851
|
Diversifying Selection Analysis Predicts Antigenic Evolution of 2009 Pandemic H1N1 Influenza A Virus in Humans. J Virol 2015; 89:5427-40. [PMID: 25741011 DOI: 10.1128/jvi.03636-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although a large number of immune epitopes have been identified in the influenza A virus (IAV) hemagglutinin (HA) protein using various experimental systems, it is unclear which are involved in protective immunity to natural infection in humans. We developed a data mining approach analyzing natural H1N1 human isolates to identify HA protein regions that may be targeted by the human immune system and can predict the evolution of IAV. We identified 16 amino acid sites experiencing diversifying selection during the evolution of prepandemic seasonal H1N1 strains and found that 11 sites were located in experimentally determined B-cell/antibody (Ab) epitopes, including three distinct neutralizing Caton epitopes: Sa, Sb, and Ca2 [A. J. Caton, G. G. Brownlee, J. W. Yewdell, and W. Gerhard, Cell 31:417-427, 1982, http://dx.doi.org/10.1016/0092-8674(82)90135-0]. We predicted that these diversified epitope regions would be the targets of mutation as the 2009 H1N1 pandemic (pH1N1) lineage evolves in response to the development of population-level protective immunity in humans. Using a chi-squared goodness-of-fit test, we identified 10 amino acid sites that significantly differed between the pH1N1 isolates and isolates from the recent 2012-2013 and 2013-2014 influenza seasons. Three of these sites were located in the same diversified B-cell/Ab epitope regions as identified in the analysis of prepandemic sequences, including Sa and Sb. As predicted, hemagglutination inhibition (HI) assays using human sera from subjects vaccinated with the initial pH1N1 isolate demonstrated reduced reactivity against 2013-2014 isolates. Taken together, these results suggest that diversifying selection analysis can identify key immune epitopes responsible for protective immunity to influenza virus in humans and thereby predict virus evolution. IMPORTANCE The WHO estimates that approximately 5 to 10% of adults and 20 to 30% of children in the world are infected by influenza virus each year. While an adaptive immune response helps eliminate the virus following acute infection, the virus rapidly evolves to evade the established protective memory immune response, thus allowing for the regular seasonal cycles of influenza virus infection. The analytical approach described here, which combines an analysis of diversifying selection with an integration of immune epitope data, has allowed us to identify antigenic regions that contribute to protective immunity and are therefore the key targets of immune evasion by the virus. This information can be used to determine when sequence variations in seasonal influenza virus strains have affected regions responsible for protective immunity in order to decide when new vaccine formulations are warranted.
Collapse
|
852
|
Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, Scheffler K, Kosakovsky Pond SL. Gene-wide identification of episodic selection. Mol Biol Evol 2015; 32:1365-71. [PMID: 25701167 DOI: 10.1093/molbev/msv035] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present BUSTED, a new approach to identifying gene-wide evidence of episodic positive selection, where the non-synonymous substitution rate is transiently greater than the synonymous rate. BUSTED can be used either on an entire phylogeny (without requiring an a priori hypothesis regarding which branches are under positive selection) or on a pre-specified subset of foreground lineages (if a suitable a priori hypothesis is available). Selection is modeled as varying stochastically over branches and sites, and we propose a computationally inexpensive evidence metric for identifying sites subject to episodic positive selection on any foreground branches. We compare BUSTED with existing models on simulated and empirical data. An implementation is available on www.datamonkey.org/busted, with a widget allowing the interactive specification of foreground branches.
Collapse
Affiliation(s)
- Ben Murrell
- Department of Medicine, University of California San Diego
| | - Steven Weaver
- Department of Medicine, University of California San Diego
| | - Martin D Smith
- Graduate program in Bioinformatics and Systems Biology, University of California San Diego
| | | | - Sasha Murrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Anthony Aylward
- Graduate program in Bioinformatics and Systems Biology, University of California San Diego
| | - Kemal Eren
- Graduate program in Bioinformatics and Systems Biology, University of California San Diego Graduate program in Biomedical Informatics, University of California San Diego
| | | | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Davey M Smith
- Department of Medicine, University of California San Diego Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Konrad Scheffler
- Department of Medicine, University of California San Diego Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
853
|
Bono JM, Matzkin LM, Hoang K, Brandsmeier L. Molecular evolution of candidate genes involved in post-mating-prezygotic reproductive isolation. J Evol Biol 2015; 28:403-14. [PMID: 25522894 DOI: 10.1111/jeb.12574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 12/13/2022]
Abstract
Traits involved in post-copulatory interactions between the sexes may evolve rapidly as a result of sexual selection and/or sexual conflict, leading to post-mating-prezygotic (PMPZ) reproductive isolating barriers between diverging lineages. Although the importance of PMPZ isolation is recognized, the molecular basis of such incompatibilities is not well understood. Here, we investigate molecular evolution of a subset of Drosophila mojavensis and Drosophila arizonae reproductive tract genes. These include genes that are transcriptionally regulated by conspecific mating in females, many of which are misregulated in heterospecific crosses, and a set of male genes whose transcripts are transferred to females during mating. As a group, misregulated female genes are not more divergent and do not appear to evolve under different selection pressures than other female reproductive genes. Male transferred genes evolve at a higher rate than testis-expressed genes, and at a similar rate compared to accessory gland protein genes, which are known to evolve rapidly. Four of the individual male transferred genes show patterns of divergent positive selection between D. mojavensis and D. arizonae. Three of the four genes belong to the sperm-coating protein-like family, including an ortholog of antares, which influences female fertility and receptivity in Drosophila melanogaster. Synthesis of these molecular evolutionary analyses with transcriptomics and predicted functional information makes these genes candidates for involvement in PMPZ reproductive incompatibilities between D. mojavensis and D. arizonae.
Collapse
Affiliation(s)
- J M Bono
- Biology Department, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | | | | | | |
Collapse
|
854
|
Amey JS, O'Reilly AO, Burton MJ, Puinean AM, Mellor IR, Duce IR, Field LM, Wallace BA, Williamson MS, Davies TGE. An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids. FEBS Lett 2015; 589:598-607. [PMID: 25637326 PMCID: PMC4332693 DOI: 10.1016/j.febslet.2015.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/31/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023]
Abstract
Aphids have a unique heterodimeric voltage-gated sodium channel. The aphid channel has an atypical ion-selectivity filter (DENS rather than DEKA). The channel’s novel selectivity filter may result in a loss of sodium selectivity. This is the only identifiable voltage-gated sodium channel in aphid genome(s). This channel has most likely arisen by gene fission or gene duplication.
We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel’s novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels.
Collapse
Affiliation(s)
- Joanna S Amey
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Andrias O O'Reilly
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom; School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark J Burton
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom; Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom
| | - Alin M Puinean
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Ian R Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Ian R Duce
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Linda M Field
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Martin S Williamson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - T G Emyr Davies
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.
| |
Collapse
|
855
|
Vijaykrishna D, Holmes EC, Joseph U, Fourment M, Su YCF, Halpin R, Lee RTC, Deng YM, Gunalan V, Lin X, Stockwell TB, Fedorova NB, Zhou B, Spirason N, Kühnert D, Bošková V, Stadler T, Costa AM, Dwyer DE, Huang QS, Jennings LC, Rawlinson W, Sullivan SG, Hurt AC, Maurer-Stroh S, Wentworth DE, Smith GJD, Barr IG. The contrasting phylodynamics of human influenza B viruses. eLife 2015; 4:e05055. [PMID: 25594904 PMCID: PMC4383373 DOI: 10.7554/elife.05055] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.
