801
|
Mao ZG, He DS, Zhou J, Yao B, Xiao WW, Chen CH, Zhu YH, Wang HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas. Diagn Pathol 2010; 5:79. [PMID: 21138567 PMCID: PMC3017030 DOI: 10.1186/1746-1596-5-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/07/2010] [Indexed: 01/31/2023] Open
Abstract
Background The purpose of this study was to (1) identify specific miRNAs in growth hormones (GH)-secreting pituitary adenomas; (2) determine the relationship between the expression of these miRNAs and tumor size, somatostatin analogs treatment, and responsiveness to somatostatin analogs (SSA). Methods Fifteen GH-secreting adenomas patients were treated with lanreotide for 4 months before surgery. Patients with 50% reduction of GH secretion by lanreotide were considered as SSA responders, while patients with less than 50% of GH reduction were considered as SSA nonresponders. We analyzed the miRNAs in 21 GH-secreting pituitary adenomas and 6 normal pituitaries by miRCURY™ LNA array and some differentially expressed miRNAs were validated by quantitative real-time PCR. Results Fifty-two miRNAs were differentially expressed between GH-secreting pituitary adenomas and normal pituitaries. Differential expression of 9 miRNAs was observed between micro- and macro-adenomas. Thirteen miRNAs were differentially expressed between tumor samples from lanreotide-treated patients and those from lanreotide-untreated patients. Seven miRNAs were differentially expressed between SSA responders or GH nonresponders. Several identified miRNAs may be involved in cell proliferation, apoptosis, cancer development and progression. Conclusions Our results indicate that altered miRNAs expression is involved in GH-secreting pituitary adenomas transformation, which will shed light on the mechanisms for the treatment of acromegaly by SSA. Identification and characterization of the targets of altered miRNAs genes may elucidate molecular mechanisms involved in the pathogenesis of pituitary adenoma.
Collapse
Affiliation(s)
- Zhi-Gang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
802
|
Tomankova T, Petrek M, Kriegova E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res 2010; 11:159. [PMID: 21092244 PMCID: PMC3001429 DOI: 10.1186/1465-9921-11-159] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023] Open
Abstract
To date, at least 900 different microRNA (miRNA) genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases.
Collapse
Affiliation(s)
- Tereza Tomankova
- Laboratory of Immunogenomics and Proteomics, Institute of Molecular and Translational Medicine, Medical Faculty Palacky University Olomouc, the Czech Republic
| | | | | |
Collapse
|
803
|
Abstract
Embryonic stem cells and induced pluripotent stem cells are characterized by their ability to self-renew and differentiate into any cell type. The molecular mechanism behind this process is a complex interplay between the transcriptional factors with epigenetic regulators and signaling pathways. miRNAs are an integral part of this regulatory network, with essential roles in pluripotent maintenance, proliferation and differentiation. miRNAs are a class of small noncoding RNAs that target protein-encoding mRNA to inhibit translation and protein synthesis. Discovered close to 20 years ago, miRNAs have rapidly emerged as key regulatory molecules in several critical cellular processes across species. Recent studies have begun to clarify the specific role of miRNA in regulatory circuitries that control self-renewal and pluripotency of both embryonic stem cells and induced pluripotent stem cells. These advances suggest a critical role for miRNAs in the process of reprogramming somatic cells to pluripotent cells.
Collapse
Affiliation(s)
- Uma Lakshmipathy
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
804
|
Dangi-Garimella S, Strouch MJ, Grippo PJ, Bentrem DJ, Munshi HG. Collagen regulation of let-7 in pancreatic cancer involves TGF-β1-mediated membrane type 1-matrix metalloproteinase expression. Oncogene 2010; 30:1002-8. [PMID: 21057545 DOI: 10.1038/onc.2010.485] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich fibrosis known as desmoplastic reaction; however, the role of fibrosis in PDAC is poorly understood. In this report we show that collagen can regulate the tumor suppressive let-7 family of microRNAs in pancreatic cancer cells. PDAC cells growing in 3D collagen gels repress mature let-7 without affecting the precursor form of let-7 in part through increased expression of membrane type 1-matrix metalloproteinase (MT1-MMP, MMP-14) and ERK1/2 activation. PDAC cells in collagen also demonstrate increased TGF-β1 signaling, and blocking TGF-β1 signaling attenuated collagen-induced MT1-MMP expression, ERK1/2 activation and repression of let-7 levels. Although MT1-MMP overexpression was not sufficient to inhibit let-7 on 2D tissue culture plastic, overexpression of MT1-MMP in PDAC cells embedded in 3D collagen gels or grown in vivo repressed let-7 levels. Importantly, MT1-MMP expression significantly correlated with decreased levels of let-7 in human PDAC tumor specimens. Overall, our study emphasizes the interplay between the key proteinase MT1-MMP and its substrate type I collagen in modulating microRNA expression, and identifies an additional mechanism by which fibrosis may contribute to PDAC progression.
Collapse
Affiliation(s)
- S Dangi-Garimella
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
805
|
Jung YH, Gupta MK, Shin JY, Uhm SJ, Lee HT. MicroRNA signature in testes-derived male germ-line stem cells. Mol Hum Reprod 2010; 16:804-810. [PMID: 20610616 DOI: 10.1093/molehr/gaq058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The testis-derived male germ-line stem (GS) cell, the in vitro counterpart of spermatogonial stem cell (SSC), can initiate donor-derived spermatogenesis in recipient testes and therefore, has been viewed as a future therapeutic modality for treatment of male infertility in azoospermic patients and in cancer patients who are expecting chemotherapy. Upon extended in vitro culture, GS cells also generate a second cell type called multipotent adult germ-line stem (maGS) cell which, upon testicular transplantation, produces teratoma instead of initiating spermatogenesis. Here, we show that expressions of both Let-7a and Let-7d were consistently higher while that of miR-294 (embryonic stem cell-cycle-regulating miRNA; ESCC) was lower in GS cells than in maGS cells. Furthermore, among several putative targets of Let-7 identified by in silico bioinformatics, expressions of Igf2 and H19 mRNA targets significantly differed between GS and maGS cells. However, although the CTCF binding factor (a component of DNA methylation machinery at Igf2-H19 cluster) was also a putative target for Let-7, the difference in expressions of Igf2 and H19 between GS and maGS cells was not mediated through a change in DNA methylation. Both GS and maGS cells maintained androgenetic imprinting at the Igf2-H19 imprinting control region and Peg1 differentially methylated region. In conclusion, our study suggests that high Let-7 expression may be a unique property of GS cells and expressions of Let-7 and ESCC miRNAs may serve as miRNA signatures to distinguish them from maGS cells during clinical transplantation, to avoid the likelihood of teratoma formation due to maGS cells generated during extended in vitro culture of GS cells.
Collapse
Affiliation(s)
- Yoon Hee Jung
- Department of Bioscience and Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul 143 701, South Korea
| | | | | | | | | |
Collapse
|
806
|
Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP. Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 2010; 15:1027-38. [PMID: 20352393 PMCID: PMC3024070 DOI: 10.1007/s12192-010-0189-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNAs that play a critical role in the coordination of fundamental cellular processes. Recent studies suggest that miRNAs participate in the cellular stress response (CSR), but their specific involvement remains unclear. In this study, we identify a group of thermally regulated miRNAs (TRMs) that are associated with the CSR. Using miRNA microarrays, we show that dermal fibroblasts differentially express 123 miRNAs when exposed to hyperthermia. Interestingly, only 27 of these miRNAs are annotated in the current Sanger registry. We validated the expression of the annotated miRNAs using qPCR techniques, and we found that the qPCR and microarray data was in well agreement. Computational target-prediction studies revealed that putative targets for the TRMs are heat shock proteins and Argonaute-2-the core functional unit of RNA silencing. These results indicate that cells express a specific group of miRNAs when exposed to hyperthermia, and these miRNAs may function in the regulation of the CSR. Future studies will be conducted to determine if other cells lines differentially express these miRNAs when exposed to hyperthermia.
