851
|
Abstract
Serine proteases, cysteine proteases, aspartic proteases and matrix metalloproteinases play an essential role in extracellular matrix remodeling and turnover through their proteolytic action on collagens, proteoglycans, fibronectin, elastin and laminin. Proteases can also act on chemokines, receptors and anti-microbial peptides, often potentiating their activity. The intestinal mucosa is the largest interface between the external environment and the tissues of the human body and is constantly exposed to proteolytic enzymes from many sources, including bacteria in the intestinal lumen, fibroblasts and immune cells in the lamina propria and enterocytes. Controlled proteolytic activity is crucial for the maintenance of gut immune homeostasis, for normal tissue turnover and for the integrity of the gut barrier. However, in intestinal immune-mediated disorders, pro-inflammatory cytokines induce the up-regulation of proteases, which become the end-stage effectors of mucosal damage by destroying the epithelium and basement membrane integrity and degrading the extracellular matrix of the lamina propria to produce ulcers. Protease-mediated barrier disruption in turn results in increased amounts of antigen crossing into the lamina propria, driving further immune responses and sustaining the inflammatory process.
Collapse
|
852
|
Choi KY, Chow LNY, Mookherjee N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 2012; 4:361-70. [PMID: 22739631 DOI: 10.1159/000336630] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022] Open
Abstract
Host defence peptides (HDPs) are innate immune effector molecules found in diverse species. HDPs exhibit a wide range of functions ranging from direct antimicrobial properties to immunomodulatory effects. Research in the last decade has demonstrated that HDPs are critical effectors of both innate and adaptive immunity. Various studies have hypothesized that the antimicrobial property of certain HDPs may be largely due to their immunomodulatory functions. Mechanistic studies revealed that the role of HDPs in immunity is very complex and involves various receptors, signalling pathways and transcription factors. This review will focus on the multiple functions of HDPs in immunity and inflammation, with special reference to cathelicidins, e.g. LL-37, certain defensins and novel synthetic innate defence regulator peptides. We also discuss emerging concepts of specific HDPs in immune-mediated inflammatory diseases, including the potential use of cationic peptides as therapeutics for immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Ka-Yee Choi
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Man., Canada
| | | | | |
Collapse
|
853
|
Abstract
The innate immune system provides the first line of defense against invading microorganisms by inducing a variety of inflammatory and antimicrobial responses. These responses are particularly important in the gastrointestinal tract, where the needs for efficient nutrient uptake and host defense collide. Many pathogens have evolved to specifically colonize the intestine, causing millions of cases of enteric infections a year. A paradigm of an enteric pathogen is Salmonella enterica, a gram-negative bacterium that causes a wide range of gastrointestinal and systemic diseases. Infections with Salmonella enterica serovar Typhimurium (S. typhimurium) lead to an acute intestinal inflammation in human and animal hosts, as a result of the bacterium invading the mucosa. A distinctive feature of Salmonella is that it has not only adapted to survive in a strong inflammatory environment, but it also uses this adaptation as a strategy to gain a growth advantage over the intestinal microbiota. We will use the model organism S. typhimurium to discuss the innate immune mechanisms employed by the mammalian gastrointestinal system and how the pathogen responds and subverts these mechanisms. In particular, we focus on the recognition of extra- and intra-cellular Salmonellae by germline-encoded pattern recognition receptors of the TLR and NLR families, and how Salmonella might profit from the activation of these receptors.
Collapse
|
854
|
Gulati AS, Shanahan MT, Arthur JC, Grossniklaus E, von Furstenberg RJ, Kreuk L, Henning SJ, Jobin C, Sartor RB. Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition. PLoS One 2012; 7:e32403. [PMID: 22384242 PMCID: PMC3288091 DOI: 10.1371/journal.pone.0032403] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota. METHODOLOGY AND PRINCIPAL FINDINGS Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv á-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals. CONCLUSIONS AND SIGNIFICANCE This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease.
