801
|
Li K, Li L, Cui B, Gai Z, Li Q, Wang S, Yan J, Lin B, Tian L, Liu H, Liu X, Xi Z. Early Postnatal Exposure to Airborne Fine Particulate Matter Induces Autism-like Phenotypes in Male Rats. Toxicol Sci 2017; 162:189-199. [DOI: 10.1093/toxsci/kfx240] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kang Li
- Department of Toxicology
- Department of Stress Medicine
| | | | - Bo Cui
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhihui Gai
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
802
|
Behavioral impairments following repeated intranasal glyphosate-based herbicide administration in mice. Neurotoxicol Teratol 2017; 64:63-72. [DOI: 10.1016/j.ntt.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022]
|
803
|
Wahl D, Coogan SCP, Solon-Biet SM, de Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 2017; 12:1419-1428. [PMID: 28932108 PMCID: PMC5598548 DOI: 10.2147/cia.s145247] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Sean CP Coogan
- Charles Perkins Centre, University of Sydney, Sydney
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James B Haran
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney
- Faculty of Veterinary Science
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging’s Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney
- Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia
| |
Collapse
|
804
|
Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, Correia JS, Teixeira-Castro A, Pinto L, Sousa N, Oliveira JF. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 2017; 65:1944-1960. [PMID: 28885722 DOI: 10.1002/glia.23205] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.
Collapse
Affiliation(s)
- Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Tavares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuella Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Santos Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos 4750-810, Portugal
| |
Collapse
|
805
|
A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab 2017; 26:539-546.e5. [PMID: 28877457 PMCID: PMC5609489 DOI: 10.1016/j.cmet.2017.08.005] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.
Collapse
|
806
|
Whyte LS, Hemsley KM, Lau AA, Hassiotis S, Saito T, Saido TC, Hopwood JJ, Sargeant TJ. Reduction in open field activity in the absence of memory deficits in the App NL-G-F knock-in mouse model of Alzheimer's disease. Behav Brain Res 2017; 336:177-181. [PMID: 28887197 DOI: 10.1016/j.bbr.2017.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
The recent development of knock-in mouse models of Alzheimer's disease provides distinct advantages over traditional transgenic mouse models that rely on over-expression of amyloid precursor protein. Two such knock-in models that have recently been widely adopted by Alzheimer's researchers are the AppNL-F and AppNL-G-F mice. This study aimed to further characterise the behavioural phenotype and amyloid plaque distribution of AppNL-G-F/NL-G-F (C57BL/6J background) mice at six-months of age. An attempt to replicate a previous study that observed deficits in working memory in the Y-maze, showed no difference between AppNL-G-F/NL-G-F and wild-type mice. Further assessment of these mice using the novel object recognition test and Morris water maze also revealed no differences between AppNL-G-F/NL-G-F and wild-type mice. Despite a lack of demonstrated cognitive deficits, we report a reduction in locomotor/exploratory activity in an open field. Histological examination of AppNL-G-F/NL-G-F mice showed widespread distribution of amyloid plaques at this age. We conclude that whilst at six-months of age, memory deficits are not sufficiently robust to be replicated in varying environments, amyloid plaque burden is significant in AppNL-G-F/NL-G-F knock-in brain.
Collapse
Affiliation(s)
- Lauren S Whyte
- The University of Adelaide, School of Medicine, North Terrace, Adelaide, Australia; Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Kim M Hemsley
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Adeline A Lau
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Sofia Hassiotis
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - John J Hopwood
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Diseases Research Unit, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, Australia.
| |
Collapse
|
807
|
Lueptow LM. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J Vis Exp 2017. [PMID: 28892027 DOI: 10.3791/55718] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The object recognition test (ORT) is a commonly used behavioral assay for the investigation of various aspects of learning and memory in mice. The ORT is fairly simple and can be completed over 3 days: habituation day, training day, and testing day. During training, the mouse is allowed to explore 2 identical objects. On test day, one of the training objects is replaced with a novel object. Because mice have an innate preference for novelty, if the mouse recognizes the familiar object, it will spend most of its time at the novel object. Due to this innate preference, there is no need for positive or negative reinforcement or long training schedules. Additionally, the ORT can also be modified for numerous applications. The retention interval can be shortened to examine short-term memory, or lengthened to probe long-term memory. Pharmacological intervention can be used at various times prior to training, after training, or prior to recall to investigate different phases of learning (i.e., acquisition, early or late consolidation, or recall). Overall, the ORT is a relatively low-stress, efficient test for memory in mice, and is appropriate for the detection of neuropsychological changes following pharmacological, biological, or genetic manipulations.
Collapse
|
808
|
Hashizume K, Yamanaka M, Ueda S. POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. GENES BRAIN AND BEHAVIOR 2017; 17:118-125. [PMID: 28782255 DOI: 10.1111/gbb.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
POU3F2/BRN-2 is a transcription factor that is mainly expressed in the central nervous system and plays an important role in brain development. The transactivation domain of POU3F2 includes multiple mammalian-characteristic tandem amino acid repeats (homopolymeric amino acid repeats). We previously generated knock-in mice (Pou3f2Δ/Δ mice) in which all three homopolymeric amino acid repeats were deleted from the Pou3f2 transactivation domain and identified phenotypic impairments in maternal behavior and pup recognition. Yet, the exact biological implications of homopolymeric repeats are not completely understood. In this study, we investigated cognitive function and hippocampal neurogenesis in Pou3f2Δ/Δ mice. Pou3f2Δ/Δ mice exhibited cognitive impairment in object recognition and object location tests. Immunohistochemistry for doublecortin, a marker of immature neurons, showed a lower number of newborn neurons in the dentate gyrus of adult Pou3f2Δ/Δ mice compared with wild-type mice. Consistent with this observation, adult Pou3f2Δ/Δ mice had lower numbers of 5-bromo-2'-deoxyuridine (BrdU) and NeuN double-positive cells at 4 weeks after BrdU injection compared with control mice, indicating the decreased generation of mature granule cells in Pou3f2Δ/Δ mice. Taken together, these results suggest that POU3F2 is involved in cognitive function as well as adult hippocampal neurogenesis, and that homopolymeric amino acid repeats in this gene play a functional role.
Collapse
Affiliation(s)
- K Hashizume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - M Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - S Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
809
|
Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci 2017; 37:9101-9115. [PMID: 28821675 DOI: 10.1523/jneurosci.0111-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment.SIGNIFICANCE STATEMENT Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both in vivo and in vitro evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment.
Collapse
|
810
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
811
|
HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. Sci Rep 2017; 7:7735. [PMID: 28798420 PMCID: PMC5552820 DOI: 10.1038/s41598-017-05245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the effectiveness of combined anti-retroviral therapy, human immunodeficiency virus (HIV) infected-patients frequently report diarrhea and neuropsychological deficits. It is claimed that the viral HIV-1 Trans activating factor (HIV-1 Tat) protein is responsible for both diarrhea and neurotoxic effects, but the underlying mechanisms are not known. We hypothesize that colonic application of HIV-1 Tat activates glial cells of the enteric nervous system (EGCs), leading to a neuroinflammatory response able to propagate to the central nervous system. We demonstrated that HIV-1 Tat-induced diarrhea was associated with a significant activation of glial cells within the colonic wall, the spinal cord and the frontal cortex, and caused a consistent impairment of the cognitive performances. The inhibition of glial cells activity by lidocaine, completely abolished the above-described effects. These observations point out the role of glial cells as putative effectors in HIV-1 Tat-associated gastrointestinal and neurological manifestations and key regulators of gut-brain signaling.