Collapse
Affiliation(s)
- Gerald J Wilmink
- National Academy of Sciences, NRC Research Associate Program, 500 Fifth Street, N.W., Washington, DC, 20001, USA.
| | | | | | | | | | | | | |
Collapse
|
807
|
Abstract
MicroRNAs (miRNAs) are ∼22nt long, non-coding RNAs that guide post-transcriptional gene silencing of their target genes and regulate diverse biological processes including cancer. miRNAs do not act alone, but require assembly into RNA-induced silencing complex (RISC). In this review, we summarize how miRNAs are produced, assembled into RISC, and regulate target mRNAs, and discuss how the miRNA pathway is involved in cancer.
Collapse
Affiliation(s)
- Pieter Bas Kwak
- Institute of Molecular and Cellular Biosciences Department of Medical Genome Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
808
|
Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, Zhang M, Mercedes L, Hong JA, Rao M, Schrump DS. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010; 5:e13764. [PMID: 21048943 PMCID: PMC2966442 DOI: 10.1371/journal.pone.0013764] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/04/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Limited information is available regarding mechanisms by which miRNAs contribute to pulmonary carcinogenesis. The present study was undertaken to examine expression and function of miRNAs induced by cigarette smoke condensate (CSC) in normal human respiratory epithelia and lung cancer cells. METHODOLOGY Micro-array and quantitative RT-PCR (qRT-PCR) techniques were used to assess miRNA and host gene expression in cultured cells, and surgical specimens. Software-guided analysis, RNA cross-link immunoprecipitation (CLIP), 3' UTR luciferase reporter assays, qRT-PCR, focused super-arrays and western blot techniques were used to identify and confirm targets of miR-31. Chromatin immunoprecipitation (ChIP) techniques were used to evaluate histone marks and transcription factors within the LOC554202 promoter. Cell count and xenograft experiments were used to assess effects of miR-31 on proliferation and tumorigenicity of lung cancer cells. RESULTS CSC significantly increased miR-31 expression and activated LOC554202 in normal respiratory epithelia and lung cancer cells; miR-31 and LOC554202 expression persisted following discontinuation of CSC exposure. miR-31 and LOC554202 expression levels were significantly elevated in lung cancer specimens relative to adjacent normal lung tissues. CLIP and reporter assays demonstrated direct interaction of miR-31 with Dickkopf-1 (Dkk-1) and DACT-3. Over-expression of miR-31 markedly diminished Dkk-1 and DACT3 expression levels in normal respiratory epithelia and lung cancer cells. Knock-down of miR-31 increased Dkk-1 and DACT3 levels, and abrogated CSC-mediated decreases in Dkk-1 and DACT-3 expression. Furthermore, over-expression of miR-31 diminished SFRP1, SFRP4, and WIF-1, and increased Wnt-5a expression. CSC increased H3K4Me3, H3K9/14Ac and C/EBP-β levels within the LOC554202 promoter. Knock-down of C/EBP-β abrogated CSC-mediated activation of LOC554202. Over-expression of miR-31 significantly enhanced proliferation and tumorigenicity of lung cancer cells; knock-down of miR-31 inhibited growth of these cells. CONCLUSIONS Cigarette smoke induces expression of miR-31 targeting several antagonists of cancer stem cell signaling in normal respiratory epithelia and lung cancer cells. miR-31 functions as an oncomir during human pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maocheng Yang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yongguang Tao
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, United States of America
| | - Jigui Shan
- Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mary Zhang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Leandro Mercedes
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
809
|
Voortman J, Goto A, Mendiboure J, Sohn JJ, Schetter AJ, Saito M, Dunant A, Pham TC, Petrini I, Lee A, Khan MA, Hainaut P, Pignon JP, Brambilla E, Popper HH, Filipits M, Harris CC, Giaccone G. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 2010; 70:8288-98. [PMID: 20978195 DOI: 10.1158/0008-5472.can-10-1348] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study determined whether expression levels of a panel of biologically relevant microRNAs can be used as prognostic or predictive biomarkers in patients who participated in the International Adjuvant Lung Cancer Trial (IALT), the largest randomized study conducted to date of adjuvant chemotherapy in patients with radically resected non-small cell lung carcinoma (NSCLC). Expression of miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a was determined by quantitative real-time PCR in formalin-fixed paraffin-embedded tumor specimens from 639 IALT patients. The prognostic and predictive values of microRNA expression for survival were studied using a Cox model, which included every factor used in the stratified randomization, clinicopathologic prognostic factors, and other factors statistically related to microRNA expression. Investigation of the expression pattern of microRNAs in situ was performed. We also analyzed the association of TP53 mutation status and miR-34a/b/c expression, epidermal growth factor receptor and KRAS mutation status, and miR-21 and Let-7a expression. Finally, the association of p16 and miR-29b expression was assessed. Overall, no significant association was found between any of the tested microRNAs and survival, with the exception of miR-21 for which a deleterious prognostic effect of lowered expression was suggested. Otherwise, no single or combinatorial microRNA expression profile predicted response to adjuvant cisplatin-based chemotherapy. Together, our results indicate that the microRNA expression patterns examined were neither predictive nor prognostic in a large patient cohort with radically resected NSCLC, randomized to receive adjuvant cisplatin-based chemotherapy versus follow-up only.
Collapse
Affiliation(s)
- Johannes Voortman
- Medical Oncology Branch and Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland 20892-1906, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
810
|
Barbarotto E, Secchiero P, Dasgupta A, Fortina P, Calin GA, Hyslop T. MicroRNAs as new players in the genomic galaxy and disease puzzles. Clin Transl Sci 2010; 1:50-6. [PMID: 20443818 DOI: 10.1111/j.1752-8062.2008.00028.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract MicroRNAs (miRNAs) are a large family of short, single-stranded, highly conserved noncoding RNAs involved in gene regulation that can regulate gene expression through sequence-specific base pairing with target messenger RNAs (mRNAs). miRNAs have been implicated in the development of a wide variety of cancers as well as heart disease and other diseases. This review describes the role of miRNAs in human disease, methodology for evaluating miRNA gene expression, and the potential role of miRNAs as therapeutic agents and targets for the treatment of disease.
Collapse
Affiliation(s)
- Elisa Barbarotto
- Department of Morphology and Embryology, University of Ferrara, Ferrera, Italy
| | | | | | | | | | | |
Collapse
|
811
|
Abstract
MicroRNAs (miRNAs) are small endogenous RNA molecules ∼22 nt in length. miRNAs are capable of posttranscriptional gene regulation by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation or suppression of translation. miRNAs have recently been shown to play pivotal roles in skin development and are linked to various skin pathologies, cancer, and wound healing. This review focuses on the role of miRNAs in cutaneous biology, the various methods of miRNA modulation, and the therapeutic opportunities in treatment of skin diseases and wound healing.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
812
|
Zhong X, Li N, Liang S, Huang Q, Coukos G, Zhang L. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells. J Biol Chem 2010; 285:41961-71. [PMID: 20947512 DOI: 10.1074/jbc.m110.169607] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic stem cells and developing tissues. In human tumors, LIN28 is up-regulated and functions as an oncogene promoting malignant transformation and tumor progression. However, the mechanisms of transcriptional and post-transcriptional regulation of LIN28 are still largely unknown. To examine microRNAs (miRNAs) that repress LIN28 expression, a combined in silico prediction and miRNA library screening approach was used in the present study. Four miRNAs directly regulating LIN28 (let-7, mir-125, mir-9, and mir-30) were initially identified by this approach and further validated by quantitative RT-PCR, Western blot analysis, and a LIN28 3'-UTR reporter assay. We found that expression levels of these four miRNAs were clustered together and inversely correlated with LIN28 expression during embryonic stem cell differentiation. In addition, the expression of these miRNAs was remarkably lower in LIN28-positive tumor cells compared with LIN28-negative tumor cells. Importantly, we demonstrated that these miRNAs were able to regulate the expression and activity of let-7, mediated by LIN28. Taken together, our studies demonstrate that miRNAs let-7, mir-125, mir-9, and mir-30 directly repress LIN28 expression in embryonic stem and cancer cells. Global down-regulation of these miRNAs may be one of the mechanisms of LIN28 reactivation in human cancers.
