801
|
Chavatte N, Baré J, Lambrecht E, Van Damme I, Vaerewijck M, Sabbe K, Houf K. Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: Implications for food safety. Int J Food Microbiol 2014; 191:89-96. [DOI: 10.1016/j.ijfoodmicro.2014.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/21/2014] [Accepted: 08/24/2014] [Indexed: 12/14/2022]
|
802
|
Distribution of free-living amoebae in a treatment system of textile industrial wastewater. Exp Parasitol 2014; 145 Suppl:S34-8. [DOI: 10.1016/j.exppara.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 07/04/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
|
803
|
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666-84. [PMID: 24572015 PMCID: PMC3971594 DOI: 10.1093/gbe/evu043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
804
|
Metcalfe CJ, Casane D. Accommodating the load: The transposable element content of very large genomes. Mob Genet Elements 2014; 3:e24775. [PMID: 24616835 PMCID: PMC3943481 DOI: 10.4161/mge.24775] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 01/31/2023] Open
Abstract
Very large genomes, that is, those above 20 Gb, are rare but widely distributed throughout the eukaryotes. They are found within the diatoms, dinoflagellates, metazoans and green plants, but so far have not been found in the excavates. There is a known positive correlation between genome size and the proportion of the genome composed of transposable elements (TEs). Very large genomes may therefore be expected to be almost entirely composed of TEs. Of the large genomes examined, in the angiosperms, gymnosperms and the dinoflagellates only a small portion of the genome was identified as TEs, most of these genomes were unidentified and may be novel or diverse TEs. In the salamanders and lungfish, 25 to 47% of the genome were identifiable retrotransposons, that is, TEs that copy themselves before insertion. However, the predominant class of TEs found in the lungfish was not the same as that found in the salamanders. The little data we have at the moment suggests therefore that the diversity and abundance of TEs is variable between taxa with large genomes, similar to patterns found in taxa with smaller genomes. Based on results from the human genome, we suggest that the ‘missing’ portion of the lungfish and salamander genomes are old, highly divergent, and therefore inactive copies of TEs. The data available indicate that, unlike plants with large genomes, neither the lungfish nor the salamanders show an increased risk of extinction. Based on a slow rate of DNA loss in salamanders it has been suggested that the large salamander genome is the result of run-away genome expansion involving genome size increases via TE proliferation associated with reduced recombination rate. We know of no studies on DNA loss or recombination rates in lungfish genomes, however a similar scenario could describe the process of genome expansion in the lungfish. A series of waves of TE transposition and sequence decay would describe the pattern of TE content seen in both the lungfish and the salamanders. The lungfish and salamanders, therefore, may accommodate their large load of TEs because these TEs have accumulated gradually over a long period of time and have been subject to inactivation and decay.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- Instituto de Biociências; Universidade de São Paulo; Cidade Universitária; São Paulo, Brazil
| | - Didier Casane
- Laboratoire Evolution Génomes et Spéciation; UPR9034 CNRS; Gif-sur-Yvette, France ; Université Paris Diderot; Sorbonne Paris Cité, France
| |
Collapse
|
805
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
806
|
Abstract
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
807
|
Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem 2014; 85:51-64. [DOI: 10.1016/j.ejmech.2014.07.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
|
808
|
Xu Y, Vick-Majors T, Morgan-Kiss R, Priscu JC, Amaral-Zettler L. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica. THE BIOLOGICAL BULLETIN 2014; 227:175-190. [PMID: 25411375 DOI: 10.1086/bblv227n2p175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies.
Collapse
Affiliation(s)
- Yuan Xu
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Trista Vick-Majors
- Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717
| | | | - John C Priscu
- Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717
| | - Linda Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
809
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
810
|
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 2014; 6:a016048. [PMID: 25274701 PMCID: PMC4176009 DOI: 10.1101/cshperspect.a016048] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
811
|
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol 2014; 50:472-95. [DOI: 10.1016/j.ejop.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
812
|
Maguire F, Henriquez FL, Leonard G, Dacks JB, Brown MW, Richards TA. Complex patterns of gene fission in the eukaryotic folate biosynthesis pathway. Genome Biol Evol 2014; 6:2709-20. [PMID: 25252772 PMCID: PMC4224340 DOI: 10.1093/gbe/evu213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Shared derived genomic characters can be useful for polarizing phylogenetic relationships, for example, gene fusions have been used to identify deep-branching relationships in the eukaryotes. Here, we report the evolutionary analysis of a three-gene fusion of folB, folK, and folP, which encode enzymes that catalyze consecutive steps in de novo folate biosynthesis. The folK-folP fusion was found across the eukaryotes and a sparse collection of prokaryotes. This suggests an ancient derivation with a number of gene losses in the eukaryotes potentially as a consequence of adaptation to heterotrophic lifestyles. In contrast, the folB-folK-folP gene is specific to a mosaic collection of Amorphea taxa (a group encompassing: Amoebozoa, Apusomonadida, Breviatea, and Opisthokonta). Next, we investigated the stability of this character. We identified numerous gene losses and a total of nine gene fission events, either by break up of an open reading frame (four events identified) or loss of a component domain (five events identified). This indicates that this three gene fusion is highly labile. These data are consistent with a growing body of data indicating gene fission events occur at high relative rates. Accounting for these sources of homoplasy, our data suggest that the folB-folK-folP gene fusion was present in the last common ancestor of Amoebozoa and Opisthokonta but absent in the Metazoa including the human genome. Comparative genomic data of these genes provides an important resource for designing therapeutic strategies targeting the de novo folate biosynthesis pathway of a variety of eukaryotic pathogens such as Acanthamoeba castellanii.