Collapse
|
812
|
Membrane-Associated Effects of Glucocorticoid on BACE1 Upregulation and Aβ Generation: Involvement of Lipid Raft-Mediated CREB Activation. J Neurosci 2017; 37:8459-8476. [PMID: 28855330 DOI: 10.1523/jneurosci.0074-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid has been widely accepted to induce Alzheimer's disease, but the nongenomic effect of glucocorticoid on amyloid β (Aβ) generation has yet to be studied. Here, we investigated the effect of the nongenomic pathway induced by glucocorticoid on amyloid precursor protein processing enzymes as well as Aβ production using male ICR mice and human neuroblastoma SK-N-MC cells. Mice groups exposed to restraint stress or intracerebroventricular injection of Aβ showed impaired cognition, decreased intracellular glucocorticoid receptor (GR) level, but elevated level of membrane GR (mGR). In this respect, we identified the mGR-dependent pathway evoked by glucocorticoid using impermeable cortisol conjugated to BSA (cortisol-BSA) on SK-N-MC cells. Cortisol-BSA augmented the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), the level of C-terminal fragment β of amyloid precursor protein (C99) and Aβ production, which were maintained even after blocking intracellular GR. We also found that cortisol-BSA enhanced the interaction between mGR and Gαs, which colocalized in the lipid raft. The subsequently activated CREB by cortisol-BSA bound to the CRE site of the BACE1 promoter increasing its expression, which was downregulated by inhibiting CBP. Consistently, blocking CBP attenuated cognitive impairment and Aβ production induced by corticosterone treatment or intracerebroventricular injection of Aβ more efficiently than inhibiting intracellular GR in mice. In conclusion, glucocorticoid couples mGR with Gαs and triggers cAMP-PKA-CREB axis dependent on the lipid raft to stimulate BACE1 upregulation and Aβ generation.SIGNIFICANCE STATEMENT Patients with Alzheimer's disease (AD) have been growing sharply and stress is considered as the major environment factor of AD. Glucocorticoid is the primarily responsive factor to stress and is widely known to induce AD. However, most AD patients usually have impaired genomic pathway of glucocorticoid due to intracellular glucocorticoid receptor deficiency. In this respect, the genomic mechanism of glucocorticoid faces difficulties in explaining the consistent amyloid β (Aβ) production. Therefore, it is necessary to investigate the novel pathway of glucocorticoid on Aβ generation to find a more selective therapeutic approach to AD patients. In this study, we revealed the importance of nongenomic pathway induced by glucocorticoid where membrane glucocorticoid receptor plays an important role in Aβ formation.
Collapse
|
813
|
Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. Proc Natl Acad Sci U S A 2017; 114:8865-8870. [PMID: 28760987 DOI: 10.1073/pnas.1705974114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Behavioral manifestations of drug-seeking behavior are causally linked to alterations of synaptic strength onto nucleus accumbens (NAc) medium spiny neurons (MSN). Although neuron-driven changes in physiology and behavior are well characterized, there is a lack of knowledge of the role of the immune system in mediating such effects. Toll-like receptor 4 (TLR4) is a pattern recognition molecule of the innate immune system, and evidence suggests that it modulates drug-related behavior. Using TLR4 knockout (TLR4.KO) mice, we show that TLR4 plays a role in NAc synaptic physiology and behavior. In addition to differences in the pharmacological profile of N-methyl-d-aspartate receptors (NMDAR) in the NAc core, TLR4.KO animals exhibit a deficit in low-frequency stimulation-induced NMDAR-dependent long-term depression (LTD). Interestingly, the synaptic difference is region specific as no differences were found in excitatory synaptic properties in the NAc shell. Consistent with altered NAc LTD, TLR4.KO animals exhibit an attenuation in drug reward learning. Finally, we show that TLR4 in the NAc core is primarily expressed on microglia. These results suggest that TLR4 influences NAc MSN synaptic physiology and drug reward learning and behavior.
Collapse
|
814
|
Esquerda-Canals G, Martí-Clúa J, Roda AR, Villegas S. An Intracellular Amyloid-β/AβPP Epitope Correlates with Neurodegeneration in those Neuronal Populations Early Involved in Alzheimer’s Disease. J Alzheimers Dis 2017; 59:1079-1096. [DOI: 10.3233/jad-170218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gisela Esquerda-Canals
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Biologia Cellular, Protein Folding and Stability Group, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Joaquim Martí-Clúa
- Departament de Biologia Cellular, Protein Folding and Stability Group, de Fisiologia i d’Immunologia, Unitat de Citologia i d’Histologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alejandro R. Roda
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Protein Folding and Stability Group, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
815
|
Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017; 548:52-57. [PMID: 28746310 PMCID: PMC5999038 DOI: 10.1038/nature23282] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
Hypothalamic control of aging was recently proposed, but the responsible mechanisms still remain unclear. Here, following the observation that aging of mice started with a substantial loss of hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1, we developed several mouse models with ablation of these hypothalamic cells, each of them consistently displaying an acceleration in aging-like physiological changes or shortening in lifespan. Conversely, aging retardation and lifespan extension were achieved in mid-aged mice when locally implanted with healthy hypothalamic stem/progenitor cells that were genetically engineered to survive from aging-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells greatly contributed to exosomal miRNAs in the cerebrospinal fluid which declined over aging, while central treatment with healthy hypothalamic stem/progenitor cells-secreted exosomes led to slowdown of aging. In conclusion, aging speed is controlled significantly by hypothalamic stem cells partially through release of exosomal miRNAs.
Collapse
|
816
|
Khallaf WA, Messiha BA, Abo-Youssef AM, El-Sayed NS. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor. Can J Physiol Pharmacol 2017; 95:850-860. [DOI: 10.1139/cjpp-2017-0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Waleed A.I. Khallaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Basim A.S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Amira M.H. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Nesrine S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
817
|
Skariah G, Seimetz J, Norsworthy M, Lannom MC, Kenny PJ, Elrakhawy M, Forsthoefel C, Drnevich J, Kalsotra A, Ceman S. Mov10 suppresses retroelements and regulates neuronal development and function in the developing brain. BMC Biol 2017; 15:54. [PMID: 28662698 PMCID: PMC5492891 DOI: 10.1186/s12915-017-0387-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. Results Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. Conclusions Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer’s disease. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geena Skariah
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Joseph Seimetz
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Miles Norsworthy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Monica C Lannom
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Phillip J Kenny
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Mohamed Elrakhawy
- Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Craig Forsthoefel
- College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Jenny Drnevich
- High-Performance Biological Computing, Roy J. Carver Biotechnology Center, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Auinash Kalsotra
- Biochemistry, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Stephanie Ceman
- Neuroscience Program, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,Cell and Developmental Biology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA. .,College of Medicine, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
818
|
Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, Nakashima T. Reduced Mastication Impairs Memory Function. J Dent Res 2017. [PMID: 28621563 DOI: 10.1177/0022034517708771] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mastication is an indispensable oral function related to physical, mental, and social health throughout life. The elderly tend to have a masticatory dysfunction due to tooth loss and fragility in the masticatory muscles with aging, potentially resulting in impaired cognitive function. Masticatory stimulation has influence on the development of the central nervous system (CNS) as well as the growth of maxillofacial tissue in children. Although the relationship between mastication and cognitive function is potentially important in the growth period, the cellular and molecular mechanisms have not been sufficiently elucidated. Here, we show that the reduced mastication resulted in impaired spatial memory and learning function owing to the morphological change and decreased activity in the hippocampus. We used an in vivo model for reduced masticatory stimuli, in which juvenile mice were fed with powder diet and found that masticatory stimulation during the growth period positively regulated long-term spatial memory to promote cognitive function. The functional linkage between mastication and brain was validated by the decrease in neurons, neurogenesis, neuronal activity, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. These findings taken together provide in vivo evidence for a functional linkage between mastication and cognitive function in the growth period, suggesting a need for novel therapeutic strategies in masticatory function-related cognitive dysfunction.