Collapse
Affiliation(s)
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Udayan Joseph
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mathieu Fourment
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Yvonne C F Su
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Raphael T C Lee
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Mo Deng
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Xudong Lin
- J Craig Venter Institute, Rockville, United States
| | | | | | - Bin Zhou
- J Craig Venter Institute, Rockville, United States
| | - Natalie Spirason
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Denise Kühnert
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Veronika Bošková
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | | | - Dominic E Dwyer
- Centre for Infectious Diseases and Microbiology Laboratory Services, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Q Sue Huang
- Institute of Environmental Science and Research, National Centre for Biosecurity and Infectious Disease, Upper Hutt, New Zealand
| | - Lance C Jennings
- Microbiology Department, Canterbury Health Laboratories, Christchurch, New Zealand
| | - William Rawlinson
- Virology Division, SEALS Microbiology, Prince of Wales Hospital, Sydney, Australia
| | - Sheena G Sullivan
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aeron C Hurt
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Ian G Barr
- World Health Organisation Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
856
|
Gibbs AJ, Nguyen HD, Ohshima K. The 'emergence' of turnip mosaic virus was probably a 'gene-for-quasi-gene' event. Curr Opin Virol 2015; 10:20-6. [PMID: 25559881 DOI: 10.1016/j.coviro.2014.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
Turnip mosaic potyvirus is a virus of brassicas that emerged from a lineage of monocotyledon-infecting potyviruses about 1000 years ago. In vivo and in silico studies all indicate that sites, primarily in its protein 3 (P3) and cylindrical inclusion protein (CI) genes, but also its small 6 kDa 2 protein (6K2) and genome-linked viral protein (VPg) genes, control host specificity in a dynamic way. It is most likely that non-unique combinations of transient viral genomic single nucleotide polymorphisms (SNPs), not all of them non-synonymous, allowed the host switch to occur. These SNPs were probably ephemeral and replaced over time by other combinations as the population subsequently diverged within, and adapted to, the brassica host population.
Collapse
Affiliation(s)
- Adrian J Gibbs
- Australian National University Emeritus Faculty, Canberra, ACT 2601, Australia.
| | - Huy Duc Nguyen
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan; Department of Plant Pathology, Faculty of Agronomy, Vietnam National University of Agriculture, Trauquy, Gialam, Hanoi, Viet Nam
| | - Kazusato Ohshima
- Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
857
|
Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014; 5:mBio.01824-14. [PMID: 25538191 PMCID: PMC4278535 DOI: 10.1128/mbio.01824-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Collapse
|
858
|
454 screening of individual MHC variation in an endemic island passerine. Immunogenetics 2014; 67:149-62. [PMID: 25515684 PMCID: PMC4325181 DOI: 10.1007/s00251-014-0822-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 11/03/2022]
Abstract
Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly been used in the last decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, and although several methodologies have been proposed to deal with this, until recently there have been no standard guidelines for the validation of putative MHC alleles. In this study, we used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island endemic Berthelot's pipit (Anthus berthelotii). We were able to characterise MHC genotypes across 309 individuals with high levels of repeatability. We were also able to determine alleles that had low amplification efficiencies, whose identification within individuals may thus be less reliable. At the population level we found lower levels of MHC diversity in Berthelot's pipit than in its widespread continental sister species the tawny pipit (Anthus campestris), and observed trans-species polymorphism. Using the sequence data, we identified signatures of gene conversion and evidence of maintenance of functionally divergent alleles in Berthelot's pipit. We also detected positive selection at 10 codons. The present study therefore shows that we have an efficient method for screening individual MHC variation across large datasets in Berthelot's pipit, and provides data that can be used in future studies investigating spatio-temporal patterns and scales of selection on the MHC.
Collapse
|
859
|
Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J 2014; 13:495. [PMID: 25496322 PMCID: PMC4300842 DOI: 10.1186/1475-2875-13-495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Background The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. Methods DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, −7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. Results The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. Conclusions The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3′-end of these genes encode MSP-7 proteins’ functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-495) contains supplementary material, which is available to authorized users.
Collapse
|
860
|
Zbawicka M, Wenne R, Burzyński A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol Genet Genomics 2014; 289:1275-87. [PMID: 25079914 PMCID: PMC4236608 DOI: 10.1007/s00438-014-0888-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Recombination in the control region (CR) of Mytilus mitochondrial DNA (mtDNA) was originally reported based on the relatively short, sequenced fragments of mitochondrial genomes. Recombination outside the CR has been reported recently with the suggestion that such processes are common in Mytilus. We have fully sequenced a set of 11 different mitochondrial haplotypes representing the high diversity of paternally inherited mitochondrial genomes of Baltic Sea Mytilus mussels, including the haplotype close to the native Mytilus trossulus mitochondrial genome, which was thought to have been entirely eliminated from this population. Phylogenetic and comparative analysis showed that the recombination is limited to the vicinity of the CR in all sequenced genomes. Coding sequence comparison indicated that all paternally inherited genomes showed increased accumulation of nonsynonymous substitutions, including the genomes which switched their transmission route very recently. The acquisition of certain CR sequences through recombination with highly divergent paternally inherited genomes seems to precede and favor the switch, but it is not a prerequisite for this process. Interspecies hybridization in the Baltic Sea during the recent 10,000 years created conditions for both structural and evolutionary mitochondrial instability which resulted in the observed variation and dynamics of mtDNA in Baltic Sea Mytilus mussels. In conclusion, the data shows that the effects of mitochondrial recombination are limited to the CR of few phylogenetic lineages.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland,
| | | | | |
Collapse
|
861
|
Kraberger S, Kumari SG, Hamed AA, Gronenborn B, Thomas JE, Sharman M, Harkins GW, Muhire BM, Martin DP, Varsani A. Molecular diversity of Chickpea chlorotic dwarf virus in Sudan: high rates of intra-species recombination - a driving force in the emergence of new strains. INFECTION GENETICS AND EVOLUTION 2014; 29:203-15. [PMID: 25444941 DOI: 10.1016/j.meegid.2014.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.
Collapse
Affiliation(s)
- Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Safaa G Kumari
- Virology Laboratory, International Centre for Agricultural Research in the Dry Areas (ICARDA), Tunis, Tunisia.
| | - Abdelmagid A Hamed
- Plant Pathology Research Program, Agricultural Research Corporation, P.O. Box 126, Wadmedani, Sudan
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - John E Thomas
- Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Murray Sharman
- Department of Agriculture, Fisheries and Forestry, Ecoscience Precinct, GPO Box 267, Brisbane, QLD 4001, Australia
| | - Gordon W Harkins
- South African National Bioinformatics Institute, SA Medical Research Unit for Bioinformatics Capacity Development, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Brejnev M Muhire
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand; Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
862
|
Lwande OW, Venter M, Lutomiah J, Michuki G, Rumberia C, Gakuya F, Obanda V, Tigoi C, Odhiambo C, Nindo F, Symekher S, Sang R. Whole genome phylogenetic investigation of a West Nile virus strain isolated from a tick sampled from livestock in north eastern Kenya. Parasit Vectors 2014; 7:542. [PMID: 25430727 PMCID: PMC4255437 DOI: 10.1186/s13071-014-0542-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/15/2014] [Indexed: 11/24/2022] Open
Abstract
Background West Nile virus (WNV) has a wide geographical distribution and has been associated to cause neurological disease in humans and horses. Mosquitoes are the traditional vectors for WNV; however, the virus has also been isolated from tick species in North Africa and Europe which could be a means of introduction and spread of the virus over long distances through migratory birds. Although WNV has been isolated in mosquitoes in Kenya, paucity of genetic and pathogenicity data exists. We previously reported the isolation of WNV from ticks collected from livestock and wildlife in Ijara District of Kenya, a hotspot for arbovirus activity. Here we report the full genome sequence and phylogenetic investigation of their origin and relation to strains from other regions. Methods A total of 10,488 ticks were sampled from animal hosts, classified to species and processed in pools of up to eight ticks per pool. Virus screening was performed by cell culture, RT-PCR and sequencing. Phylogenetic analysis was carried out to determine the evolutionary relationships of our isolate. Results Among other viruses, WNV was isolated from a pool of Rhipicephalus pulchellus sampled from cattle, sequenced and submitted to GenBank (Accession number: KC243146). Comparative analysis with 27 different strains revealed that our isolate belongs to lineage 1 and clustered relatively closely to isolates from North Africa and Europe, Russia and the United States. Overall, Bayesian analysis based on nucleotide sequences showed that lineage 1 strains including the Kenyan strain had diverged 200 years ago from lineage 2 strains of southern Africa. Ijara strain collected from a tick sampled on livestock was closest to another Kenyan strain and had diverged 20 years ago from strains detected in Morocco and Europe and 30 years ago from strains identified in the USA. Conclusion To our knowledge, this is the first characterized WNV strain isolated from R. pulchellus. The epidemiological role of this tick in WNV transmission and dissemination remains equivocal but presents tick verses mosquito virus transmission has been neglected. Genetic data of this strain suggest that lineage 1 strains from Africa could be dispersed through tick vectors by wild migratory birds to Europe and beyond. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0542-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivia Wesula Lwande
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya. .,Department of Medical Virology, University of Pretoria, Pretoria, South Africa.