Collapse
Affiliation(s)
- Finlay Maguire
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Fiona L Henriquez
- Infection and Microbiology Research Group, Institute of Biomedical and Environmental Health Research, School of Science, University of the West of Scotland, Paisley, Renfrewshire, United Kingdom
| | - Guy Leonard
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Joel B Dacks
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Thomas A Richards
- Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity
| |
Collapse
|
813
|
Plattner H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca²⁺-channels. Cell Calcium 2014; 57:203-13. [PMID: 25277862 DOI: 10.1016/j.ceca.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022]
Abstract
The Paramecium tetraurelia cell is highly organised, with regularly spaced elements pertinent to Ca(2+) signalling under epigenetic control. Vesicles serving as stationary Ca(2+) stores or undergoing trafficking contain Ca(2+)-release channels (PtCRCs) which, according to sequence and domain comparison, are related either to inositol 1,4,5-trisphosphate (InsP3) receptors (IP3R) or to ryanodine receptor-like proteins (RyR-LP) or to both, with intermediate characteristics or deviation from conventional domain structure. Six groups of such PtCRCs have been found. The ryanodine-InsP3-receptor homology (RIH) domain is not always recognisable, in contrast to the channel domain with six trans-membrane domains and the pore between transmembrane domain 5 and 6. Two CRC subtypes tested more closely, PtCRC-II and PtCRC-IV, with and without an InsP3-binding domain, reacted to InsP3 and to caffeine, respectively, and hence represent IP3Rs and RyR-LPs. IP3Rs occur in the contractile vacuole complex where they allow for stochastic constitutive Ca(2+) reflux into the cytosol. RyR-LPs are localised to cortical Ca(2+) stores; they are engaged in dense core-secretory vesicle exocytosis by Ca(2+) release, superimposed by Ca(2+)-influx via non-ciliary Ca(2+)-channels. One or two different types of PtCRCs also occur in other vesicles undergoing trafficking. Since the PtCRCs described combine different features they are considered derivatives of primitive precursors. The highly regular, epigenetically controlled design of a Paramecium cell allows it to make Ca(2+) available very locally, in a most efficient way, along predetermined trafficking pathways, including regulation of exocytosis, endocytosis, phagocytosis and recycling phenomena. The activity of cilia is also regulated by Ca(2+), yet independently from any CRCs, by de- and hyperpolarisation of the cell membrane potential.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box M625, 78457 Konstanz, Germany.
| |
Collapse
|
814
|
Boopathi T, Faria DG, Lee MD, Lee J, Chang M, Ki JS. A molecular survey of freshwater microeukaryotes in an Arctic reservoir (Svalbard, 79°N) in summer by using next-generation sequencing. Polar Biol 2014. [DOI: 10.1007/s00300-014-1576-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
815
|
Chestnut T, Anderson C, Popa R, Blaustein AR, Voytek M, Olson DH, Kirshtein J. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS One 2014; 9:e106790. [PMID: 25222122 PMCID: PMC4164359 DOI: 10.1371/journal.pone.0106790] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023] Open
Abstract
Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L(-1). The highest density observed was ∼3 million zoospores L(-1). We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free-living Bd in aquatic habitats over time.
Collapse
Affiliation(s)
- Tara Chestnut
- Oregon State University, Environmental Science Graduate Program, Corvallis, Oregon, United States of America
- US Geological Survey, Oregon Water Science Center, Portland, Oregon, United States of America
| | - Chauncey Anderson
- US Geological Survey, Oregon Water Science Center, Portland, Oregon, United States of America
| | - Radu Popa
- Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andrew R. Blaustein
- Oregon State University, Department of Integrative Biology, Corvallis, Oregon, United States of America
| | - Mary Voytek
- Astrobiology Program, National Aeronautics and Space Administration Headquarters, Washington DC, United States of America
| | - Deanna H. Olson
- US Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, United States of America
| | - Julie Kirshtein
- US Geological Survey, National Research Program, Reston, Virginia, United States of America
| |
Collapse
|
816
|
Simon M, Jardillier L, Deschamps P, Moreira D, Restoux G, Bertolino P, López-García P. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ Microbiol 2014; 17:3610-27. [PMID: 25115943 DOI: 10.1111/1462-2920.12591] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters.