Collapse
Affiliation(s)
- Y Fukushima-Nakayama
- 1 Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,2 Department of Orthodontic Science, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Takehito Ono
- 1 Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - M Hayashi
- 1 Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - M Inoue
- 1 Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,2 Department of Orthodontic Science, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - H Wake
- 3 Department of System Physiology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Japan
| | - Takashi Ono
- 2 Department of Orthodontic Science, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - T Nakashima
- 1 Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,4 Precursory Research for Embryonic Science Technology (PRESTO), Japan Science and Technology Agency (JST), Bunkyo-ku, Tokyo, Japan.,5 Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
819
|
Kaur R, Singh V, Shri R. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism. Biomed Pharmacother 2017; 92:1055-1061. [PMID: 28618650 DOI: 10.1016/j.biopha.2017.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/27/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022] Open
Abstract
Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms.
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
820
|
Pant R, Jangra A, Kwatra M, Singh T, Kushwah P, Bezbaruah BK, Gurjar SS, Phukan S. Cognitive deficits induced by combined exposure of stress and alcohol mediated through oxidative stress-PARP pathway in the hippocampus. Neurosci Lett 2017; 653:208-214. [PMID: 28576564 DOI: 10.1016/j.neulet.2017.05.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/13/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022]
Abstract
Several studies reported that stress can enhance the consumption of alcohol in humans and animals. However, the combinatorial effect of stress and alcohol on cognitive function and neurochemical alterations is quite understudied. In the present study, we have elucidated the involvement of oxidative stress-PARP cascade in alcohol and restraint stress (RS)-exposed animals using a PARP inhibitor, 1,5-isoquinolinediol (3mg/kg for 14days). Male Swiss albino mice were given alcohol (ALC) or RS (2h per day) or both in ALC+RS group for 28days. Behavioral analysis revealed cognitive dysfunction in ALC+RS group. Furthermore, oxidative stress and raised level of pro-inflammatory cytokines were found in the hippocampus region of ALC+RS group. Semi-quantitative reverse transcriptase PCR showed overactivation of PARP-1 gene in ALC+RS group. 1,5-isoquinolinediol treatment significantly prevented cognitive deficits and aforementioned neurochemical alterations. Overall, our findings showed that ALC+RS exerted deleterious effects on the hippocampus which involves oxidative stress-PARP overactivation cascade.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology, KIET School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad, Uttar Pradesh, India.
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Tavleen Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Pawan Kushwah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | | | - Satendra Singh Gurjar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Swopna Phukan
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| |
Collapse
|
821
|
Herranz-Martin S, Chandran J, Lewis K, Mulcahy P, Higginbottom A, Walker C, Valenzuela IMPY, Jones RA, Coldicott I, Iannitti T, Akaaboune M, El-Khamisy SF, Gillingwater TH, Shaw PJ, Azzouz M. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits. Dis Model Mech 2017; 10:859-868. [PMID: 28550099 PMCID: PMC5536911 DOI: 10.1242/dmm.029892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023] Open
Abstract
Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches. Summary:C9orf72-linked motor neuron disease models with viral-mediated expression of GGGGCC repeat expansion in mice show neuropathology and behavioural deficits.
Collapse
Affiliation(s)
- Saul Herranz-Martin
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth Chandran
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Katherine Lewis
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Padraig Mulcahy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Callum Walker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.,Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute for Nucleic Acids, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ross A Jones
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, The University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
| | - Ian Coldicott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Mohammed Akaaboune
- Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute for Nucleic Acids, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, The University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
822
|
Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 2017; 7:2426. [PMID: 28546539 PMCID: PMC5445077 DOI: 10.1038/s41598-017-02587-2] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota has a proven role in regulating multiple neuro-chemical pathways through the highly interconnected gut-brain axis. Oral bacteriotherapy thus has potential in the treatment of central nervous system-related pathologies, such as Alzheimer’s disease (AD). Current AD treatments aim to prevent onset, delay progression and ameliorate symptoms. In this work, 3xTg-AD mice in the early stage of AD were treated with SLAB51 probiotic formulation, thereby affecting the composition of gut microbiota and its metabolites. This influenced plasma concentration of inflammatory cytokines and key metabolic hormones considered therapeutic targets in neurodegeneration. Treated mice showed partial restoration of two impaired neuronal proteolytic pathways (the ubiquitin proteasome system and autophagy). Their cognitive decline was decreased compared with controls, due to a reduction in brain damage and reduced accumulation of amyloid beta aggregates. Collectively, our results clearly prove that modulation of the microbiota induces positive effects on neuronal pathways that are able to slow down the progression of Alzheimer’s disease.
Collapse
Affiliation(s)
- Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy.
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy
| | - Silvia Scarpona
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, USA
| | - Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 62032, Camerino, (MC), Italy
| | - Dennis Fiorini
- Division of Chemistry, School of Science and Technology, University of Camerino, I-62032, Camerino, MC, Italy
| | - Maria Chiara Boarelli
- Division of Chemistry, School of Science and Technology, University of Camerino, I-62032, Camerino, MC, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, (MC), Italy
| |
Collapse
|
823
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
824
|
Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A 2017; 114:4531-4536. [PMID: 28396408 DOI: 10.1073/pnas.1618659114] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The vasculature of the central nervous system (CNS) forms a selective barrier termed the blood-brain barrier (BBB). Disruption of the BBB may contribute to various CNS diseases. Conversely, the intact BBB restricts efficient penetration of CNS-targeted drugs. Here, we report the BBB-regulatory role of endothelial sphingosine 1-phosphate (S1P) receptor-1, a G protein-coupled receptor known to promote the barrier function in peripheral vessels. Endothelial-specific S1pr1 knockout mice (S1pr1iECKO ) showed BBB breach for small-molecular-mass fluorescence tracers (<3 kDa), but not larger tracers (>10 kDa). Chronic BBB leakiness was associated with cognitive impairment, as assessed by the novel object recognition test, but not signs of brain inflammation. Brain microvessels of S1pr1iECKO mice showed altered subcellular distribution of tight junctional proteins. Pharmacological inhibition of S1P1 function led to transient BBB breach. These data suggest that brain endothelial S1P1 maintain the BBB by regulating the proper localization of tight junction proteins and raise the possibility that endothelial S1P1 inhibition may be a strategy for transient BBB opening and delivery of small molecules into the CNS.