| | - Marietjie Venter
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa. .,Global Disease Detection, United States-Centers for Disease Control, Pretoria, South Africa.
| | | | - George Michuki
- International Livestock Research Institute, Nairobi, Kenya.
| | | | | | | | - Caroline Tigoi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Collins Odhiambo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.
| | - Fredrick Nindo
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, (IIDMM) University of Cape Town, Cape Town, South Africa.
| | | | - Rosemary Sang
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya. .,Kenya Medical Research Institute, Nairobi, Kenya.
| |
Collapse
|
863
|
Next generation sequencing improves detection of drug resistance mutations in infants after PMTCT failure. J Clin Virol 2014; 62:48-53. [PMID: 25542470 DOI: 10.1016/j.jcv.2014.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/22/2014] [Accepted: 11/08/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Next generation sequencing (NGS) allows the detection of minor variant HIV drug resistance mutations (DRMs). However data from new NGS platforms after Prevention-of-Mother-to-Child-Transmission (PMTCT) regimen failure are limited. OBJECTIVE To compare major and minor variant HIV DRMs with Illumina MiSeq and Life Technologies Ion Personal Genome Machine (PGM) in infants infected despite a PMTCT regimen. STUDY DESIGN We conducted a cross-sectional study of NGS for detecting DRMs in infants infected despite a zidovudine (AZT) and Nevirapine (NVP) regimen, before initiation of combination antiretroviral therapy. Sequencing was performed on PCR products from plasma samples on PGM and MiSeq platforms. Bioinformatic analyses were undertaken using a codon-aware version of the Smith-Waterman mapping algorithm and a mixture multinomial error filtering statistical model. RESULTS Of 15 infants, tested at a median age of 3.4 months after birth, 2 (13%) had non-nucleoside reverse transcriptase inhibitor (NNRTI) DRMs (K103N and Y181C) by bulk sequencing, whereas PGM detected 4 (26%) and MiSeq 5 (30%). NGS enabled the detection of additional minor variant DRMs in the infant with K103N. Coverage and instrument quality scores were higher with MiSeq, increasing the confidence of minor variant calls. CONCLUSIONS NGS followed by bioinformatic analyses detected multiple minor variant DRMs in HIV-1 RT among infants where PMTCT failed. The high coverage of MiSeq and high read quality improved the confidence of identified DRMs and may make this platform ideal for minor variant detection.
Collapse
|
864
|
Padhi A, Ma L. Genetic and epidemiological insights into the emergence of peste des petits ruminants virus (PPRV) across Asia and Africa. Sci Rep 2014; 4:7040. [PMID: 25391314 PMCID: PMC4229660 DOI: 10.1038/srep07040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/27/2014] [Indexed: 11/09/2022] Open
Abstract
Small ruminants are important components in the livelihood of millions of households in many parts of the world. The spread of the highly contagious peste des petits ruminants (PPR) disease, which is caused by an RNA virus, PPRV, across Asia and Africa remains a major concern. The present study explored the evolutionary and epidemiological dynamics of PPRV through the analyses of partial N-gene and F-gene sequences of the virus. All the four previously described PPRV lineages (I-IV) diverged from their common ancestor during the late-19(th) to early-20(th) century. Among the four lineages, PPRV-IV showed pronounced genetic structuring across the region; however, haplotype sharing among the geographic regions, together with the presence of multiple genetic clusters within a country, indicates the possibility of frequent mobility of the diseased individuals across the region. The gradual decline in the effective number of infections suggests a limited genetic variation, which could be attributed to the effective vaccination that has been practiced since 1990s. However, the movement of infected animals across the region likely contributes to the spread of PPRV-IV. No evidence of positive selection was identified from this study.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD-20742, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD-20742, USA
| |
Collapse
|
865
|
Vinkler M, Bainová H, Bryja J. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 2014; 46:72. [PMID: 25387947 PMCID: PMC4228102 DOI: 10.1186/s12711-014-0072-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) are essential activators of the innate part of the vertebrate immune system. In this study, we analysed the interspecific variability of three TLR (bacterial-sensing TLR4 and TLR5 and viral-sensing TLR7) within the Galloanserae bird clade, investigated their phylogeny, assessed their structural conservation and estimated site-specific selection pressures. RESULTS Physiochemical properties varied according to the TLR analysed, mainly with regards to the surface electrostatic potential distribution. The predicted ligand-binding features (mainly in TLR4 and TLR5) differed between the avian proteins and their fish and mammalian counterparts, but also varied within the Galloanserae birds. We identified 20 positively selected sites in the three TLR, among which several are topologically close to ligand-binding sites reported for mammalian and fish TLR. We described 26, 28 and 25 evolutionarily non-conservative sites in TLR4, TLR5 and TLR7, respectively. Thirteen of these sites in TLR4, and ten in TLR5 were located in functionally relevant regions. The variability appears to be functionally more conserved for viral-sensing TLR7 than for the bacterial-sensing TLR. Amino-acid positions 268, 270, 343, 383, 444 and 471 in TLR4 and 180, 183, 209, 216, 264, 342 and 379 in TLR5 are key candidates for further functional research. CONCLUSIONS Host-pathogen co-evolution has a major effect on the features of host immune receptors. Our results suggest that avian and mammalian TLR may be differentially adapted to pathogen-derived ligand recognition. We have detected signatures of positive selection even within the Galloanserae lineage. To our knowledge, this is the first study to depict evolutionary pressures on Galloanserae TLR and to estimate the validity of current knowledge on TLR function (based on mammalian and chicken models) for non-model species of this clade.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic.
| | | | | |
Collapse
|
866
|
Murungi EK, Kariithi HM, Adunga V, Obonyo M, Christoffels A. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins. INSECTS 2014; 5:885-908. [PMID: 26462947 PMCID: PMC4592607 DOI: 10.3390/insects5040885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 12/25/2022]
Abstract
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector.
Collapse
Affiliation(s)
- Edwin K Murungi
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 57811, Kaptagat Rd, Nairobi 00200, Kenya.
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Vincent Adunga
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Meshack Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
867
|
Adaptive evolution of a novel avian-origin influenza A/H7N9 virus. Genomics 2014; 104:545-53. [PMID: 25449177 DOI: 10.1016/j.ygeno.2014.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/21/2022]
Abstract
In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus.