Collapse
Affiliation(s)
- Marianne Simon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Ludwig Jardillier
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Gwendal Restoux
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Paola Bertolino
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, 91405, Orsay, France
| |
Collapse
|
817
|
Abstract
The root of the eukaryotic tree is a major unresolved question in evolutionary biology. A recent study marshals mitochondrial genes to place that root between the enigmatic Excavates and all other eukaryotes, providing an interesting new perspective on early eukaryotic evolution.
Collapse
Affiliation(s)
- Tom A Williams
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
818
|
Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol Phylogenet Evol 2014; 78:36-42. [DOI: 10.1016/j.ympev.2014.04.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/18/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022]
|
819
|
Findeisen P, Mühlhausen S, Dempewolf S, Hertzog J, Zietlow A, Carlomagno T, Kollmar M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 2014; 6:2274-88. [PMID: 25169981 PMCID: PMC4202323 DOI: 10.1093/gbe/evu187] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other.
Collapse
Affiliation(s)
- Peggy Findeisen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Silke Dempewolf
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jonny Hertzog
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexander Zietlow
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Teresa Carlomagno
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
820
|
Lahr DJG, Laughinghouse HD, Oliverio AM, Gao F, Katz LA. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. Bioessays 2014; 36:950-9. [PMID: 25156897 DOI: 10.1002/bies.201400056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microscopy has revealed tremendous diversity of bacterial and eukaryotic forms. Recent molecular analyses show discordance in estimates of biodiversity between morphological and molecular analyses. Moreover, phylogenetic analyses of the diversity of microbial forms reveal evidence of convergence at scales as deep as interdomain: morphologies shared between bacteria and eukaryotes. Here, we highlight examples of such discordance, focusing on exemplary lineages such as testate amoebae, ciliates, and cyanobacteria. These have long histories of morphological study, enabling deeper analyses on both the molecular and morphological sides. We discuss examples in two main categories: (i) morphologically identical (or highly similar) individuals that are genetically distinct and (ii) morphologically distinct individuals that are genetically the same. We argue that hypotheses about discordance can be tested using the concept of neutral morphologies, or more broadly neutral phenotypes, as a null hypothesis.
Collapse
Affiliation(s)
- Daniel J G Lahr
- Department of Zoology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
821
|
Fu CJ, Sheikh S, Miao W, Andersson SGE, Baldauf SL. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol 2014; 6:2240-57. [PMID: 25146648 PMCID: PMC4202320 DOI: 10.1093/gbe/evu180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida.
Collapse
Affiliation(s)
- Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
822
|
Vaerewijck MJ, Baré J, Lambrecht E, Sabbe K, Houf K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Julie Baré
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Ellen Lambrecht
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology; Dept. of Biology, Ghent Univ; Belgium
| | - Kurt Houf
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| |
Collapse
|
823
|
Chen T, Yi Z, Huang J, Lin X. Evolution of the germline actin gene in hypotrichous ciliates: multiple nonscrambled IESs at extremely conserved locations in two urostylids. J Eukaryot Microbiol 2014; 62:188-95. [PMID: 25106041 DOI: 10.1111/jeu.12158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 11/30/2022]
Abstract
In hypotrichous ciliates, macronuclear chromosomes are gene-sized, and micronuclear genes contain short, noncoding internal eliminated segments (IESs) as well as macronuclear-destined segments (MDSs). In the present study, we characterized the complete macronuclear gene and two to three types of micronuclear actin genes of two urostylid species, i.e. Pseudokeronopsis rubra and Uroleptopsis citrina. Our results show that (1) the gain/loss of IES happens frequently in the subclass Hypotrichia (formerly Stichotrichia), and high fragmentation of germline genes does not imply for gene scrambling; and (2) the micronuclear actin gene is scrambled in the order Sporadotrichida but nonscrambled in the orders Urostylida and Stichotrichida, indicating the independent evolution of MIC-actin gene patterns in different orders of hypotrichs; (3) locations of MDS-IES junctions of micronuclear actin gene in coding regions are conserved among closely related species.
