtypes, namely either nodular or pagetoid with the latter being more aggressive and requiring radical excision to save life. We have identified key altered microRNAs (miRNA) involved in SGC shared by both subtypes, hsa-miR-34a-5p and hsa-miR-16-5p. However, their gene targets BCL2 and MYC were differentially expressed with both overexpressed in pagetoid but unchanged in nodular suggesting different modes of action of these two miRNAs on BCL/MYC expression. Hsa-miR-150p is nodular-specifically overexpressed, and its target ZEB1 was significantly downregulated in nodular SGC suggesting a tumour suppressor role. Invasive pagetoid subtype demonstrated specific overexpression of hsa-miR-205 and downregulation of hsa-miR-199a. Correspondingly, miRNA gene targets, EZH2 (by hsa-miR-205) and CD44 (by hsa-miR-199a), were both overexpressed in pagetoid SGC. CD44 has been identified as a potential cancer stem cell marker in head and neck squamous cell carcinoma and its overexpression in pagetoid cells represents a novel treatment target. Aberrant miRNAs and their gene targets have been identified in both SGC subtypes, paving the way for better molecular understanding of these tumours and identifying new treatment targets.
Collapse
|
762
|
The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 2018; 11:64. [PMID: 29747682 PMCID: PMC5946470 DOI: 10.1186/s13045-018-0605-5] [Citation(s) in RCA: 814] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
CD44, a non-kinase transmembrane glycoprotein, is overexpressed in several cell types including cancer stem cells and frequently shows alternative spliced variants that are thought to play a role in cancer development and progression. Hyaluronan, the main ligand for CD44, binds to and activates CD44 resulting in activation of cell signaling pathways that induces cell proliferation, increases cell survival, modulates cytoskeletal changes, and enhances cellular motility. The different functional roles of CD44 standard (CD44s) and specific CD44 variant (CD44v) isoforms are not fully understood. CD44v contain additional peptide motifs that can interact with and sequester growth factors and cytokines at the cell surface thereby functioning as coreceptors to facilitate cell signaling. Moreover, CD44v were expressed in metastasized tumors, whereas switching between CD44v and CD44s may play a role in regulating epithelial to mesenchymal transition (EMT) and in the adaptive plasticity of cancer cells. Here, we review current data on the structural and functional properties of CD44, the known roles for CD44 in tumorigencity, the regulation of CD44 expression, and the potential for targeting CD44 for cancer therapy.
Collapse
|
763
|
Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib. Acta Neuropathol 2018; 135:779-798. [PMID: 29305721 PMCID: PMC5904229 DOI: 10.1007/s00401-017-1799-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles’ heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.
Collapse
|
764
|
PanCD44 Immunohistochemical Evaluation in Prostatectomies from Patients with Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2061268. [PMID: 29682524 PMCID: PMC5846379 DOI: 10.1155/2018/2061268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 01/15/2018] [Indexed: 01/30/2023]
Abstract
Introduction CD44 has been proposed as a prognostic marker and a stem cell marker but studies in patients with prostate cancer have yielded inconsistent results. Patients and Methods Patients submitted to radical prostatectomy between 2008 and 2013 at a university hospital were followed with biannual serum PSA tests to determine the biochemical recurrence (BR). Archived paraffin blocks with neoplastic and nonneoplastic tissue were evaluated immunohistochemically for a panCD44 and MYC. Results Sixty-nine patients completed follow-up and were included. CD44 positivity was observed in inflammatory cells (42%), nonneoplastic epithelium (39.7%), and neoplastic tissue (12.3%). In nonneoplastic tissues staining was observed in basal and luminal cells with the morphology of terminally differentiated cells. In neoplastic tissues, CD44 negativity was correlated with higher Gleason scores (Rho = −0.204; p = 0.042) and higher preoperative serum PSA levels when evaluated continuously (p = 0.029). CD44 expression was not associated with tumor stage (p = 0.668), surgical margin status (p = 0.471), or BR (p = 0.346), nor was there any association between CD44 and MYC expression in neoplastic tissue (p = 1.0). Conclusion In the bulk of cells, the minority of cancer stem cells would not be detected by immunohistochemistry using panCD44. As a prognostic marker, its expression was weakly correlated with Gleason score and preoperative PSA level, but not with surgical margin status, tumor stage, or BR.
Collapse
|
765
|
Liu Y, Wu T, Lu D, Zhen J, Zhang L. CD44 overexpression related to lymph node metastasis and poor prognosis of pancreatic cancer. Int J Biol Markers 2018; 33:308-313. [PMID: 29683068 DOI: 10.1177/1724600817746951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND CD44 has recently been reported as a biomarker for pancreatic cancer. However, the predictive value of CD44 in pancreatic cancer remains controversial. Therefore, we performed this meta-analysis to evaluate the association between the expression of CD44 and clinicopathological features, and the outcome of pancreatic cancer patients. MATERIALS AND METHOD A comprehensive literature search was performed using PubMed, Embase, and Chinese National Knowledge Infrastructure. The statistical analysis was conducted using Stata software. RESULTS A total of nine studies including 583 cases were included in this meta-analysis. The meta-analysis indicated that CD44 overexpression was associated with poor five-year overall survival rate (OR 0.52; 95% CI 0.30, 0.91; P = 0.02), more lymph node invasion (OR 3.14 (positive vs. negative); 95% CI 1.47, 6.73; P = 0.003), more advanced T stage (OR 2.4 (T3,4 vs. T1,2); 95% CI 1.28, 4.52; P = 0.007), and more advanced TNM stage (OR 4.53 (III~IV vs. I~II); 95% CI 1.46, 14.08; P = 0.01). However, CD44 overexpression was not associated with other clinicopathological features, such as tumor size, differentiation, and distance metastasis. CONCLUSIONS The current evidence suggests that CD44 is an efficient prognostic factor in pancreatic cancer.
Collapse
Affiliation(s)
- Yijuan Liu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ting Wu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dong Lu
- 1 Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiantao Zhen
- 2 Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- 2 Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
766
|
Stemness-Attenuating miR-503-3p as a Paracrine Factor to Regulate Growth of Cancer Stem Cells. Stem Cells Int 2018; 2018:4851949. [PMID: 29849663 PMCID: PMC5904772 DOI: 10.1155/2018/4851949] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/03/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) with self-renewal abilities endorse cellular heterogeneity, resulting in metastasis and recurrence. However, there are no promising therapeutics directed against CSCs. Herein, we found that miR-503-3p inhibited tumor growth via the regulation of CSC proliferation and self-renewal. miR-503-3p, isolated from human adipose stem cell- (ASC-) derived exosomes, suppressed initiation and progression of CSCs as determined by anchorage-dependent (colony formation) and anchorage-independent (tumorsphere formation) assays. The expression of pluripotency genes was significantly decreased in miR-503-3p-treated CSCs. Furthermore, xenografts, which received miR-503-3p, exhibited remarkably reduced tumor growth in vivo. Thus, miR-503-3p may function as a stemness-attenuating factor via cell-to-cell communications.