Collapse
Affiliation(s)
- Ajay S Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
855
|
Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 2012; 109:3932-7. [PMID: 22355124 DOI: 10.1073/pnas.1113890109] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lifelong self-renewal of the adult intestinal epithelium requires the activity of stem cells located in mucosal crypts. Lgr5 and Bmi1 are two molecular markers of crypt-cell populations that replenish all lineages over time and hence function as stem cells. Intestinal stem cells require Wnt signaling, but the understanding of their cellular niche is incomplete. Lgr5-expressing crypt base columnar cells (CBCs) reside deep in the crypt, mingled among mature Paneth cells that are well positioned for short-range signaling. Partial lineage ablation previously had implied that Paneth cells are nonessential constituents of the stem-cell niche, but recently their absence was reported to interfere with Lgr5(+) CBCs, resurrecting an appealing idea. However, previous mouse models failed to remove Paneth cells completely or permanently; defining the intestinal stem-cell niche requires clarity with respect to the Paneth cell role. We find that Lgr5(+) cells with stem-cell activity cluster in future crypts early in life, before Paneth cells develop. We also crossed conditional Atoh1(-/-) mice, which lack Paneth cells entirely, with Lgr5(GFP) mice to visualize Lgr5(+) CBCs and to track their stem-cell function. In the sustained absence of Paneth cells, Lgr5(+) CBCs occupied the full crypt base, proliferated briskly, and generated differentiated progeny over many months. Gene expression in fluorescence-sorted Lgr5(+) CBCs reflected intact Wnt signaling despite the loss of Paneth cells. Thus, Paneth cells are dispensable for survival, proliferation, and stem-cell activity of CBCs, and direct contact with Lgr5-nonexpressing cells is not essential for CBC function.
Collapse
|
856
|
Simanski M, Köten B, Schröder JM, Gläser R, Harder J. Antimicrobial RNases in cutaneous defense. J Innate Immun 2012; 4:241-7. [PMID: 22327069 DOI: 10.1159/000335029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial proteins (AMP) are small endogenous proteins which are capable of rapidly inactivating microorganisms at low micro- and nanomolar concentrations. Their significance in host defense is reflected by their wide distribution in nature. Several AMP have been isolated from human skin, and there is increasing evidence that AMP may play an important role in cutaneous defense. One important human AMP class comprises several antimicrobial members of the RNase A superfamily. Of these, two members, RNase 7 and RNase 5, have been implicated in cutaneous defense. This review gives an overview about our current knowledge on the potential role of RNase 7 and RNase 5 in protecting human skin from infection.
Collapse
Affiliation(s)
- Maren Simanski
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel Campus, Kiel, Germany
| | | | | | | | | |
Collapse
|
857
|
Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC, McElroy SJ. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012; 5:522-32. [PMID: 22328592 PMCID: PMC3380715 DOI: 10.1242/dmm.009001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. During NEC pathogenesis, bacteria are able to penetrate innate immune defenses and invade the intestinal epithelial layer, causing subsequent inflammation and tissue necrosis. Normally, Paneth cells appear in the intestinal crypts during the first trimester of human pregnancy. Paneth cells constitute a major component of the innate immune system by producing multiple antimicrobial peptides and proinflammatory mediators. To better understand the possible role of Paneth cell disruption in NEC, we quantified the number of Paneth cells present in infants with NEC and found that they were significantly decreased compared with age-matched controls. We were able to model this loss in the intestine of postnatal day (P)14-P16 (immature) mice by treating them with the zinc chelator dithizone. Intestines from dithizone-treated animals retained approximately half the number of Paneth cells compared with controls. Furthermore, by combining dithizone treatment with exposure to Klebsiella pneumoniae, we were able to induce intestinal injury and inflammatory induction that resembles human NEC. Additionally, this novel Paneth cell ablation model produces NEC-like pathology that is consistent with other currently used animal models, but this technique is simpler to use, can be used in older animals that have been dam fed, and represents a novel line of investigation to study NEC pathogenesis and treatment.
Collapse
Affiliation(s)
- Chunxian Zhang
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
858
|
Tosh PK, McDonald LC. Infection Control in the Multidrug-Resistant Era: Tending the Human Microbiome. Clin Infect Dis 2011; 54:707-13. [DOI: 10.1093/cid/cir899] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
859
|
OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect Immun 2011; 80:483-92. [PMID: 22144482 DOI: 10.1128/iai.05674-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are food-borne pathogens that cause serious diarrheal diseases. To colonize the human intestine, these pathogens must overcome innate immune defenses such as antimicrobial peptides (AMPs). Bacterial pathogens have evolved various mechanisms to resist killing by AMPs, including proteolytic degradation of AMPs. To examine the ability of the EHEC and EPEC OmpT outer membrane (OM) proteases to degrade α-helical AMPs, ompT deletion mutants were generated. Determination of MICs of various AMPs revealed that both mutant strains are more susceptible than their wild-type counterparts to α-helical AMPs, although to different extents. Time course assays monitoring the degradation of LL-37 and C18G showed that EHEC cells degraded both AMPs faster than EPEC cells in an OmpT-dependent manner. Mass spectrometry analyses of proteolytic fragments showed that EHEC OmpT cleaves LL-37 at dibasic sites. The superior protection provided by EHEC OmpT compared to EPEC OmpT against α-helical AMPs was due to higher expression of the ompT gene and, in turn, higher levels of the OmpT protein in EHEC. Fusion of the EPEC ompT promoter to the EHEC ompT open reading frame resulted in decreased OmpT expression, indicating that transcriptional regulation of ompT is different in EHEC and EPEC. We hypothesize that the different contributions of EHEC and EPEC OmpT to the degradation and inactivation of LL-37 may be due to their adaptation to their respective niches within the host, the colon and small intestine, respectively, where the environmental cues and abundance of AMPs are different.