Collapse
Affiliation(s)
- Tianbing Chen
- Laboratory of Protozoology, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|
824
|
Watson PM, Sorrell SC, Brown MW. Ptolemeba
n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba. J Eukaryot Microbiol 2014; 61:611-9. [DOI: 10.1111/jeu.12139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Pamela M. Watson
- Department of Biological Sciences; Mississippi State University; Mississippi State Mississippi 39762
| | - Stephanie C. Sorrell
- Department of Biological Sciences; Mississippi State University; Mississippi State Mississippi 39762
| | - Matthew W. Brown
- Department of Biological Sciences; Mississippi State University; Mississippi State Mississippi 39762
- Institute for Genomics, Biocomputing & Biotechnology; Mississippi State University; Mississippi State Mississippi 39762
| |
Collapse
|
825
|
Hindle MM, Martin SF, Noordally ZB, van Ooijen G, Barrios-Llerena ME, Simpson TI, Le Bihan T, Millar AJ. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species. BMC Genomics 2014; 15:640. [PMID: 25085202 PMCID: PMC4143559 DOI: 10.1186/1471-2164-15-640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. RESULTS Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. CONCLUSIONS We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, UK.
| |
Collapse
|
826
|
Pánek T, Simpson AG, Hampl V, Čepička I. Creneis carolina gen. et sp. nov. (Heterolobosea), a Novel Marine Anaerobic Protist with Strikingly Derived Morphology and Life Cycle. Protist 2014; 165:542-67. [DOI: 10.1016/j.protis.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 11/29/2022]
|
827
|
Frenkel J, Vyverman W, Pohnert G. Pheromone signaling during sexual reproduction in algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:632-44. [PMID: 24597605 DOI: 10.1111/tpj.12496] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 05/26/2023]
Abstract
Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.
Collapse
Affiliation(s)
- Johannes Frenkel
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743, Jena, Germany
| | | | | |
Collapse
|
828
|
Focusing on Genera to Improve Species Identification: Revised Systematics of the Ciliate Spirostomum. Protist 2014; 165:527-41. [DOI: 10.1016/j.protis.2014.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
|
829
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
830
|
Smith DR, Jackson CJ, Reyes-Prieto A. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida. Mol Phylogenet Evol 2014; 79:380-4. [PMID: 25017510 DOI: 10.1016/j.ympev.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
A lot is known about the evolution and architecture of plastid, mitochondrial, and nuclear genomes, but surprisingly little is known about their relative rates of mutation. Most available relative-rate data come from seed plants, which, with few exceptions, have a mitochondrial mutation rate that is lower than those of the plastid and nucleus. But new findings from diverse plastid-bearing lineages have shown that for some eukaryotes the mitochondrial mutation rate is an order of magnitude greater than those of the plastid and nucleus. Here, we explore for the first time relative rates of mutation within the Glaucophyta-one of three main lineages that make up the Archaeplastida (or Plantae sensu lato). Nucleotide substitution analyses from distinct isolates of the unicellular glaucophyte Cyanophora paradoxa reveal 4-5-fold lower rates of mutation in the plastid and nucleus than the mitochondrion, which is similar to the mutational pattern observed in red algae and haptophytes, but opposite to that of seed plants. These data, together with data from previous reports, suggest that for much of the known photosynthetic eukaryotic diversity, plastid DNA mutations occur less frequently than those in mitochondrial DNA.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada.
| | - Christopher J Jackson
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; Integrated Microbiology Program, Canadian Institute for Advanced Research, Canada
| |
Collapse
|
831
|
Evolutionary mechanisms for establishing eukaryotic cellular complexity. Trends Cell Biol 2014; 24:435-42. [DOI: 10.1016/j.tcb.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 01/20/2023]
|
832
|
Chong J, Jackson C, Kim JI, Yoon HS, Reyes-Prieto A. Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species. Mol Phylogenet Evol 2014; 76:181-8. [DOI: 10.1016/j.ympev.2014.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
833
|
Yang Y, Matsuzaki M, Takahashi F, Qu L, Nozaki H. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLoS One 2014; 9:e101158. [PMID: 24972019 PMCID: PMC4074131 DOI: 10.1371/journal.pone.0101158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022] Open
Abstract