Collapse
|
767
|
Nishiyama M, Tsunedomi R, Yoshimura K, Hashimoto N, Matsukuma S, Ogihara H, Kanekiyo S, Iida M, Sakamoto K, Suzuki N, Takeda S, Yamamoto S, Yoshino S, Ueno T, Hamamoto Y, Hazama S, Nagano H. Metastatic ability and the epithelial-mesenchymal transition in induced cancer stem-like hepatoma cells. Cancer Sci 2018; 109:1101-1109. [PMID: 29417690 PMCID: PMC5891178 DOI: 10.1111/cas.13527] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) are thought to play important roles in cancer malignancy. Previously, we successfully induced sphere cancer stem-like cells (CSLCs) from several cell lines and observed the property of chemoresistance. In the present study, we examined the metastatic potential of these induced CSLCs. Sphere cancer stem-like cells were induced from a human hepatoma cell line (SK-HEP-1) in a unique medium containing neural survival factor-1. Splenic injection of cells into immune-deficient mice was used to assess hematogenous liver metastasis. Transcriptomic strand-specific RNA-sequencing analysis, quantitative real-time PCR, and flow cytometry were carried out to examine the expression of epithelial-mesenchymal transition (EMT)-related genes. Splenic injection of CSLCs resulted in a significantly increased frequency of liver metastasis compared to parental cancer cells (P < .05). In CSLCs, a mesenchymal marker, Vimentin, and EMT-promoting transcription factors, Snail and Twist1, were upregulated compared to parental cells. Correspondingly, significant enrichment of the molecular signature of the EMT in CSLCs relative to parental cancer cells was shown (q < 0.01) by RNA-sequencing analysis. This analysis also revealed differential expression of CD44 isoforms between CSLCs and parental cancer cells. Increasing CD44 isoforms containing an extra exon were observed, and the standard CD44 isoform decreased in CSLCs compared to parental cells. Interestingly, another CD44 variant isoform encoding a short cytoplasmic tail was also upregulated in CSLCs (11.7-fold). Our induced CSLCs possess an increased liver metastatic potential in which promotion of the EMT and upregulation of CD44 variant isoforms, especially short-tail, were observed.
Collapse
Affiliation(s)
- Mitsuo Nishiyama
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Kiyoshi Yoshimura
- Division of Cancer ImmunotherapyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterTokyoJapan
| | - Noriaki Hashimoto
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Hiroyuki Ogihara
- Division of Electrical, Electronic and Information EngineeringYamaguchi University Graduate School of Sciences and Technology for InnovationUbeJapan
| | - Shinsuke Kanekiyo
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Kazuhiko Sakamoto
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shigeru Yamamoto
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | | | - Tomio Ueno
- Department of Digestive SurgerySchool of MedicineKawasaki Medical SchoolKurashikiJapan
| | - Yoshihiko Hamamoto
- Division of Electrical, Electronic and Information EngineeringYamaguchi University Graduate School of Sciences and Technology for InnovationUbeJapan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against CancerYamaguchi University Faculty of MedicineUbeJapan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
768
|
Ridola L, Bragazzi MC, Cardinale V, Carpino G, Gaudio E, Alvaro D. Cholangiocytes: Cell transplantation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1516-1523. [PMID: 28735098 DOI: 10.1016/j.bbadis.2017.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide. SCOPE OF REVIEW To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs). MAJOR CONCLUSIONS Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits. GENERAL SIGNIFICANCE The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Lorenzo Ridola
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Maria Consiglia Bragazzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Italy.
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Italy.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Division of Gastroenterology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
769
|
Pazhohan A, Amidi F, Akbari-Asbagh F, Seyedrezazadeh E, Aftabi Y, Abdolalizadeh J, Khodarahmian M, Khanlarkhani N, Sobhani A. Expression and shedding of CD44 in the endometrium of women with endometriosis and modulating effects of vitamin D: A randomized exploratory trial. J Steroid Biochem Mol Biol 2018; 178:150-158. [PMID: 29229305 DOI: 10.1016/j.jsbmb.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023]
Abstract
Endometriosis is an estrogen-dependent disease. The impaired estrogen and progesterone signaling over-activates the Wnt/β-catenin pathway in endometriosis patients, which can explain the increased invasion potency of endometrial cells derived from the endometrium of women with endometriosis. The regulatory effects of vitamin D on Wnt/β-catenin pathway were demonstrated by previous studies. According to gene prioritization method, among Wnt target genes, CD44 was in high ranking in relation to endometriosis. The aim of this study is to investigate the expression of CD44 in the endometrium of women with endometriosis and to study the effects of vitamin D on its expression. This prospective study was performed, during a 12 months period from December 2015 to November 2016, on healthy women as the control group (n = 14) and endometriosis patients (n = 34). The endometriosis patients randomly divided into two groups: One group treated according to the routine protocol and the other group, alongside the routine protocol, took 50,000 IU vitamin D weekly for 12-14 weeks. Blood, endometrial fluid, and endometrial tissue samples were obtained from the control group and endometriosis groups before and after the intervention. We used in silico gene prioritization to study the relevance of CD44. The expression of CD44 was evaluated using the techniques of Western blot, real-time polymerase chain reaction, and ELISA. The eutopic endometrium of women with endometriosis in mid-secretory phase expressed significantly higher levels of CD44s, CD44V, and CD44v6. The concentration of soluble CD44 in the serum and endometrial fluid of endometriosis patients was higher than of healthy women. The expression level of CD44s, CD44V, and CD44v6 in the eutopic endometrium as well as the concentration of soluble CD44 in the endometrial fluid was decreased after modification of the circulating levels of 25(OH)D. It seems that the increased expression and extensive shedding of CD44 in eutopic endometrium play a role in the pathogenesis of endometriosis. Vitamin D can control and modify this process at least in part. We suggest more in vivo investigations on the therapeutic potency of vitamin D in endometriosis.
Collapse
Affiliation(s)
- Azar Pazhohan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Firoozeh Akbari-Asbagh
- Department of Obstetrics and Gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshad Khodarahmian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aligholi Sobhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
770
|
Rani B, Malfettone A, Dituri F, Soukupova J, Lupo L, Mancarella S, Fabregat I, Giannelli G. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression. Cell Death Dis 2018. [PMID: 29515105 PMCID: PMC5841307 DOI: 10.1038/s41419-018-0384-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) niche in the tumor microenvironment is
responsible for cancer recurrence and therapy failure. To better understand its
molecular and biological involvement in hepatocellular carcinoma (HCC) progression,
one can design more effective therapies and tailored then to individual patients.
While sorafenib is currently the only approved drug for first-line treatment of
advanced stage HCC, its role in modulating the CSC niche is estimated to be small.
