801
|
Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res 2018; 83:345-355. [PMID: 28922350 DOI: 10.1038/pr.2017.233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Cell-based therapies hold significant promise for infants at risk for cerebral palsy (CP) from perinatal brain injury (PBI). PBI leading to CP results from multifaceted damage to neural cells. Complex developing neural networks are injured by neural cell damage plus unique perturbations in cell signaling. Given that cell-based therapies can simultaneously repair multiple injured neural components during critical neurodevelopmental windows, these interventions potentially offer efficacy for patients with CP. Currently, the use of cell-based interventions in infants at risk for CP is limited by critical gaps in knowledge. In this review, we will highlight key questions facing the field, including: Who are optimal candidates for treatment? What are the goals of therapeutic interventions? What are the best strategies for agent delivery, including timing, dosage, location, and type? And, how are short- and long-term efficacy reliably tracked? Challenges unique to treating PBI with cell-based therapies, and lessons learned from cell-based therapies in closely related neurological disorders in the mature central nervous system, will be reviewed. Our goal is to update pediatric specialists who may be counseling families about the current state of the field. Finally, we will evaluate how rigor can be increased in the field to ensure the safety and best interests of this vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Joseph Scafidi
- Department of Neurology, Children's National Health System, Washington, DC
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
802
|
Bechter K. Encephalitis, Mild Encephalitis, Neuroprogression, or Encephalopathy-Not Merely a Question of Terminology. Front Psychiatry 2018; 9:782. [PMID: 30787887 PMCID: PMC6372546 DOI: 10.3389/fpsyt.2018.00782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Psychoneuroimmunology research has presented emerging evidence of the involvement of inflammatory and immune mechanisms in the pathogenesis of severe mental disorders. In this context, new terms with increasing clinical relevance have been proposed, challenging the existing terms, and requiring consensus definitions of the new ones. Method: From a perspective of longstanding personal involvement in clinical settings and research in psychoneuroimmunology, the new and the existing terms are critically reconsidered. Results: Meningoencephalitis and encephalitis are comparably well defined clinical terms in neuropsychiatry, although in the individual case approach diagnosis can be difficult, for example in some cases of encephalitis that are described with normal cerebrospinal fluid findings, or often in chronic encephalitis. Encephalopathy is also a widely accepted term, however, with a surprisingly broad meaning with regard to the assigned underlying pathophysiology, ranging from one-hit traumatic encephalopathy to inflammatory encephalopathy, the latter term addressing a type of brain dysfunction secondary to acute systemic inflammation without proven brain autochthonus inflammation (neuroinflammation). However, this latter assumption and term may be wrong as neuroinflammation is difficult to prove in vivo. With emerging insights into prevailing inflammatory and neuroinflammatory mechanisms that are involved in the pathogenesis of severe mental disorders, the interdependent aspects of sensitive assessment and potential clinical relevance of mild neuroinflammation are becoming more apparent and of increasing clinical interest. The new terms "mild encephalitis," "parainflammation," and "neuroprogression" show considerable overlap in addition to gaps and hardly defined borders. However, details are hard to discuss as available studies use many biomarkers, but most of these are done without an established categorical attribution to exclusive terms. Most important, the three new concepts (neruoprogression, parainflammation, and mild encephalitis) are not mutually exclusive, even at the individual case level, and therefore will require state-related individual assessment approaches beyond large confirmatory studies. Conclusion: The newly proposed terms of mild encephalitis, parainflammation, and neuroprogression have an emerging clinical relevance, but respective borders, gaps and overlap in between them remain unclear, and these concepts may even be seen as complementary. Categorical delineation of the new and reconsideration of the existing terms with respect to individualized psychiatric treatment is required for better clinical use, eventually requiring a consensus approach. Here, a critique based on available data and a focus on clinical perspective was outlined, which may help to enhance fruitful discussion. The idea followed here is in line with pillar number six as proposed for the Research Diagnostic Domains, i.e., to provide and follow new concepts in psychiatric research.
Collapse
Affiliation(s)
- Karl Bechter
- Department Psychiatry and Psychotherapy II, Bezirkskrankenhaus Günzburg, Ulm University, Ulm, Germany
| |
Collapse
|
803
|
Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D. Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K + Channel THIK-1. Neuron 2017; 97:299-312.e6. [PMID: 29290552 PMCID: PMC5783715 DOI: 10.1016/j.neuron.2017.12.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/06/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Microglia exhibit two modes of motility: they constantly extend and retract their processes to survey the brain, but they also send out targeted processes to envelop sites of tissue damage. We now show that these motility modes differ mechanistically. We identify the two-pore domain channel THIK-1 as the main K+ channel expressed in microglia in situ. THIK-1 is tonically active, and its activity is potentiated by P2Y12 receptors. Inhibiting THIK-1 function pharmacologically or by gene knockout depolarizes microglia, which decreases microglial ramification and thus reduces surveillance, whereas blocking P2Y12 receptors does not affect membrane potential, ramification, or surveillance. In contrast, process outgrowth to damaged tissue requires P2Y12 receptor activation but is unaffected by blocking THIK-1. Block of THIK-1 function also inhibits release of the pro-inflammatory cytokine interleukin-1β from activated microglia, consistent with K+ loss being needed for inflammasome assembly. Thus, microglial immune surveillance and cytokine release require THIK-1 channel activity. The two-pore domain channel THIK-1 is the main K+ channel in “resting” microglia Tonic activity of THIK-1 maintains the microglial resting potential Blocking THIK-1 reduces microglial ramification, surveillance, and IL-1β release Surveillance depends on THIK-1, not P2Y12; chemotaxis depends on P2Y12, not THIK-1
Collapse
Affiliation(s)
- Christian Madry
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany.
| | - Vasiliki Kyrargyri
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - I Lorena Arancibia-Cárcamo
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renaud Jolivet
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; CERN and Département de physique nucléaire et corpusculaire, University of Geneva, 1211 Geneva 4, Switzerland
| | - Shinichi Kohsaka
- National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, 434D Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - David Attwell
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
804
|
Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, Blecher R, Ulas T, Squarzoni P, Hoeffel G, Coulpier F, Siopi E, David FS, Scholz C, Shihui F, Lum J, Amoyo AA, Larbi A, Poidinger M, Buttgereit A, Lledo PM, Greter M, Chan JKY, Amit I, Beyer M, Schultze JL, Schlitzer A, Pettersson S, Ginhoux F, Garel S. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2017; 172:500-516.e16. [PMID: 29275859 PMCID: PMC5786503 DOI: 10.1016/j.cell.2017.11.042] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease. Microglia undergo sequential phases of differentiation during development The maternal microbiome influences microglial properties during prenatal stages The absence of the microbiome has a sex- and time-specific impact on microglia Microbiome depletions have acute and long-term effects on microglial properties
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Pauline Grisel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Ronnie Blecher
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Thomas Ulas
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Paola Squarzoni
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Guillaume Hoeffel
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille, France
| | - Fanny Coulpier
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Eleni Siopi
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Friederike Sophie David
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Claus Scholz
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | | | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Anne Buttgereit
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Pierre-Marie Lledo
- Institut Pasteur, Unité Perception et Mémoire, CNRS, UMR 3571, F-75015 Paris, France
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Joachim Ludwig Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform of Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany
| | - Andreas Schlitzer
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Myeloid Cell Biology, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Sven Pettersson
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore.