Collapse
Affiliation(s)
- Xiaomin Zhong
- Center for Research on Early Detection and Cure of Ovarian Cancer, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
813
|
|
814
|
Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol 2010; 29:553-61. [PMID: 20380575 DOI: 10.1089/dna.2009.0978] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human glioblastomas often develop resistance to radiation therapy. The molecular details of this phenomenon are not completely understood. Recent studies have suggested that deficiency in DNA repair pathways may alter the resistance to ionizing radiation in gliobastomas. The human glioma cell line M059J is deficient in DNA-dependent protein kinase (DNA-PK), whereas cell line M059K, isolated from the same malignant tumor, has normal DNA-PK activity. DNA-PK plays a central role in the repair of ionizing-radiation-induced double-strand break repair, and its deficiency has been correlated with ionizing radiation sensitivity in these glioblastoma cells. We argued that other cellular pathways could also play a role in the resistance to radiation therapy in gliomas. We hypothesized that micro-RNAs (miRNAs) are differentially modulated in M059J and M059K cells exposed to ionizing radiation and that the miRNA modulation contributes to the resistance to ionizing radiation. miRNAs are small nonprotein coding single-stranded RNA molecules, which are crucial posttranscriptional regulators of gene expression. Numerous studies have documented the participation of miRNAs in a wide range of biological processes. The contribution of miRNAs in mediating resistance of glioblastoma cell to ionizing radiation treatment has not been elucidated. To test this hypothesis, we examined the expression patterns of a number of miRNAs involved in carcinogenesis in irradiated M059J and M059K cells. The relative expression level as determined by real-time quantitative PCR for miRNAs belonging to the let-7 family indicated an upregulation in irradiated M059K cells. On the contrary, the analysis of irradiated M059J cells for the modulation of let-7 family of miRNAs revealed an overall downregulation. The miR-17-3p, miR-17-5p, miR-19a, miR-19b, miR-142-3p, and miR-142-5p were upregulated in both M059K and M059J cells. The miR-15a, miR-16, miR-143, miR-155, and miR-21 were upregulated in M059K, and the modulation of these miRNAs fluctuated in M059J cells in a time-dependent manner. These results indicate the involvement of miRNAs in the differential response of glioblastoma cells to ionizing radiation treatment.
Collapse
Affiliation(s)
- M Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont , Burlington, Vermont, USA.
| | | | | |
Collapse
|
815
|
|
816
|
Scapoli L, Palmieri A, Muzio LL, Pezzetti F, Rubini C, Girardi A, Farinella F, Mazzotta M, Carinci F. MicroRNA Expression Profiling of Oral Carcinoma Identifies New Markers of Tumor Progression. Int J Immunopathol Pharmacol 2010; 23:1229-34. [DOI: 10.1177/039463201002300427] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma, the most frequently occurring malignant head and neck tumour, generally exhibits poor prognosis and metastases are the main cause of death. The discovery of reliable prognostic indicators of tumour progression could greatly improve clinical practice. MicroRNAs are involved in the regulation of basic cellular processes such as cell proliferation, differentiation, and apoptosis. Since miRNAs have been shown to be abnormally expressed in different tumours their importance as potential cancer prognostic indicators is increasing. To define the role of miRNA in OSCC tumours we investigated the expression profile of 15 OSCC (8 without metastasis and 7 with lymph node metastasis) using microarray analysis. Thirteen miRNA were significantly overexpressed (miR-489, miR-129, miR-23a, miR-214, miR-23b, miR-92, miR-25, miR-210, miR-212, miR-515, miR-146b, miR-21, miR-338) and 6 miRNA were underexpressed (miR-520h, miR-197, miR-378, miR-135b, miR-224, miR-34a) in oral tumours. Underexpression of mir-155, let-7i, mir-146a was found to characterize progression to metastastatic tumours. Further investigations will elucidate whether differentially expressed miRNAs will help to better classify OSCCs, thus improving diagnoses and patient care.
Collapse
Affiliation(s)
| | - A. Palmieri
- Section of Maxillofacial Surgery, University of Ferrara, Ferrara
| | - L. Lo Muzio
- Department of Surgical Sciences, Faculty of Medicine, University of Foggia, Foggia
| | | | - C. Rubini
- Anatomical Pathology Unit, Polytechnic University of the Marche Region, Ancona
| | | | - F. Farinella
- Section of Maxillofacial Surgery, University of Ferrara, Ferrara
| | - M. Mazzotta
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico di Basilicata (I.R.C.C.S. C.R.O.B.), Rionero in Vulture, Potenza, Italy
| | - F. Carinci
- Section of Maxillofacial Surgery, University of Ferrara, Ferrara
| |
Collapse
|
817
|
Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 2010; 43:595-603. [PMID: 20876843 DOI: 10.1152/physiolgenomics.00148.2010] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A common characteristic of aging is loss of skeletal muscle (sarcopenia), which can lead to falls and fractures. MicroRNAs (miRNAs) are novel posttranscriptional modulators of gene expression with potential roles as regulators of skeletal muscle mass and function. The purpose of this study was to profile miRNA expression patterns in aging human skeletal muscle with a miRNA array followed by in-depth functional and network analysis. Muscle biopsy samples from 36 men [young: 31 ± 2 (n = 19); older: 73 ± 3 (n = 17)] were 1) analyzed for expression of miRNAs with a miRNA array, 2) validated with TaqMan quantitative real-time PCR assays, and 3) identified (and later validated) for potential gene targets with the bioinformatics knowledge base software Ingenuity Pathways Analysis. Eighteen miRNAs were differentially expressed in older humans (P < 0.05 and >500 expression level). Let-7 family members Let-7b and Let-7e were significantly elevated and further validated in older subjects (P < 0.05). Functional and network analysis from Ingenuity determined that gene targets of the Let-7s were associated with molecular networks involved in cell cycle control such as cellular proliferation and differentiation. We confirmed with real-time PCR that mRNA expression of cell cycle regulators CDK6, CDC25A, and CDC34 were downregulated in older compared with young subjects (P < 0.05). In addition, PAX7 mRNA expression was lower in older subjects (P < 0.05). These data suggest that aging is characterized by a higher expression of Let-7 family members that may downregulate genes related to cellular proliferation. We propose that higher Let-7 expression may be an indicator of impaired cell cycle function possibly contributing to reduced muscle cell renewal and regeneration in older human muscle.
Collapse
Affiliation(s)
- Micah J Drummond
- Department of Physical Therapy, University of Texas Medical Branch, Galveston, TX 77555-1144, USA.
| | | | | | | | | | | | | |
Collapse
|
818
|
Abstract
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as endogenous negative gene regulators. Dysfunctions of miRNAs are frequently found in malignancies, including lung cancer. In this review, we summarise the current understanding of miRNAs in lung cancer tumourigenesis, and highlight their potential in overcoming drug resistance, abetting histological sub-classification techniques, and serving as biomarkers for lung cancer risk stratification and outcome prediction.