Collapse
|
868
|
Maldonado E, Sunagar K, Almeida D, Vasconcelos V, Antunes A. IMPACT_S: integrated multiprogram platform to analyze and combine tests of selection. PLoS One 2014; 9:e96243. [PMID: 25329307 PMCID: PMC4203653 DOI: 10.1371/journal.pone.0096243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Among the major goals of research in evolutionary biology are the identification of genes targeted by natural selection and understanding how various regimes of evolution affect the fitness of an organism. In particular, adaptive evolution enables organisms to adapt to changing ecological factors such as diet, temperature, habitat, predatory pressures and prey abundance. An integrative approach is crucial for the identification of non-synonymous mutations that introduce radical changes in protein biochemistry and thus in turn influence the structure and function of proteins. Performing such analyses manually is often a time-consuming process, due to the large number of statistical files generated from multiple approaches, especially when assessing numerous taxa and/or large datasets. We present IMPACT_S, an easy-to-use Graphical User Interface (GUI) software, which rapidly and effectively integrates, filters and combines results from three widely used programs for assessing the influence of selection: Codeml (PAML package), Datamonkey and TreeSAAP. It enables the identification and tabulation of sites detected by these programs as evolving under the influence of positive, neutral and/or negative selection in protein-coding genes. IMPACT_S further facilitates the automatic mapping of these sites onto the three-dimensional structures of proteins. Other useful tools incorporated in IMPACT_S include Jmol, Archaeopteryx, Gnuplot, PhyML, a built-in Swiss-Model interface and a PDB downloader. The relevance and functionality of IMPACT_S is shown through a case study on the toxicoferan-reptilian Cysteine-rich Secretory Proteins (CRiSPs). IMPACT_S is a platform-independent software released under GPLv3 license, freely available online from http://impact-s.sourceforge.net.
Collapse
Affiliation(s)
- Emanuel Maldonado
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Kartik Sunagar
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniela Almeida
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
869
|
Padhi A, Ma L. Molecular evolutionary and epidemiological dynamics of genotypes 1G and 2B of rubella virus. PLoS One 2014; 9:e110082. [PMID: 25329480 PMCID: PMC4201520 DOI: 10.1371/journal.pone.0110082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
Rubella Virus (RV), which causes measles-like rashes in children, puts millions of infants at risk of congenital defects across the globe. Employing phylogenetic approaches to the whole genome sequence data and E1 glycoprotein sequence data, the present study reports the substitution rates and dates of emergence of all thirteen previously described rubella genotypes, and gains important insights into the epidemiological dynamics of two geographically widely distributed genotypes 1G and 2B. The overall nucleotide substitution rate of this non-vector-borne RV is in the order of 10-3 substitutions/site/year, which is considerably higher than the substitution rates previously reported for the vector-borne alphaviruses within the same family. Currently circulating strains of RV share a common ancestor that existed within the last 150 years, with 95% Highest Posterior Density values ranging from 1868 to 1926 AD. Viral strains within the respective genotypes began diverging between the year 1930 s and 1980 s. Both genotype 1G and 2B have shown a decline in effective number of infections since 1990 s, a period during which mass immunization programs against RV were adapted across the globe. Although both genotypes showed some extent of spatial genetic structuring, the analyses also depicted an inter-continental viral dispersal. Such a viral dispersal pattern could be related to the migration of infected individuals across the regions coupled with a low coverage of MMR vaccination.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
870
|
Immonen TT, Leitner T. Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages. Retrovirology 2014; 11:81. [PMID: 25318357 PMCID: PMC4201670 DOI: 10.1186/s12977-014-0081-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/01/2014] [Indexed: 02/01/2023] Open
Abstract
Background HIV-1 can persist for the duration of a patient’s life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle. Results We developed a novel molecular clock–based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past. Conclusions These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0081-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taina T Immonen
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Thomas Leitner
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
871
|
Zhu K, Zhou X, Xu S, Sun D, Ren W, Zhou K, Yang G. The loss of taste genes in cetaceans. BMC Evol Biol 2014; 14:218. [PMID: 25305673 PMCID: PMC4232718 DOI: 10.1186/s12862-014-0218-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/02/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Five basic taste modalities, sour, sweet, bitter, salt and umami, can be distinguished by humans and are fundamental for physical and ecological adaptations in mammals. Molecular genetic studies of the receptor genes for these tastes have been conducted in terrestrial mammals; however, little is known about the evolution and adaptation of these genes in marine mammals. RESULTS Here, all five basic taste modalities, sour, sweet, bitter, salt and umami, were investigated in cetaceans. The sequence characteristics and evolutionary analyses of taste receptor genes suggested that nearly all cetaceans may have lost all taste modalities except for that of salt. CONCLUSIONS This is the first study to comprehensively examine the five basic taste modalities in cetaceans with extensive taxa sampling. Our results suggest that cetaceans have lost four of the basic taste modalities including sour, sweet, umami, and most of the ability to sense bitter tastes. The integrity of the candidate salt taste receptor genes in all the cetaceans examined may be because of their function in Na(+) reabsorption, which is key to osmoregulation and aquatic adaptation.
Collapse
Affiliation(s)
- Kangli Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
872
|
The genetics of monarch butterfly migration and warning colouration. Nature 2014; 514:317-21. [PMID: 25274300 PMCID: PMC4331202 DOI: 10.1038/nature13812] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning coloration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. By sequencing 101 monarch genomes from around the globe, we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behavior, and identify the discrete genetic basis of warning coloration. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration center on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning coloration is controlled by a single myosin gene not previously implicated in insect pigmentation.
Collapse
|
873
|
Cotten M, Petrova V, Phan MVT, Rabaa MA, Watson SJ, Ong SH, Kellam P, Baker S. Deep sequencing of norovirus genomes defines evolutionary patterns in an urban tropical setting. J Virol 2014; 88:11056-69. [PMID: 25056894 PMCID: PMC4178781 DOI: 10.1128/jvi.01333-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/10/2014] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Norovirus is a highly transmissible infectious agent that causes epidemic gastroenteritis in susceptible children and adults. Norovirus infections can be severe and can be initiated from an exceptionally small number of viral particles. Detailed genome sequence data are useful for tracking norovirus transmission and evolution. To address this need, we have developed a whole-genome deep-sequencing method that generates entire genome sequences from small amounts of clinical specimens. This novel approach employs an algorithm for reverse transcription and PCR amplification primer design using all of the publically available norovirus sequence data. Deep sequencing and de novo assembly were used to generate norovirus genomes from a large set of diarrheal patients attending three hospitals in Ho Chi Minh City, Vietnam, over a 2.5-year period. Positive-selection analysis and direct examination of protein changes in the virus over time identified codons in the regions encoding proteins VP1, p48 (NS1-2), and p22 (NS4) under positive selection and expands the known targets of norovirus evolutionary pressure. IMPORTANCE The high transmissibility and rapid evolutionary rate of norovirus, combined with a short-lived host immune responses, are thought to be the reasons why the virus causes the majority of pediatric viral diarrhea cases. The evolutionary patterns of this RNA virus have been described in detail for only a portion of the virus genome and never for a virus from a detailed urban tropical setting. We provide a detailed sequence description of the noroviruses circulating in three Ho Chi Minh City hospitals over a 2.5-year period. This study identified patterns of virus change in known sites of host immune response and identified three additional regions of the virus genome under selection that were not previously recognized. In addition, the method described here provides a robust full-genome sequencing platform for community-based virus surveillance.
Collapse
Affiliation(s)
- Matthew Cotten
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - My V T Phan
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon J Watson
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Swee Hoe Ong
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom Division of Infection & Immunity, University College London, London, United Kingdom
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam The London School of Hygiene and Tropical Medicine, London, United Kingdom Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
874
|
Forero-Rodríguez J, Garzón-Ospina D, Patarroyo MA. Low genetic diversity in the locus encoding the Plasmodium vivax P41 protein in Colombia's parasite population. Malar J 2014; 13:388. [PMID: 25269993 PMCID: PMC4190493 DOI: 10.1186/1475-2875-13-388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background The development of malaria vaccine has been hindered by the allele-specific responses produced by some parasite antigens’ high genetic diversity. Such antigen genetic diversity must thus be evaluated when designing a completely effective vaccine. Plasmodium falciparum P12, P38 and P41 proteins have red blood cell binding regions in the s48/45 domains and are located on merozoite surface, P41 forming a heteroduplex with P12. These three genes have been identified in Plasmodium vivax and share similar characteristics with their orthologues in Plasmodium falciparum. Plasmodium vivax pv12 and pv38 have low genetic diversity but pv41 polymorphism has not been described. Methods The present study was aimed at evaluating the P. vivax p41 (pv41) gene’s polymorphism. DNA sequences from Colombian clinical isolates from pv41 gene were analysed for characterising and studying the genetic diversity and the evolutionary forces that produced the variation pattern so observed. Results Similarly to other members of the 6-Cys family, pv41 had low genetic polymorphism. pv41 3′-end displayed the highest nucleotide diversity value; several substitutions found there were under positive selection. Negatively selected codons at inter-species level were identified in the s48/45 domains; p41 would thus seem to have functional/structural constraints due to the presence of these domains. Conclusions In spite of the functional constraints of Pv41 s48/45 domains, immune system pressure seems to have allowed non-synonymous substitutions to become fixed within them as an adaptation mechanism; including Pv41 s48/45 domains in a vaccine should thus be carefully evaluated due to these domains containing some allele variants. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-388) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, DC, Colombia.