| | - Sonia Garel
- Institut de Biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
805
|
Domowicz M, Wadlington NL, Henry JG, Diaz K, Munoz MJ, Schwartz NB. Glial cell responses in a murine multifactorial perinatal brain injury model. Brain Res 2017; 1681:52-63. [PMID: 29274879 DOI: 10.1016/j.brainres.2017.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/18/2022]
Abstract
The impact of traumatic brain injury during the perinatal period, which coincides with glial cell (astrocyte and oligodendrocyte) maturation was assessed to determine whether a second insult, e.g., increased inflammation due to remote bacterial exposure, exacerbates the initial injury's effects, possibly eliciting longer-term brain damage. Thus, a murine multifactorial injury model incorporating both mechanisms consisting of perinatal penetrating traumatic brain injury, with or without intraperitoneal injection of lipopolysaccharide (LPS), an analog of remote pathogen exposure has been developed. Four days after injury, gene expression changes for different cell markers were assessed using mRNA in situ hybridization (ISH) and qPCR. Astrocytic marker mRNA levels increased in the stab-alone and stab-plus-LPS treated animals indicating reactive gliosis. Activated microglial/macrophage marker levels, increased in the ipsilateral sides of stab and stab-plus LPS animals by P10, but the differences resolved by P15. Ectopic expression of glial precursor and neural stem cell markers within the cortical injury site was observed by ISH, suggesting that existing precursors and neural stem cells migrate into the injured areas to replace the cells lost in the injury process. Furthermore, single exposure to LPS concomitant with acute stab injury affected the oligodendrocyte population in both the injured and contralateral uninjured side, indicating that after compromise of the blood-brain barrier integrity, oligodendrocytes become even more susceptible to inflammatory injury. This multifactorial approach should lead to a better understanding of the pathogenic sequelae observed as a consequence of perinatal brain insult/injury, caused by combinations of trauma, intrauterine infection, hypoxia and/or ischemia in humans.
Collapse
Affiliation(s)
- Miriam Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Natasha L Wadlington
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Judith G Henry
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Kasandra Diaz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Miranda J Munoz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Nancy B Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, USA; Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
806
|
Eggen BJL, Boddeke EWGM, Kooistra SM. Regulation of Microglia Identity from an Epigenetic and Transcriptomic Point of View. Neuroscience 2017; 405:3-13. [PMID: 29247774 DOI: 10.1016/j.neuroscience.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
Microglia have long been recognized as the endogenous innate immune elements in the central nervous system (CNS) parenchyma. Besides fulfilling local immune-related functions, they provide cross-talk between the CNS and the immune system at large. In the adult CNS, microglia are involved in maintaining brain homeostasis, modulating synaptic transmission and clearance of apoptotic cells. During embryonic development, microglia are responsible for the removal of supernumerary synapses and neurons, and neuronal network formation. The full scale of their potential abilities has been highlighted by improvements in microglia isolation methods, the development of genetically tagged mouse models, advanced imaging technologies and the application of next-generation sequencing in recent years. Genome-wide expression analysis of relatively pure microglia populations from both mouse and human CNS tissues has thereby greatly contributed to our knowledge of their biology; what defines them under homeostatic conditions and how microglia respond to processes like aging and CNS disease? How and to what degree beneficial functions of microglia can be restored in the aged or diseased brain will be the key issue to be addressed in future research.
Collapse
Affiliation(s)
- Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Erik W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Susanne M Kooistra
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
807
|
Drago F, Lombardi M, Prada I, Gabrielli M, Joshi P, Cojoc D, Franck J, Fournier I, Vizioli J, Verderio C. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front Pharmacol 2017; 8:910. [PMID: 29321741 PMCID: PMC5733563 DOI: 10.3389/fphar.2017.00910] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs), which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs) propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012). However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.
Collapse
Affiliation(s)
- Francesco Drago
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.,Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | - Pooja Joshi
- Institute of Neuroscience (CNR), Milan, Italy
| | - Dan Cojoc
- Institute of Materials (CNR), Trieste, Italy
| | - Julien Franck
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Jacopo Vizioli
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Claudia Verderio
- IRCCS Humanitas, Rozzano, Italy.,Institute of Neuroscience (CNR), Milan, Italy
| |
Collapse
|
808
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|
809
|
Shigemoto-Mogami Y, Sato K. [Microglia and cellular differentiation - possibility of microglia as drug discovery target]. Nihon Yakurigaku Zasshi 2017; 150:268-274. [PMID: 29225288 DOI: 10.1254/fpj.150.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
810
|
Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017; 159:50-68. [PMID: 29111451 PMCID: PMC5831511 DOI: 10.1016/j.pneurobio.2017.10.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
Abstract
Perinatal hypoxia-ischemia remains the primary cause of acute neonatal brain injury, leading to a high mortality rate and long-term neurological deficits, such as behavioral, social, attentional, cognitive and functional motor deficits. An ever-increasing body of evidence shows that the immune response to acute cerebral hypoxia-ischemia is a major contributor to the pathophysiology of neonatal brain injury. Hypoxia-ischemia provokes an intravascular inflammatory cascade that is further augmented by the activation of resident immune cells and the cerebral infiltration of peripheral immune cells response to cellular damages in the brain parenchyma. This prolonged and/or inappropriate neuroinflammation leads to secondary brain tissue injury. Yet, the long-term effects of immune activation, especially the adaptive immune response, on the hypoxic-ischemic brain still remain unclear. The focus of this review is to summarize recent advances in the understanding of post-hypoxic-ischemic neuroinflammation triggered by the innate and adaptive immune responses and to discuss how these mechanisms modulate the brain vulnerability to injury. A greater understanding of the reciprocal interactions between the hypoxic-ischemic brain and the immune system will open new avenues for potential immunomodulatory therapy in the treatment of neonatal brain injury.