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the “green” lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of “red” genes in their nuclear genomes. To elucidate the origin of such “red” genes in chlorarachniophyte nuclear genomes, we carried out exhaustive single-gene phylogenetic analyses, including two operational taxonomic units (OTUs) that represent two divergent sister lineages of the Chlorarachniophyta, Amorphochlora amoeboformis ( = Lotharella amoeboformis; based on RNA sequences newly determined here) and Bigelowiella natans (based on the published genome sequence). We identified 10 genes of cyanobacterial origin, phylogenetic analysis of which showed the chlorarachniophytes to branch with the red lineage (red algae and/or red algal secondary or tertiary plastid-containing eukaryotes). Of the 10 genes, 7 demonstrated robust monophyly of the two chlorarachniophyte OTUs. Thus, the common ancestor of the extant chlorarachniophytes likely experienced multiple horizontal gene transfers from the red lineage. Because 4 of the 10 genes are obviously photosynthesis- and/or plastid-related, and almost all of the eukaryotic OTUs in the 10 trees possess plastids, such red genes most likely originated directly from photosynthetic eukaryotes. This situation could be explained by a possible cryptic endosymbiosis of a red algal plastid before the secondary endosymbiosis of the green algal plastid, or a long-term feeding on a single (or multiple closely related) red algal plastid-containing eukaryote(s) after the green secondary endosymbiosis.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Fumio Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; JST, PRESTO, Kawaguchi, Saitama, Japan
| | - Lei Qu
- School of Computer Science, Fudan University, Shanghai, P. R. China
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
834
|
Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol 2014; 23:3341-55. [DOI: 10.1111/mec.12819] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Guillaume Lentendu
- Plant Physiology; Institute of Biology; University of Leipzig; Johannisallee 21-23 Leipzig 04103 Germany
- Molecular Evolution and Animal Systematics; Institute of Biology; University of Leipzig; Talstraße 33 Leipzig 04103 Germany
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
| | - Tesfaye Wubet
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology; UFZ - Helmholtz Centre for Environmental Research; Permoserstraße 15 Leipzig 04318 Germany
| | - Christian Wilhelm
- Plant Physiology; Institute of Biology; University of Leipzig; Johannisallee 21-23 Leipzig 04103 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - François Buscot
- Department of Soil Ecology; UFZ - Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 Halle/Saale 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| | - Martin Schlegel
- Molecular Evolution and Animal Systematics; Institute of Biology; University of Leipzig; Talstraße 33 Leipzig 04103 Germany
- German Centre for Integrative Biodiversity Research (iDiv); Halle-Jena-Leipzig; Deutscher Platz 5e Leipzig 04103 Germany
| |
Collapse
|
835
|
Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C, Kodira C, Mohiuddin M, Brunelle J, Driscoll M, Fierer N, Gilbert JA, Knight R. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front Microbiol 2014; 5:298. [PMID: 24995004 PMCID: PMC4063188 DOI: 10.3389/fmicb.2014.00298] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across environments.
Collapse
Affiliation(s)
| | - William A Walters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, CO, USA
| | - Christian L Lauber
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| | - Jose C Clemente
- Biofrontiers Institute, University of Colorado Boulder, CO, USA
| | | | | | | | | | | | | | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA ; Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO, USA
| | - Jack A Gilbert
- Department of Ecology and Evolution, University of Chicago Chicago, IL, USA ; Institute of Genomic and Systems Biology, Argonne National Laboratory Argonne, IL, USA
| | - Rob Knight
- Biofrontiers Institute, University of Colorado Boulder, CO, USA ; Howard Hughes Medical Institute, University of Colorado Boulder, CO, USA
| |
Collapse
|
836
|
Maritz JM, Land KM, Carlton JM, Hirt RP. What is the importance of zoonotic trichomonads for human health? Trends Parasitol 2014; 30:333-41. [PMID: 24951156 PMCID: PMC7106558 DOI: 10.1016/j.pt.2014.05.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 12/17/2022]
Abstract
Trichomonads represent emerging species of medical and veterinary importance. Clinical and molecular evidence suggest a zoonotic potential for trichomonads. Close relationship between avian and human trichomonads revealed in outbreaks.
Trichomonads are common parasites of many vertebrate and invertebrate species, with four species classically recognized as human parasites: Dientamoeba fragilis, Pentatrichomonas hominis, Trichomonas vaginalis, and Trichomonas tenax. The latter two species are considered human-specific; by contrast, D. fragilis and P. hominis have been isolated from domestic and farm mammals, demonstrating a wide host range and potential zoonotic origin. Several new studies have highlighted the zoonotic dimension of trichomonads. First, species typically known to infect birds and domestic mammals have been identified in human clinical samples. Second, several phylogenetic analyses have identified animal-derived trichomonads as close sister taxa of the two human-specific species. It is our opinion, therefore, that these observations prompt further investigation into the importance of zoonotic trichomonads for human health.
Collapse
Affiliation(s)
- Julia M Maritz
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
837
|
Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa). Protist 2014; 165:493-511. [PMID: 24998785 DOI: 10.1016/j.protis.2014.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/21/2022]
Abstract
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellaeRay 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans.