By contrast, transforming growth factor (TGF)-β
pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as
liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway
may offer an appealing and druggable target. In our study, we have used galunisertib
(LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5)
activation, currently under clinical investigation in HCC patients. Because the drug
resistance is mainly mediated by CSCs, we tested the effects of galunisertib on
stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC
niche and drug resistance. Galunisertib modulated the expression of stemness-related
genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression
of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related
functions of invasive HCC cells decreasing the formation of colonies, liver
spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked
the galunisertib effects on HCC stemness-related functions. Galunisertib treatment
also reduced the expression of stemness-related genes in ex vivo human HCC
specimens. Our observations are the first evidence that galunisertib effectiveness
overcomes stemness-derived aggressiveness via decreased expression CD44 and
THY1.
Collapse
Affiliation(s)
- Bhavna Rani
- School of Medicine, University of Bari, Bari, Italy
| | - Andrea Malfettone
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Jitka Soukupova
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Luigi Lupo
- School of Medicine, University of Bari, Bari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy.
| |
Collapse
|
771
|
Yilmazer A. Cancer cell lines involving cancer stem cell populations respond to oxidative stress. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 17:24-30. [PMID: 29276697 PMCID: PMC5730381 DOI: 10.1016/j.btre.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Cancer cells may be more prone to the accumulation of reactive oxygen species (ROS) than normal cells; therefore increased oxidative stress can specifically kill cancer cells including cancer stem cells (CSCs). In order to generate oxidative stress in various cancer cell lines including A549, G361 and MCF-7, cultured cells were exposed to H2O2. Incubation of cancer cells with H2O2 results in concentration-dependent cell death in A549 and G361-7 cells, whereas MCF-7 cells showed higher sensitivity even at a lower H2O2 concentration. H2O2 treatment decreased the number of cells in G2/M phase and increased the number of apoptotic cells. Both CD24 negative/CD44 positive cells and CD146 positive cells were found to be present in all tested cancer cell lines, indicating that CSC populations may play role in the cellular response to oxidative stress. This study showed that inducing oxidative stress through ROS can offer a promising approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Biomedical Engineering Department, Engineering Faculty, Ankara University, Tandogan, Ankara, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| |
Collapse
|
772
|
Rodini CO, Lopes NM, Lara VS, Mackenzie IC. Oral cancer stem cells - properties and consequences. J Appl Oral Sci 2018; 25:708-715. [PMID: 29211293 PMCID: PMC5701542 DOI: 10.1590/1678-7757-2016-0665] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 12/12/2022] Open
Abstract
Research on cancer stem cells (CSCs) has greatly increased in the field of medicine and pathology; however, some conceptual misunderstandings are still present among the public as well as within the general scientific community that is not yet familiar with the subject. The very first problem is the misinterpretation of CSCs as a synonym of their normal counterparts, the well-known stem cells (SCs). Particularly in Dentistry, another common mistake is the misinterpretation of oral CSCs as normal tooth-derived SCs. The present review aims to clarify important concepts related to normal SCs and CSCs, as well as discuss the relevance of CSCs to the development, metastasis and therapy resistance of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Camila Oliveira Rodini
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nathália Martins Lopes
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Vanessa Soares Lara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Cirurgia, Estomatologia, Patologia e Radiologia. Bauru, SP, Brasil
| | - Ian Campbell Mackenzie
- Queen Mary University of London, Blizard Institute - Barts and The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
773
|
Lin B, Chen T, Zhang Q, Lu X, Zheng Z, Ding J, Liu J, Yang Z, Geng L, Wu L, Zhou L, Zheng S. FAM83D associates with high tumor recurrence after liver transplantation involving expansion of CD44+ carcinoma stem cells. Oncotarget 2018; 7:77495-77507. [PMID: 27769048 PMCID: PMC5363599 DOI: 10.18632/oncotarget.12715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/01/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate the potential oncogene promoting recurrence of hepatocellular carcinoma (HCC) following liver transplantation (LT), throughput RNA sequencing was performed in a subgroup of HCC patients. The up-regulated FAM83D in HCC tissues was found and further verified in 150 patients by real-time PCR and immunohistochemistry. FAM83D overexpression significantly correlated with high HCC recurrence rate following LT and poor HCC characteristics such as high AFP, poor differentiation. Of cancer stem cells (CSCs) markers, CD44 expression was effectively suppressed when FAM83D was knocked down by siRNA. Meanwhile, the siRNA transfected cells suppressed formation of sphere and ability of self-renew. In a xenograft tumorigenesis model, FAM83D knockdown apparently inhibited tumor growth and metastasis. Microarray assays revealed that FAM83D promotes CD44 expression via activating the MAPK, TGF-β and Hippo signaling pathways. Furthermore, CD44 knockdown presented reverse effect on above signaling pathways, which suggested that FAM83D was a key activator of loop between CD44 and above signaling pathways. In conclusion, FAM83D promotes HCC recurrence by promoting CD44 expression and CD44+ CSCs malignancy. FAM83D provides a novel therapeutic approach against HCC recurrence after LT.
Collapse
Affiliation(s)
- Binyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Tianchi Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Qijun Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xiaoxiao Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhiyun Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jun Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jinfeng Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhe Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Liming Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
774
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
775
|
Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, Weiler J, Gäbler K, Bahlawane C, Hiller K, Haan S, Letellier E. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget 2018; 7:65454-65470. [PMID: 27589845 PMCID: PMC5323168 DOI: 10.18632/oncotarget.11772] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patient-derived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation.
Collapse
Affiliation(s)
- Pit Ullmann
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Komal Qureshi-Baig
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Fabien Rodriguez
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Dominik Ternes
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jil Weiler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karoline Gäbler
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Christelle Bahlawane
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, L-4367 Belvaux, Luxembourg
| | - Serge Haan
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Elisabeth Letellier
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
776
|
Cui H, Yang S, Jiang Y, Li C, Zhao Y, Shi Y, Hao Y, Qian F, Tang B, Yu P. The glycosyltransferase ST6Gal-I is enriched in cancer stem-like cells in colorectal carcinoma and contributes to their chemo-resistance. Clin Transl Oncol 2018; 20:1175-1184. [PMID: 29423671 DOI: 10.1007/s12094-018-1840-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Presence of cancer stem cells (CSCs) contributes to tumor outgrowth, chemo-resistance and relapse in some cancers including colorectal carcinoma (CRC). The current characterization methods of CSCs in CRC only allows enrichment of CSCs but not their purification. Recent reports showed that ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-I) plays an essential role in protecting tumor cells against harsh environment like oxidative stress and nutrient deprivation. Therefore, whether ST6Gal-I may be highly expressed in CSCs or whether it may enhance resistance of tumor cells to chemotherapy deserves exploration. METHOD ST6Gal-I levels were determined in CRC specimens, compared to paired normal colorectal tissue, and examined in CD133+ vs CD133- CRC cells, and CD44+ vs CD44- CRC cells. ST6Gal-I levels and their association with patient survival were examined. In vivo, 2 CRC cell lines Caco-2 and SW48 were transduced with two lentiviruses, one lentivirus carrying a green fluorescent protein reporter and a luciferase reporter under a cytomegalovirus promoter to allow tracing tumor cells by both fluorescence and luciferase activity, and one lentivirus carrying a nuclear red fluorescent protein under the control of ST6Gal-I promoter to allow separation of ST6Gal-I+ vs ST6Gal-I- CRC cells. Tumor sphere formation, resistance to fluorouracil-induced apoptosis, and frequency of tumor formation after serial adoptive transplantation were done on ST6Gal-I+ vs ST6Gal-I- CRC cells. RESULT ST6Gal-I levels were significantly upregulated in clinically obtained CRC specimens, compared to paired normal colorectal tissue. Poorer patient survival was detected in ST6Gal-I-high CRC, compared to ST6Gal-I-low subjects. Higher levels of ST6Gal-I were detected in CD133+ CRC cells than CD133- CRC cells, and in CD44+ CRC cells than in CD44- CRC cells. Compared to ST6Gal-I- CRC cells, ST6Gal-I+ CRC cells generated significantly more tumor spheres in culture, were more resistant to fluorouracil-induced apoptosis likely through upregulating cell autophagy, and generated tumor more frequently after serial adoptive transplantation. CONCLUSION ST6Gal-I may be highly expressed in the cancer stem-like cells in CRC and enhances cancer cell resistance to chemotherapy.