Collapse
Affiliation(s)
- Bo Li
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Katherine Concepcion
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xianmei Meng
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
811
|
Capotondo A, Milazzo R, Garcia-Manteiga JM, Cavalca E, Montepeloso A, Garrison BS, Peviani M, Rossi DJ, Biffi A. Intracerebroventricular delivery of hematopoietic progenitors results in rapid and robust engraftment of microglia-like cells. SCIENCE ADVANCES 2017; 3:e1701211. [PMID: 29226242 PMCID: PMC5721728 DOI: 10.1126/sciadv.1701211] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 11/08/2017] [Indexed: 05/02/2023]
Abstract
Recent evidence indicates that hematopoietic stem and progenitor cells (HSPCs) can serve as vehicles for therapeutic molecular delivery to the brain by contributing to the turnover of resident myeloid cell populations. However, such engraftment needs to be fast and efficient to exert its therapeutic potential for diseases affecting the central nervous system. Moreover, the nature of the cells reconstituted after transplantation and whether they could comprise bona fide microglia remain to be assessed. We demonstrate that transplantation of HSPCs in the cerebral lateral ventricles provides rapid engraftment of morphologically, antigenically, and transcriptionally dependable microglia-like cells. We show that the cells comprised within the hematopoietic stem cell compartment and enriched early progenitor fractions generate this microglia-like population when injected in the brain ventricles in the absence of engraftment in the bone marrow. This delivery route has therapeutic relevance because it increases the delivery of therapeutic molecules to the brain, as shown in a humanized animal model of a prototypical lysosomal storage disease affecting the central nervous system.
Collapse
Affiliation(s)
- Alessia Capotondo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | - Rita Milazzo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | - Jose M. Garcia-Manteiga
- Centre for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Annita Montepeloso
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Brian S. Garrison
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Marco Peviani
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Derrick J. Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Program in Cellular and Molecular Medicine, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cell and Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA
- Gene Therapy Program, Department of Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
812
|
Sominsky L, De Luca S, Spencer SJ. Microglia: Key players in neurodevelopment and neuronal plasticity. Int J Biochem Cell Biol 2017; 94:56-60. [PMID: 29197626 DOI: 10.1016/j.biocel.2017.11.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Microglia are the primary innate immune cells in the CNS. Since their initial discovery and characterization, decades of research have revealed their unique roles not only in maintaining immune homeostasis, but also being indispensable to brain development and cognitive function. As such, microglia drive synaptogenesis, synaptic pruning, neurogenesis and neuronal activity. Microglia-specific mutations are implicated in several neurodevelopmental disorders, and dysregulation of microglial function is strongly linked to several pathologies, including cognitive decline and Alzheimer's disease. Importantly, developmental insults can lead to long-term changes in microglial function that may compromise the ability of the adult brain to fight infections and process cognitive information. Adult lifestyle or injury can also lastingly influence microglial morphology and function. Here we highlight key research on microglia's role in neuronal plasticity across the lifespan.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., 3083, Australia
| | - Simone De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., 3083, Australia.
| |
Collapse
|
813
|
Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonté C. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Front Immunol 2017; 8:1689. [PMID: 29250069 PMCID: PMC5714870 DOI: 10.3389/fimmu.2017.01689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Giulia Napoli
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | | | - Giovanna Morello
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Rosario Iemmolo
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Cinzia Volonté
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
814
|
Abstract
Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
Collapse
|
815
|
Yanguas-Casás N, Crespo-Castrillo A, de Ceballos ML, Chowen JA, Azcoitia I, Arevalo MA, Garcia-Segura LM. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid. Glia 2017; 66:522-537. [PMID: 29139169 DOI: 10.1002/glia.23263] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells.
Collapse
Affiliation(s)
| | | | | | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, 28009, Spain.,CIBER de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, Madrid, 28040, Spain.,CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Instituto Cajal, CSIC, Madrid, 28002, Spain.,CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, 28002, Spain.,CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
816
|
Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C, Gillespie SM, Dionne D, Luo CC, Ravichandran H, Mylvaganam R, Mount C, Onozato ML, Nahed BV, Wakimoto H, Curry WT, Iafrate AJ, Rivera MN, Frosch MP, Golub TR, Brastianos PK, Getz G, Patel AP, Monje M, Cahill DP, Rozenblatt-Rosen O, Louis DN, Bernstein BE, Regev A, Suvà ML. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 2017; 355:355/6332/eaai8478. [PMID: 28360267 DOI: 10.1126/science.aai8478] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
Abstract
Tumor subclasses differ according to the genotypes and phenotypes of malignant cells as well as the composition of the tumor microenvironment (TME). We dissected these influences in isocitrate dehydrogenase (IDH)-mutant gliomas by combining 14,226 single-cell RNA sequencing (RNA-seq) profiles from 16 patient samples with bulk RNA-seq profiles from 165 patient samples. Differences in bulk profiles between IDH-mutant astrocytoma and oligodendroglioma can be primarily explained by distinct TME and signature genetic events, whereas both tumor types share similar developmental hierarchies and lineages of glial differentiation. As tumor grade increases, we find enhanced proliferation of malignant cells, larger pools of undifferentiated glioma cells, and an increase in macrophage over microglia expression programs in TME. Our work provides a unifying model for IDH-mutant gliomas and a general framework for dissecting the differences among human tumor subclasses.
Collapse
Affiliation(s)
- Andrew S Venteicher
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Itay Tirosh
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Christine Hebert
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Keren Yizhak
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Cyril Neftel
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Institute of Pathology, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Mariella G Filbin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA
| | - Volker Hovestadt
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leah E Escalante
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - McKenzie L Shaw
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Shawn M Gillespie
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Danielle Dionne
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Christina C Luo
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiranmayi Ravichandran
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ravindra Mylvaganam
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Mount
- Departments of Neurology, Neurosurgery, Pediatrics and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maristela L Onozato
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matthew P Frosch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Cancer Center, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Priscilla K Brastianos
- Departments of Medicine and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gad Getz
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Anoop P Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michelle Monje
- Departments of Neurology, Neurosurgery, Pediatrics and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - David N Louis
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Koch Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
817
|
Hanamsagar R, Bilbo SD. Environment matters: microglia function and dysfunction in a changing world. Curr Opin Neurobiol 2017; 47:146-155. [PMID: 29096243 DOI: 10.1016/j.conb.2017.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023]
Abstract
The immune system is our interface with the environment, and immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy or the early postnatal period, for example, in response to infection, may disrupt the normal developmental trajectory of microglia and consequently their interactions with neurons, thereby contributing to the risk for neurological disorders. The current article outlines recent findings on the impact of diverse, pervasive environmental challenges, beyond infection, including air pollution and maternal stress; and their impact on microglial development and its broad implications for neural pathologies.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pediatrics, Harvard Medical School, and Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02129, United States
| | - Staci D Bilbo
- Department of Pediatrics, Harvard Medical School, and Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02129, United States.