Collapse
|
825
|
Expression of mutant DISC1 in Purkinje cells increases their spontaneous activity and impairs cognitive and social behaviors in mice. Neurobiol Dis 2017; 103:144-153. [PMID: 28392471 DOI: 10.1016/j.nbd.2017.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000μm3) and an increased number of smaller somata PCs (volume: 750-1000μm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.
Collapse
|
826
|
Schlegel RN, Spiers JG, Moritz KM, Cullen CL, Björkman ST, Paravicini TM. Maternal hypomagnesemia alters hippocampal NMDAR subunit expression and programs anxiety-like behaviour in adult offspring. Behav Brain Res 2017; 328:39-47. [PMID: 28389335 DOI: 10.1016/j.bbr.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
It is well established that maternal undernutrition and micronutrient deficiencies can lead to altered development and behaviour in offspring. However, few studies have explored the implications of maternal Mg deficiency and programmed behavioural and neurological outcomes in offspring. We used a model of Mg deficiency (prior to and during pregnancy and lactation) in CD1 mice to investigate if maternal Mg deficiency programmed changes in behaviour and NMDAR subunit expression in offspring. Hippocampal tissue was collected at postnatal day 2 (PN2), PN8, PN21 and 6 months, and protein expression of NMDAR subunits GluN1, GluN2A and GluN2B was determined. At 6 months of age, offspring were subject to behavioural tasks testing aspects of anxiety-like behaviour, memory, and neophobia. Maternal hypomagnesemia was associated with increased GluN1, GluN2A and GluN2B subunit expression in female offspring at 6 months, but decreased GluN1 and GluN2A expression in males. The GluN2B:GluN2A expression ratio was increased in both sexes. Male (but not female) offspring from Mg-deficient dams showed anxiety-like behaviour, with reduced head dips (Suok test), and reduced exploration of open arms (elevated plus maze). Both male and female offspring from Mg-deficient dams also showed impaired recognition memory (novel object test). These findings suggest that maternal Mg deficiency can result in behavioural deficits in adult life, and that these changes may be related to alterations in hippocampal NMDA receptor expression.
Collapse
Affiliation(s)
- R N Schlegel
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - J G Spiers
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - K M Moritz
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - C L Cullen
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - S T Björkman
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - T M Paravicini
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
827
|
Martin V, Allaïli N, Euvrard M, Marday T, Riffaud A, Franc B, Mocaër E, Gabriel C, Fossati P, Lehericy S, Lanfumey L. Effect of agomelatine on memory deficits and hippocampal gene expression induced by chronic social defeat stress in mice. Sci Rep 2017; 8:45907. [PMID: 28374847 PMCID: PMC5379201 DOI: 10.1038/srep45907] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic stress is known to induce not only anxiety and depressive-like phenotypes in mice but also cognitive impairments, for which the action of classical antidepressant compounds remains unsatisfactory. In this context, we investigated the effects of chronic social defeat stress (CSDS) on anxiety-, social- and cognitive-related behaviors, as well as hippocampal Bdnf, synaptic plasticity markers (PSD-95, Synaptophysin, Spinophilin, Synapsin I and MAP-2), and epigenetic modifying enzymes (MYST2, HDAC2, HDAC6, MLL3, KDM5B, DNMT3B, GADD45B) gene expression in C57BL/6J mice. CSDS for 10 days provoked long-lasting anxious-like phenotype in the open field and episodic memory deficits in the novel object recognition test. While total Bdnf mRNA level was unchanged, Bdnf exon IV, MAP-2, HDAC2, HDAC6 and MLL3 gene expression was significantly decreased in the CSDS mouse hippocampus. In CSDS mice treated 3 weeks with 50 mg/kg/d agomelatine, an antidepressant with melatonergic receptor agonist and 5-HT2C receptor antagonist properties, the anxious-like phenotype was not reversed, but the treatment successfully prevented the cognitive impairments and hippocampal gene expression modifications. Altogether, these data evidenced that, in mice, agomelatine was effective in alleviating stress-induced altered cognitive functions, possibly through a mechanism involving BDNF signaling, synaptic plasticity and epigenetic remodeling.
Collapse
Affiliation(s)
- Vincent Martin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Najib Allaïli
- Centre de NeuroImagerie de Recherche - CENIR- Inserm UMR1127- CNRS 7225, Institut Cerveau Moelle - ICM, Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Marine Euvrard
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Tevrasamy Marday
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Armance Riffaud
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Bernard Franc
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| | - Elisabeth Mocaër
- Institut de Recherches Internationales Servier, IRIS, Suresnes, France
| | - Cecilia Gabriel
- Institut de Recherches Internationales Servier, IRIS, Suresnes, France
| | - Philippe Fossati
- Social and Affective Neuroscience - SAN Laboratory - Inserm U 1127- CNRS UMR 7225- Institut du Cerveau et de la Moelle- ICM - Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR- Inserm UMR1127- CNRS 7225, Institut Cerveau Moelle - ICM, Sorbonne Universités, UPMC UMR S 1127, Paris, France
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Paris, France
| |
Collapse
|
828
|
Gouveia K, Hurst JL. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Sci Rep 2017; 7:44999. [PMID: 28322308 PMCID: PMC5359560 DOI: 10.1038/srep44999] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Handling laboratory animals during test procedures is an important source of stress that may impair reliability of test responses. Picking up mice by the tail is aversive, stimulating stress and anxiety. Responses among anxious animals can be confounded further by neophobia towards novel test environments and avoidance of test stimuli in open areas. However, handling stress can be reduced substantially by using a handling tunnel, or cupping mice without restraint on the open hand. Here we establish whether non-aversive handling, brief prior familiarisation with the test arena and alternative stimulus placement could significantly improve performance of mice in behavioural tests. We use a simple habituation-dishabituation paradigm in which animals must discriminate between two urine stimuli in successive trials, a task that mice can easily perform. Tail handled mice showed little willingness to explore and investigate test stimuli, leading to poor test performance that was only slightly improved by prior familiarisation. By contrast, those handled by tunnel explored readily and showed robust responses to test stimuli regardless of prior familiarisation or stimulus location, though responses were more variable for cup handling. Our study shows that non-aversive tunnel handling can substantially improve mouse performance in behavioural tests compared to traditional tail handling.
Collapse
Affiliation(s)
- Kelly Gouveia
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Jane L. Hurst
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| |
Collapse
|
829
|
Early and progressive microstructural brain changes in mice overexpressing human α-Synuclein detected by diffusion kurtosis imaging. Brain Behav Immun 2017; 61:197-208. [PMID: 27923670 DOI: 10.1016/j.bbi.2016.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 12/27/2022] Open
Abstract
Diffusion kurtosis imaging (DKI) is sensitive in detecting α-Synuclein (α-Syn) accumulation-associated microstructural changes at late stages of the pathology in α-Syn overexpressing TNWT-61 mice. The aim of this study was to perform DKI in young TNWT-61 mice when α-Syn starts to accumulate and to compare the imaging results with an analysis of motor and memory impairment and α-Syn levels. Three-month-old (3mo) and six-month-old (6mo) mice underwent DKI scanning using the Bruker Avance 9.4T magnetic resonance imaging system. Region of interest (ROI) analyses were performed in the gray matter; tract-based spatial statistics (TBSS) analyses were performed in the white matter. In the same mice, α-Syn expression was evaluated using quantitative immunofluorescence. Mean kurtosis (MK) was the best differentiator between TNWT-61 mice and wildtype (WT) mice. We found increases in MK in 3mo TNWT-61 mice in the striatum and thalamus but not in the substantia nigra (SN), hippocampus, or sensorimotor cortex, even though the immunoreactivity of human α-Syn was similar or even higher in the latter regions. Increases in MK in the SN were detected in 6mo mice. These findings indicate that α-Syn accumulation-associated changes may start in areas with a high density of dopaminergic nerve terminals. We also found TBSS changes in white matter only at 6mo, suggesting α-Syn accumulation-associated changes start in the gray matter and later progress to the white matter. MK is able to detect microstructural changes induced by α-Syn overexpression in TNWT-61 mice and could be a useful clinical tool for detecting early-stage Parkinson's disease in human patients.