Collapse
Affiliation(s)
- H Cui
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - S Yang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - Y Jiang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - C Li
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - Y Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - Y Shi
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - Y Hao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - F Qian
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China
| | - B Tang
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China.
| | - P Yu
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyanzheng Street, Chongqing, 400038, China.
| |
Collapse
|
777
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
778
|
Wang Z, von Au A, Schnölzer M, Hackert T, Zöller M. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget 2018; 7:55409-55436. [PMID: 27419629 PMCID: PMC5342426 DOI: 10.18632/oncotarget.10580] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer-initiating cells (CIC) account for metastatic spread, which may rely mostly on CIC exosomes (TEX) that affect host cells and can transfer CIC features into Non-CIC. The CIC marker CD44 variant isoform v6 (CD44v6) being known for metastasis-promotion, we elaborated in cells its contribution to migration and invasion and in TEX the tranfer of migratory and invasive capacity to Non-CIC, using a CD44v6 knockdown (CD44v6kd) as Non-CIC model.A CD44v6kd in human pancreatic and colorectal cancer (PaCa, CoCa) lines led to loss of CIC characteristics including downregulation of additional CIC markers, particularly Tspan8. This aggravated the loss of CD44v6-promoted motility and invasion. Loss of motility relies on the distorted cooperation of CD44v6 and Tspan8 with associated integrins and loss of invasiveness on reduced protease expression. These deficits, transferred into TEX, severely altered the CD44v6kd-TEX composition. As a consequence, unlike the CIC-TEX, CD44v6kd TEX were not taken up by CD44v6kd cells and CIC. The uptake of CIC-TEX was accompanied by partial correction of CIC marker and protease expression in CD44v6kd cells, which regained migratory, invasive and metastatic competence. CIC-TEX also fostered angiogenesis and expansion of myeloid cells, likely due to a direct impact of CIC-TEX on the host, which could be supported by reprogrammed CD44v6kd cells.Taken together, the striking loss of tumor progression by a CD44v6kd relies on the capacity of CD44v6 to cooperate with associating integrins and proteases and its promotion of additional CIC marker expression. The defects by a CD44v6kd are efficiently corrected upon CIC-TEX uptake.
Collapse
Affiliation(s)
- Zhe Wang
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Anja von Au
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Martina Schnölzer
- Proteome Analysis Department, German Cancer Research Center, Heidelberg, Germany
| | - Thilo Hackert
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
779
|
Matsumoto Y, Itou J, Sato F, Toi M. SALL4 - KHDRBS3 network enhances stemness by modulating CD44 splicing in basal-like breast cancer. Cancer Med 2018; 7:454-462. [PMID: 29356399 PMCID: PMC5806117 DOI: 10.1002/cam4.1296] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
Understanding the mechanism by which cancer cells enhance stemness facilitates cancer therapies. Here, we revealed that a stem cell transcription factor, SALL4, functions to enhance stemness in basal-like breast cancer cells. We used shRNA-mediated knockdown and gene overexpression systems to analyze gene functions. To evaluate stemness, we performed a sphere formation assay. In SALL4 knockdown cells, the sphere formation ability was reduced, indicating that SALL4 enhances stemness. CD44 is a membrane protein and is known as a stemness factor in cancer. CD44 splicing variants are involved in cancer stemness. We discovered that SALL4 modulates CD44 alternative splicing through the upregulation of KHDRBS3, a splicing factor for CD44. We cloned the KHDRBS3-regulated CD44 splicing isoform (CD44v), which lacks exons 8 and 9. CD44v overexpression prevented a reduction in the sphere formation ability by KHDRBS3 knockdown, indicating that CD44v is positively involved in cancer stemness. In addition, CD44v enhanced anoikis resistance under the control of the SALL4 - KHDRBS3 network. Basal-like breast cancer is an aggressive subtype among breast cancers, and there is no effective therapy so far. Our findings provide molecular targets for basal-like breast cancer therapy. In the future, this study may contribute to the establishment of drugs targeting cancer stemness.
Collapse
Affiliation(s)
- Yoshiaki Matsumoto
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Junji Itou
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Fumiaki Sato
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masakazu Toi
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
780
|
Ferralli J, Chiquet-Ehrismann R, Degen M. KLF4α stimulates breast cancer cell proliferation by acting as a KLF4 antagonist. Oncotarget 2018; 7:45608-45621. [PMID: 27323810 PMCID: PMC5216746 DOI: 10.18632/oncotarget.10058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/03/2016] [Indexed: 01/13/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a transcription factor involved in both tumor suppression and oncogenesis in various human tumors, is subject to alternative splicing that produces KLF4α. KLF4α is primarily expressed in the cytoplasm because it lacks exon 3 of KLF4, which contains the nuclear localization signal. The role of KLF4 in breast cancer remains unclear and nothing is known yet about the expression and function of the isoform KLF4α. Here, we show that KLF4α is expressed in normal and tumoral tissue of the breast and provide evidence that the KLF4α/KLF4(full-length) (FL) ratio is increased in tumors compared to corresponding normal tissue. Forced increase of the KLF4α/KLF4(FL) ratio in the metastatic breast cancer cell line MDA-MB-231 decreases the levels of E-Cadherin, p21Cip1, and p27Kip1, three known KLF4(FL) target genes, and stimulates cell proliferation. We suggest that cytoplasmic KLF4α binds to KLF4(FL) and retains it in the cytoplasm thereby antagonizing the gene regulatory activities of KLF4(FL) in the nucleus. Our results establish KLF4α as a KLF4 isoform that opposes the function of KLF4(FL) and as an important factor in the complex and unresolved role of KLF4(FL) in breast carcinogenesis.