| |
Collapse
|
818
|
Thion MS, Garel S. On place and time: microglia in embryonic and perinatal brain development. Curr Opin Neurobiol 2017; 47:121-130. [PMID: 29080445 DOI: 10.1016/j.conb.2017.10.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 12/26/2022]
Abstract
Microglia, the brain-resident macrophages, play key roles in regulating synapse density and homeostasis in the postnatal and adult brain. However, microglia enter the brain during embryogenesis and recent studies have revealed additional early functions of these immune cells in prenatal and perinatal cerebral development. Such findings are of importance since prenatal inflammation and microglia dysfunction have been associated with several neurodevelopmental disorders. This review provides a selective overview of the early roles of microglia, their link with a specific spatiotemporal distribution and how they can be modulated by intrinsic factors or environmental signals.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| | - Sonia Garel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
819
|
Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P, Polioudakis D, Regev A, Sestan N, Wickersham IR, Zeng H. The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 2017; 96:542-557. [PMID: 29096072 PMCID: PMC5689454 DOI: 10.1016/j.neuron.2017.10.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 10/25/2022]
Abstract
A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans.
Collapse
Affiliation(s)
- Joseph R Ecker
- Genomic Analysis Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Damon Polioudakis
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Department of Biology, Koch Institute of Integrative Cancer Research, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nenad Sestan
- Departments of Neuroscience, Genetics, Psychiatry and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
820
|
Lloyd AF, Davies CL, Miron VE. Microglia: origins, homeostasis, and roles in myelin repair. Curr Opin Neurobiol 2017; 47:113-120. [PMID: 29073528 DOI: 10.1016/j.conb.2017.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 11/27/2022]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS), implicated in developmental processes, homeostasis, and responses to injury. Derived from the yolk sac during development, microglia self-renew, self-regulate their numbers during homeostatic conditions, and show a robust proliferative capacity even in adulthood. Together with monocyte-derived macrophages (MDM), microglia coordinate the regeneration of CNS myelin around axons, termed remyelination. Gene expression analyses and experimental modelling have identified pro-remyelination roles for microglia/MDM in clearance of myelin debris, secretion of growth factors, and remodelling of the extracellular matrix. Further investigations into the molecular mechanisms controlling these regenerative functions will reveal novel therapeutic strategies to enhance remyelination, by harnessing the beneficial effects of the innate immune response to injury.
Collapse
Affiliation(s)
- Amy F Lloyd
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Claire L Davies
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| |
Collapse
|
821
|
Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 2017; 125:809-826. [PMID: 29063348 DOI: 10.1007/s00702-017-1795-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Microglia, the innate immune cells of the CNS, are the first to react to pathological insults. However, multiple studies have also demonstrated an involvement of peripheral monocytes in several neurodegenerative diseases. Due to the different origins of these two cell types, it is important to distinguish their role and function in the development and progression of these diseases. In this review, we will summarize and discuss the current knowledge of the differential contributions of microglia and monocytes in the common neurodegenerative diseases AD, PD, and ALS, as well as multiple sclerosis, which is now regarded as a combination of inflammatory processes and neurodegeneration. Until recently, it has been challenging to differentiate microglia from monocytes, as there were no specific markers. Therefore, the recent identification of specific molecular signatures of both cell types will help to advance our understanding of their differential contribution in neurodegenerative diseases.
Collapse
|
822
|
The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity 2017; 47:566-581.e9. [PMID: 28930663 DOI: 10.1016/j.immuni.2017.08.008] [Citation(s) in RCA: 1859] [Impact Index Per Article: 232.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic β-amyloid (Aβ)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.
Collapse
|
823
|
Meadows JR, Parker C, Gilbert KM, Blossom SJ, DeWitt JC. A single dose of trichloroethylene given during development does not substantially alter markers of neuroinflammation in brains of adult mice. J Immunotoxicol 2017; 14:95-102. [PMID: 28366041 PMCID: PMC5540234 DOI: 10.1080/1547691x.2017.1305021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Trichloroethylene (TCE) is a widespread environmental contaminant associated with developmental immunotoxicity and neurotoxicity. Previous studies have shown that MRL+/+ mice exposed to TCE from gestation through early-life demonstrate robust increases in inflammatory markers in peripheral CD4+ T-cells, as well as glutathione depletion and increased oxidative stress in cerebellum-associated with alterations in behavior. Since increased oxidative stress is associated with neuroinflammation, we hypothesized that neuroinflammatory markers could be altered relative to unexposed mice. MRL+/+ mice were given 0.5 mg/ml of TCE in vehicle or vehicle (water with 1% Alkamuls EL-620) from conception through early adulthood via drinking water to dams and then directly to post-weaning offspring. Animals were euthanized at 49 days of age and levels of pro- and anti-inflammatory cytokines, density of T-cell staining, and micro-glial morphology were evaluated in brains to begin to ascertain a neuroinflammatory profile. Levels of IL-6 were decreased in female animals and while not statistically significant, and levels of IL-10 were higher in brains of exposed male and female animals. Supportive of this observation, although not statistically significant, the number of ameboid microglia was higher in exposed relative to unexposed animals. This overall profile suggests the emergence of an anti-inflammatory/neuroprotective phenotype in exposed animals, possibly as a compensatory response to neuroinflammation that is known to be induced by developmental exposure to TCE.
Collapse
Affiliation(s)
- Jacqueline R Meadows
- a Department of Pharmacology and Toxicology , Brody School of Medicine, East Carolina University Greenville , NC , USA
| | - Chevonne Parker
- a Department of Pharmacology and Toxicology , Brody School of Medicine, East Carolina University Greenville , NC , USA
| | - Kathleen M Gilbert
- b Department of Microbiology and Immunology , UAMS College of Medicine, Arkansas Children's Research Institute , Little Rock , AR , USA
| | - Sarah J Blossom
- c Department of Pediatrics , UAMS College of Medicine, Arkansas Children's Research Institute , Little Rock , AR , USA
| | - Jamie C DeWitt
- a Department of Pharmacology and Toxicology , Brody School of Medicine, East Carolina University Greenville , NC , USA
| |
Collapse
|
824
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|
825
|
Microglia emerge as central players in brain disease. Nat Med 2017; 23:1018-1027. [PMID: 28886007 DOI: 10.1038/nm.4397] [Citation(s) in RCA: 1179] [Impact Index Per Article: 147.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
There has been an explosion of new findings recently giving us insights into the involvement of microglia in central nervous system (CNS) disorders. A host of new molecular tools and mouse models of disease are increasingly implicating this enigmatic type of nervous system cell as a key player in conditions ranging from neurodevelopmental disorders such as autism to neurodegenerative disorders such as Alzheimer's disease and chronic pain. Contemporaneously, diverse roles are emerging for microglia in the healthy brain, from sculpting developing neuronal circuits to guiding learning-associated plasticity. Understanding the physiological functions of these cells is crucial to determining their roles in disease. Here we focus on recent developments in our rapidly expanding understanding of the function, as well as the dysfunction, of microglia in disorders of the CNS.