Collapse
Affiliation(s)
- P-Y Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
819
|
Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE, Mu L, Risch H, Yu H. Let-7a regulation of insulin-like growth factors in breast cancer. Breast Cancer Res Treat 2010; 126:687-94. [PMID: 20848182 DOI: 10.1007/s10549-010-1168-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/04/2010] [Indexed: 12/01/2022]
Abstract
Expression of certain microRNA genes is regulated by DNA methylation, which in turn affects the activities of their downstream molecules. Our previous study showed that methylated let-7a-3 was associated with low IGF-II expression and favorable prognosis of ovarian cancer. The roles of let-7a-3 methylation in breast cancer and in regulation of IGF expression in the tumor are still unknown. Let-7a-3 methylation, IGF mRNAs, and peptides were analyzed in 348 breast cancer samples using quantitative methylation-specific PCR, qRT-PCR, and ELISA, respectively. The associations of let-7a-3 methylation with IGFs, disease features, and patient survivals were analyzed. In vitro experiments were performed using HeLa cells transfected with let-7a precursors to assess the effect of let-7a on IGF expression. Let-7a-3 methylation was detected frequently in breast cancer. An inverse correlation between let-7a-3 methylation and IGF expression was observed in breast cancer, which was similar to that seen in ovarian cancer. Our in vitro experiment showed that let-7a could increase IGF expression in cancer cells which had low endogenous let-7a. Let-7a-3 methylation was also found to be associated with high grade tumors and ER- or PR-negative cancer. However, let-7a-3 methylation was not associated with disease-free survival or overall survival of breast cancer patients. The study provides further evidence in support of the notion that epigenetic regulation of let-7a-3 may affect the actions of IGFs in cancer. Let-7a may up-regulate the expression of IGFs in cancer cells, which is different from its inhibitory effects on other oncogenes.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Epidemiology and Public Health, Yale Cancer Center, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
820
|
Elton TS, Sansom SE, Martin MM. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol 2010; 7:540-7. [PMID: 21081842 PMCID: PMC3073250 DOI: 10.4161/rna.7.5.12685] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/26/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) or Trisomy 21 (Ts21) is caused by the presence of an extra copy of all or part of human chromosome 21 (Hsa21) and is the most frequent survivable congenital chromosomal abnormality. Bioinformatic annotation has established that Hsa21 harbors more than 400 genes, including five microRNA (miRNA) genes (miR-99a, let-7c, miR-125b-2, miR-155, and miR-802). MiRNAs are endogenous, single-stranded, small non-coding RNA molecules that regulate gene expression by interacting with specific recognition elements harbored within the 3'-untranslated region (3'-UTR) of mRNAs and subsequently target these mRNAs for translational repression or destabilization. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments have demonstrated that Hsa21-derived miRNAs were over-expressed in fetal brain and heart specimens isolated from individuals with DS. We now propose that Ts21 gene dosage over-expression of Hsa21-derived miRNAs in DS individuals result in the decreased expression of specific target proteins (i.e. haploinsufficiency) that contribute, in part, to the DS phenotype.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmacology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
821
|
Abstract
MicroRNAs (miRNA), a class of natural RNA-interfering agents, have recently been identified as attractive targets for therapeutic intervention. The rationale for developing miRNA therapeutics is based on the premise that aberrantly expressed miRNAs play key roles in the development of human disease, and that correcting these miRNA deficiencies by either antagonizing or restoring miRNA function may provide a therapeutic benefit. Although miRNA antagonists are conceptually similar to other inhibitory therapies, restoring the function of a miRNA by miRNA replacement is a less well characterized approach. Here, we discuss the specific properties of miRNA replacement and review recent examples that explored the therapeutic delivery of miRNA mimics in animal models of cancer.
Collapse
Affiliation(s)
- Andreas G Bader
- Mirna Therapeutics, Inc. and Asuragen, Inc., Austin, TX 78744, USA.
| | | | | |
Collapse
|
822
|
Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett 2010; 297:137-43. [PMID: 20797817 DOI: 10.1016/j.canlet.2010.07.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/28/2010] [Accepted: 07/22/2010] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicated that miRNAs are aberrantly expressed in a variety of human cancers and crucial to tumorigenesis. We herein provide a brief review of miRNA biogenesis, function, deregulation and their possible role as oncogenes or tumor suppressors in the pathogenesis of gastric cancer. The role of miRNAs in the carcinogenic effect of Helicobacter pylori infection was also discussed. Finally, we comment on the potential role of miRNAs in improving the current management of gastric cancer.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd 107, 250012 Jinan, China
| | | | | | | | | | | |
Collapse
|
823
|
Iizasa H, Wulff BE, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L, Lieberman P, Nishikura K. Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 2010; 285:33358-33370. [PMID: 20716523 DOI: 10.1074/jbc.m110.138362] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Certain primary transcripts of miRNA (pri-microRNAs) undergo RNA editing that converts adenosine to inosine. The Epstein-Barr virus (EBV) genome encodes multiple microRNA genes of its own. Here we report that primary transcripts of ebv-miR-BART6 (pri-miR-BART6) are edited in latently EBV-infected cells. Editing of wild-type pri-miR-BART6 RNAs dramatically reduced loading of miR-BART6-5p RNAs onto the microRNA-induced silencing complex. Editing of a mutation-containing pri-miR-BART6 found in Daudi Burkitt lymphoma and nasopharyngeal carcinoma C666-1 cell lines suppressed processing of miR-BART6 RNAs. Most importantly, miR-BART6-5p RNAs silence Dicer through multiple target sites located in the 3'-UTR of Dicer mRNA. The significance of miR-BART6 was further investigated in cells in various stages of latency. We found that miR-BART6-5p RNAs suppress the EBNA2 viral oncogene required for transition from immunologically less responsive type I and type II latency to the more immunoreactive type III latency as well as Zta and Rta viral proteins essential for lytic replication, revealing the regulatory function of miR-BART6 in EBV infection and latency. Mutation and A-to-I editing appear to be adaptive mechanisms that antagonize miR-BART6 activities.
Collapse
Affiliation(s)
- Hisashi Iizasa
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104; Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | - Manolis Maragkakis
- Institute of Molecular Oncology, Biomedical Sciences Research Center Alexander Fleming, 16672 Vari-Athens, Greece; Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Molly Megraw
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Artemis Hatzigeorgiou
- Institute of Molecular Oncology, Biomedical Sciences Research Center Alexander Fleming, 16672 Vari-Athens, Greece
| | - Dai Iwakiri
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Kenzo Takada
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Andreas Wiedmer
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Louise Showe
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Paul Lieberman
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Kazuko Nishikura
- From the The Wistar Institute, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
824
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
825
|
Abstract
Hyperactivity of the Myc oncogenic transcription factor dramatically reprograms gene expression to facilitate cellular proliferation and tumorigenesis. To elicit these effects, Myc coordinates the activation and repression of an extensive network of protein-coding genes and, as has recently been appreciated, noncoding RNAs including microRNAs (miRNAs). Consistent with their ability to potently influence cancer phenotypes, the regulation of miRNAs by Myc affects virtually all aspects of the Myc oncogenic program, including proliferation, survival, metabolism, angiogenesis, and metastasis. This review will summarize the current understanding of the mechanisms underlying Myc-dependent transcriptional and posttranscriptional control of miRNAs and the resultant effects on tumorigenesis. As miRNAs are integral nodes in the transcriptional network controlled by Myc, modulating their activity represents a promising new approach for cancer therapy.
Collapse
Affiliation(s)
- Thi V Bui
- Howard Hughes Medical Institute and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
826
|
Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res 2010; 316:3512-21. [PMID: 20633552 DOI: 10.1016/j.yexcr.2010.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/04/2010] [Accepted: 07/06/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. METHODS Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. RESULTS mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. CONCLUSIONS This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.