Collapse
Affiliation(s)
- Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Martin Degen
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland.,Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
781
|
Chen X, Li S, Ke Y, Wu S, Huang T, Hu W, Fu H, Guo X. KLF16 suppresses human glioma cell proliferation and tumourigenicity by targeting TFAM. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:608-615. [PMID: 29374989 DOI: 10.1080/21691401.2018.1431654] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, PR China
| | - Yumin Ke
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Shukai Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Tianzao Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, PR China
| | - Xieli Guo
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, PR China
| |
Collapse
|
782
|
Kong F, Sun T, Kong X, Xie D, Li Z, Xie K. Krüppel-like Factor 4 Suppresses Serine/Threonine Kinase 33 Activation and Metastasis of Gastric Cancer through Reversing Epithelial-Mesenchymal Transition. Clin Cancer Res 2018; 24:2440-2451. [PMID: 29367428 DOI: 10.1158/1078-0432.ccr-17-3346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Background: Cancers with aberrant expression of Serine/threonine kinase 33 (STK33) has been reported to be particularly aggressive. However, its expression, clinical significance, and biological functions in gastric cancer remain largely unknown. In the present study, we determined the expression and function of STK33 in gastric cancer and delineated the clinical significance of the Krüppel-like factor 4 (KLF4)/STK33 signaling pathway.Methods: STK33 expression and its association with multiple clinicopathologic characteristics were analyzed immunohistochemically in human gastric cancer specimens. STK33 knockdown and overexpression were used to dissect the underlying mechanism of its functions in gastric cancer cells. Regulation and underlying mechanisms of STK33 expression by KLF4 in gastric cancer cells were studied using cell and molecular biological methods.Results: Drastically higher expression of STK33 was observed in gastric cancer and gastric intraepithelial neoplasia tissues compared with adjacent normal gastric tissues. Increased STK33 expression correlated directly with tumor size, lymph node, and distant metastasis; and patients with low STK33 expression gastric cancer were predicted to have a favorable prognosis. Enforced expression of STK33 promoted gastric cancer cell proliferation, migration, and invasion in vitro and in vivo, whereas reduced STK33 did the opposite. Moreover, STK33 promoted epithelial-mesenchymal transition (EMT) in vitro Mechanistically, KLF4 transcriptionally inhibited STK33 expression in gastric cancer cells. KLF4-mediated inhibition of gastric cancer cell invasion was reversed by upregulation of STK33 expression.Conclusions: STK33 has pro-tumor function and is a critical downstream mediator of KLF4 in gastric cancer. STK33 may serve as a potential prognostic marker and therapeutic target for gastric cancer. Clin Cancer Res; 24(10); 2440-51. ©2018 AACR.
Collapse
Affiliation(s)
- Fanyang Kong
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tao Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.,Department of Gastroenterology, PLA Air Force General Hospital, Beijing, People's Republic of China
| | - Xiangyu Kong
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Dacheng Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
783
|
Lee SK, Hwang JH, Choi KY. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis. Adv Biol Regul 2018; 68:46-54. [PMID: 29449169 DOI: 10.1016/j.jbior.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer development is usually driven by multiple genetic and molecular alterations rather than by a single defect. In the human colorectal cancer (CRC), series of mutations of genes are involved in the different stages of tumorigenesis. For example, adenomatous polyposis coli (APC) and KRAS mutations have been known to play roles in the initiation and progression of the tumorigenesis, respectively. However, many studies indicate that mutations of these two genes, which play roles in the Wnt/β-catenin and RAS-extra-cellular signal regulated kinase (ERK) pathways, respectively, cooperatively interact in the tumorigenesis in several different cancer types including CRC. Both Apc and Kras mutations critically increase number and growth rate of tumors although single mutation of these genes does not significantly enhance the small intestinal tumorigenesis of mice. Both APC and KRAS mutations even result in the liver metastasis with inductions of the cancer stem cells (CSCs) markers in a mice xenograft model. In this review, we are going to describe the history for interaction between the Wnt/β-catenin and RAS/ERK pathways especially related with CRC, and provide the mechanical basis for the cross-talk between the two pathways. The highlight of the crosstalk involving the stability regulation of RAS protein via the Wnt/β-catenin signaling which is directly related with the cellular proliferation and transformation will be discussed. Activation status of GSK3β, a key enzyme involving both β-catenin and RAS degradations, is regulated by the status of the Wnt/β-catenin signaling dependent upon extracellular stimuli or intracellular abnormalities of the signaling components. The levels of both β-catenin and RAS proteins are co-regulated by the Wnt/β-catenin signaling, and these proteins are overexpressed with a positive correlation in the tumor tissues of CRC patients. These results indicate that the elevation of both β-catenin and RAS proteins is pathologically significant in CRC. In this review, we also will discuss further involvement of the increments of both β-catenin and RAS especially mutant KRAS in the activation of CSCs and metastasis. Overall, the increments of β-catenin and RAS especially mutant KRAS by APC loss play important roles in the cooperative tumorigenesis of CRC.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
784
|
Miolo G, Sturaro G, Cigolini G, Menilli L, Tasso A, Zago I, Conconi MT. 4,6,4'-trimethylangelicin shows high anti-proliferative activity on DU145 cells under both UVA and blue light. Cell Prolif 2018; 51:e12430. [PMID: 29318693 DOI: 10.1111/cpr.12430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Furocoumarins (psoralens and angelicins) have been already used under ultraviolet A light (UVA) for the treatment of skin diseases and cutaneous T-cell lymphoma. Besides their high anti-proliferative activity, some severe long-term side effects have been observed, for example genotoxicity and mutagenicity, likely strictly related to the formation of crosslinks. It has been demonstrated that blue light (BL) activation of 8-methoxypsoralen, an FDA-approved drug, leads to less mutagenic monoadducts in the DNA. So far, in this work the less toxic and more penetrating BL is proposed to activate 4,6,4'-trimethylangelicin (TMA), an already known UVA photoactivatable compound. MATERIALS AND METHODS Photocleavage, crosslink formation and oxidative damage were detected in pBR322 plasmid DNA treated with 300.0 μmol/L TMA activated with various exposures of BL. Anti-proliferative activity, reactive oxygen species (ROS) formation and activation status of some signalling pathways involved in cell growth and apoptosis were verified on DU145 cells treated with 5.0 μmol/L TMA plus 2.0 J/cm2 of BL. RESULTS Under BL-TMA, no mutagenic crosslinks, no photocleavage and neither photooxidative lesions were detected on isolated plasmid DNA. TMA showed high anti-proliferative activity on DU145 cells through induction of apoptosis. Besides ROS generation, the proapoptotic effect seemed to be related to activation of p38 and inhibition of p44/42 phosphorylation. Interestingly, the decrease in nuclear β-catenin was coupled with a significant dropping of CD44-positive cells. CONCLUSION Overall, our results indicate that TMA can be activated by BL and may be considered for targeted phototherapy of prostate cancer lesions.