Collapse
|
826
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
827
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
828
|
Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J, Khorooshi R, Benmamar-Badel A, de Boer-Bergsma JJ, Martin NA, Karram K, Kramer I, Boddeke EW, Waisman A, Eggen BJ, Owens T. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 2017; 36:3292-3308. [PMID: 28963396 PMCID: PMC5686552 DOI: 10.15252/embj.201696056] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here, we show that in contrast to healthy adult and inflammation‐activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration, and differentiation. These cells are the major source of insulin‐like growth factor 1, and its selective depletion from CD11c+ microglia leads to impairment of primary myelination. CD11c‐targeted toxin regimens induced a selective transcriptional response in neonates, distinct from adult microglia. CD11c+ microglia are also found in clusters of repopulating microglia after experimental ablation and in neuroinflammation in adult mice, but despite some similarities, they do not recapitulate neonatal microglial characteristics. We therefore identify a unique phenotype of neonatal microglia that deliver signals necessary for myelination and neurogenesis.
Collapse
Affiliation(s)
- Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Inge R Holtman
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin Krueger
- Institute for Anatomy, University of Leipzig, Leipzig, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Julia Bruttger
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anouk Benmamar-Badel
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Biology, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Jelkje J de Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nellie A Martin
- Department of Neurology, Institute of Clinical Research, Odense University Hospital, Odense, Denmark
| | - Khalad Karram
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Isabella Kramer
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Erik Wgm Boddeke
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Bart Jl Eggen
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
829
|
Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A, Singer O, David E, Winter DR, Smith LK, Kertser A, Baruch K, Rosenzweig N, Terem A, Prinz M, Villeda S, Citri A, Amit I, Schwartz M. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 2017; 8:717. [PMID: 28959042 PMCID: PMC5620041 DOI: 10.1038/s41467-017-00769-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/23/2017] [Indexed: 11/08/2022] Open
Abstract
During ageing, microglia acquire a phenotype that may negatively affect brain function. Here we show that ageing microglial phenotype is largely imposed by interferon type I (IFN-I) chronically present in aged brain milieu. Overexpression of IFN-β in the CNS of adult wild-type mice, but not of mice lacking IFN-I receptor on their microglia, induces an ageing-like transcriptional microglial signature, and impairs cognitive performance. Furthermore, we demonstrate that age-related IFN-I milieu downregulates microglial myocyte-specific enhancer factor 2C (Mef2C). Immune challenge in mice lacking Mef2C in microglia results in an exaggerated microglial response and has an adverse effect on mice behaviour. Overall, our data indicate that the chronic presence of IFN-I in the brain microenvironment, which negatively affects cognitive function, is mediated via modulation of microglial activity. These findings may shed new light on other neurological conditions characterized by elevated IFN-I signalling in the brain.Microglia cells in the brain regulate immune responses, but in ageing can negatively affect brain function. Here the authors show that the chronic presence of type I interferon in aged mouse brain impedes cognitive ability by altering microglia transcriptome and limiting Mef2C, a microglia 'off' signal.
Collapse
Affiliation(s)
| | - Orit Matcovitch-Natan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Sefi Ben-Hamo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amit Spinrad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Oded Singer
- Faculty of Biochemistry, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lucas K Smith
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexander Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Rosenzweig
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anna Terem
- Department of Biological Chemistry, Institute of Life Sciences, Faculty of Natural Sciences, The Hebrew University, Jerusalem, 91904, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 91904, Israel
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ami Citri
- Department of Biological Chemistry, Institute of Life Sciences, Faculty of Natural Sciences, The Hebrew University, Jerusalem, 91904, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 91904, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
830
|
Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M, Lim S, Utami KH, Fidan K, Park DS, Malleret B, Chakarov S, See P, Low D, Low G, Garcia-Miralles M, Zeng R, Zhang J, Goh CC, Gul A, Hubert S, Lee B, Chen J, Low I, Shadan NB, Lum J, Wei TS, Mok E, Kawanishi S, Kitamura Y, Larbi A, Poidinger M, Renia L, Ng LG, Wolf Y, Jung S, Önder T, Newell E, Huber T, Ashihara E, Garel S, Pouladi MA, Ginhoux F. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 2017; 47:183-198.e6. [PMID: 28723550 DOI: 10.1016/j.immuni.2017.06.017] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
Abstract
Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.
Collapse
Affiliation(s)
- Kazuyuki Takata
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Tatsuya Kozaki
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Christopher Zhe Wei Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'ENS (IBENS), INSERM, U1024, CNRS, UMR8197, F-75005 Paris, France
| | - Masayuki Otsuka
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Shawn Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kerem Fidan
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Dong Shin Park
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 117545, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Donovan Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Gillian Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ruizhu Zeng
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jinqiu Zhang
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ahmet Gul
- Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Sandra Hubert
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Tay Seok Wei
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Esther Mok
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Shohei Kawanishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Yochai Wolf
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamer Önder
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Evan Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Tara Huber
- Stem Cell and Developmental Biology Department, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sonia Garel
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'ENS (IBENS), INSERM, U1024, CNRS, UMR8197, F-75005 Paris, France
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.
| |
Collapse
|
831
|
Regulation of inflammation by microbiota interactions with the host. Nat Immunol 2017; 18:851-860. [PMID: 28722709 DOI: 10.1038/ni.3780] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
The study of the intestinal microbiota has begun to shift from cataloging individual members of the commensal community to understanding their contributions to the physiology of the host organism in health and disease. Here, we review the effects of the microbiome on innate and adaptive immunological players from epithelial cells and antigen-presenting cells to innate lymphoid cells and regulatory T cells. We discuss recent studies that have identified diverse microbiota-derived bioactive molecules and their effects on inflammation within the intestine and distally at sites as anatomically remote as the brain. Finally, we highlight new insights into how the microbiome influences the host response to infection, vaccination and cancer, as well as susceptibility to autoimmune and neurodegenerative disorders.