Collapse
|
838
|
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 2014; 195:115-22. [PMID: 24893339 DOI: 10.1016/j.molbiopara.2014.05.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 12/01/2022]
Abstract
Kinetoplastid protists offer a unique opportunity for studying the evolution of parasitism. While all their close relatives are either photo- or phagotrophic, a number of kinetoplastid species are facultative or obligatory parasites, supporting a hypothesis that parasitism has emerged within this group of flagellates. In this review we discuss origin and evolution of parasitism in bodonids and trypanosomatids and specific adaptations allowing these protozoa to co-exist with their hosts. We also explore the limits of biodiversity of monoxenous (one host) trypanosomatids and some features distinguishing them from their dixenous (two hosts) relatives.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| | - Tomáš Skalický
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
839
|
Kudryavtsev A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur J Protistol 2014; 50:258-69. [DOI: 10.1016/j.ejop.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
840
|
Gleason FH, Lilje O, Marano AV, Sime-Ngando T, Sullivan BK, Kirchmair M, Neuhauser S. Ecological functions of zoosporic hyperparasites. Front Microbiol 2014; 5:244. [PMID: 24904557 PMCID: PMC4035849 DOI: 10.3389/fmicb.2014.00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
Zoosporic parasites have received increased attention during the last years, but it is still largely unnoted that these parasites can themselves be infected by hyperparasites. Some members of the Chytridiomycota, Blastocladiomycota, Cryptomycota, Hyphochytriomycota, Labyrinthulomycota, Oomycota, and Phytomyxea are hyperparasites of zoosporic hosts. Because of sometimes complex tripartite interactions between hyperparasite, their parasite-host, and the primary host, hyperparasites can be difficult to detect and monitor. Some of these hyperparasites use similar mechanisms as their parasite-hosts to find and infect their target and to access food resources. The life cycle of zoosporic hyperparasites is usually shorter than the life cycle of their hosts, so hyperparasites may accelerate the turnaround times of nutrients within the ecosystem. Hyperparasites may increase the complexity of food webs and play significant roles in regulating population sizes and population dynamics of their hosts. We suggest that hyperparasites lengthen food chains but can also play a role in conducting or suppressing diseases of animals, plants, or algae. Hyperparasites can significantly impact ecosystems in various ways, therefore it is important to increase our understanding about these cryptic and diverse organisms.
Collapse
Affiliation(s)
- Frank H Gleason
- School of Biological Sciences A12, University of Sydney Sydney, NSW, Australia
| | - Osu Lilje
- School of Biological Sciences A12, University of Sydney Sydney, NSW, Australia
| | - Agostina V Marano
- Núcleo de Pesquisa em Micologia, Instituto de Botânica São Paulo, Brazil
| | - Télesphore Sime-Ngando
- Laboratoire Microorganismes: Génome and Environnement, Université Blaise Pascal, Clermont-Ferrand II Aubière, France
| | | | - Martin Kirchmair
- Institute of Microbiology, Leopold Franzens University Innsbruck Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Leopold Franzens University Innsbruck Innsbruck, Austria ; Microbial Diversity and Genomics, Department of Life Sciences, Natural History Museum London, UK
| |
Collapse
|
841
|
Tekle YI. DNA barcoding in amoebozoa and challenges: the example of Cochliopodium. Protist 2014; 165:473-84. [PMID: 24945930 DOI: 10.1016/j.protis.2014.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 11/29/2022]
Abstract
The diversity of microbial eukaryotes in general and amoeboid lineages in particular is poorly documented. Even though amoeboid lineages are among the most abundant microbes, taxonomic progress in the group has been hindered by the limitations of traditional taxonomy and technical difficultly in studying them. Studies using molecular approaches such as DNA barcoding with cytochrome oxidase I (COI) gene are slowly trickling in for Amoebozoa, and they hopefully will aid in unveiling the true diversity of the group. In this study a retrospective approach is used to test the utility of COI gene in a scale-bearing amoeba, Cochliopodium, which is morphologically well defined. A total of 126 COI sequences and 62 unique haplotypes were generated from 9 Cochliopodium species. Extensive analyses exploring effects of sequence evolution models and length of sequence on genetic diversity computations were conducted. The findings show that COI is a promising marker for Cochliopodium, except in one case where it failed to delineate two morphologically well-defined cochliopodiums. Two species delimitation approaches also recognize 8 genetic lineages out of 9 species examined. The taxonomic implications of these findings and factors that may confound COI as a barcode marker in Cochliopodium and other amoebae are discussed.