Collapse
Affiliation(s)
- Anita Balakrishnan
- Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
827
|
Jakymiw A, Patel RS, Deming N, Bhattacharyya I, Shah P, Lamont RJ, Stewart CM, Cohen DM, Chan EKL. Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer 2010; 49:549-59. [PMID: 20232482 DOI: 10.1002/gcc.20765] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent reports have demonstrated that Dicer, an RNase III endonuclease required for microRNA (miRNA) maturation, is aberrantly expressed in different types of cancer. Furthermore, Dicer has been reported to be regulated by the let-7 family of miRNA genes. We hypothesize that Dicer is aberrantly expressed in oral cancer cells due to altered expressions of let-7 and that Dicer contributes to the development and progression of the disease. Western blot examination of Dicer protein levels in four head and neck squamous cell carcinoma (HNSCC) cell lines, including two oral cancer cell lines, demonstrated that Dicer had between 4- and 24-fold higher expression levels when compared to normal human primary gingival epithelial cells. Furthermore, five of six oral cancer tissues analyzed by indirect immunofluorescence had increased Dicer protein expression, compared to normal gingival epithelial tissue. The Dicer mRNA levels were not found to correlate well with protein expression in the HNSCC cell lines, suggesting that Dicer protein expression was post-transcriptionally regulated. Analysis of let-7a and let-7b levels in HNSCC cell lines by real-time PCR demonstrated that let-7b, but not let-7a, was significantly reduced in the HNSCC cell lines compared to control cells. Lastly, transfection of oral cancer cells with chemically synthesized let-7b and small interfering RNAs targeting Dicer significantly inhibited cell proliferation up to 83% and >100%, respectively, as early as 3 days post-transfection. Together, these data demonstrate that elevated expression levels of Dicer in oral cancer cells correlate with downregulation of let-7b and increased cell proliferation.
Collapse
Affiliation(s)
- Andrew Jakymiw
- Department of Oral Biology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
828
|
Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol 2010; 102:19-24. [PMID: 20607356 DOI: 10.1007/s11060-010-0286-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs comprising 21-23 nucleotides that regulate gene expression by transcriptionally repressing their complementary mRNAs. In particular, let-7 miRNA has been postulated to function as a tumor suppressor in various cancer cells, but not yet in glioblastoma. In this study, we investigated the anti-tumorigenic effect of let-7 miRNA in glioblastoma cells. Human glioblastoma cells (U251 or U87 cells) were transfected with let-7 miRNA and assayed for in-vitro proliferation, migration, and in-vivo tumor formation. Transfection of let-7 miRNA reduced expression of pan-RAS, N-RAS, and K-RAS in the glioblastoma cells. Let-7 miRNA also reduced the in-vitro proliferation and migration of the cells, and reduced the sizes of the tumors produced after transplantation into nude mice. However, let-7 miRNA exerted no effect on the proliferation of normal human astrocytes. These results indicate that let-7 miRNA has an anti-tumorigenic effect on glioblastoma cells, and suggest possible use of let-7 miRNA for treating glioblastoma.
Collapse
|
829
|
Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AYF, Jooi LLP, Lee CGL. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol 2010; 53:57-66. [PMID: 20447714 DOI: 10.1016/j.jhep.2009.12.043] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/28/2009] [Accepted: 12/29/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pleiotropic hepatitis B virus (HBV) x protein (HBx), associated with hepatocellular carcinoma (HCC), has been implicated in the deregulation of cellular gene expression at the transcriptional level. To date, it remains unknown if HBx regulates the expression of miRNAs which play important roles in gene-regulation at the post-transcriptional and/or translational level. METHODS miRNA microarrays were employed to compare the expression of cellular miRNAs in HBx-versus control-HepG2 cells. Reverse-transcription Taqman realtime-PCR was used to examine let-7a expression in normal liver as well as paired HCC-tumor and adjacent non-tumorous liver. Let-7a miRNA was functionally characterized in cells with transiently altered let-7a expression. The direct target of let-7a was identified in silico and validated using 3'UTR-reporter assay. RESULTS HBx up-regulates 7 and down-regulates 11 miRNAs, including the let-7 family. HBx expression was found to have a significant inverse correlation with the expression of the highly-expressed members of the let-7 family in HCC patients, highlighting the clinical relevance of our observations. Further characterization of let-7a, the most highly expressed let-7 family member, revealed that it negatively regulates cellular proliferation partly through targeting signal transducer and activator of transcription 3 (STAT3). HBx-mediated down-regulation of let-7a and up-regulation of STAT3 supports cell proliferation in HBx cells. CONCLUSION This study thus represents the first demonstration of HBx's ability to deregulate cellular miRNA expression. The deregulation of the expression of the let-7 family of miRNAs by HBx may represent a potential novel pathway through which HBx acts to deregulate cell proliferation leading to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
830
|
He XY, Chen JX, Zhang Z, Li CL, Peng QL, Peng HM. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol 2010; 136:1023-8. [PMID: 20033209 DOI: 10.1007/s00432-009-0747-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/07/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE Down-regulation of let-7 microRNA (miRNA) plays an important role in the pathogenesis of lung cancer. k-Ras and c-Myc, two key oncogenes in lung cancer, have been found to be targeted by let-7 in vitro. However, the in vivo relevance of these findings is unknown. The aim of the present study is to determine the effect of let-7a, a member of let-7 family, on the growth of lung cancer in vivo and to investigate whether let-7-induced suppression of k-Ras and c-Myc is involved in lung cancer. METHODS A549-let-7a cell line and A549-control cell line, two stable transfected cell lines over-expressing let-7a and the control miRNA, were established and preserved in our lab. A549, A549-control, and A549-let-7a cells were injected subcutaneously into nude mice, respectively. After 30 days, the mice were killed; the xenografts were excised and weighed. The expression of let-7a in tumor xenografts was assessed by real-time reverse transcription-PCR (RT-PCR). The expression of k-Ras and c-Myc in xenografts were determined by western blot and immunohistochemistry detection. RESULTS Real-time RT-PCR showed the expression of let-7a was increased significantly in A549-let-7a cells-injected group, compared with A549-control cells-injected group and A549 cells-injected group (P < 0.01). In the xenografts of A549-let-7a cells-injected group, a significant depression in tumor weight (P < 0.05) and significant decrease of k-Ras and c-Myc protein were observed (P < 0.01), compared to A549 cells-injected group and A549-control cells-injected group. CONCLUSION Overexpression of let-7a can inhibit the growth of lung cancer transplanted subcutaneously in nude mice by suppression of k-Ras and c-Myc.
Collapse
Affiliation(s)
- Xiao-Yan He
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1, Medical College Road, 400016 Chongqing, China
| | | | | | | | | | | |
Collapse
|
831
|
Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 2010; 15:673-82. [PMID: 20576643 DOI: 10.1634/theoncologist.2010-0103] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The potential of microRNAs (miRNAs) as novel tumor markers has been the focus of recent scrutiny because of their tissue specificity, stability, and association with clinicopathological parameters. Data have emerged documenting altered systemic miRNA expression across a spectrum of cancers; however, it remains uncertain as to whether circulating miRNAs are tumor specific. Our aim was to assess a panel of cancer-associated miRNAs in the circulation of patients with various malignancies, to determine whether these "oncomirs" were tumor specific, and thus to establish whether systemic miRNA analysis has utility in cancer diagnosis. PATIENTS AND METHODS Whole blood samples were prospectively collected from preoperative cancer patients (breast, prostate, colon, and renal cancer and melanoma; n = 163) and healthy age- and sex-matched controls (n = 63). Total RNA was isolated, and a panel of seven miRNAs was quantified by real-time quantitative polymerase chain reaction in each sample. RESULTS Differential expression of the general oncomirs let 7a, miR-10b, and miR-155, was observed in the majority of cancer patients in a nonspecific manner. Significantly, elevated circulating miR-195 was found to be breast cancer specific and could differentiate breast cancer from other cancers and from controls with a sensitivity of 88% at a specificity of 91%. A combination of three circulating miRNAs, including miR-195, further enhanced the discriminative power of this test for breast cancer to 94%. CONCLUSION These findings suggest that individual cancers display specific systemic miRNA profiles, which could aid in discriminating among cancer types. This finding is of notable clinical consequence because it illustrates the potential of systemic miRNAs as sensitive, specific, noninvasive cancer biomarkers.