Collapse
|
832
|
Perinatal inflammation and adult psychopathology: From preclinical models to humans. Semin Cell Dev Biol 2017; 77:104-114. [PMID: 28890420 DOI: 10.1016/j.semcdb.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain.
Collapse
|
833
|
Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 2017; 134:441-458. [PMID: 28685323 DOI: 10.1007/s00401-017-1747-1] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/14/2017] [Accepted: 07/01/2017] [Indexed: 12/11/2022]
Abstract
Whereas microglia involvement in virtually all brain diseases is well accepted their role in the control of homeostasis in the central nervous system (CNS) is mainly thought to be the maintenance of neuronal function through the formation, refinement, and monitoring of synapses in both the developing and adult brain. Although the prenatal origin as well as the neuron-centered function of cortical microglia has recently been elucidated, much less is known about a distinct amoeboid microglia population formerly described as the "fountain of microglia" that appears only postnatally in myelinated regions such as corpus callosum and cerebellum. Using large-scale transcriptional profiling, fate mapping, and genetic targeting approaches, we identified a unique molecular signature of this microglia subset that arose from a CNS endogenous microglia pool independent from circulating myeloid cells. Microglia depletion experiments revealed an essential role of postnatal microglia for the proper development and homeostasis of oligodendrocytes and their progenitors. Our data provide new cellular and molecular insights into the myelin-supporting function of microglia in the normal CNS.
Collapse
|
834
|
Brucato M, Ladd-Acosta C, Li M, Caruso D, Hong X, Kaczaniuk J, Stuart EA, Fallin MD, Wang X. Prenatal exposure to fever is associated with autism spectrum disorder in the boston birth cohort. Autism Res 2017; 10:1878-1890. [PMID: 28799289 DOI: 10.1002/aur.1841] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is phenotypically and etiologically heterogeneous, with evidence for genetic and environmental contributions to disease risk. Research has focused on the prenatal period as a time where environmental exposures are likely to influence risk for ASD. Epidemiological studies have shown significant associations between prenatal exposure to maternal immune activation (MIA), caused by infections and fever, and ASD. However, due to differences in study design and exposure measurements no consistent patterns have emerged revealing specific times or type of MIA exposure that are most important to ASD risk. No prior studies have examined prenatal MIA exposure and ASD risk in an under-represented minority population of African ancestry. To overcome these limitations, we estimated the association between prenatal exposure to fever and maternal infections and ASD in a prospective birth cohort of an understudied minority population in a city in the United States. No association was found between prenatal exposure to genitourinary infections or flu and the risk of ASD in a nested sample of 116 ASD cases and 988 typically developing controls in crude or adjusted analyses. Prenatal exposure to fever was associated with increased ASD risk (aOR 2.02 [1.04-3.92]) after adjustment for educational attainment, marital status, race, child sex, maternal age, birth year, gestational age, and maternal smoking. This effect may be specific to fever during the third trimester (aOR 2.70 [1.00-7.29]). Our findings provide a focus for future research efforts and ASD prevention strategies across diverse populations. Autism Res 2017, 10: 1878-1890. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY We looked at whether activation of the immune system during pregnancy increases the chance a child will develop ASD. We examined 116 children with ASD and 988 children without ASD that came from a predominantly low income, urban, minority population. We found that having the flu or genitourinary tract infections during pregnancy is not related to the child being diagnosed with ASD. However, we did find children were at increased risk for ASD when their mothers had a fever during pregnancy.
Collapse
Affiliation(s)
- Martha Brucato
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205.,Johns Hopkins University School of Medicine, Medical Scientist Training Program, Baltimore, MD, 21205.,Johns Hopkins Bloomberg School of Public Health, The Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, 21205
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Mengying Li
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, The Center on the Early Life Origins of Disease, Baltimore, MD, 21205
| | - Deanna Caruso
- Johns Hopkins Bloomberg School of Public Health, The Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, 21205.,Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, The Center on the Early Life Origins of Disease, Baltimore, MD, 21205
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, The Center on the Early Life Origins of Disease, Baltimore, MD, 21205
| | - Jamie Kaczaniuk
- Johns Hopkins Bloomberg School of Public Health, The Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, 21205
| | - Elizabeth A Stuart
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205
| | - M Daniele Fallin
- Johns Hopkins Bloomberg School of Public Health, The Wendy Klag Center for Autism and Developmental Disabilities, Baltimore, MD, 21205.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, The Center on the Early Life Origins of Disease, Baltimore, MD, 21205
| |
Collapse
|
835
|
Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron 2017; 94:278-293.e9. [PMID: 28426964 DOI: 10.1016/j.neuron.2017.03.042] [Citation(s) in RCA: 745] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Microglia play critical roles in brain development, homeostasis, and neurological disorders. Here, we report that human microglial-like cells (iMGLs) can be differentiated from iPSCs to study their function in neurological diseases, like Alzheimer's disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo, and whole-transcriptome analysis demonstrates that they are highly similar to cultured adult and fetal human microglia. Functional assessment of iMGLs reveals that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. iMGLs were used to examine the effects of Aβ fibrils and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Furthermore, iMGLs transplanted into transgenic mice and human brain organoids resemble microglia in vivo. Together, these findings demonstrate that iMGLs can be used to study microglial function, providing important new insight into human neurological disease.