| |
Collapse
|
875
|
Cloete LJ, Tanov EP, Muhire BM, Martin DP, Harkins GW. The influence of secondary structure, selection and recombination on rubella virus nucleotide substitution rate estimates. Virol J 2014; 11:166. [PMID: 25224517 PMCID: PMC4175276 DOI: 10.1186/1743-422x-11-166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/11/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Annually, rubella virus (RV) still causes severe congenital defects in around 100 000 children globally. An attempt to eradicate RV is currently underway and analytical tools to monitor the global decline of the last remaining RV lineages will be useful for assessing the effectiveness of this endeavour. RV evolves rapidly enough that much of this information might be inferable from RV genomic sequence data. METHODS Using BEASTv1.8.0, we analysed publically available RV sequence data to estimate genome-wide and gene-specific nucleotide substitution rates to test whether current estimates of RV substitution rates are representative of the entire RV genome. We specifically accounted for possible confounders of nucleotide substitution rate estimates, such as temporally biased sampling, sporadic recombination, and natural selection favouring either increased or decreased genetic diversity (estimated by the PARRIS and FUBAR methods), at nucleotide sites within the genomic secondary structures (predicted by the NASP method). RESULTS We determine that RV nucleotide substitution rates range from 1.19 × 10(-3) substitutions/site/year in the E1 region to 7.52 × 10(-4) substitutions/site/year in the P150 region. We find that differences between substitution rate estimates in different RV genome regions are largely attributable to temporal sampling biases such that datasets containing higher proportions of recently sampled sequences, will tend to have inflated estimates of mean substitution rates. Although there exists little evidence of positive selection or natural genetic recombination in RV, we show that RV genomes possess pervasive biologically functional nucleic acid secondary structure and that purifying selection acting to maintain this structure contributes substantially to variations in estimated nucleotide substitution rates across RV genomes. CONCLUSION Both temporal sampling biases and purifying selection favouring the conservation of RV nucleic acid secondary structures have an appreciable impact on substitution rate estimates but do not preclude the use of RV sequence data to date ancestral sequences. The combination of uniformly high substitution rates across the RV genome and strong temporal structure within the available sequence data, suggests that such data should be suitable for tracking the demographic, epidemiological and movement dynamics of this virus during eradication attempts.
Collapse
Affiliation(s)
- Leendert J Cloete
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| | - Emil P Tanov
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| | - Brejnev M Muhire
- />Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- />Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| | - Gordon W Harkins
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
876
|
Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet 2014; 10:e1004531. [PMID: 25211013 PMCID: PMC4161310 DOI: 10.1371/journal.pgen.1004531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.
Collapse
|
877
|
An evolutionary analysis of the Secoviridae family of viruses. PLoS One 2014; 9:e106305. [PMID: 25180860 PMCID: PMC4152289 DOI: 10.1371/journal.pone.0106305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/04/2014] [Indexed: 01/03/2023] Open
Abstract
The plant-infecting Secoviridae family of viruses forms part of the Picornavirales order, an important group of non-enveloped viruses that infect vertebrates, arthropods, plants and algae. The impact of the secovirids on cultivated crops is significant, infecting a wide range of plants from grapevine to rice. The overwhelming majority are transmitted by ecdysozoan vectors such as nematodes, beetles and aphids. In this study, we have applied a variety of computational methods to examine the evolutionary traits of these viruses. Strong purifying selection pressures were calculated for the coat protein (CP) sequences of nine species, although for two species evidence of both codon specific and episodic diversifying selection were found. By using Bayesian phylogenetic reconstruction methods CP nucleotide substitution rates for four species were estimated to range from between 9.29×10−3 to 2.74×10−3 (subs/site/year), values which are comparable with the short-term estimates of other related plant- and animal-infecting virus species. From these data, we were able to construct a time-measured phylogeny of the subfamily Comovirinae that estimated divergence of ninety-four extant sequences occurred less than 1,000 years ago with present virus species diversifying between 50 and 250 years ago; a period coinciding with the intensification of agricultural practices in industrial societies. Although recombination (modularity) was limited to closely related taxa, significant and often unique similarities in the protein domains between secovirid and animal infecting picorna-like viruses, especially for the protease and coat protein, suggested a shared ancestry. We discuss our results in a wider context and find tentative evidence to indicate that some members of the Secoviridae might have their origins in insects, possibly colonizing plants in a number of founding events that have led to speciation. Such a scenario; virus infection between species of different taxonomic kingdoms, has significant implications for virus emergence.
Collapse
|
878
|
Sorel M, Svanella-Dumas L, Candresse T, Acelin G, Pitarch A, Houvenaghel MC, German-Retana S. Key mutations in the cylindrical inclusion involved in lettuce mosaic virus adaptation to eIF4E-mediated resistance in lettuce. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1014-24. [PMID: 25105805 DOI: 10.1094/mpmi-04-14-0111-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We previously showed that allelic genes mol¹ and mo1² used to protect lettuce crops against Lettuce mosaic virus (LMV) correspond to mutant alleles of the gene encoding the eukaryotic translation initiation factor 4E. LMV resistance-breaking determinants map not only to the main potyvirus virulence determinant, a genome-linked viral protein, but also to the C-terminal region of the cylindrical inclusion (CI), with a key role of amino acid at position 621. Here, we show that the propagation of several non-lettuce isolates of LMV in mo1¹ plants is accompanied by a gain of virulence correlated with the presence in the CI C terminus of a serine at position 617 and the accumulation of mutations at positions 602 or 627. Whole-genome sequencing of native and evolved isolates showed that no other mutation could be associated with adaptation to mo1 resistance. Site-directed mutagenesis pinpointed the key role in the virulence of the combination of mutations at positions 602 and 617, in addition to position 621. The impact of these mutations on the fitness of the virus was evaluated, suggesting that the durability of mo1 resistance in the field relies on the fitness cost associated with the resistance-breaking mutations, the nature of the mutations, and their potential antagonistic effects.
Collapse
|
879
|
Elsworth P, Cooke BD, Kovaliski J, Sinclair R, Holmes EC, Strive T. Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology 2014; 464-465:415-423. [PMID: 25146599 DOI: 10.1016/j.virol.2014.06.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 01/14/2023]
Abstract
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.
Collapse
Affiliation(s)
- Peter Elsworth
- Robert Wicks Pest Animal Research Centre, Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, Toowoomba, Queensland, Australia; Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia
| | - Brian D Cooke
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; University of Canberra, Institute for Applied Ecology, ACT, Canberra, Australia
| | - John Kovaliski
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; Biosecurity South Australia, Adelaide, South Australia, Australia
| | - Ronald Sinclair
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; Biosecurity South Australia, Adelaide, South Australia, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases & Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tanja Strive
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, ACT, Canberra, Australia; CSIRO Ecosystem Sciences, Canberra, ACT, Australia; CSIRO Biosecurity Flagship, Canberra, Australia.
| |
Collapse
|
880
|
Obbard DJ, Dudas G. The genetics of host-virus coevolution in invertebrates. Curr Opin Virol 2014; 8:73-8. [PMID: 25063907 PMCID: PMC4199324 DOI: 10.1016/j.coviro.2014.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK; Centre for Infection Immunity and Evolution, University of Edinburgh, Kings Buildings, Edinburgh, UK.