Collapse
Affiliation(s)
- Helen M Heneghan
- Department of Surgery, National University of Ireland, Galway, Ireland. Cos
| | | | | | | | | |
Collapse
|
832
|
Qavi AJ, Bailey RC. Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. Angew Chem Int Ed Engl 2010; 49:4608-11. [PMID: 20491114 PMCID: PMC2994205 DOI: 10.1002/anie.201001712] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abraham J. Qavi
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Illinois, 61801 (United States), Fax: (217) 265-6290
| | - Ryan C. Bailey
- Department of Chemistry, Institute for Genomic Biology, and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Illinois, 61801 (United States), Fax: (217) 265-6290
| |
Collapse
|
833
|
Du L, Schageman JJ, Irnov, Girard L, Hammond SM, Minna JD, Gazdar AF, Pertsemlidis A. MicroRNA expression distinguishes SCLC from NSCLC lung tumor cells and suggests a possible pathological relationship between SCLCs and NSCLCs. J Exp Clin Cancer Res 2010; 29:75. [PMID: 20624269 PMCID: PMC2907339 DOI: 10.1186/1756-9966-29-75] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/17/2010] [Indexed: 12/03/2022] Open
Abstract
Background Recent studies have shown that microRNAs (miRNAs) play roles in tumorigenesis and are reliable classifiers of certain cancer types and subtypes. However, the role of miRNAs in the pathogenesis and diagnosis of small cell carcinoma (SCLC), the majority of which represent the most aggressive lung tumors, has not been investigated. Methods In order to explore miRNA involvement in the pathogenesis of small cell lung carcinoma (SCLC) and the potential role of miRNAs in SCLC diagnosis, we compared the miRNA expression profile of a set of SCLC cell lines to that of a set of non-small cell lung cancer (NSCLC) cell lines and normal immortalized human bronchial epithelial cells (HBECs) using microarray analysis. Results Our results show that miRNA profiles reliably distinguish SCLC cell lines from NSCLC and HBEC cell lines. Further analysis of the miRNA expression profile of the two subtypes of lung cancer cell lines indicates that the expression levels of the majority of the miRNAs that are differentially expressed in SCLC cells relative to NSCLC cells and HBECs show a progressive trend from HBECs to NSCLC cells to SCLC cells. Conclusions The distinctive miRNA expression signature of SCLCs relative to NSCLCs and HBECs suggests that miRNA profiles have the potential to serve as a diagnostic marker of SCLC lung tumors. The progressive trend of miRNA profile changes from HBECs to NSCLCs to SCLCs suggests a possible pathological relationship between SCLCs and NSCLCs, and suggests that the increasing dysregulation of miRNA expression may play a role in lung tumor progression. The specific role of these miRNAs in lung tumor pathogenesis and differentiation need to be investigated further in future studies.
Collapse
Affiliation(s)
- Liqin Du
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
834
|
MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 2010; 10:543-50. [PMID: 20541466 DOI: 10.1016/j.coph.2010.05.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/24/2022]
Abstract
The knowledge that miRNA expression is frequently dysregulated in cancer has uncovered an entirely new repertoire of molecular factors upstream of gene expression, with exciting potential as novel biomarkers and therapeutic targets in cancer. Exploiting the unique characteristics of these molecules including their stability, tissue specificity, ease of detection and manipulation, will bring clinicians ever closer to achieving the goal of individualized cancer treatment. We present a comprehensive and timely review of the role of miRNAs in cancer. Herein we address briefly miRNA biogenesis, the putative role of miRNAs as oncogenes or tumor suppressors, and their potential as sensitive and specific tumor markers with particular emphasis on the commonest cancers; breast, prostate, lung and colorectal. We also discuss circulating tumor-associated miRNAs which are emerging as clinically useful tools for early detection, prognostication and management of various cancers. Finally we explore their potential therapeutic applications in the field of cancer and highlight some of the potential challenges that need to be overcome in order to bring miRNAs from bench to bedside. Given the evidence to date, we envisage a pivotal role for miRNAs in the future individualized management of cancer patients.
Collapse
|
835
|
Qavi A, Bailey R. Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
836
|
miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer. Biochem Biophys Res Commun 2010; 398:1-6. [PMID: 20510161 DOI: 10.1016/j.bbrc.2010.05.082] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 12/13/2022]
Abstract
Deregulation of E2F1 activity is characteristic of gastric tumorigenesis, which involves in complex molecular mechanisms. microRNA is one of the post-transcriptional regulators for gene expression. Here, we report a member of miR-331 family, miR-331-3p, which was decreased in some kinds of malignancies. However, the biological function of miR-331-3p on gastric cancer is largely unknown. In this study, we screened the expressing levels of miR-331-3p and E2F1 in gastric cancer cell lines. We transfected precursor or inhibitor of miR-331-3p into gastric cancer cells. As results, miR-331-3p is down-regulated in all gastric cancer cell lines by real-time PCR. Over-expression of miR-331-3p blocked G1/S transition on SGC-7901 and AGS cell lines. Introduction of miR-331-3p dramatically suppressed the ability of colony formation and cell growth in vitro by interfering E2F1 activity. Our data highlight an important role of miR-331-3p in cell cycle control by targeting 3'-UTR of cell cycle-related molecule E2F1. We concluded that miR-331-3p is a potential tumor suppressor in gastric cancer. Restoring miR-331-3p in gastric cancer cells revealed potential application in gastric cancer therapy.
Collapse
|
837
|
Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 2010; 344:16-25. [PMID: 20478297 DOI: 10.1016/j.ydbio.2010.05.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.