Collapse
Affiliation(s)
- Edsel M Abud
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Eric S Martinez
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Luke M Healy
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cecilia H H Nguyen
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Sean A Newman
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Samuel E Marsh
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Cristhian Fimbres
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Chad A Caraway
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna M Fote
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Abdullah M Madany
- Division of Biomedical Sciences, Center for Glia-Neuronal Interactions, University of California, Riverside, Riverside, CA 92521, USA
| | - Anshu Agrawal
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Rakez Kayed
- Department of Neurology, George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karen H Gylys
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - Brian J Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Jack P Antel
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Monica J Carson
- Division of Biomedical Sciences, Center for Glia-Neuronal Interactions, University of California, Riverside, Riverside, CA 92521, USA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
836
|
Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. J Neurosci 2017; 37:972-985. [PMID: 28123029 DOI: 10.1523/jneurosci.2199-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023] Open
Abstract
The central nervous system (CNS) is endowed with several immune-related mechanisms that contribute to its protection and maintenance in homeostasis and under pathology. Here, we discovered an additional mechanism that controls inflammatory responses within the CNS milieu under injurious conditions, involving CD200 ligand (CD200L) expressed by newly formed endothelial cells. We observed that CD200L is constitutively expressed in the mouse healthy CNS by endothelial cells of the blood-cerebrospinal fluid barrier and of the spinal cord meninges, but not by the endothelium of the blood-spinal cord barrier. Following spinal cord injury (SCI), newly formed endothelial cells, located only at the epicenter of the lesion site, expressed CD200L. Moreover, in the absence of CD200L expression by CNS-resident cells, functional recovery of mice following SCI was impaired. High throughput single-cell flow cytometry image analysis following SCI revealed CD200L-dependent direct interaction between endothelial and local CD200R+ myeloid cells, including activated microglia and infiltrating monocyte-derived macrophages (mo-MΦ). Absence of CD200L signaling, both in vitro and in vivo, resulted in a higher inflammatory response of the encountering macrophages, manifested by elevation in mRNA expression of Tnfα and Il1β, increased intracellular TNFα immunoreactivity, and reduced expression levels of macrophage factors that are associated with resolution of inflammation, Dectin-1, CD206 (mannose receptor), and IL-4R. Collectively, our results highlight the importance of CD200-mediated immune dialogue between endothelial cells and the local resident microglia and infiltrating mo-MΦ within the lesion area, as a mechanism that contributes to regulation of inflammation following acute CNS injury. SIGNIFICANCE STATEMENT This manuscript focuses on a novel mechanism of inflammation-regulation following spinal cord injury (SCI), orchestrated by CD200-ligand (CD200L) expressed by newly formed endothelial cells within the lesion site. Our study reveals that, in homeostasis, CD200L is expressed by endothelial cells of the mouse blood-cerebrospinal fluid barrier and of the blood-leptomeningeal barrier, but not by endothelial cells of the blood-spinal cord barrier. Following SCI, newly formed endothelial cells located within the epicenter of the lesion site were found to express CD200L at time points that were shown to be critical for repair. Our results reveal a direct interaction between CD200L+ endothelial cells and CD200R+ microglia and macrophages, resulting in attenuated inflammation, biasing macrophage phenotype toward inflammation-resolving cells, and promotion of functional recovery following SCI.
Collapse
|
837
|
Holtman IR, Skola D, Glass CK. Transcriptional control of microglia phenotypes in health and disease. J Clin Invest 2017; 127:3220-3229. [PMID: 28758903 DOI: 10.1172/jci90604] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microglia are the main resident macrophage population of the CNS and perform numerous functions required for CNS development, homeostasis, immunity, and repair. Many lines of evidence also indicate that dysregulation of microglia contributes to the pathogenesis of neurodegenerative and behavioral diseases. These observations provide a compelling argument to more clearly define the mechanisms that control microglia identity and function in health and disease. In this Review, we present a conceptual framework for how different classes of transcription factors interact to select and activate regulatory elements that control microglia development and their responses to internal and external signals. We then describe functions of specific transcription factors in normal and pathological contexts and conclude with a consideration of open questions to be addressed in the future.
Collapse
Affiliation(s)
- Inge R Holtman
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA.,Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dylan Skola
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA.,Department of Medicine, UCSD, San Diego, California, USA
| |
Collapse
|
838
|
Lall D, Baloh RH. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 2017; 127:3250-3258. [PMID: 28737506 DOI: 10.1172/jci90607] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.
Collapse
Affiliation(s)
- Deepti Lall
- Board of Governors Regenerative Medicine Institute and
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute and.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
839
|
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron 2017; 94:759-773.e8. [PMID: 28521131 DOI: 10.1016/j.neuron.2017.04.043] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Microglia, the resident macrophages of the CNS, engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS.
Collapse
Affiliation(s)
- Christopher J Bohlen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - F Chris Bennett
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew F Tucker
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah Y Collins
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sara B Mulinyawe
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
840
|
E Hirbec H, Noristani HN, Perrin FE. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Front Aging Neurosci 2017; 9:227. [PMID: 28785215 PMCID: PMC5519576 DOI: 10.3389/fnagi.2017.00227] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS) under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq) vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD) and Multiple sclerosis (MS). Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition using Gene ontology (GO) classification and highlight the diversity of microglia response to insults focusing on their pro- and anti-inflammatory signatures. Finally, we discuss the potential of the latest technological advances, in particular, single cell RNA-Seq to unravel the individual microglial response diversity in neuropathological contexts.
Collapse
Affiliation(s)
- Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of MontpellierMontpellier, France.,Laboratory of Excellence in Ion Channel Science and Therapeutics (LabEx ICST)Montpellier, France
| | - Harun N Noristani
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| | - Florence E Perrin
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| |
Collapse
|
841
|
Abstract
Prion diseases are a group of progressive and fatal neurodegenerative disorders characterized by deposition of scrapie prion protein (PrPSc) in the CNS. This deposition is accompanied by neuronal loss, spongiform change, astrogliosis, and conspicuous microglial activation. Here, we argue that microglia play an overall neuroprotective role in prion pathogenesis. Several microglia-related molecules, such as Toll-like receptors (TLRs), the complement system, cytokines, chemokines, inflammatory regulators, and phagocytosis mediators, are involved in prion pathogenesis. However, the molecular mechanisms underlying the microglial response to prion infection are largely unknown. Consequently, we lack a comprehensive understanding of the regulatory network of microglial activation. On the positive side, recent findings suggest that therapeutic strategies modulating microglial activation and function may have merit in prion disease. Moreover, studies on the role of microglia in prion disease could deepen our understanding of neuroinflammation in a broad range of neurodegenerative disorders.
Collapse
|
842
|
Abstract
Microglial cells are the resident tissue macrophages of the CNS and are widely recognized for their immune surveillance of the healthy CNS. In addition to this well-accepted function, recent findings point to major roles for microglia in instructing and regulating the proper function of the neuronal networks in the adult CNS, but these cells are also involved in creating neuronal networks by orchestrating construction of the whole network during development. In this Review, we highlight recent findings about the steady-state functions of microglial cells, the factors that are important for physiological microglial function, and how microglia help to maintain tissue homeostasis in the CNS.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Life Sciences and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
843
|
De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, Zhang HY, Liu QR, Shen H, Xi ZX, Goldman D, Bonci A. Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron 2017; 95:341-356.e6. [PMID: 28689984 DOI: 10.1016/j.neuron.2017.06.020] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/13/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022]
Abstract
Microglia play critical roles in tissue homeostasis and can also modulate neuronal function and synaptic connectivity. In contrast to astrocytes and oligodendrocytes, which arise from multiple progenitor pools, microglia arise from yolk sac progenitors and are widely considered to be equivalent throughout the CNS. However, little is known about basic properties of deep brain microglia, such as those within the basal ganglia (BG). Here, we show that microglial anatomical features, lysosome content, membrane properties, and transcriptomes differ significantly across BG nuclei. Region-specific phenotypes of BG microglia emerged during the second postnatal week and were re-established following genetic or pharmacological microglial ablation and repopulation in the adult, indicating that local cues play an ongoing role in shaping microglial diversity. These findings demonstrate that microglia in the healthy brain exhibit a spectrum of distinct functional states and provide a critical foundation for defining microglial contributions to BG circuit function.