Collapse
Affiliation(s)
- G Miolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - G Sturaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - G Cigolini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - L Menilli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - A Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - I Zago
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - M T Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
785
|
Louhichi T, Saad H, Dhiab MB, Ziadi S, Trimeche M. Stromal CD10 expression in breast cancer correlates with tumor invasion and cancer stem cell phenotype. BMC Cancer 2018; 18:49. [PMID: 29306324 PMCID: PMC5756378 DOI: 10.1186/s12885-017-3951-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023] Open
Abstract
Background Previous investigations have indicated that CD10 is associated with biological aggressivity in human cancers, but the use of this marker for diagnosis and prognosis is more complex. The aim of this study was to evaluate the expression of CD10 in breast cancer and its association with the clinicopathological features. In addition, we investigated whether a relationship exists between CD10 expression and cancer stem cells. Methods CD10 expression was examined by the immunohistochemistry in a series of 133 invasive breast carcinoma cases. Results were correlated to several clinicopathological parameters. Cancer stem cell phenotype was assessed by the immunohistochemical analysis of CD44 and ALDH1. Results Significant CD10 expression was found in the fusiform stromal cells in 19.5% of the cases and in the neoplastic cells in 7% of the cases. The stromal CD10 positivity was more frequently found in tumors with lymph node metastasis (p = 0.01) and a high histological grade (p = 0.01). However, CD10 expression by the neoplastic cells correlates with a high histological grade (p = 0.03) and the absence of estrogen (p = 0.002) as well as progesterone (p = 0.001) receptor expression. We also found that CD10 expression by the stromal cells, but not by the neoplastic cells, correlates significantly with the expression of cancer stem cell markers (CD44+/ALDH1+) (p = 0.002). Conclusion These findings support the role of the stromal CD10 expression in breast cancer progression and dissemination, and suggest a relationship with cancer stem cells.
Collapse
Affiliation(s)
- Tahani Louhichi
- Department of Pathology, Farhat-Hached University Hospital, 4000, Sousse, Tunisia
| | - Hanene Saad
- Department of Pathology, Farhat-Hached University Hospital, 4000, Sousse, Tunisia
| | - Myriam Ben Dhiab
- Department of Pathology, Farhat-Hached University Hospital, 4000, Sousse, Tunisia
| | - Sonia Ziadi
- Department of Pathology, Farhat-Hached University Hospital, 4000, Sousse, Tunisia
| | - Mounir Trimeche
- Department of Pathology, Farhat-Hached University Hospital, 4000, Sousse, Tunisia.
| |
Collapse
|
786
|
Abstract
Solid tumors are composed of mutually interacting cancer cells and tumor microenvironment. Many environmental components, such as extracellular matrix (ECM), mesenchymal stem cells, endothelial and immune cells, and various growth factors and cytokines, provide signals, either stimulatory or inhibitory, to cancer cells and determine their fates. Meanwhile, cancer cells can also educate surrounding cells or tissues to undergo changes that are in favorable of tumor progression. CD44, as a transmembrane receptor for hyaluronic acid (HA) and many other ECM components and a coreceptor for growth factors and cytokines, is a critical cell surface molecule that can sense, integrate, and transduce cellular microenvironmental signals to membrane-associated cytoskeletal proteins or to cell nucleus to regulate a variety of gene expressions that govern cell behaviors. Mounting evidence suggests that CD44, particularly CD44v isoforms, are cancer stem cell (CSC) markers and critical regulators of cancer stemness, including self-renewal, tumor initiation, and metastasis. Thus, CD44 is widely used alone or in combination with other cell surface markers to isolate or enrich CSCs through fluorescence-activated cell sorting of dissociated single cells that originate from the patient, xenograft tumor tissues, or tumor cell cultures. Sorted cells are cultured in a specialized culture medium for spheroid formation or inoculated into immunodeficient mice for the analysis of tumorigenic or metastatic potential. In this chapter, detailed experimental methods regarding CD44+ tumor cell isolation, spheroid culture, and characterization will be described.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 956, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Unit 1466, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
787
|
Motohara T, Katabuchi H. Emerging Role of CD44 Variant 6 in Driving the Metastatic Journey of Ovarian Cancer Stem Cells. CELL BIOLOGY OF THE OVARY 2018:73-88. [DOI: 10.1007/978-981-10-7941-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
788
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
789
|
Zavolan M, Kanitz A. RNA splicing and its connection with other regulatory layers in somatic cell reprogramming. Curr Opin Cell Biol 2017; 52:8-13. [PMID: 29275148 DOI: 10.1016/j.ceb.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 01/30/2023]
Abstract
Understanding how cell identity is established and maintained is one of the most exciting challenges of molecular biology today. Recent work has added a conserved layer of RNA splicing and other post-transcriptional regulatory processes to the transcriptional and epigenetic networks already known to cooperate in the establishment and maintenance of cell identity. Here we summarize these findings, highlighting specifically the multitude of splicing factors that can modulate the efficiency of somatic cell reprogramming. Distinct patterns of gene expression dynamics of these factors during reprogramming suggest that further improvements in efficiency could be obtained through optimal timing of overexpression or knockdown of individual regulators.
Collapse
Affiliation(s)
- Mihaela Zavolan
- RNA Regulatory Networks, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.
| | - Alexander Kanitz
- RNA Regulatory Networks, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
790
|
Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 2017; 7:11756-69. [PMID: 26930718 PMCID: PMC4914246 DOI: 10.18632/oncotarget.7598] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 12/29/2022] Open
Abstract
The xCT light chain of the cystine/glutamate transporter (system XC−) is of importance for the survival of triple-negative breast cancer (TNBC) cells. The MUC1-C transmembrane oncoprotein is aberrantly overexpressed in TNBC and, like xCT, has been linked to maintaining glutathione (GSH) levels and redox balance. However, there is no known interaction between MUC1-C and xCT. Here we show that silencing MUC1-C is associated with decreases in xCT expression in TNBC cells. The results demonstrate that MUC1-C forms a complex with xCT and the CD44 variant (CD44v), which interacts with xCT and thereby controls GSH levels. MUC1-C binds directly with CD44v and in turn promotes stability of xCT in the cell membrane. The interaction between MUC1-C and xCT is further supported by the demonstration that targeting xCT with silencing or the inhibitor sulfasalazine suppresses MUC1 gene transcription by increasing histone and DNA methylation on the MUC1 promoter. In terms of the functional significance of the MUC1-C/xCT interaction, we show that MUC1-C protects against treatment with erastin, an inhibitor of XC− and inducer of ferroptosis, a form of non-apoptotic cell death. These findings indicate that targeting this novel MUC1-C/xCT pathway could represent a potential therapeutic approach for promoting TNBC cell death.