Collapse
Affiliation(s)
- Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
842
|
Matari NH, Blair JE. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models. BMC Evol Biol 2014; 14:101. [PMID: 24884411 PMCID: PMC4030286 DOI: 10.1186/1471-2148-14-101] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular clock methodologies allow for the estimation of divergence times across a variety of organisms; this can be particularly useful for groups lacking robust fossil histories, such as microbial eukaryotes with few distinguishing morphological traits. Here we have used a Bayesian molecular clock method under three distinct clock models to estimate divergence times within oomycetes, a group of fungal-like eukaryotes that are ubiquitous in the environment and include a number of devastating pathogenic species. The earliest fossil evidence for oomycetes comes from the Lower Devonian (~400 Ma), however the taxonomic affinities of these fossils are unclear. RESULTS Complete genome sequences were used to identify orthologous proteins among oomycetes, diatoms, and a brown alga, with a focus on conserved regulators of gene expression such as DNA and histone modifiers and transcription factors. Our molecular clock estimates place the origin of oomycetes by at least the mid-Paleozoic (~430-400 Ma), with the divergence between two major lineages, the peronosporaleans and saprolegnialeans, in the early Mesozoic (~225-190 Ma). Divergence times estimated under the three clock models were similar, although only the strict and random local clock models produced reliable estimates for most parameters. CONCLUSIONS Our molecular timescale suggests that modern pathogenic oomycetes diverged well after the origin of their respective hosts, indicating that environmental conditions or perhaps horizontal gene transfer events, rather than host availability, may have driven lineage diversification. Our findings also suggest that the last common ancestor of oomycetes possessed a full complement of eukaryotic regulatory proteins, including those involved in histone modification, RNA interference, and tRNA and rRNA methylation; interestingly no match to canonical DNA methyltransferases could be identified in the oomycete genomes studied here.
Collapse
Affiliation(s)
| | - Jaime E Blair
- Department of Biology, Franklin & Marshall College, Lancaster, PA, USA.
| |
Collapse
|
843
|
Wei Y, Wang HT, Zhai Y, Russell P, Du LL. Mdb1, a fission yeast homolog of human MDC1, modulates DNA damage response and mitotic spindle function. PLoS One 2014; 9:e97028. [PMID: 24806815 PMCID: PMC4013092 DOI: 10.1371/journal.pone.0097028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
During eukaryotic DNA damage response (DDR), one of the earliest events is the phosphorylation of the C-terminal SQ motif of histone H2AX (H2A in yeasts). In human cells, phosphorylated H2AX (γH2AX) is recognized by MDC1, which serves as a binding platform for the accumulation of a myriad of DDR factors on chromatin regions surrounding DNA lesions. Despite its important role in DDR, no homolog of MDC1 outside of metazoans has been described. Here, we report the characterization of Mdb1, a protein from the fission yeast Schizosaccharomyces pombe, which shares significant sequence homology with human MDC1 in their C-terminal tandem BRCT (tBRCT) domains. We show that in vitro, recombinant Mdb1 protein binds a phosphorylated H2A (γH2A) peptide, and the phospho-specific binding requires two conserved phospho-binding residues in the tBRCT domain of Mdb1. In vivo, Mdb1 forms nuclear foci at DNA double strand breaks (DSBs) induced by the HO endonuclease and ionizing radiation (IR). IR-induced Mdb1 focus formation depends on γH2A and the phospho-binding residues of Mdb1. Deleting the mdb1 gene does not overtly affect DNA damage sensitivity in a wild type background, but alters the DNA damage sensitivity of cells lacking another γH2A binder Crb2. Overexpression of Mdb1 causes severe DNA damage sensitivity in a manner that requires the interaction between Mdb1 and γH2A. During mitosis, Mdb1 localizes to spindles and concentrates at spindle midzones at late mitosis. The spindle midzone localization of Mdb1 requires its phospho-binding residues, but is independent of γH2A. Loss of Mdb1 or mutating its phospho-binding residues makes cells more resistant to the microtubule depolymerizing drug thiabendazole. We propose that Mdb1 performs dual roles in DDR and mitotic spindle regulation.
Collapse
Affiliation(s)
- Yi Wei
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Yonggong Zhai
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Paul Russell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (PR); (LLD)
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- * E-mail: (PR); (LLD)
| |
Collapse
|
844
|
Radek R, Strassert JF, Krüger J, Meuser K, Scheffrahn RH, Brune A. Phylogeny and Ultrastructure of Oxymonas jouteli, a Rostellum-free Species, and Opisthomitus longiflagellatus sp. nov., Oxymonadid Flagellates from the Gut of Neotermes jouteli. Protist 2014; 165:384-99. [DOI: 10.1016/j.protis.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 11/24/2022]
|
845
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
846
|
Chi J, Parrow MW, Dunthorn M. Cryptic Sex in Symbiodinium
(Alveolata, Dinoflagellata) is Supported by an Inventory of Meiotic Genes. J Eukaryot Microbiol 2014; 61:322-7. [DOI: 10.1111/jeu.12110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jingyun Chi
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| | - Matthew W. Parrow
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Boulevard Charlotte North Carolina 28223 USA
| | - Micah Dunthorn
- Department of Ecology; University of Kaiserslautern; Erwin Schrödinger Strasse 14 D-67663 Kaiserslautern Germany
| |
Collapse
|
847
|
Fiz-Palacios O, Leander BS, Heger TJ. Old lineages in a new ecosystem: diversification of arcellinid amoebae (Amoebozoa) and peatland mosses. PLoS One 2014; 9:e95238. [PMID: 24762929 PMCID: PMC3999201 DOI: 10.1371/journal.pone.0095238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.