Collapse
Affiliation(s)
- Sunil K Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
838
|
Rosell R, Vergnenegre A, Liu B, Cobo M, Massuti B, Wei J, Molina MA, Costa C, Queralt C, Taron M. Biomarkers in lung oncology. Pulm Pharmacol Ther 2010; 23:508-14. [PMID: 20471486 DOI: 10.1016/j.pupt.2010.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/03/2010] [Indexed: 01/08/2023]
Abstract
The survival of advanced non-small-cell lung cancer patients is short in spite of advances in new combination chemotherapy regimens. The benefit of adding antiangiogenic drugs and/or EGFR inhibitors is unclear. For the vast majority of patients without EGFR mutations, treatment approaches based on customization should be pursued. BRCA1 is central to the repair of DNA damage and is an important modulator of the differential effect of chemotherapy. Retrospective and prospective data indicate that low BRCA1 mRNA levels predict better response and survival when patients are treated with cisplatin, non-taxane combinations. For an important subgroup of patients with EGFR mutations, selective treatment with EGFR tyrosine kinase inhibitors is a major advance, with a dramatic impact on clinical outcomes. In a prospective study of customized erlotinib [1], overall response rate was 70% (including 12% complete responses), median progression free survival was 14 months (even longer in women and in patients with del 19), 20% of patients were disease-free at three years, and median survival was 27 months. Nonetheless, these clinical outcomes fall short of curability and continuous treatment with erlotinib or gefitinib is required. It is plausible that several genetically defined subclasses of EGFR mutations could help to improve current clinical outcomes by combining erlotinib or gefitinib with other targeted drugs.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
839
|
Sarkar S, Dey BK, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 2010; 21:2138-49. [PMID: 20462953 PMCID: PMC2893979 DOI: 10.1091/mbc.e10-01-0062] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This article describes a novel role of Cdc25A down-regulation during differentiation of proliferating myoblasts. Induction of a G1 phase cell cycle arrest, caused primarily by the inhibition of cyclin-dependent-kinase 2 (cdk2), is a critical step in the differentiation of myoblasts into myotubes. Here, we report that two microRNAs, miR-322/424 and miR-503, are induced and promote cdk2 inhibition during myogenesis. These microRNAs down-regulate Cdc25A, the phosphatase responsible for removing inhibitory phosphorylation of cdk2, both in myoblasts differentiating into myotubes and in nonmuscle cells. Cdc25A is down-regulated during muscle differentiation by multiple pathways: action of these two microRNAs, proteasomal degradation of Cdc25A protein and transcriptional repression. Overexpression of Cdc25A or of cdk2 with mutations on T14 and Y15 (cdk2-AF), so that it cannot be inhibited by phosphorylation, decreases differentiation and differentiation-induced cell cycle quiescence. Introduction of miR-322/424 and miR-503 in heterologous cancer cells induces G1 arrest, which is also attenuated by overexpression of the cdk2-AF mutant. Until now Cdc25A and the inhibitory phosphorylation on T14 and Y15 of cdk2 have only been implicated in the intra-S phase checkpoint pathway after DNA damage. Our results reveal an unexpected role of Cdc25A down-regulation and the inhibitory phosphorylation of cdk2 T14 and Y15 in cell cycle quiescence during muscle differentiation and implicate two muscle differentiation-induced microRNAs in the process.
Collapse
Affiliation(s)
- Sukumar Sarkar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
840
|
Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One 2010; 5:e10615. [PMID: 20485546 PMCID: PMC2868896 DOI: 10.1371/journal.pone.0010615] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/18/2010] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressors p53, p73, and p63 are known to function as transcription factors. They promote either growth arrest or apoptosis, depending upon the DNA damage. A number of microRNAs (miRNAs) have been shown to function as transcriptional targets of p53 and they appear to aid p53 in promoting growth arrest and apoptosis. However, the question of p53/p63/p73 regulating the miRNA processing complex has not been addressed in depth so far. Comparative/computational genomic analysis was performed using Target scan, Mami, and Diana software to identify miRNAs that regulate the miRNA processing complex. Here, I present evidence for the first time that the tumor suppressors p53, p63, and p73 function as both positive and negative regulators of the miRNA processing components. Curated p53-dependent miRNA expression data was used to identify p53-miRs that target the components of the miRNA-processing complex. This analysis suggests that most of the components (mRNAs' 3'UTR) of the miRNA processing complex are targeted by p53-miRs. Remarkably, this data revealed the conserved nature of p53-miRs in targeting a number of components of the miRNA processing complex. p53/p73/p63 appears to regulate the major components of the miRNA processing, such as Drosha-DGCR8, Dicer-TRBP2, and Argonaute proteins. In particular, p53/p73/p63 appears to regulate the processing of miRNAs, such as let-7, miR-200c, miR-143, miR-107, miR-16, miR-145, miR-134, miR-449a, miR-503, and miR-21. Interestingly, there seems to be a phenotypic similarity between p63(-/-) and dicer(-/-) mice, suggesting that p63 and dicer could regulate each other. In addition, p63, p73, and the DGCR8 proteins contain a conserved interaction domain. Further, promoters of a number of components of the miRNA processing machinery, including dicer and P2P-R, contain p53-REs, suggesting that they could be direct transcriptional targets of p63/p73/p53. Together, this study provides mechanistic insights into how p53, p63, and p73 regulate the components of the miRNA processing; and how p53, TA-p63, and TA-p73 regulated miRNAs inhibit tumorigenesis, EMT, metastasis, and cancer stem cell proliferation.
Collapse
|
841
|
Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 2010; 38:140-53. [PMID: 20385095 DOI: 10.1016/j.molcel.2010.03.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/06/2010] [Accepted: 03/19/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs are emerging as important regulators of diverse biological processes and pathologies in animals and plants. Though hundreds of human microRNAs are known, only a few have known functions. Here, we predict human microRNA functions by using a new method that systematically assesses the statistical enrichment of several microRNA-targeting signatures in annotated gene sets such as signaling networks and protein complexes. Some of our top predictions are supported by published experiments, yet many are entirely new or provide mechanistic insights to known phenotypes. Our results indicate that coordinated microRNA targeting of closely connected genes is prevalent across pathways. We use the same method to infer which microRNAs regulate similar targets and provide the first genome-wide evidence of pervasive cotargeting, in which a handful of "hub" microRNAs are involved in a majority of cotargeting relationships. Our method and analyses pave the way to systematic discovery of microRNA functions.
Collapse
|
842
|
Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol 2010; 52:698-704. [PMID: 20347499 DOI: 10.1016/j.jhep.2009.12.024] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/17/2009] [Accepted: 12/02/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Bcl-xL, an anti-apoptotic member of the Bcl-2 family, is over-expressed in human hepatocellular carcinoma, conferring a survival advantage to tumour cells. The mechanisms underlying its dysregulation have not been clarified. In the present study, we explored the involvement of microRNAs that act as endogenous sequence-specific suppressors of gene expression. METHODS The expression profiles of microRNAs in Huh7 hepatoma cells and primary human hepatocytes were compared by microarray analysis. The effect of let-7 on Bcl-xL expression was examined by Western blot and a reporter assay. The involvement of let-7 microRNAs in human tissues was analysed by western blot and reverse transcription-PCR. RESULTS Microarray analysis, followed by in silico target prediction, identified let-7 microRNAs as being downregulated in Huh7 hepatoma cells in comparison with primary human hepatocytes, as well as possessing a putative target site in the bcl-xl mRNA. Over-expression of let-7c or let-7g led to a clear decrease of Bcl-xL expression in Huh7 and HepG2 cell lines. Reporter assays revealed direct post-transcriptional regulation involving let-7c or let-7g and the 3'-untranslated region of bcl-xl mRNA. Human hepatocellular carcinoma tissues with low expression of let-7c displayed higher expression of Bcl-xL protein than those with high expression of let-7c, suggesting that low let-7 microRNA expression contributes to Bcl-xL over-expression. Finally, expression of let-7c enhanced apoptosis of hepatoma cells upon exposure to sorafenib, which downregulates expression of another anti-apoptotic Bcl-2 protein, Mcl-1. CONCLUSIONS let-7 microRNAs negatively regulate Bcl-xL expression in human hepatocellular carcinomas and induce apoptosis in cooperation with an anti-cancer drug targeting Mcl-1.
Collapse
Affiliation(s)
- Satoshi Shimizu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
843
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
844
|
Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107:163-224. [PMID: 20399964 DOI: 10.1016/s0065-230x(10)07006-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MYC proteins (c-MYC, MYCN, and MYCL) regulate processes involved in many if not all aspects of cell fate. Therefore, it is not surprising that the MYC genes are deregulated in several human neoplasias as a result from genetic and epigenetic alterations. The near "omnipotency" together with the many levels of regulation makes MYC an attractive target for tumor intervention therapy. Here, we summarize some of the current understanding of MYC function and provide an overview of different cancer forms with MYC deregulation. We also describe available treatments and highlight novel approaches in the pursuit for MYC-targeting therapies. These efforts, at different stages of development, constitute a promising platform for novel, more specific treatments with fewer side effects. If successful a MYC-targeting therapy has the potential for tailored treatment of a large number of different tumors.