Collapse
Affiliation(s)
- Lindsay M De Biase
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Kornel E Schuebel
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Zachary H Fusfeld
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kamwing Jair
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Isobel A Hawes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Raffaello Cimbro
- Division of Rheumatology, Bayview Flow Cytometry Core, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Qing-Rong Liu
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hui Shen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Goldman
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
844
|
Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Möller T, Wes PD, Sogayar MC, Laman JD, den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie SKN, Eggen BJL. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 2017; 20:1162-1171. [PMID: 28671693 DOI: 10.1038/nn.4597] [Citation(s) in RCA: 513] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022]
Abstract
Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.
Collapse
Affiliation(s)
- Thais F Galatro
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ilia D Vainchtein
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paula R Sola
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mariana M Veras
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tulio F Pereira
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil.,Chemistry Institute, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Renata E P Leite
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Paul D Wes
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey, USA
| | - Mari C Sogayar
- Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Jon D Laman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wilfred den Dunnen
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlos A Pasqualucci
- Brazilian Aging Brain Study Group, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Erik W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suely K N Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
845
|
Wekerle H. Brain Autoimmunity and Intestinal Microbiota: 100 Trillion Game Changers. Trends Immunol 2017; 38:483-497. [DOI: 10.1016/j.it.2017.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
|
846
|
Hoeijmakers L, Ruigrok SR, Amelianchik A, Ivan D, van Dam AM, Lucassen PJ, Korosi A. Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model. Brain Behav Immun 2017; 63:160-175. [PMID: 28027926 DOI: 10.1016/j.bbi.2016.12.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimer's disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid β (Aβ) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aβ neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aβ plaque load at 10months of age, demonstrating that ES affects Aβ load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aβ neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1β expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aβ neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aβ neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aβ neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anna Amelianchik
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Daniela Ivan
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, VU University Medical Center, De Boelelaan 1108, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
847
|
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Front Mol Neurosci 2017; 10:191. [PMID: 28674485 PMCID: PMC5474494 DOI: 10.3389/fnmol.2017.00191] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, during an early wave of hematopoiesis in the yolk sac between embryonic day E7.0 and E9.0, cells of mesodermal leaflet addressed to macrophage lineage enter in developing central nervous system (CNS) and originate the developing native microglial cells. Depending on the species, microglial cells represent 5–20% of glial cells resident in adult brain. Here, we briefly discuss some canonical functions of the microglia, i.e., cytokine secretion and functional transition from M1 to M2 phenotype. In addition, we review studies on the non-canonical functions of microglia such as regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. In this latter context the contribution of microglia to some neurodevelopmental disorders is now well established. Nasu-Hakola (NHD) disease is considered a primary microgliopathy with alterations of the DNAX activation protein 12 (DAP12)-Triggering receptor expressed on myeloid cells 2 (TREM-2) signaling and removal of macromolecules and apoptotic cells followed by secondary microglia activation. In Rett syndrome Mecp2-/- microglia shows a substantial impairment of phagocytic ability, although the role of microglia is not yet clear. In a mouse model of Tourette syndrome (TS), microglia abnormalities have also been described, and deficient microglia-mediated neuroprotection is obvious. Here we review the role of microglial cells in neurodevelopmental disorders without inflammation and on the complex role of microglia in developing CNS.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Carmen Mecca
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of PerugiaPerugia, Italy
| |
Collapse
|
848
|
Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 2017; 65:1504-1520. [PMID: 28618077 DOI: 10.1002/glia.23176] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
Abstract
Evidence suggests many neurological disorders emerge when normal neurodevelopmental trajectories are disrupted, i.e., when circuits or cells do not reach their fully mature state. Microglia play a critical role in normal neurodevelopment and are hypothesized to contribute to brain disease. We used whole transcriptome profiling with Next Generation sequencing of purified developing microglia to identify a microglial developmental gene expression program involving thousands of genes whose expression levels change monotonically (up or down) across development. Importantly, the gene expression program was delayed in males relative to females and exposure of adult male mice to LPS, a potent immune activator, accelerated microglial development in males. Next, a microglial developmental index (MDI) generated from gene expression patterns obtained from purified mouse microglia, was applied to human brain transcriptome datasets to test the hypothesis that variability in microglial development is associated with human diseases such as Alzheimer's and autism where microglia have been suggested to play a role. MDI was significantly increased in both Alzheimer's Disease and in autism, suggesting that accelerated microglial development may contribute to neuropathology. In conclusion, we identified a microglia-specific gene expression program in mice that was used to create a microglia developmental index, which was applied to human datasets containing heterogeneous cell types to reveal differences between healthy and diseased brain samples, and between males and females. This powerful tool has wide ranging applicability to examine microglial development within the context of disease and in response to other variables such as stress and pharmacological treatments.
Collapse
Affiliation(s)
- Richa Hanamsagar
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, 02129
| | - Mark D Alter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Carina S Block
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, 27708
| | - Haley Sullivan
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, 27708
| | - Jessica L Bolton
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, 27708
| | - Staci D Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, 02129.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
849
|
Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 2017; 18:385-392. [PMID: 28323268 DOI: 10.1038/ni.3703] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Myeloid cells in the central nervous system (CNS) represent a heterogeneous class of innate immune cells that contribute to the maintenance of tissue homeostasis differentially during development and adulthood. The subsets of CNS myeloid cells identified so far, including parenchymal microglia and non-parenchymal meningeal, perivascular and choroid-plexus macrophages, as well as disease-associated monocytes, have classically been distinguished on the basis of their surface epitope expression, localization and morphology. However, studies using cell-specific targeting, in vivo imaging, single-cell expression analysis and other sophisticated tools have now increased the depth of knowledge of this immune-cell compartment and call for reevaluation of the traditional views on the origin, fate and function of distinct CNS myeloid subsets. The concepts of CNS macrophage biology that are emerging from these new insights have broad implications for the understanding and treatment of CNS diseases.
Collapse
|
850
|
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell 2017; 169:1276-1290.e17. [PMID: 28602351 DOI: 10.1016/j.cell.2017.05.018] [Citation(s) in RCA: 3327] [Impact Index Per Article: 415.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)-/- Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amit Spinrad
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center, Cancer Genomics Netherlands, 3584 CG Utrecht, the Netherlands.
| | - Orit Matcovitch-Natan
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tyler K Ulland
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Lara-Astaiso
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|