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK
| |
Collapse
|
881
|
Tsangaras K, Kolokotronis SO, Ulrich RG, Morand S, Michaux J, Greenwood AD. Negative Purifying Selection Drives Prion and Doppel Protein Evolution. J Mol Evol 2014; 79:12-20. [DOI: 10.1007/s00239-014-9632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/03/2014] [Indexed: 12/16/2022]
|
882
|
Malik YS, Kumar N, Sharma K, Ghosh S, Bányai K, Balasubramanian G, Kobayashi N, Matthijnssens J. Molecular analysis of non structural rotavirus group A enterotoxin gene of bovine origin from India. INFECTION GENETICS AND EVOLUTION 2014; 25:20-7. [DOI: 10.1016/j.meegid.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/15/2022]
|
883
|
Altamia MA, Wood N, Fung JM, Dedrick S, Linton EW, Concepcion GP, Haygood MG, Distel DL. Genetic differentiation among isolates of Teredinibacter turnerae, a widely occurring intracellular endosymbiont of shipworms. Mol Ecol 2014; 23:1418-1432. [PMID: 24765662 DOI: 10.1111/mec.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2–5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.
Collapse
Affiliation(s)
- Marvin A Altamia
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Nicole Wood
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Jennifer M Fung
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Sandra Dedrick
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Eric W Linton
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Margo G Haygood
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|
884
|
Molecular evolutionary history of Sugarcane yellow leaf virus based on sequence analysis of RNA-dependent RNA polymerase and putative aphid transmission factor-coding genes. J Mol Evol 2014; 78:349-65. [PMID: 24952671 DOI: 10.1007/s00239-014-9630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
RNA-dependent RNA polymerase (RdRp) encoded by ORF2 and putative aphid transmission factor (PATF) encoded by ORF5 of Sugarcane yellow leaf virus (SCYLV) were detected in six sugarcane cultivars affected by yellow leaf using RT-PCR and real-time RT-PCR assays. Expression of both genes varied among infected plants, but overall expression of RdRp was higher than expression of PATF. Cultivar H87-4094 from Hawaii yielded the highest transcript levels of RdRp, whereas cultivar C1051-73 from Cuba exhibited the lowest levels. Sequence comparisons among 25 SCYLV isolates from various geographical locations revealed an amino acid similarity of 72.1-99.4 and 84.7-99.8 % for the RdRp and PATF genes, respectively. The 25 SCYLV isolates were separated into three (RdRp) and two (PATF) phylogenetic groups using the MEGA6 program that does not account for genetic recombination. However, the SCYLV genome contained potential recombination signals in the RdRp and PATF coding genes based on the GARD genetic algorithm. Use of this later program resulted in the reconstruction of phylogenies on the left as well as on the right sides of the putative recombination breaking points, and the 25 SCYLV isolates were distributed into three distinct phylogenetic groups based on either RdRp or PATF sequences. As a result, recombination reshuffled the affiliation of the accessions to the different clusters. Analysis of selection pressures exerted on RdRp and PATF encoded proteins revealed that ORF 2 and ORF 5 underwent predominantly purifying selection. However, a few sites were also under positive selection as assessed by various models such as FEL, IFEL, REL, FUBAR, MEME, GA-Branch, and PRIME.
Collapse
|
885
|
Chauhan K, Pande V, Das A. DNA sequence polymorphisms of the pfmdr1 gene and association of mutations with the pfcrt gene in Indian Plasmodium falciparum isolates. INFECTION GENETICS AND EVOLUTION 2014; 26:213-22. [PMID: 24911283 DOI: 10.1016/j.meegid.2014.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
Mutations in the Plasmodium falciparum multidrug resistance (pfmdr1) gene are known to provide compensatory fitness benefits to the chloroquine (CQ)-resistant malaria parasites and are often associated with specific mutations in the P. falciparum CQ resistant transporter (pfcrt) gene. Prevalence of the specific mutations in these two genes across different malaria endemic regions was mostly studies. However, reports on mutations in the pfmdr1 gene and their genetic associations with mutations in the pfcrt gene in Indian P. falciparum field isolates are scarce. We have sequenced a 560 bp region of pfmdr1 coding sequence in 64 P. falciparum isolates collected from different malaria endemic populations in India. Twenty out of these 64 isolates were laboratory cultured with known in vitro CQ sensitiveness (10 sensitive and 10 resistant). Three low frequency mutations (two non-synonymous and one synonymous) in the pfmdr1 gene were segregating in Indian isolates in addition to the predominant Y₈₆ and Y₁₈₄ ones, with high haplotype and nucleotide diversity in the field isolates in comparison to the cultured ones. No statistically significant genetic association between the mutations in the pfmdr1 and pfcrt gene could be detected; almost all observed associations were intragenic in nature. The results on the genetic diversity of the pfmdr1 gene were discussed in term of evolutionary perspectives in Indian P. falciparum, with possible future potential of gaining further insights on this gene in view of evolving malaria parasites resistant to artemisinin partner drugs.
Collapse
Affiliation(s)
- Kshipra Chauhan
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 263001, Uttarakhand, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India.
| |
Collapse
|
886
|
Western equine encephalitis virus: evolutionary analysis of a declining alphavirus based on complete genome sequences. J Virol 2014; 88:9260-7. [PMID: 24899192 DOI: 10.1128/jvi.01463-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Western equine encephalitis virus (WEEV) is an arbovirus from the genus Alphavirus, family Togaviridae, which circulates in North America between birds and mosquitoes, occasionally causing disease in humans and equids. In recent decades, human infection has decreased dramatically; the last documented human case in North America occurred in 1994, and the virus has not been detected in mosquito pools since 2008. Because limited information exists regarding the evolution of WEEV, we analyzed the genomic sequences of 33 low-passage-number strains with diverse geographic and temporal distributions and performed comprehensive phylogenetic analyses. Our results indicated that WEEV is a highly conserved alphavirus with only approximately 5% divergence in its most variable genes. We confirmed the presence of the previously determined group A and B lineages and further resolved group B into three sublineages. We also observed an increase in relative genetic diversity during the mid-20th century, which correlates with the emergence and cocirculation of several group B sublineages. The estimated WEEV population size dropped in the 1990s, with only the group B3 lineage being sampled in the past 20 years. Structural mapping showed that the majority of substitutions in the envelope glycoproteins occurred at the E2-E2 interface. We hypothesize that an event occurred in the mid-20th century that resulted in the increased genetic diversity of WEEV in North America, followed by genetic constriction due to either competitive displacement by the B3 sublineage or stochastic events resulting from a population decline. IMPORTANCE Western equine encephalitis virus (WEEV) has caused several epidemics that resulted in the deaths of thousands of humans and hundreds of thousands of equids during the past century. During recent decades, human infection decreased drastically and the virus has not been found in mosquito pools since 2008. Because limited information exists regarding the evolution of WEEV, we analyzed 33 complete genome sequences and conducted comprehensive phylogenetic analyses. We confirmed the presence of two major lineages, one of which diverged into three sublineages. Currently, only one of those sublineages is found circulating in nature. Understanding the evolution of WEEV over the past century provides a unique opportunity to observe an arbovirus that is in decline and to better understand what factors can cause said decline.
Collapse
|
887
|
Spielman SJ, Dawson ET, Wilke CO. Limited utility of residue masking for positive-selection inference. Mol Biol Evol 2014; 31:2496-500. [PMID: 24899665 DOI: 10.1093/molbev/msu183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Errors in multiple sequence alignments (MSAs) can reduce accuracy in positive-selection inference. Therefore, it has been suggested to filter MSAs before conducting further analyses. One widely used filter, Guidance, allows users to remove MSA positions aligned with low confidence. However, Guidance's utility in positive-selection inference has been disputed in the literature. We have conducted an extensive simulation-based study to characterize fully how Guidance impacts positive-selection inference, specifically for protein-coding sequences of realistic divergence levels. We also investigated whether novel scoring algorithms, which phylogenetically corrected confidence scores, and a new gap-penalization score-normalization scheme improved Guidance's performance. We found that no filter, including original Guidance, consistently benefitted positive-selection inferences. Moreover, all improvements detected were exceedingly minimal, and in certain circumstances, Guidance-based filters worsened inferences.