Collapse
Affiliation(s)
- Ami Albihn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
845
|
Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 2010; 30:2983-95. [PMID: 20404092 DOI: 10.1128/mcb.01372-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription of microRNAs (miRNAs) is thought to be regulated similarly to that of protein-coding genes. However, how miRNAs are regulated during the cell division cycle is not well understood. We have analyzed the transcription profiles of miRNAs in response to mitogenic stimulation in primary fibroblasts. About 33% of the miRNAs expressed in these cells are induced upon exit from quiescence. Many of these miRNAs are specifically induced by E2F1 or E2F3 during the G(1)/S transition and are repressed in E2F1/3-knockout cells. At least four miRNA clusters, let-7a-d, let-7i, mir-15b-16-2, and mir-106b-25, are direct targets of E2F1 and E2F3 during G(1)/S and are repressed in E2F1/3-null cells. Interestingly, these miRNAs do not contribute to E2F-dependent entry into S phase but rather inhibit the G(1)/S transition by targeting multiple cell cycle regulators and E2F targets. In fact, E2F1 expression results in a significant increase in S-phase entry and DNA damage in the absence of these microRNAs. Thus, E2F-induced miRNAs contribute to limiting the cellular responses to E2F activation, thus preventing replicative stress. Given the known function of E2F of inducing other oncogenic miRNAs, control of miRNAs by E2F is likely to play multiple roles in cell proliferation and in proliferative diseases such as cancer.
Collapse
|
846
|
Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182:220-9. [PMID: 20395557 DOI: 10.1164/rccm.200911-1698oc] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation. OBJECTIVES To determine changes in expression and role of microRNAs in IPF. METHODS RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-beta. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry. MEASUREMENTS AND MAIN RESULTS Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-beta down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and alpha-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells. CONCLUSIONS Our results indicate a role for microRNAs in IPF. The down-regulation of let-7d in IPF and the profibrotic effects of this down-regulation in vitro and in vivo suggest a key regulatory role for this microRNA in preventing lung fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT 00258544).
Collapse
Affiliation(s)
- Kusum V Pandit
- University of Pittsburgh Medical Center, NW 628 MUH, 3459 5th Avenue, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
847
|
Abstract
The coding sequence of a protein must contain the information required for the canonical amino acid sequence. However, the redundancy of the genetic code creates potential for embedding other types of information within coding regions as well. In a genome-wide computational screen for functional motifs within coding regions based on evolutionary conservation, highly conserved motifs included some expected motifs, some novel motifs and coding region target sites for known microRNAs, which are generally presumed to target 3' untranslated regions (UTRs) (www.SiteSifter.org). We report here an analysis of published proteomics experiments that further support a functional role for coding region microRNA binding sites, though the effects are weaker than for sites in the 3' UTR. We also demonstrate a positional bias with greater conservation for sites at the end of the coding region, and the beginning and end of the 3' UTR. An increased effectiveness of microRNA binding sites at the 3' end of transcripts could reflect proximity to the poly(A) tail or interactions with the 5' terminal 7mGpppN "cap", which is physically adjacent to this region once the message is circularized. The effectiveness of 3' UTR sites could reflect a cooperative role for RNA binding proteins. Finally, increased microRNA conservation near the stop codon suggests to us the possible involvement of proteins that execute nonsense-mediated decay, since this process is activated by tagging of termination codons with factors that induce transcript degradation.
Collapse
|
848
|
Dong Q, Meng P, Wang T, Qin W, Qin W, Wang F, Yuan J, Chen Z, Yang A, Wang H. MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One 2010; 5:e10147. [PMID: 20418948 PMCID: PMC2854685 DOI: 10.1371/journal.pone.0010147] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/23/2010] [Indexed: 12/03/2022] Open
Abstract
Background Previous work has shown reduced expression levels of let-7 in lung tumors. But little is known about the expression or mechanisms of let-7a in prostate cancer. In this study, we used in vitro and in vivo approaches to investigate whether E2F2 and CCND2 are direct targets of let-7a, and if let-7a acts as a tumor suppressor in prostate cancer by down-regulating E2F2 and CCND2. Methodology/Principal Findings Real-time RT-PCR demonstrated that decreased levels of let-7a are present in resected prostate cancer samples and prostate cancer cell lines. Cellular proliferation was inhibited in PC3 cells and LNCaP cells after transfection with let-7a. Cell cycle analysis showed that let-7a induced cell cycle arrest at the G1/S phase. A dual-luciferase reporter assay demonstrated that the 3′UTR of E2F2 and CCND2 were directly bound to let-7a and western blotting analysis further indicated that let-7a down-regulated the expression of E2F2 and CCND2. Our xenograft models of prostate cancer confirmed the capability of let-7a to inhibit prostate tumor development in vivo. Conclusions/Significance These findings help to unravel the anti-proliferative mechanisms of let-7a in prostate cancer. Let-7a may also be novel therapeutic candidate for prostate cancer given its ability to induce cell-cycle arrest and inhibit cell growth, especially in hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Qingchuan Dong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
849
|
Pfeifer A, Lehmann H. Pharmacological potential of RNAi--focus on miRNA. Pharmacol Ther 2010; 126:217-27. [PMID: 20388525 DOI: 10.1016/j.pharmthera.2010.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) is a cellular process that is widely used as a research tool to control the expression of specific genes and has the potential as a therapeutic strategy for many diseases. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two principal categories of small RNAs that induce RNAi in a broad spectrum of eukaryotic organisms including human cells. miRNAs have an enormous capacity to regulate multiple genes and the expression of approximately 30% of the human genes is affected by these non-coding RNAs. Because many miRNAs are specifically expressed during disease, miRNAs are interesting tools for pharmacology and understanding the function of specific miRNAs will help to identify novel drug targets. Furthermore, miRNA-based diagnostics as well as therapeutic interventions are being developed for clinical applications.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | |
Collapse
|
850
|
Laser J, Lee P, Wei JJ. Cellular senescence in usual type uterine leiomyoma. Fertil Steril 2010; 93:2020-6. [PMID: 19217096 DOI: 10.1016/j.fertnstert.2008.12.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/21/2008] [Accepted: 12/28/2008] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the role of senescence in symptomatic patients with multifibroids. DESIGN A cohort study. SETTING University research laboratory. PATIENT(S) Eighty-six fibroids collected from 14 patients who underwent myomectomy or hysterectomy. INTERVENTION(S) Senescence-associated beta-galactosidase (SA-beta-Gal) stain in fresh-frozen tissue; reverse-transcription polymerase chain reaction (RT-PCR); MicroRNA in situ hybridization (MISH); immunohistochemistry in formalin-fixed paraffin-embedded tissue. MAIN OUTCOME MEASURE(S) Senescence measured by percentage of SA-beta-Gal-positive cells; levels of let-7 microRNAs measured by RT-PCR and MISH; expression of p16(INK4a), Ki-67, HMGA1, and HMGA2 scaled by immunoreactivity. RESULT(S) About 58% (48 of 82) of tumors showed significant senescent change (SA-beta-Gal positive) in >10% of the tumor volume. The overall trend was a higher level of senescence in small fibroids and older-aged women. Senescent fibroids were additionally shown to have, high levels of let-7 c, d, and f-2 and a low Ki-67 index. CONCLUSION(S) Senescence is a common cellular change in a large proportion of usual type fibroids. Similarly, senescence may explain the variation in growth rates of these tumors, and may prove to be an important molecular and cellular target in prevention of fibroid growth.
Collapse
Affiliation(s)
- Jordan Laser
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|