Collapse
|
860
|
Duerr CU, Hornef MW. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host-microbial homeostasis. Semin Immunol 2011; 24:25-35. [PMID: 22138188 DOI: 10.1016/j.smim.2011.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Only one single layer of epithelial cells separates the densely colonized and environmentally exposed intestinal lumen from the largely sterile subepithelial tissue. Together with the overlaying mucus and the subepithelial mucosal immune system the epithelium has evolved to maintain homeostasis in the presence of the enteric microbiota. It also contributes to rapid and efficient antimicrobial host defence in the event of infection with pathogenic microorganisms. Both, epithelial antimicrobial host defence and homeostasis rely on signalling pathways induced by innate immune receptors demonstrating the active role of epithelial cells in the host-microbial interplay. The interaction of epithelial cells with professional immune cells illustrates the integrated function within the mucosal tissue. In the present review we focus on structural and functional changes of the intestinal epithelium during the fetal-neonatal transition and infancy and try to delineate its role in the induction and maintenance of host-microbial homeostasis. We also address factors that impair epithelial functions and may lead to disruption of the mucosal barrier, tissue damage and the development of symptomatic disease.
Collapse
Affiliation(s)
- Claudia U Duerr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
861
|
Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 2011; 10:66-78. [PMID: 22101918 DOI: 10.1038/nrmicro2690] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.
Collapse
Affiliation(s)
- Peter A Bron
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | | | | |
Collapse
|
862
|
Dietary supplementation with omega-3-PUFA-rich fish oil reduces signs of food allergy in ovalbumin-sensitized mice. Clin Dev Immunol 2011; 2012:236564. [PMID: 22162714 PMCID: PMC3227513 DOI: 10.1155/2012/236564] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Abstract
We investigated the effect of dietary supplementation with n-3 PUFA (fish oil source) in an experimental model of food allergy. Mice were sensitized (allergic group) or not (nonallergic group) with OVA and were fed with OVA diet to induce allergy signals. Mice were fed with regular diet in which 7% of lipid content was provided by soybean (5% of n-3 PUFA) or fish (25% of n-3 PUFA) oil. Allergic group mice had increased serum levels of antiovalbumin IgE and IgG1 and changes in small intestine, characterized by an increased edema, number of rolling leukocytes in microcirculation, eosinophil infiltration, mucus production, and Paneth cell degranulation, in comparison to non-allergic group. All these inflammatory parameters were reduced in mice fed high-n-3-PUFA diet. Our data together suggest that diet supplementation with n-3 PUFA from fish oil may consist of a valid adjuvant in food allergy treatment.
Collapse
|
863
|
Sunkara LT, Achanta M, Schreiber NB, Bommineni YR, Dai G, Jiang W, Lamont S, Lillehoj HS, Beker A, Teeter RG, Zhang G. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One 2011; 6:e27225. [PMID: 22073293 PMCID: PMC3208584 DOI: 10.1371/journal.pone.0027225] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/12/2011] [Indexed: 12/20/2022] Open
Abstract
Host defense peptides (HDPs) constitute a large group of natural broad-spectrum antimicrobials and an important first line of immunity in virtually all forms of life. Specific augmentation of synthesis of endogenous HDPs may represent a promising antibiotic-alternative approach to disease control. In this study, we tested the hypothesis that exogenous administration of butyrate, a major type of short-chain fatty acids derived from bacterial fermentation of undigested dietary fiber, is capable of inducing HDPs and enhancing disease resistance in chickens. We have found that butyrate is a potent inducer of several, but not all, chicken HDPs in HD11 macrophages as well as in primary monocytes, bone marrow cells, and jejuna and cecal explants. In addition, butyrate treatment enhanced the antibacterial activity of chicken monocytes against Salmonella enteritidis, with a minimum impact on inflammatory cytokine production, phagocytosis, and oxidative burst capacities of the cells. Furthermore, feed supplementation with 0.1% butyrate led to a significant increase in HDP gene expression in the intestinal tract of chickens. More importantly, such a feeding strategy resulted in a nearly 10-fold reduction in the bacterial titer in the cecum following experimental infections with S. enteritidis. Collectively, the results indicated that butyrate-induced synthesis of endogenous HDPs is a phylogenetically conserved mechanism of innate host defense shared by mammals and aves, and that dietary supplementation of butyrate has potential for further development as a convenient antibiotic-alternative strategy to enhance host innate immunity and disease resistance.