Collapse
Affiliation(s)
- Stephanie J Spielman
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute of Cellular and Molecular Biology, The University of Texas at Austin
| | - Eric T Dawson
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute of Cellular and Molecular Biology, The University of Texas at Austin
| | - Claus O Wilke
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, and Institute of Cellular and Molecular Biology, The University of Texas at Austin
| |
Collapse
|
888
|
Jacobsen MW, Pujolar JM, Gilbert MTP, Moreno-Mayar JV, Bernatchez L, Als TD, Lobon-Cervia J, Hansen MM. Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity (Edinb) 2014; 113:432-42. [PMID: 24865601 DOI: 10.1038/hdy.2014.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/30/2022] Open
Abstract
Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.
Collapse
Affiliation(s)
- M W Jacobsen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - M T P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J V Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Québec, Québec Canada
| | - T D Als
- 1] Department of Biomedicine-Human Genetics, Aarhus University, Aarhus C, Denmark [2] National Institute of Aquatic Resources, Section for Marine Living Resources, Technical University of Denmark, Silkeborg, Denmark
| | - J Lobon-Cervia
- Javier Lobon-Cervia, National Museum of Natural Sciences (CSIC), C/ José Gutierrez Abascal, Madrid, Spain
| | - M M Hansen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
889
|
Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. J Virol 2014; 88:8783-94. [PMID: 24850747 DOI: 10.1128/jvi.00531-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Bunyaviridae is a large family of RNA viruses chiefly comprised of vertebrate and plant pathogens. We discovered novel bunyavirids that are approximately equally divergent from each of the five known genera. We characterized novel genome sequences for two bunyavirids, namely, Kigluaik phantom virus (KIGV), from tundra-native phantom midges (Chaoborus), and Nome phantom virus (NOMV), from tundra-invading phantom midges, and demonstrated that these bunyavirid-like sequences belong to an infectious virus by passaging KIGV in mosquito cell culture, although the infection does not seem to be well sustained beyond a few passages. Virus and host gene sequences from individuals collected on opposite ends of North America, a region spanning 4,000 km, support a long-term, vertically transmitted infection of KIGV in Chaoborus trivittatus. KIGV-like sequences ranging from single genes to full genomes are present in transcriptomes and genomes of insects belonging to six taxonomic orders, suggesting an ancient association of this clade with insect hosts. In Drosophila, endogenous virus genes have been coopted, forming an orthologous tandem gene family that has been maintained by selection during the radiation of the host genus. Our findings indicate that bunyavirid-host interactions in nonbloodsucking arthropods have been much more extensive than previously thought. IMPORTANCE Very little is known about the viral diversity in polar freshwater ponds, and perhaps less is known about the effects that climate-induced habitat changes in these regions will have on virus-host interactions in the coming years. Our results show that at the tundra-boreal boundary, a hidden viral landscape is being altered as infected boreal phantom midges colonize tundra ponds. Likewise, relatively little is known of the deeper evolutionary history of bunyavirids that has led to the stark lifestyle contrasts between some genera. The discovery of this novel bunyavirid group suggests that ancient and highly divergent bunyavirid lineages remain undetected in nature and may offer fresh insight into host reservoirs, potential sources of emerging disease, and major lifestyle shifts in the evolutionary history of viruses in the family Bunyaviridae.
Collapse
|
890
|
Xu T, Zhu Z, Sun Y, Ren L, Wang R. Characterization and expression of the CXCR1 and CXCR4 in miiuy croaker and evolutionary analysis shows the strong positive selection pressures imposed in mammal CXCR1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:133-144. [PMID: 24333436 DOI: 10.1016/j.dci.2013.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
The innate immune system can recognize non-self, danger signals, and pathogen associated molecular patterns and provides a first line of antimicrobial host defense. Therefore, it plays an instructive role and is pretty important in vertebrates. In innate immune responses, CXCRs act as the main receptors of CXC chemokines and play a vital role in host defense and inflammation. In present study, we cloned two cDNA molecules of CXCR1 and CXCR4 in Miichthys miiuy (miiuy croaker). In these two genes, we found the most highly conserved DRY motif in the second intracellular loop adjacent to the third transmembrane domain. The expressions of CXCR1 and CXCR4 showed that they were ubiquitously expressed in ten normal tissues. After infection with Vibrio anguillarum and Vibrio harveyi, the expressions of CXCRs in the immune tissues were significantly regulated in most of tissues except that of CXCR1 in the kidney after V. harveyi injection. Evolutionary analysis showed that only the ancestral lineages of CXCR4 in amphibians underwent positive selection, indicating that the ancestors of amphibians boarded the land and had to further evolve to adapt to terrestrial environments. Multiple ML methods were implemented to detect the robust positively selected candidates for sites. In total, we detected 12 and 3 positively selected sites in the subsets of current mammal and fish CXCR1 genes, and only one site under positive selection was found in mammalian CXCR4 subsets. These positively selected sites were mainly located in the extracellular domains of CXCRs. The sliding window analysis and evolution test tended to favor positive selection acting on the N-terminal domain of CXCR1, which was the critical region for ligand/receptor signaling for neutrophils and receptor-ligand interaction, indicating that the N-terminal of CXCR1 in mammals underwent more positive selection than that of fish.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China.
| | - Zhihuang Zhu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Yuena Sun
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Liping Ren
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| | - Rixin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, PR China
| |
Collapse
|
891
|
Multifunctional warheads: Diversification of the toxin arsenal of centipedes via novel multidomain transcripts. J Proteomics 2014; 102:1-10. [DOI: 10.1016/j.jprot.2014.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022]
|
892
|
Monzón-Argüello C, Garcia de Leaniz C, Gajardo G, Consuegra S. Eco-immunology of fish invasions: the role of MHC variation. Immunogenetics 2014; 66:393-402. [PMID: 24752816 DOI: 10.1007/s00251-014-0771-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
Abstract
The relationship between invaders and the pathogens encountered in their new environment can have a large effect on invasion success. Invaders can become free from their natural pathogens and reallocate costly immune resources to growth and reproduction, thereby increasing invasion success. Release from enemies and relaxation of selective pressures could render newly founded populations more variable at immune-related genes, such as the major histocompatibility complex (MHC), particularly when they have different origins. Using rainbow and brown trout, two of the world's most successful fish invaders, we tested the general hypothesis that invaders should display high intrapopulation immunogenetic diversity and interpopulation divergence, due to the interplay between genetic drift and successive waves of genetically divergent introductions. We analysed genetic diversity and signatures of selection at the MHC class II β immune-related locus. In both species, MHC diversity (allelic richness and heterozygosity) for southern hemisphere populations was similar to values reported for populations at their native range. However, MHC functional diversity was limited, and population immunogenetic structuring weaker than that observed using neutral markers. Depleted MHC functional diversity could reflect a decrease in immune response, immune-related assortative mating or selection for resistance to newly encountered parasites. Given that the role of MHC diversity in the survival of these populations remains unclear, depleted functional diversity of invasive salmonids could compromise their long-term persistence. A better understanding of the eco-immunology of invaders may help in managing and preventing the impact of biological invasions, a major cause of loss of biodiversity worldwide.
Collapse
|
893
|
Scheffler K, Murrell B, Kosakovsky Pond SL. On the validity of evolutionary models with site-specific parameters. PLoS One 2014; 9:e94534. [PMID: 24722425 PMCID: PMC3983186 DOI: 10.1371/journal.pone.0094534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022] Open
Abstract
Evolutionary models that make use of site-specific parameters have recently been criticized on the grounds that parameter estimates obtained under such models can be unreliable and lack theoretical guarantees of convergence. We present a simulation study providing empirical evidence that a simple version of the models in question does exhibit sensible convergence behavior and that additional taxa, despite not being independent of each other, lead to improved parameter estimates. Although it would be desirable to have theoretical guarantees of this, we argue that such guarantees would not be sufficient to justify the use of these models in practice. Instead, we emphasize the importance of taking the variance of parameter estimates into account rather than blindly trusting point estimates – this is standardly done by using the models to construct statistical hypothesis tests, which are then validated empirically via simulation studies.