Collapse
|
791
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
792
|
Zou S, Wang C, Liu J, Wang Q, Zhang D, Zhu S, Xu S, Kang M, He S. Sox12 Is a Cancer Stem-Like Cell Marker in Hepatocellular Carcinoma. Mol Cells 2017; 40:847-854. [PMID: 29127951 PMCID: PMC5712514 DOI: 10.14348/molcells.2017.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
Recent studies on molecular carcinogenesis suggest that the chemo-resistance of some cancers is largely due to presence of cancer stem cells (CSCs), which affect the chemotherapy outcome for hepatocellular carcinoma (HCC). However, currently no consensus on a CSC phenotype in HCC has been obtained. Here, we examined Sox12 as a novel CSC marker in HCC. Sox12+ versus Sox12- cells were purified from HCC cell lines. The Sox12+ cells were compared with Sox12- HCC cells for tumor sphere formation, chemo-resistance, tumor formation after serial adoptive transplantations in nude mice, and the frequency of developing distal metastasis. We found that compared to Sox12- HCC cells, Sox12+ HCC cells generated significantly more tumor spheres in culture, were more chemo-resistant to cisplatin, were detected in circulation more frequently, and formed distal tumor more frequently. Moreover, Sox12 appeared to functionally contribute to the stemness of HCC cells. Thus, we conclude that Sox12 may be a novel marker for enriching CSCs in HCC.
Collapse
Affiliation(s)
- Song Zou
- Department of Interventional Oncology, the People’s Hospital of Ganzhou, Ganzhou 341000,
China
| | - Chen Wang
- Department of Oncology, the People’s Hospital of Ganzhou, Ganzhou 341000,
China
| | - Jiansheng Liu
- Department of Oncology, the People’s Hospital of Ganzhou, Ganzhou 341000,
China
| | - Qun Wang
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| | - Dongdong Zhang
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| | - Shengnan Zhu
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| | - Shengyuan Xu
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| | - Mafei Kang
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| | - Shaozhong He
- Department of Oncology, the Affiliated Hospital of Guilin Medical University, Guilin 541001,
China
| |
Collapse
|
793
|
Ali R, Samman N, Al Zahrani H, Nehdi A, Rahman S, Khan AL, Al Balwi M, Alriyees LA, Alzaid M, Al Askar A, Boudjelal M. Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer 2017; 17:803. [PMID: 29187162 PMCID: PMC5707794 DOI: 10.1186/s12885-017-3812-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer is one of the most common cancer and a leading cause of death in women. Up to date the most commonly used breast cancer cell lines are originating from Caucasians or Afro-Americans but rarely cells are being derived from other ethnic groups. Here we describe for the first time the establishment of a naturally transformed breast cancer cell line, KAIMRC1 from an Arab woman of age 62 suffering from stage IIB breast cancer (T2N1M0). Moreover, we have characterized these cells for the biological and molecular markers, induction of MAPK pathways as well as its response to different commercially available drugs and compounds. Methods Breast cancer tissue sections were minced and cultured in media for several weeks. KAIMRC1 cells were successfully isolated from one of the primary breast tumor tissue cultures without any enzymatic digestion. To study the growth characteristics of the cells, wound healing assay, clonogenic assay, cell proliferation assays and live cell time-lapse microscopy was performed. Karyotyping, Immunophenotyping and molecular pathway specific compound treatment was also performed. A selective breast cancer gene expression panel was used to identify genes involved in the signal transduction dysregulation and malfunction of normal biological processes during breast carcinogenesis. Results These cells are ER/PR-positive and HER2-negative. The epithelial nature of these cells was confirmed by flow cytometry analysis using epithelial cell markers. They are cuboidal in shape and relatively smaller in size as compared to established cell lines, MCF-7, MDA MB-231 and the normal breast cell line, MCF-10A. In normal cell culture conditions these cells showed the capability of growing both in monolayer as well as in 3-D conformation. They showed a doubling time in vitro of approximately 24 h. They exhibit a modal karyotype of 58–63,X with abnormalities in a couple of chromosomes. KAIMRC1 cells were found to be more responsive to drug treatment in vitro in comparison to the established MDA MB-231 and MCF-7 cell lines. Conclusions In conclusion we have isolated and characterized a new naturally immortalized breast cell line, KAIMRC1 with a potential to play a key role in opening up novel avenues towards the understanding of breast carcinoma. Electronic supplementary material The online version of this article (10.1186/s12885-017-3812-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Nosaibah Samman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Hajar Al Zahrani
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Atef Nehdi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Sabhi Rahman
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia.,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Abdul Latif Khan
- Department of Pathology and Laboratory Medicine, King Abdullah Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Mohamed Al Balwi
- Department of Pathology and Laboratory Medicine, King Abdullah Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | | | - Manal Alzaid
- Department of Surgery, KAMC, NGHA, Riyadh, 11426, Saudi Arabia
| | - Ahmed Al Askar
- King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs (NGHA), P.O. Box 22490, Riyadh, 11426, Saudi Arabia. .,King Abdullah International Medical Research Center/ King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
794
|
Nguyen N, Kumar A, Chacko S, Ouellette RJ, Ghosh A. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun Signal 2017; 15:48. [PMID: 29137675 PMCID: PMC5686803 DOI: 10.1186/s12964-017-0204-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
Background Human hyaluronic acid (HA) molecules are synthesized by three membrane spanning Hyaluronic Acid Synthases (HAS1, HAS2 and HAS3). Of the three, HAS1 is found to be localized more into the cytoplasmic space where it synthesizes intracellular HA. HA is a ubiquitous glycosaminoglycan, mainly present in the extracellular matrix (ECM) and on the cell surface, but are also detected intracellularly. Accumulation of HA in cancer cells, the cancer-surrounding stroma, and ECM is generally considered an independent prognostic factors for patients. Higher HA production also correlates with higher tumor grade and more genetic heterogeneity in multiple cancer types which is known to contribute to drug resistance and results in treatment failure. Tumor heterogeneity and intra-tumor clonal diversity are major challenges for diagnosis and treatment. Identification of the driver pathway(s) that initiate genomic instability, tumor heterogeneity and subsequent phenotypic/clinical manifestations, are fundamental for the diagnosis and treatment of cancer. Thus far, no evidence was shown to correlate intracellular HA status (produced by HAS1) and the generation of genetic diversity in tumors. Methods We tested different cell lines engineered to induce HAS1 expression. We measured the epithelial traits, centrosomal abnormalities, micronucleation and polynucleation of those HAS1-expressing cells. We performed real-time PCR, 3D cell culture assay, confocal microscopy, immunoblots and HA-capture methods. Results Our results demonstrate that overexpression of HAS1 induces loss of epithelial traits, increases centrosomal abnormalities, micronucleation and polynucleation, which together indicate manifestation of malignant transformation, intratumoral genetic heterogeneity, and possibly create suitable niche for cancer stem cells generation. Conclusions The intracellular HA produced by HAS1 can aggravate genomic instability and intratumor heterogeneity, pointing to a fundamental role of intracellular HA in cancer initiation and progression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0204-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyet Nguyen
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Awanit Kumar