Collapse
|
830
|
The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 2017; 61:184-196. [PMID: 27890560 DOI: 10.1016/j.bbi.2016.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1-/- mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1-/- and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1-/- mice were completely resistant to these effects of CUS. CX3CR1-/- mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1-/- than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1-/- mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1-/- mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.
Collapse
|
831
|
McIlwrick S, Pohl T, Chen A, Touma C. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity. Front Cell Neurosci 2017; 11:9. [PMID: 28261058 PMCID: PMC5306385 DOI: 10.3389/fncel.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS.
Collapse
Affiliation(s)
- Silja McIlwrick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Tobias Pohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Chadi Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Behavioural Biology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
832
|
Zhang C, Xu Y, Zhang HT, Gurney ME, O'Donnell JM. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Sci Rep 2017; 7:40115. [PMID: 28054669 PMCID: PMC5215650 DOI: 10.1038/srep40115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/02/2016] [Indexed: 12/24/2022] Open
Abstract
Inhibition of cyclic AMP (cAMP)-specific phosphodiesterase 4 (PDE4) has been proposed as a potential treatment for a series of neuropsychological conditions such as depression, anxiety and memory loss. However, the specific involvement of each of the PDE4 subtypes (PDE4A, 4B and 4C) in different categories of behavior has yet to be elucidated. In the present study, we compared the possible pharmacological effects of PDE4B and PDE4D selective inhibitors, A-33 and D159687, in mediating neurological function in mice. Both compounds were equally potent in stimulating cAMP signaling in the mouse hippocampal cell line HT-22 leading to an increase in CREB phosphorylation. In contrast, A-33 and D159687 displayed distinct neuropharmacological effects in mouse behavioral tests. A-33 has an antidepressant-like profile as indicated by reduced immobility time in the forced swim and tail suspension tasks, as well as reduced latency to feed in the novelty suppressed feeding test. D159687, on the other hand, had a procognitive profile as it improved memory in the novel object recognition test but had no antidepressant or anxiolytic benefit. The present data suggests that inhibitors targeting specific subtypes of PDE4 may exhibit differential pharmacological effects and aid a more efficient pharmacotherapy towards neuropsychological conditions.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine &Psychiatry, West Virginia University, Morgantown, WV, 26505, USA
| | - Mark E Gurney
- Tetra Discovery Partners, Inc., Grand Rapids, MI 49503, USA
| | - James M O'Donnell
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| |
Collapse
|
833
|
Morán J, Stokowska A, Walker FR, Mallard C, Hagberg H, Pekna M. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Exp Neurol 2017; 290:74-84. [PMID: 28062175 DOI: 10.1016/j.expneurol.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Javier Morán
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Frederik R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for the Developing Brain, King's College, London, UK; Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia.
| |
Collapse
|
834
|
Zhou YZ, Zhao FF, Gao L, Du GH, Zhang X, Qin XM. Licorice extract attenuates brain aging of d-galactose induced rats through inhibition of oxidative stress and attenuation of neuronal apoptosis. RSC Adv 2017. [DOI: 10.1039/c7ra07110h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A potential protective mechanism of licorice for d-galactose induced aging in rats.
Collapse
Affiliation(s)
- Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Fan-Fan Zhao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- College of Chemistry and Chemical Engineering
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Institute of Materia Medica
| | - Xiang Zhang
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
- Department of Chemistry
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
835
|
Ozcelik S, Sprenger F, Skachokova Z, Fraser G, Abramowski D, Clavaguera F, Probst A, Frank S, Müller M, Staufenbiel M, Goedert M, Tolnay M, Winkler DT. Co-expression of truncated and full-length tau induces severe neurotoxicity. Mol Psychiatry 2016; 21:1790-1798. [PMID: 26830137 PMCID: PMC5116481 DOI: 10.1038/mp.2015.228] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Abundant tau inclusions are a defining hallmark of several human neurodegenerative diseases, including Alzheimer's disease. Protein fragmentation is a widely observed event in neurodegenerative proteinopathies. The relevance of tau fragmentation for the neurodegenerative process in tauopathies has yet remained unclear. Here we found that co-expression of truncated and full-length human tau in mice provoked the formation of soluble high-molecular-weight tau, the failure of axonal transport, clumping of mitochondria, disruption of the Golgi apparatus and missorting of synaptic proteins. This was associated with extensive nerve cell dysfunction and severe paralysis by the age of 3 weeks. When the expression of truncated tau was halted, most mice recovered behaviorally and functionally. In contrast, co-expression of full-length tau isoforms did not result in paralysis. Truncated tau thus induces extensive but reversible neurotoxicity in the presence of full-length tau through the formation of nonfilamentous high-molecular-weight tau aggregates, in the absence of tau filaments. Targeting tau fragmentation may provide a novel approach for the treatment of human tauopathies.
Collapse
Affiliation(s)
- S Ozcelik
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - F Sprenger
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Z Skachokova
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - G Fraser
- MRC, Laboratory of Molecular Biology, Cambridge, UK
| | - D Abramowski
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - F Clavaguera
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - A Probst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Frank
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - M Müller
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - M Staufenbiel
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - M Goedert
- MRC, Laboratory of Molecular Biology, Cambridge, UK
| | - M Tolnay
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - D T Winkler
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Institute of Pathology and Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland. E-mail:
| |
Collapse
|
836
|
Licht-Murava A, Paz R, Vaks L, Avrahami L, Plotkin B, Eisenstein M, Eldar-Finkelman H. A unique type of GSK-3 inhibitor brings new opportunities to the clinic. Sci Signal 2016; 9. [DOI: 10.1126/scisignal.aah7102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A substrate peptide that the kinase GSK-3 converts into its own inhibitor improves symptoms and cognitive function in an Alzheimer’s disease model.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rom Paz
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lilach Vaks
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Batya Plotkin
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
837
|
Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016; 126:4674-4689. [PMID: 27841763 DOI: 10.1172/jci86950] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.
Collapse
|
838
|
Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. eNeuro 2016; 3:eN-NWR-0103-16. [PMID: 27844057 PMCID: PMC5099603 DOI: 10.1523/eneuro.0103-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.