Collapse
Affiliation(s)
- Lakshmi T. Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Mallika Achanta
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Nicole B. Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yugendar R. Bommineni
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Gan Dai
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Weiyu Jiang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Susan Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Ali Beker
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Robert G. Teeter
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
864
|
Marques R, Boneca IG. Expression and functional importance of innate immune receptors by intestinal epithelial cells. Cell Mol Life Sci 2011; 68:3661-73. [PMID: 21984599 PMCID: PMC11115018 DOI: 10.1007/s00018-011-0829-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors are somatically encoded and participate in the innate immune responses of a host to microbes. It is increasingly acknowledged that these receptors play a central role both in beneficial and pathogenic interactions with microbes. In particular, these receptors participate actively in shaping the gut environment to establish a fruitful life-long relationship between a host and its microbiota. Commensal bacteria engage Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs) to induce specific responses by intestinal epithelial cells such as production of antimicrobial products or of a functional mucus layer. Furthermore, a complex crosstalk between intestinal epithelial cells and the immune system is initiated leading to a mature gut-associated lymphoid tissue to secrete IgA. Impairment in NLR and TLR functionality in epithelial cells is strongly associated with chronic inflammatory diseases such as Crohn's disease, cancer, and with control of the commensal microbiota creating a more favorable environment for the emergence of new infections.
Collapse
Affiliation(s)
- Rute Marques
- Development of Lymphoid Tissue Unit, Institut Pasteur, Paris, France.
| | | |
Collapse
|
865
|
Stockinger S, Hornef MW, Chassin C. Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci 2011; 68:3699-712. [PMID: 21952827 PMCID: PMC11114965 DOI: 10.1007/s00018-011-0831-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa faces the challenge of regulating the balance between immune tolerance towards commensal bacteria, environmental stimuli and food antigens on the one hand, and induction of efficient immune responses against invading pathogens on the other hand. This regulatory task is of critical importance to prevent inappropriate immune activation that may otherwise lead to chronic inflammation, tissue disruption and organ dysfunction. The most striking example for the efficacy of the adaptive nature of the intestinal mucosa is birth. Whereas the body surfaces are protected from environmental and microbial exposure during fetal life, bacterial colonization and contact with potent immunostimulatory substances start immediately after birth. In the present review, we summarize the current knowledge on the mechanisms underlying the transition of the intestinal mucosa during the neonatal period leading to the establishment of a stable, life-long host-microbial homeostasis. The environmental exposure and microbial colonization during the neonatal period, and also the influence of maternal milk on the immune protection of the mucosa and the role of antimicrobial peptides, are described. We further highlight the molecular mechanisms of innate immune tolerance in neonatal intestinal epithelium. Finally, we link the described immunoregulatory mechanisms to the increased susceptibility to inflammatory and infectious diseases during the neonatal period.
Collapse
Affiliation(s)
- Silvia Stockinger
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Cécilia Chassin
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
866
|
Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its microbiota. Cell Mol Life Sci 2011; 68:3675-85. [PMID: 21968920 PMCID: PMC3222938 DOI: 10.1007/s00018-011-0830-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/08/2023]
Abstract
Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host-microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Charles L. Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616 USA
| | - Nita H. Salzman
- Division of Gastroenterology, Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226 USA
| |
Collapse
|
867
|
Hodin CM, Lenaerts K, Grootjans J, de Haan JJ, Hadfoune M, Verheyen FK, Kiyama H, Heineman E, Buurman WA. Starvation compromises Paneth cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2885-93. [PMID: 21986443 DOI: 10.1016/j.ajpath.2011.08.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Lack of enteral feeding, with or without parenteral nutritional support, is associated with increased intestinal permeability and translocation of bacteria. Such translocation is thought to be important in the high morbidity and mortality rates of patients who receive nothing by mouth. Recently, Paneth cells, important constituents of innate intestinal immunity, were found to be crucial in host protection against invasion of both commensal and pathogenic bacteria. This study investigates the influence of food deprivation on Paneth cell function in a mouse starvation model. Quantitative PCR showed significant decreases in mRNA expression of typical Paneth cell antimicrobials, lysozyme, cryptdin, and RegIIIγ, in ileal tissue after 48 hours of food deprivation. Protein expression levels of lysozyme and RegIIIγ precursor were also significantly diminished, as shown by Western blot analysis and IHC. Late degenerative autophagolysosomes and aberrant Paneth cell granules in starved mice were evident by electron microscopy, Western blot analysis, and quantitative PCR. Furthermore, increased bacterial translocation to mesenteric lymph nodes coincided with Paneth cell abnormalities. The current study demonstrates the occurrence of Paneth cell abnormalities during enteral starvation. Such changes may contribute to loss of epithelial barrier function, causing the apparent bacterial translocation in enteral starvation.
Collapse
Affiliation(s)
- Caroline M Hodin
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|