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada.,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, 35 Providence Street, Moncton, NB, E1C 8X3, Canada. .,Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
795
|
Li X, Zhao Z, Zhang X, Yang S, Lin X, Yang X, Lin X, Shi J, Wang S, Zhao W, Li J, Gao F, Liu M, Ma N, Luo W, Yao K, Sun Y, Xiao S, Xiao D, Jia J. Klf4 reduces stemness phenotype, triggers mesenchymal-epithelial transition (MET)-like molecular changes, and prevents tumor progression in nasopharygeal carcinoma. Oncotarget 2017; 8:93924-93941. [PMID: 29212199 PMCID: PMC5706845 DOI: 10.18632/oncotarget.21370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The reprogramming factor Krüppel-like factor 4 (Klf4), one of the Yamanaka's reprogramming factors, plays an essential role in reprogramming somatic cells into induced pluripotent stem cells (iPSCs). Klf4 is dysregulated and displays divergent functions in multiple malignancies, but the biological roles of Klf4 in nasopharyngeal carcinoma (NPC) remain unknown. The present study revealed that Klf4 downregulation in a cohort of human NPC biopsies is significantly associated with invasive and metastatic phenotypes of NPC. Our results showed exogenous expression of Klf4 significantly inhibited cell proliferation, decreased stemness, triggered mesenchymal-epithelial transition (MET)-like molecular changes, and suppressed migration and invasion of NPC cells, whereas depletion of endogeneous Klf4 by RNAi reversed the aforementioned biological behaviors and characheristics. Klf4 silencing significantly enhanced the metastatic ability of NPC cells in vivo. In addition, CHIP assay confirmed that E-cadherin is a transcriptional target of Klf4 in NPC cells. Additional studies demonstrated that Klf4-induced MET-like cellular marker alterations, and reduced motility and invasion of NPC cells were mediated by E-cadherin. This study revealed the clinical correlation between Klf4 expression and epithelial-mesenchymal transition (EMT) biomarkers (including its target gene E-cadherin) in a cohort of NPC biopsies. Taken together, our findings suggest, for what we believe is the first time, that Klf4 functions as a tumor suppressor in NPC to decrease stemness phenotype, inhibit EMT and prevent tumor progression, suggesting that restoring Klf4 function may provide therapeutic benefits in NPC.
Collapse
Affiliation(s)
- Xiqing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Zhunlan Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xia Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xinglong Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiaolin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Junwen Shi
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Shengchun Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wentao Zhao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mingyue Liu
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Ning Ma
- Department of Oncology, The People’s Hosptial of Zhengzhou University, Zhengzhou 450003, China
| | - Weiren Luo
- The Third People's Hospital of Shenzhen, Guangdong Medical University, Shenzhen 518112, China
| | - Kaitai Yao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Junshuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
796
|
Abstract
In 2015, cancer was the cause of almost 22% of deaths worldwide. The high frequency of relapsing diseases and metastasis requires the development of new diagnostic and therapeutic approaches, and the use of nanomaterials is a promising tool for fighting cancer. Among the more extensively studied nanomaterials are carbon nanotubes (CNTs), synthesized as graphene sheets, whose spiral shape is varied in length and thickness. Their physicochemical features, such as the resistance to tension, and thermal and electrical conductivity, allow their application in several fields. In this review, we show evidence supporting the applicability of CNTs in biomedical practice as nanocarriers for drugs and immunomodulatory material, emphasizing their potential for use in cancer treatment.
Collapse
|
797
|
Abstract
Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.
Collapse
|
798
|
Gallardo-Pérez JC, Adán-Ladrón de Guevara A, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
799
|
Monteleone NJ, Lutz CS. miR-708-5p: a microRNA with emerging roles in cancer. Oncotarget 2017; 8:71292-71316. [PMID: 29050362 PMCID: PMC5642637 DOI: 10.18632/oncotarget.19772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/16/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression post-transcriptionally. They are crucial for normal development and maintaining homeostasis. Researchers have discovered that dysregulated miRNA expression contributes to many pathological conditions, including cancer. miRNAs can augment or suppress tumorigenesis based on their expression and transcribed targetome in various cell types. In recent years, researchers have begun to identify miRNAs commonly dysregulated in cancer. One recently identified miRNA, miR-708-5p, has been shown to have profound roles in promoting or suppressing oncogenesis in a myriad of solid and hematological tumors. This review highlights the diverse, sometimes controversial findings reported for miR-708-5p in cancer, and the importance of further exploring this exciting miRNA.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, NJ 07103, USA
| |
Collapse
|
800
|
Xie VK, Li Z, Yan Y, Jia Z, Zuo X, Ju Z, Wang J, Du J, Xie D, Xie K, Wei D. DNA-Methyltransferase 1 Induces Dedifferentiation of Pancreatic Cancer Cells through Silencing of Krüppel-Like Factor 4 Expression. Clin Cancer Res 2017; 23:5585-5597. [PMID: 28659310 PMCID: PMC5600846 DOI: 10.1158/1078-0432.ccr-17-0387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023]
Abstract
Purpose: The dismal prognosis of pancreatic cancer has been linked to poor tumor differentiation. However, molecular basis of pancreatic cancer differentiation and potential therapeutic value of the underlying molecules remain unknown. We investigated the mechanistic underexpression of Krüppel-like factor 4 (KLF4) in pancreatic cancer and defined a novel epigenetic pathway of its activation for pancreatic cancer differentiation and treatment.Experimental Design: Expressions of KLF4 and DNMT1 in pancreatic cancer tissues were determined by IHC and the genetic and epigenetic alterations of KLF4 in and KLF4's impact on differentiation of pancreatic cancer were examined using molecular biology techniques. The function of dietary 3,3'-diindolylmethane (DIM) on miR-152/DNMT1/KLF4 signaling in pancreatic cancer was evaluated using both cell culture and animal models.Results: Overexpression of DNMT1 and promoter hypermethylation contributed to decreased KLF4 expression in and associated with poor differentiation of pancreatic cancer. Manipulation of KLF4 expression significantly affected differentiation marker expressions in pancreatic cancer cells. DIM treatment significantly induced miR-152 expression, which blocked DNMT1 protein expression and its binding to KLF4 promoter region, and consequently reduced promoter DNA methylation and activated KLF4 expression in pancreatic cancer cells. In addition, DIM treatment caused significant inhibition of cell growth in vitro and tumorigenesis in animal models of pancreatic cancer.Conclusions: This is the first demonstration that dysregulated KLF4 expression associates with poor differentiation of pancreatic cancer. Epigenetic activation of miR-152/DNMT1/KLF4 signaling pathway by dietary DIM causes differentiation and significant growth inhibition of pancreatic cancer cells, highlighting its translational implications for pancreatic and other cancers. Clin Cancer Res; 23(18); 5585-97. ©2017 AACR.
Collapse
Affiliation(s)
- Victoria K Xie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiwei Li
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongmin Yan
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiliang Jia
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiawei Du
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Dacheng Xie
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Keping Xie
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Daoyan Wei
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|