Collapse
|
839
|
Beaudet G, Valable S, Bourgine J, Lelong-Boulouard V, Lanfumey L, Freret T, Boulouard M, Paizanis E. Long-Lasting Effects of Chronic Intermittent Alcohol Exposure in Adolescent Mice on Object Recognition and Hippocampal Neuronal Activity. Alcohol Clin Exp Res 2016; 40:2591-2603. [PMID: 27801508 DOI: 10.1111/acer.13256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/26/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Binge drinking is popular and highly prevalent in teenagers. However, the long-term cognitive and neurobiological consequences of such practices are not yet fully understood. In this context, we therefore assessed in mice whether a chronic intermittent alcohol (CIA) exposure in adolescence had long-term consequences on object discrimination and memory performances, emotional behaviors, brain activity, and morphology. METHODS C57BL/6JRj mice were treated with either saline or ethanol (EtOH) (2 g/kg/d, i.p., from postnatal days [PND] 30 to PND 44 every other day). The day following the last administration or later in adulthood (PND 71) mice were tested for different behavioral tests (novel object recognition, spontaneous alternation, light-dark box, elevated plus-maze, actimeter test), to assess object recognition, working memory performances, anxiety-like behavior, and locomotor activity. We also investigated neuronal activation of hippocampus, prefrontal and perirhinal cortices, and anatomical changes using immediate-early gene expression and longitudinal brain magnetic resonance imaging. RESULTS Our results showed that adolescent mice exposed to CIA present a critical and persistent impairment of short-term object recognition performances. By contrast, spatial working memory was not impaired, nor was anxiety-like behavior. This altered object discrimination was associated with a biphasic change in neuronal activity in the hippocampus but without morphological changes. Indeed, c-Fos expression was specifically increased in the dorsal dentate gyrus (DG) of the hippocampus after the binge exposure, but then became significantly lower in adulthood both in the DG and the CA1 part of the hippocampus compared with adult saline pretreated mice. CONCLUSIONS These findings provide evidence for adolescent vulnerability to the effects of intermittent binge EtOH exposure on object discrimination and hippocampal activity with long-lasting consequences.
Collapse
Affiliation(s)
- Gregory Beaudet
- Normandie University, UNICAEN, Caen, France.,UCN, Groupe Mémoire et Plasticité comportementale (GMPc) EA 4259, Caen, 14032, France
| | - Samuel Valable
- Normandie University, UNICAEN, Caen, France.,CNRS UMR 6301 ISTCT, CERVOxy group, Caen, France
| | - Joanna Bourgine
- Normandie University, UNICAEN, Caen, France.,UCN, COMETE, Caen, France.,Inserm, U1075 COMETE, Caen, France.,Department of Pharmacology, CHU de Caen, Caen, France
| | - Véronique Lelong-Boulouard
- Normandie University, UNICAEN, Caen, France.,UCN, COMETE, Caen, France.,Inserm, U1075 COMETE, Caen, France.,Department of Pharmacology, CHU de Caen, Caen, France
| | - Laurence Lanfumey
- Université Paris Descartes, UMR S894, Paris, France.,Centre de Psychiatrie et Neurosciences, Inserm UMR 894, Paris, France
| | - Thomas Freret
- Normandie University, UNICAEN, Caen, France.,UCN, Groupe Mémoire et Plasticité comportementale (GMPc) EA 4259, Caen, 14032, France
| | - Michel Boulouard
- Normandie University, UNICAEN, Caen, France.,UCN, Groupe Mémoire et Plasticité comportementale (GMPc) EA 4259, Caen, 14032, France
| | - Eleni Paizanis
- Normandie University, UNICAEN, Caen, France.,UCN, Groupe Mémoire et Plasticité comportementale (GMPc) EA 4259, Caen, 14032, France
| |
Collapse
|
840
|
Telmisartan-mediated metabolic profile conferred brain protection in diabetic hypertensive rats as evidenced by magnetic resonance imaging, behavioral studies and histology. Eur J Pharmacol 2016; 789:88-97. [PMID: 27417654 DOI: 10.1016/j.ejphar.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and hypertension are associated with cognitive dysfunction that includes pathological changes in brain tissue. It was speculated that the beneficial hypotensive effect of telmisartan, an angiotensin receptor 1 blocker, and its unique hypoglycemic effect due to its PPARγ-activation, could ameliorate the pathological changes in the brain that accompany these diseases. We examined the effect of telmisartan on brain changes in magnetic resonance imaging (MRI) T2-weighted scans, and behavioral and histological findings in the Cohen-Rosenthal Diabetic Hypertensive (CRDH) rat. Baseline and post-treatment values with telmisartan/vehicle (3 months) of blood pressure, blood glucose levels, behavioral tests, brain MRI scanning and immunohistological staining were obtained. Telmisartan significantly lowered blood pressure and blood glucose levels; induced consistent T2 reduction in specific gray and white regions including hippocampus, corpus callosum, amygdala and cortical regions; and significantly improved performance on behavioral tasks. Immunohistological analysis of the brain revealed significant amelioration of diabetes/hypertension-induced changes in white matter regions and microglia, evidenced by preserved myelin (LBF marker), and improved microglial neuronal markers GFAP, GAP43 and Iba1 expression. In conclusion, the behavioral performance, longitudinal MRI study and histology staining revealed the protective effects of telmisartan on brain microstructure and cognitive function.
Collapse
|
841
|
Aitta-Aho T, Pappa E, Burdakov D, Apergis-Schoute J. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem 2016; 136:183-188. [PMID: 27746379 PMCID: PMC5139982 DOI: 10.1016/j.nlm.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration.
Collapse
Affiliation(s)
- Teemu Aitta-Aho
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Elpiniki Pappa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Denis Burdakov
- Division of Neurophysiology, MRC National Institute for Medical Research, London NW7 1AA, UK; MRC Centre for Developmental Neurobiology, King's College London, London WC2R 2LS, UK
| | - John Apergis-Schoute
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK; Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
842
|
Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, Zhu L, Liu TCY, Cohen RM, Zhang Q. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 2016; 49:165-182. [PMID: 27815990 DOI: 10.1016/j.neurobiolaging.2016.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/12/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022]
Abstract
Beta amyloid (Aβ) is well accepted to play a central role in the pathogenesis of Alzheimer's disease (AD). The present work evaluated the therapeutic effects of low-level laser irradiation (LLI) on Aβ-induced neurotoxicity in rat hippocampus. Aβ 1-42 was injected bilaterally to the hippocampus CA1 region of adult male rats, and 2-minute daily LLI treatment was applied transcranially after Aβ injection for 5 consecutive days. LLI treatment suppressed Aβ-induced hippocampal neurodegeneration and long-term spatial and recognition memory impairments. Molecular studies revealed that LLI treatment: (1) restored mitochondrial dynamics, by altering fission and fusion protein levels thereby suppressing Aβ-induced extensive fragmentation; (2) suppressed Aβ-induced collapse of mitochondrial membrane potential; (3) reduced oxidized mitochondrial DNA and excessive mitophagy; (4) facilitated mitochondrial homeostasis via modulation of the Bcl-2-associated X protein/B-cell lymphoma 2 ratio and of mitochondrial antioxidant expression; (5) promoted cytochrome c oxidase activity and adenosine triphosphate synthesis; (6) suppressed Aβ-induced glucose-6-phosphate dehydrogenase and nicotinamide adenine dinucleotide phosphate oxidase activity; (7) enhanced the total antioxidant capacity of hippocampal CA1 neurons, whereas reduced the oxidative damage; and (8) suppressed Aβ-induced reactive gliosis, inflammation, and tau hyperphosphorylation. Although development of AD treatments has focused on reducing cerebral Aβ levels, by the time the clinical diagnosis of AD or mild cognitive impairment is made, the brain is likely to have already been exposed to years of elevated Aβ levels with dire consequences for multiple cellular pathways. By alleviating a broad spectrum of Aβ-induced pathology that includes mitochondrial dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, and tau pathology, LLI could represent a new promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ningjun Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Md Ejaz Ahmed