Collapse
Affiliation(s)
- Omar Fiz-Palacios
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala, Sweden
- * E-mail:
| | - Brian S. Leander
- Biodiversity Research Center, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada
| | - Thierry J. Heger
- Biodiversity Research Center, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
848
|
Tikhonenkov DV, Janouškovec J, Mylnikov AP, Mikhailov KV, Simdyanov TG, Aleoshin VV, Keeling PJ. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS One 2014; 9:e95467. [PMID: 24740116 PMCID: PMC3989336 DOI: 10.1371/journal.pone.0095467] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022] Open
Abstract
The evolutionary and ecological importance of predatory flagellates are too often overlooked. This is not only a gap in our understanding of microbial diversity, but also impacts how we interpret their better-studied relatives. A prime example of these problems is found in the alveolates. All well-studied species belong to three large clades (apicomplexans, dinoflagellates, and ciliates), but the predatory colponemid flagellates are also alveolates that are rare in nature and seldom cultured, but potentially important to our understanding of alveolate evolution. Recently we reported the first cultivation and molecular analysis of several colponemid-like organisms representing two novel clades in molecular trees. Here we provide ultrastructural analysis and formal species descriptions for both new species, Colponema vietnamica n. sp. and Acavomonas peruviana n. gen. n. sp. Morphological and feeding characteristics concur with molecular data that both species are distinct members of alveolates, with Acavomonas lacking the longitudinal phagocytotic groove, a defining feature of Colponema. Based on ultrastructure and molecular phylogenies, which both provide concrete rationale for a taxonomic reclassification of Alveolata, we establish the new phyla Colponemidia nom. nov. for the genus Colponema and its close relatives, and Acavomonidia nom. nov. for the genus Acavomonas and its close relatives. The morphological data presented here suggests that colponemids are central to our understanding of early alveolate evolution, and suggest they also retain features of the common ancestor of all eukaryotes.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Provence, Russia
| | - Jan Janouškovec
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander P. Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Provence, Russia
| | - Kirill V. Mikhailov
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir V. Aleoshin
- Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
849
|
Genitsaris S, Kormas KA, Christaki U, Monchy S, Moustaka-Gouni M. Molecular diversity reveals previously undetected air-dispersed protist colonists in a Mediterranean area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 478:70-79. [PMID: 24530586 DOI: 10.1016/j.scitotenv.2014.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
The molecular diversity of air-dispersed protists was examined through the 18S rRNA gene clone library construction in air samples and samples from experimental water containers passively collecting air-dispersed microorganisms, from July 2007 till October 2008 in three different sites of Northern Greece. The majority of the samplings took place in an urban industrialized coastal city (Thessaloniki). In all the samples, a total of 29 unique phylotypes were detected belonging to 10 known major taxonomic groups. The most abundant phylotypes were affiliated to known taxa of Ciliophora and Chlorophyceae, commonly found in various habitats. Additionally, various previously unnoticed and under-studied taxa, such as Bicosoecida, Oomycetes and Labyrinthulomycetes, were detected. These taxa are potentially important in ecological processes, through dispersal and colonization of various habitats. Multivariate statistical analysis associated the most abundant phylotypes with rainfall, suggesting that rain is a favorable means for reposition of air-dispersed protists. This is the first study investigating the molecular diversity of air-dispersed protists, including algae and heterotrophic protists.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Université du Littoral Côte d'Opale, ULCO, Laboratoire d' Océanologie et Géoscience, LOG, UMR CNRS 8187, 32 av. Foch, F-62930 Wimereux, France
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | - Urania Christaki
- Université du Littoral Côte d'Opale, ULCO, Laboratoire d' Océanologie et Géoscience, LOG, UMR CNRS 8187, 32 av. Foch, F-62930 Wimereux, France
| | - Sebastien Monchy
- Université du Littoral Côte d'Opale, ULCO, Laboratoire d' Océanologie et Géoscience, LOG, UMR CNRS 8187, 32 av. Foch, F-62930 Wimereux, France
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| |
Collapse
|
850
|
del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol 2014; 29:252-9. [PMID: 24726347 PMCID: PMC4342545 DOI: 10.1016/j.tree.2014.03.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes.
Collapse
Affiliation(s)
- Javier del Campo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | - Ramon Massana
- Institut de Ciències del Mar, CSIC, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|