Collapse
Affiliation(s)
- Konrad Scheffler
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| | - Ben Murrell
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Sergei L. Kosakovsky Pond
- Department of Medicine, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
894
|
The evolution of Vp1 gene in enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99. PLoS One 2014; 9:e93737. [PMID: 24695547 PMCID: PMC3973639 DOI: 10.1371/journal.pone.0093737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/07/2014] [Indexed: 12/17/2022] Open
Abstract
Genus Enterovirus (Family Picornaviridae,) consists of twelve species divided into genetically diverse types by their capsid protein VP1 coding sequences. Each enterovirus type can further be divided into intra-typic sub-clusters (genotypes). The aim of this study was to elucidate what leads to the emergence of novel enterovirus clades (types and genotypes). An evolutionary analysis was conducted for a sub-group of Enterovirus C species that contains types Coxsackievirus A21 (CVA-21), CVA-24, Enterovirus C95 (EV-C95), EV-C96 and EV-C99. VP1 gene datasets were collected and analysed to infer the phylogeny, rate of evolution, nucleotide and amino acid substitution patterns and signs of selection. In VP1 coding gene, high intra-typic sequence diversities and robust grouping into distinct genotypes within each type were detected. Within each type the majority of nucleotide substitutions were synonymous and the non-synonymous substitutions tended to cluster in distinct highly polymorphic sites. Signs of positive selection were detected in some of these highly polymorphic sites, while strong negative selection was indicated in most of the codons. Despite robust clustering to intra-typic genotypes, only few genotype-specific ‘signature’ amino acids were detected. In contrast, when different enterovirus types were compared, there was a clear tendency towards fixation of type-specific ‘signature’ amino acids. The results suggest that permanent fixation of type-specific amino acids is a hallmark associated with evolution of different enterovirus types, whereas neutral evolution and/or (frequency-dependent) positive selection in few highly polymorphic amino acid sites are the dominant forms of evolution when strains within an enterovirus type are compared.
Collapse
|
895
|
Cotton LA, Kuang XT, Le AQ, Carlson JM, Chan B, Chopera DR, Brumme CJ, Markle TJ, Martin E, Shahid A, Anmole G, Mwimanzi P, Nassab P, Penney KA, Rahman MA, Milloy MJ, Schechter MT, Markowitz M, Carrington M, Walker BD, Wagner T, Buchbinder S, Fuchs J, Koblin B, Mayer KH, Harrigan PR, Brockman MA, Poon AFY, Brumme ZL. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet 2014; 10:e1004295. [PMID: 24762668 PMCID: PMC3998893 DOI: 10.1371/journal.pgen.1004295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/21/2014] [Indexed: 11/20/2022] Open
Abstract
HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979-1989) and 382 modern (2000-2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a "consensus-like" founder virus, the median "background" frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼ 2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were "pre-adapted" to the average host HLA profile was only ∼ 2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins.
Collapse
Affiliation(s)
- Laura A. Cotton
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xiaomei T. Kuang
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anh Q. Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Benjamin Chan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Denis R. Chopera
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Tristan J. Markle
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Martin
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Pauline Nassab
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kali A. Penney
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Manal A. Rahman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - M.-J. Milloy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin T. Schechter
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Theresa Wagner
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Jonathan Fuchs
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Beryl Koblin
- New York Blood Center, New York, New York, United States of America
| | - Kenneth H. Mayer
- Fenway Community Health, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F. Y. Poon
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
896
|
Dutertre S, Jin AH, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 2014; 5:3521. [PMID: 24662800 PMCID: PMC3973120 DOI: 10.1038/ncomms4521] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/26/2014] [Indexed: 01/06/2023] Open
Abstract
Venomous animals are thought to inject the same combination of toxins for both predation and defence, presumably exploiting conserved target pharmacology across prey and predators. Remarkably, cone snails can rapidly switch between distinct venoms in response to predatory or defensive stimuli. Here, we show that the defence-evoked venom of Conus geographus contains high levels of paralytic toxins that potently block neuromuscular receptors, consistent with its lethal effects on humans. In contrast, C. geographus predation-evoked venom contains prey-specific toxins mostly inactive at human targets. Predation- and defence-evoked venoms originate from the distal and proximal regions of the venom duct, respectively, explaining how different stimuli can generate two distinct venoms. A specialized defensive envenomation strategy is widely evolved across worm, mollusk and fish-hunting cone snails. We propose that defensive toxins, originally evolved in ancestral worm-hunting cone snails to protect against cephalopod and fish predation, have been repurposed in predatory venoms to facilitate diversification to fish and mollusk diets.
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier 2—CNRS, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Brett Hamilton
- Pathology Department, and Mater Research Institute, Mater Health Services, South Brisbane, 4101 Queensland, Australia
| | - Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, Porto 4050-123, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Vincent Lavergne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Valentin Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Bryan G. Fry
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 177, Porto 4050-123, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Deon J. Venter
- Pathology Department, and Mater Research Institute, Mater Health Services, South Brisbane, 4101 Queensland, Australia
- Department of Medicine, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
897
|
Stenzel T, Piasecki T, Chrząstek K, Julian L, Muhire BM, Golden M, Martin DP, Varsani A. Pigeon circoviruses display patterns of recombination, genomic secondary structure and selection similar to those of beak and feather disease viruses. J Gen Virol 2014; 95:1338-1351. [PMID: 24639400 DOI: 10.1099/vir.0.063917-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pigeon circovirus (PiCV) has a ~2 kb genome circular ssDNA genome. All but one of the known PiCV isolates have been found infecting pigeons in various parts of the world. In this study, we screened 324 swab and tissue samples from Polish pigeons and recovered 30 complete genomes, 16 of which came from birds displaying no obvious pathology. Together with 17 other publicly available PiCV complete genomes sampled throughout the Northern Hemisphere and Australia, we find that PiCV displays a similar degree of genetic diversity to that of the related psittacine-infecting circovirus species, beak and feather disease virus (BFDV). We show that, as is the case with its pathology and epidemiology, PiCV also displays patterns of recombination, genomic secondary structure and natural selection that are generally very similar to those of BFDV. It is likely that breeding facilities play a significant role in the emergence of new recombinant PiCV variants and given that ~50 % of the domestic pigeon population is infected subclinically, all pigeon breeding stocks should be screened routinely for this virus.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Tomasz Piasecki
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-360 Wrocław, Poland
| | - Klaudia Chrząstek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-360 Wrocław, Poland
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Brejnev M Muhire
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Michael Golden
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, South Africa
| | - Arvind Varsani
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.,Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa.,School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.,Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
898
|
Changes in diversification patterns and signatures of selection during the evolution of murinae-associated hantaviruses. Viruses 2014; 6:1112-34. [PMID: 24618811 PMCID: PMC3970142 DOI: 10.3390/v6031112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space.
Collapse
|
899
|
Pineda SS, Sollod BL, Wilson D, Darling A, Sunagar K, Undheim EAB, Kely L, Antunes A, Fry BG, King GF. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics 2014; 15:177. [PMID: 24593665 PMCID: PMC4029134 DOI: 10.1186/1471-2164-15-177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. RESULTS Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. CONCLUSIONS Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bryan G Fry
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, QLD 4072, Australia.
| | | |
Collapse
|
900
|
Alcaide M, Muñoz J, Martínez-de la Puente J, Soriguer R, Figuerola J. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 2014; 4:688-98. [PMID: 24683452 PMCID: PMC3967895 DOI: 10.1002/ece3.974] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022] Open
Abstract
The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird.
Collapse
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Joaquin Muñoz
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
- The University of Oklahoma Biological Station15389 Station Road, Kingston, Oklahoma, 73439
| | | | - Ramón Soriguer
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| |
Collapse
|