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Robert M Cohen
- Department of Psychiatry and Behavioral Sciences and Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
843
|
Datta S, Samanta D, Sinha P, Chakrabarti N. Gender features and estrous cycle variations of nocturnal behavior of mice after a single exposure to light at night. Physiol Behav 2016; 164:113-22. [DOI: 10.1016/j.physbeh.2016.05.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
|
844
|
Yang K, Broussard JI, Levine AT, Jenson D, Arenkiel BR, Dani JA. Dopamine receptor activity participates in hippocampal synaptic plasticity associated with novel object recognition. Eur J Neurosci 2016; 45:138-146. [PMID: 27646422 DOI: 10.1111/ejn.13406] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/24/2023]
Abstract
Physiological and behavioral evidence supports that dopamine (DA) receptor signaling influences hippocampal function. While several recent studies examined how DA influences CA1 plasticity and learning, there are fewer studies investigating the influence of DA signaling to the dentate gyrus. The dentate gyrus receives convergent cortical input through the perforant path fiber tracts and has been conceptualized to detect novelty in spatial memory tasks. To test whether DA-receptor activity influences novelty-detection, we used a novel object recognition (NOR) task where mice remember previously presented objects as an indication of learning. Although DA innervation arises from other sources and the main DA signaling may be from those sources, our molecular approaches verified that midbrain dopaminergic fibers also sparsely innervate the dentate gyrus. During the NOR task, wild-type mice spent significantly more time investigating novel objects rather than previously observed objects. Dentate granule cells in slices cut from those mice showed an increased AMPA/NMDA-receptor current ratio indicative of potentiated synaptic transmission. Post-training injection of a D1-like receptor antagonist not only effectively blocked the preference for the novel objects, but also prevented the increased AMPA/NMDA ratio. Consistent with that finding, neither NOR learning nor the increase in the AMPA/NMDA ratio were observed in DA-receptor KO mice under the same experimental conditions. The results indicate that DA-receptor signaling contributes to the successful completion of the NOR task and to the associated synaptic plasticity of the dentate gyrus that likely contributes to the learning.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John I Broussard
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Amber T Levine
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Jenson
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
845
|
Lin D, Liu J, Kramberg L, Ruggiero A, Cottrell J, Kass IS. Early-life single-episode sevoflurane exposure impairs social behavior and cognition later in life. Brain Behav 2016; 6:e00514. [PMID: 27688943 PMCID: PMC5036436 DOI: 10.1002/brb3.514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single-episode anesthetic exposure is the most prevalent surgery-related incidence among young children in the United States. Although numerous studies have used animals to model the effects of neonatal anesthetics on behavioral changes later on in life, our understanding of the functional consequences to the developing brain in a comprehensive and clinically relevant manner is unclear. METHODS The volatile anesthetic, sevoflurane (sevo) was administered to C57BL6 postnatal day 7 (P7) mice in a 40% oxygen and 60% nitrogen gas mixture. In order to examine the effects of sevo alone on the developing brain in a clinically relevant manner, mice were exposed to an average of 2.38 ± 0.11% sevo for 2 h. No sevo (control) mice were treated in an identical manner without sevo exposure. Mice were examined for cognition and neuropsychiatric-like behavioral changes at 1-5 months of age. RESULTS Using the active place avoidance (APA) test and the novel object recognition (NOR) test, we demonstrated that P7 sevo-treated mice showed a deficit in learning and memory both during periadolescence and adulthood. We then employed a battery of neuropsychiatric-like behavioral tests to examine social interaction, communication, and repetitive behavior. Interestingly, compared to the no-sevo-treated group, sevo-treated mice showed significant reductions in the time interacting with a novel mouse (push-crawl and following), time and interaction in a chamber with a novel mouse, and time sniffing a novel social odor. CONCLUSIONS Our study established that single-episode, 2-h sevo treatment during early life impairs cognition later on in life. With this approach, we also observed neuropsychiatric-like behavior changes such as social interaction deficits in the sevo-treated mice. This study elucidated the effects of a clinically relevant single-episode sevo application, given during the neonatal period, on neurodevelopmental behavioral changes later on in life.
Collapse
Affiliation(s)
- Daisy Lin
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203; Department of Physiology and Pharmacology SUNY Downstate Medical Center 450 Clarkson Ave Brooklyn New York 11203
| | - Jinyang Liu
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203
| | - Lea Kramberg
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203
| | - Andrea Ruggiero
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203
| | - James Cottrell
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203
| | - Ira S Kass
- Anesthesiology Department SUNY Downstate Medical Center Box 6, 450 Clarkson Ave Brooklyn New York 11203; Department of Physiology and Pharmacology SUNY Downstate Medical Center 450 Clarkson Ave Brooklyn New York 11203; The Robert F. Furchgott Center for Neural and Behavioral Sciences Brooklyn New York 11203
| |
Collapse
|
846
|
Balu D, Larson JR, Schmidt JV, Wirtshafter D, Yevtodiyenko A, Leonard JP. Behavioral and physiological characterization of PKC-dependent phosphorylation in the Grin2a∆PKC mouse. Brain Res 2016; 1646:315-326. [PMID: 27317637 PMCID: PMC4976052 DOI: 10.1016/j.brainres.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Activity-dependent plasticity in NMDA receptor-containing synapses can be regulated by phosphorylation of serines and tyrosines in the C-terminal domain of the receptor subunits by various kinases. We have previously identified S1291/S1312 as important sites for PKC phosphorylation; while Y1292/Y1312 are the sites indirectly phosphorylated by PKC via Src kinase. In the oocyte expression system, mutation of those Serine sites to Alanine (that cannot be phosphorylated) in the GluN2A subunit, resulted in a decreased PKC stimulated current enhancement through the receptors compared to wild-type NMDA receptors. To investigate the behavioral and physiological significance of those PKC-mediated phosphorylation sites in vivo, the Grin2a∆PKC mouse expressing GluN2A with four mutated amino acids: S1291A, S1312A, Y1292F and Y1387F was generated using homologous recombination. The Grin2a∆PKC mice exhibit reduced anxiety in the open field test, light dark emergence test, and elevated plus maze. The mutant mice show reduced alternation in a Y maze spontaneous alternation task and a in a non-reinforced T maze alternation task. Interestingly, when the mutant mice were exposed to novel environments, there was no increase in context-induced Fos levels in hippocampal CA1 and CA3 compared to home-cage Fos levels, while the Fos increased in the WT mice in CA1, CA3 and DG. When the SC-CA1 synapses in slices from mutant mice were stimulated using a theta-burst protocol, there was no impairment in LTP. Overall, these results suggest that at least one of those PKC-mediated phosphorylation sites regulates NMDAR-mediated signaling that modulates anxiety.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John R Larson
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Jennifer V Schmidt
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - David Wirtshafter
- Department of Psychology, University of Illinois at Chicago, IL 60607, USA
| | - Aleksey Yevtodiyenko
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - John P Leonard
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA.
| |
Collapse
|
847
|
Stackman RW, Cohen SJ, Lora JC, Rios LM. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiol Learn Mem 2016; 133:118-128. [PMID: 27330015 PMCID: PMC8746693 DOI: 10.1016/j.nlm.2016.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Recognition of a previously experienced item or object depends upon the successful retrieval of memory for the object. The neural mechanisms that support object recognition memory in the mammalian brain are not well understood. The rodent hippocampus plays a well-established role in spatial memory, and we previously demonstrated that temporary inactivation of the mouse hippocampus impairs object memory, as assessed with a novel object preference (NOP) test. The present studies were designed to test some remaining issues regarding the contribution of the CA1 sub-region of the mouse dorsal hippocampus to long-term object memory. Specifically, we examined whether the retrieval of spatial memory (as assessed by the Morris water maze; MWM) and object recognition memory are differentially sensitive to inactivation of the CA1 region. The current study used pre-test local microinfusion of muscimol directly into the CA1 region of dorsal hippocampus to temporarily interrupt its function during the respective retrieval phases of both behavioral tasks, in order to compare the contribution of the CA1 to object memory and spatial memory. Histological analyses revealed that local intra-CA1 injection of muscimol diffused within, and not beyond, the CA1 region of dorsal hippocampus. The degree of memory retrieval impairment induced by muscimol was comparable in the two tasks, supporting the view that object memory and spatial memory depend similarly on the CA1 region of rodent hippocampus. Further, we confirmed that the muscimol-induced impairment of CA1 function is temporary. First, mice that exhibited impaired object memory retrieval immediately after intra-CA1 muscimol, subsequently exhibited unimpaired retrieval of object memory when tested 24h later. Secondly, a cohort of mice that exhibited impaired object memory retrieval after intra-CA1 muscimol later acquired spatial memory in the MWM comparable to that of control mice. Together, these results offer further support for the involvement of the CA1 region of mouse hippocampus in object recognition memory, and provide evidence to suggest that the NOP task is as much a test of hippocampal function as the classic MWM test.
Collapse
Affiliation(s)
- Robert W Stackman
- Department of Psychology, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA; Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Sarah J Cohen
- Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Joan C Lora
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Lisa M Rios
- Department of Psychology, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
848
|
Zou C, Crux S, Marinesco S, Montagna E, Sgobio C, Shi Y, Shi S, Zhu K, Dorostkar MM, Müller UC, Herms J. Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis. EMBO J 2016; 35:2213-2222. [PMID: 27572463 PMCID: PMC5069548 DOI: 10.15252/embj.201694085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Collapse
Affiliation(s)
- Chengyu Zou
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Sophie Crux
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| | - Stephane Marinesco
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, team TIGER and AniRA Neurochem Technological platform, Lyon, France
| | - Elena Montagna
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Carmelo Sgobio
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Yuan Shi
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Song Shi
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Kaichuan Zhu
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
849
|
Pérez-Cañamás A, Sarroca S, Melero-Jerez C, Porquet D, Sansa J, Knafo S, Esteban JA, Sanfeliu C, Ledesma MD. A diet enriched with plant sterols prevents the memory impairment induced by cholesterol loss in senescence-accelerated mice. Neurobiol Aging 2016; 48:1-12. [PMID: 27622776 DOI: 10.1016/j.neurobiolaging.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/07/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023]
Abstract
Cholesterol reduction at the neuronal plasma membrane has been related to age-dependent cognitive decline. We have used senescent-accelerated mice strain 8 (SAMP8), an animal model for aging, to examine the association between cholesterol loss and cognitive impairment and to test strategies to revert this process. We show that the hippocampus of SAMP8 mice presents reduced cholesterol levels and enhanced amount of its degrading enzyme Cyp46A1 (Cyp46) already at 6 months of age. Cholesterol loss accounts for the impaired long-term potentiation in these mice. Plant sterol (PSE)-enriched diet prevents long-term potentiation impairment and cognitive deficits in SAMP8 mice without altering cholesterol levels. PSE diet also reduces the abnormally high amyloid peptide levels in SAMP8 mice brains and restores membrane compartmentalization of presenilin1, the catalytic component of the amyloidogenic γ-secretase. These results highlight the influence of cholesterol loss in age-related cognitive decline and provide with a noninvasive strategy to counteract it. Our results suggest that PSE overtake cholesterol functions in the brain contributing to reduce deleterious consequences of cholesterol loss during aging.
Collapse
Affiliation(s)
| | - Sara Sarroca
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | | | - David Porquet
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain
| | - Joan Sansa
- Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Spain
| | - Shira Knafo
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain; Unidad de Biofísica CSIC-UPV/EHU, Campus Universidad del País Vasco, Leioa, Spain; IkerBasque, Basque Foundation for Science, Basque Country, Spain
| | - Jose A Esteban
- Centro Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona, CSIC, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | |
Collapse
|
850
|
Kerr DJ, Marsillo A, Guariglia SR, Budylin T, Sadek R, Menkes S, Chauhan A, Wen GY, McCloskey DP, Wieraszko A, Banerjee P. Aberrant hippocampal Atp8a1 levels are associated with altered synaptic strength, electrical activity, and autistic-like behavior. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1755-65. [PMID: 27287255 DOI: 10.1016/j.bbadis.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 05/06/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Abstract
Type IV ATPases are putative aminophospholipid translocases (APLTs), more commonly known as flippases. A pronounced induction of the flippase Atp8a1 was observed in post-mortem tissue homogenates from the hippocampus and temporal lobe of juvenile autistic subjects compared to age-matched controls. In order to simulate the human data, C57BL/6 mice were allowed to develop after intra-hippocampal injection of recombinant lentivirus expressing Atp8a1 at the early developmental stage of postnatal day 6 (P6). Transmission electron microscopy (TEM) analysis of the lentivirus-Atp8a1 treated (Atp8a1+) mice in adulthood revealed fewer and weaker excitatory synapses in the hippocampal CA1 region compared to mice injected with empty virus. Significant inhibition of the Schaffer collateral pathway was observed in the Atp8a1+ mice in paired-pulse recording (PPR) at 20-ms inter-stimulus interval. In the three-chambered sociability test, the Atp8a1+ mice displayed no preference for an encaged stranger mouse over a novel object, which is a characteristic autistic-like behavior. In sharp contrast, Atp8a1 (-/-) mice displayed a preference for a stranger mouse over the novel object, which is characteristic of neurotypical mouse behavior. However, similar to the Atp8a1+ mice, the Atp8a1 (-/-) mice harbored fewer and weaker excitatory synapses in CA1 compared to wild-type controls, and displayed inhibition at 20-ms inter-stimulus interval in PPR. These findings suggest that both elevated and diminished levels of Atp8a1 during early development are detrimental to brain connectivity, but only elevated Atp8a1 is associated with aberrant social behavior. Mice with augmented levels of Atp8a1 may therefore serve as a potential model in autism research.
Collapse
Affiliation(s)
- Daniel J Kerr
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Alexandra Marsillo
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Sara R Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Tatyana Budylin
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Rodina Sadek
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Silvia Menkes
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States
| | - Guang Y Wen
- Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States
| | - Daniel P McCloskey
- Doctoral Program in Psychology, CUNY Graduate Center, New York, NY 10016, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Andrzej Wieraszko
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States
| | - Probal Banerjee
- Doctoral Program in Biology (CUNY), The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Department of Chemistry, The College of Staten Island (CUNY), Staten Island, NY 10314, United States; Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, United States.
| |
Collapse
|